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Reduced Order Modeling of Diffusively Coupled Network Systems: An
Optimal Edge Weighting Approach

Xiaodong Cheng , Member, IEEE, Lanlin Yu , Member, IEEE, Dingchao Ren ,
and Jacquelien M.A. Scherpen , Fellow, IEEE

Abstract—This article studies reduced-order modeling of dy-
namic networks with strongly connected topology. Given a graph
clustering of an original large-scale network, we construct a quo-
tient graph with less number of vertices, where the edge weights
are parameters to be determined. The model of a reduced net-
work is thereby obtained with parameterized system matrices, and
then, an edge weighting procedure is devised, aiming to select an
optimal set of edge weights to minimize the approximation error
between the original and the reduced-order network models in
terms of H2-norm. The effectiveness of the proposed method is
illustrated by a numerical example.

Index Terms—Interconnected systems, linear systems, network
systems, optimization, reduced order systems.

I. INTRODUCTION

With the growing complexity of interconnected dynamic systems,
the importance of understanding and managing dynamic networks has
been widely recognized. An important class of dynamic networks
is given by the so-called diffusively coupled networks, which are
commonly used for describing diffusion processes, e.g., information
or energy spreading in networks. The examples can be found in, e.g.,
vehicle formations, electrical networks, and synchronization in sensor
networks, see [1], [2], and [3]. The spatial structures of such systems
usually result in high-dimensional models that hinder analysis, control,
and optimization. Thus, it is desirable to simplify the structure of a
complex network without a significant loss of accuracy.

Different from model reduction problems for other types of dynamic
systems, the one considered in this article puts emphasis on the preser-
vation of the network structure, which is necessary for applications,
e.g., distributed controller design and sensor allocation [4], [5], [6].
Conventional model reduction methods, e.g., balanced truncation and
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moment matching, merely focus on approximating the input–output
behavior of a given dynamical system [7], while the preservation of
the network structure is barely guaranteed. Although a generalized
balanced truncation approach in [8] is able to construct an accurate
reduced-order model with a network interpretation, the relation be-
tween the original and obtained new typologies is not clear. Singular
perturbation approximation has been applied to the reduction of electric
circuits [9] and chemical reaction networks [10]. This class of methods
mainly relies on time-scale separation of the states in an autonomous
system, while the external inputs are not considered explicitly. Besides,
the resulting reduced topology hardly retains sparsity.

Recently, clustering-based methods have become the mainstream
methodology for reducing network systems, see, e.g., [11], [12], [13],
[14], [15], [16], [17], [18], and [19]. This class of methods has a clear
advantage in retaining the consensus [12], [19] or positivity [15] in
reduced-order models. The reduction procedure can be implemented
via the Petrov–Galerkin projection framework, where the projection
matrix is formed based on the vertex clusters. However, all the current
clustering-based methods only focus on finding suitable clusters. After
clusters are found, reduced-order network models are then directly
determined by the projection framework, while the freedom to construct
a reduced-order network model with higher accuracy is overlooked.

In this article, we will explore the latter freedom and provide a novel
method for reduced-order modeling of directed networks. We do not
aim to find an optimal clustering. Instead, we assume that the clustering
of a network is given, which leads to a quotient graph. A parameterized
reduced-order model is thereby established with the edge weights to
be optimized. Then, the major problem in this article follows: How
to tune the edge weights in the parameterized reduced-order model to
minimize the approximation error?

This problem can be formulated as an optimization problem with
the objective to minimize theH2-norm of the reduction error between
original and reduced network systems, in which the edge weights
of the reduced network are variables to be optimized. This edge
weighting problem is subject to a bilinear matrix inequality constraint,
which is computationally expensive. Therefore, we devise a novel edge
weighting algorithm based on the convex–concave decomposition. Such
decomposition presented in [20] is classified as a local optimization
method, which aims at finding a local optimum based on solving a
sequence of convex semidefinite programming problems. With this de-
composition, the nonconvex constraint in our problem can be linearized
as a convex one in the form of a linear matrix inequality (LMI), so
that an iterative scheme is implemented to search for a set of optimal
weights. The convergence of this algorithm is theoretically ensured, and
thus at least a local optimum can be reached. Moreover, we initialize
the edge weights as the outcome of clustering-based projection, such
that the obtained reduced-order network model is guaranteed a better
approximation accuracy than the clustering-based projection methods.
Compared with the preliminary results presented in [21], this article
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provides a generalization to directed networks and improve the opti-
mization scheme, which now guarantees the convergence.

The rest of this article is organized as follows. In Section II, we recap
some preliminaries on graph theory and introduce the problem setup. In
Section III, the parameterized reduced-order model is formulated, and
an edge weighting algorithm is proposed to minimize the approximation
error. In Section IV, the proposed method is illustrated by an example.
Finally, Section V concludes this article.

Notation: The symbols R and R+ denote the set of real numbers and
positive real numbers, respectively. Let Sn be the set of real symmetric
matrices of size n× n. In is the identity matrix of size n, and 1n

represents the vector in Rn of all ones. The cardinality of a set S is
denoted by |S|.

II. PRELIMINARIES AND PROBLEM SETTING

This section provides necessary definitions and concepts in graph
theory used in this article, and we refer [22] for more details. The model
of a dynamical network is then introduced and the model reduction
problem is formulated.

A. Graph Theory

A directed graph G := (V, E) consists of a finite and nonempty node
set V := {1, 2, . . . , n} and an edge set E ⊆ V × V . Each element in E
is an ordered pair of V , and if (i, j) ∈ E , we say that the edge is directed
from vertex i to vertex j. A directed graph G is called simple, if G does
not contain self-loops (i.e., E does not contain any edge of the form
(i, i)∀ i ∈ V), and there exists only one edge directed from i to j, if
(i, j) ∈ E . Next, we recap several important matrices for characterizing
a directed simple graph from [22]. The incidence matrix B ∈ Rn×|E| is
defined by

Bij =

⎧⎨
⎩

+1 if edge j is directed from vertex i
−1 if edge j is directed to vertex i
0 otherwise.

If each edge is assigned a positive value (weight), then the weighted
adjacency matrix of G, denoted by A ∈ Rn×n, is defined such that
Aij ∈ R+ denotes the weight of edge (i, j) ∈ E , andAij = 0 if (i, j) /∈
E . In the case of a simple graph, A is a binary matrix with zeros on
its diagonal. Then, the Laplacian matrix L ∈ Rn×n of the graph G is
defined as

Lij =

{∑n
k=1,k �=iAik if i = j

−Aij otherwise.
(1)

Clearly, L1 = 0. When G is strongly connected, the diagonal entries
of L are strictly positive, and the off-diagonal entries are nonpositive.
Alternatively, we can characterize the Laplacian matrix using the in-
cidence matrix of G as L = B0 WB�, where B0 is a binary matrix
obtained by replacing all “−1” entries in the incidence matrix B with
zeros, and

W := Diag(w), with w =
[
w1 w2 · · · w|E|

]�
and wk the positive weight associated to the kth edge, for all k ∈
{1, 2, . . . , |E|}. Note that the adjacency and Laplacian matrices in
this article are defined as transposed compared with [23], where the
direction of edges corresponds to the flows, rather than the dependency
in the network.

For a vertex in a weighted graph, the indegree and outdegree of vertex
i are computed as

∑
j∈V Aji and

∑
j∈V Aij , respectively. A strongly

connected graph G is called balanced if the indegree and outdegree of
each vertex in G is equal. From (1), the following lemma is immediate.

Lemma 1: A weighted strongly connected graph G is balanced if
and only if one of the following conditions hold.
1) The edge weights of G satisfies Bw = 0.
2) The Laplacian matrix of G satisfies 1�L = 0.

The strong connectivity implies that there is only one zero eigenvalue
of L, and the balance of G then indicates that both the row and column
sums of L are zero.

Remark 1: Undirected graphs can be viewed as special balanced
directed graphs with bidirectional edges. The Laplacian matrix of
an undirected graph is L = BWB�, where B is an incidence matrix
obtained by assigning an arbitrary orientation to each edge of the
undirected graph, and W is a positive diagonal matrix representing
edge weights.

Next, we recapitulate the notion of graph clustering, whose concept
can be found in, e.g., [12], [13], [14], [15], [16], and [17].

Definition 1: Let G := (V, E) be a directed graph. Then, a graph
clustering is a partition of V into r nonempty disjoint subsets
C1, C2, . . . , Cr covering all the elements inV , whereCi is called a cluster
of G.

Let {C1, C2, . . . , Cr} be a clustering of G with n vertices. This graph
clustering can be characterized by a binary characteristic matrix Π ∈
Rn×r , whose rows and columns are corresponding to the vertices and
clusters, respectively:

Πij :=

{
1 if vertex i ∈ Cj
0 otherwise.

Remark 2: Note that all the clusters are nonoverlapping, i.e., each
vertex cannot be assigned to distinct clusters. Therefore, each row of
the characteristic matrix Π only has one nonzero element. Specifically,
we have

Π1r = 1nand1�nΠ = [|C1|, |C2|, . . . , |Cr|] . (2)

Given a graph clustering {C1, C2, . . . , Cr} of a graph G, the quotient
graph Ĝ is r-vertex directed graph obtained by aggregating all the
vertices in each cluster as a single vertex, while retaining connections
between clusters and ignoring the edges within clusters. Specifically, if
there is an edge (i, j) in G with vertices i, j in the same cluster, then it
will not be presented as an edge in Ĝ. If there exists an edge (i, j) with
i ∈ Ck and j ∈ Cl, then there is an edge (k, l) in Ĝ.

B. Problem Setup

In this article, we consider a network system evolving over a directed
graph G, which is simple, weighted, and strongly connected. The
dynamics of each vertex is governed by

ẋi(t) = −
n∑

j=1

Aij [xi(t)− xj(t)] +
p∑

k=1

fikuk(t) (3)

where xi(t) ∈ R is the state of vertex i, and Aij is the (i, j)th entry
of the adjacency matrix of G, representing the strength of the coupling
between vertices i and j. uk(t) ∈ R is the external input, and fik ∈ R
is the gain of the kth input acting on vertex i, which is zero if and only
if uj has no effect on vertex i. Let F ∈ Rn×p be the matrix such that
Fij = fij . We then present the dynamics of the overall network in a
compact form as

Σ :

{
ẋ(t) = −Lx(t) + Fu(t)
y(t) = Hx(t)

(4)

with x(t) := [x1, x2, . . . , xn]
� ∈ Rn and u := [u1, u2, . . . , up]

� ∈
Rp. The vector y ∈ Rq collects the outputs of the network, and H
is the output matrix.

Authorized licensed use limited to: University of Groningen. Downloaded on November 03,2023 at 14:13:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 7, JULY 2023 4235

This article aims for structure-preserving model reduction of diffu-
sively coupled networks in form of (4), and the reduced-order model not
only approximates the input–output mapping of the original network
system with a certain accuracy but also inherits an interconnection struc-
ture with diffusive couplings. To this end, we adopt graph clustering
to build up a reduced-order network model. Specifically, the problem
addressed in this article is as follows.

Problem 1: Given a network systemΣ as in (4) defined on a directed
graph G and a graph clustering {C1, C2, . . . , Cr} of G, find a reduced-
order model

Σ̂ :

{
˙̂x(t) = −L̂x̂(t) + F̂ u(t)

ŷ(t) = Ĥx̂(t)
(5)

with x̂ ∈ Rr , r � n, such that L̂ ∈ Rr×r is a Laplacian matrix as-
sociated with the quotient graph of G, F̂ ∈ Rr×p and Ĥ ∈ Rq×r are
reduced input and output matrices, and the reduction error ‖Σ− Σ̂‖H2

is minimized.
Remark 3: It is not necessary to construct a reduced-order network

model with graph clustering, while we consider the clustering frame-
work in order to capture the interconnection structure among the clusters
in the original graph. This is done through L̂, which represents a quotient
graph. Moreover, different from the existing clustering-based model
reduction methods that aim to find suitable graph clustering for a small
reduction error, Problem 1 is not to seek for clusters of G. Instead, we
focus on how to establish a “good” reduced-order model with given
clusters. Thus, it is an essentially different problem from, e.g., [14],
[15], [17], and [19], and we do not apply the Petrov–Galerkin projection
framework.

III. MAIN RESULT

A novel model reduction approach for network systems is presented
in this section. First, a parameterized model of a reduced network is
constructed on the basis of graph clustering. Then, we compute the
edge weight parameters in an optimal fashion such that the H2-norm
of approximation error is minimized.

A. Parameterized Reduced-Order Network Model

Given a graph clustering of the original network, we present a
parameterized model for the reduced network, whose interconnection
topology is determined by the clustering. An important property of
this parameterized model is that it guarantees the boundedness of the
reduction error ‖Σ− Σ̂‖H2

for all positive edge weights.
To derive a parameterized reduced-order network model with such

a property, we first convert the system (4) to its balanced graph
representation as follows.

Lemma 2: If the underlying graph of Σ in (4) is strongly connected,
then there exists a diagonal M ∈ Rn×n with positive diagonal entries
such that Σ is equivalent to

{
Mẋ(t) = −Lbx(t) + Fbu(t)
y(t) = Hx(t)

(6)

where Fb =MF , andLb =ML is the Laplacian of a balanced graph.
The proof follows directly from [19]. Next, we establish a reduced-

order model using the representation (6) to guarantee a bounded reduc-
tion error ‖Σ− Σ̂‖H2

.
Let Gb be the balanced graph of G. Note that G and Gb have the

same incidence matrix B. Given a graph clustering {C1, C2, . . . , Cr},
we obtain the quotient graph Ĝb with r vertices. Let B̂ be the incidence
matrix of the quotient graph Ĝb, and it can be verified that B̂ is obtained
by removing all the zero columns and repeated columns ofΠ�B, where

Fig. 1. (a) Directed balanced network Gb consisting of six vertices, in
which vertex 4 is controlled and vertex 1 is measured. The vertices
in different clusters are indicated by distinct colors. (b) Quotient graph
Ĝb consisting of three vertices, where the edge weights are parame-
ters to be determined. The quotient graph is balanced, when the con-
straints ŵ3 = ŵ1 − ŵ2 and ŵ4 = ŵ2 are imposed. (c) Resulting reduced
graph Ĝ.

B is the incidence matrix of Gb (or G). Furthermore, we denote

Ŵ = Diag(ŵ), with ŵ =
[
ŵ1 ŵ2 · · · ŵm

]�
(7)

as the edge weight matrix of Ĝb, where ŵk ∈ R+, and m is number of
edges in Ĝb. In order to maintain Ĝb as a balanced graph, we impose
the constraint on its edge weights as

B̂ŵ = 0 (8)

according to Lemma 1. Thereby, the dynamics on the balanced quotient
graph Ĝb is then obtained as

{
M̂ ˙̂x(t) = −L̂b(Ŵ )x̂(t) + F̂bu(t)

ŷ(t) = Ĥx̂(t)
(9)

with the reduced matrices

M̂ = Π�MΠ, L̂b(Ŵ ) = B̂0Ŵ B̂�

F̂b = Π�Fb, and Ĥ = HΠ (10)

where B̂0 is the binary matrix obtained by replacing all the “−1”
entries with zeros in B̂, and M̂b ∈ Rr×r , F̂b ∈ Rr×p, and Ĥ ∈ Rq×r

are reduced matrices determined by the given clustering of Gb. Since
the graph clustering is given, i.e., Π is known, the only parameters to
be decided are the weights in Ŵ , which satisfy the constraint (8).

From the reduced graph balanced representation (9), we immediately
construct a parameterized reduced-order model in the form of (5) with
the reduced matrices

L̂(Ŵ ) = M̂−1B̂0Ŵ B̂�, F̂ = M̂−1Π�Fb, Ĥ = HΠ (11)

where L̂ represents a reduced weighted graph Ĝ. In (11), only the weight
matrix Ŵ is to be determined, which is selected from the following set:

M := {W = Diag(ŵ) | ŵ ∈ Rm
+ , B̂ŵ = 0}. (12)

In the following example, we demonstrate the parameterized mod-
eling of a simplified dynamic network.

Example 1: Consider a network example with a directed graph as
in [1], where the formation topology G is depicted in Fig. 1(a). Clearly,
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G is balanced, i.e., G = Gb, with the incidence matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0 −1 0
−1 1 1 −1 0 0 0 0 0 0
0 0 0 1 1 1 0 −1 0 −1
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 −1 −1 1 0 0
0 0 −1 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Suppose that each vehicle is modeled as a first-order integrator which
has the identical mass, i.e., M = I6. An external control u is applied
on vertex 4, and the vertex 1 is measured as the output signal y. Then,
the network model is obtained in the form of (6) with

Lb =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −2 0 0 0 0
−1 3 0 0 0 −2
0 −1 4 −2 −1 0
0 0 0 2 −2 0
0 0 −3 0 3 0
−1 0 −1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦
, Fb =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and H =
[
1 0 0 0 0 0

]
.

Consider a clustering of Gb as C1 = {1, 2}, C2 = {3, 4, 5},
C3 = {6}, which gives the characteristic matrix as

Π =

⎡
⎣ 1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1

⎤
⎦
�

The topology of the quotient graph Ĝb is shown in Fig. 1(b) with the
incidence matrix

B̂ =

⎡
⎣ 1 −1 −1 0

0 1 0 −1
−1 0 1 1

⎤
⎦ .

All the edge weights of Ĝb are positive parameters to be determined, as
labeled in Fig. 1(b), which leads to the parameterized Laplacian matrix
as

L̂b(Ŵ ) =

⎡
⎣ ŵ1 0 −ŵ1

−ŵ2 ŵ2 0
−ŵ3 −ŵ4 ŵ3 + ŵ4

⎤
⎦ .

The weights satisfy the constraint B̂ŵ = 0, namely, ŵ3 = ŵ1 − ŵ2,
ŵ4 = ŵ2, such that Ĝb is balanced. The other matrices in the reduced-
order model (9) are computed as

M̂ = Π�MΠ =

⎡
⎣ 2 0 0
0 3 0
0 0 1

⎤
⎦ , F̂b = Π�Fb =

⎡
⎣ 0
1
0

⎤
⎦

and Ĥ = HΠ =
[
1 0 0

]
.

Then, in the parameterized reduced-order model (5), we have

L̂(Ŵ ) = M̂−1L̂b(Ŵ ) =

⎡
⎣

1
2
ŵ1 0 − 1

2
ŵ1

− 1
3
ŵ2

1
3
ŵ2 0

−ŵ3 −ŵ4 ŵ3 + ŵ4

⎤
⎦

with ŵ3 = ŵ1 − ŵ2, and ŵ4 = ŵ2. The corresponding reduced graph
is depicted in Fig. 1(c), which is no longer balanced.

Remark 4: The physical interpretation of the reduced matrices in
(10) are explained. M̂ is constructed such that the mass of vertex k in
Ĝb is equal to the mass sum of all the vertices in Ck inGb. The expression
of F̂b means that if a vertex in a cluster Ck of Gb is controlled by an
external input, then vertex k in Ĝb is also controlled. Analogously, Ĥ
indicates that a vertex k in Ĝb is measured if there is a measurement
taken from a vertex in Ck.

With the reduced matrices in (11) and the constraint in (8), an
important property of the reduced-order network model Σ̂ is that it
guarantees theH2 reduction error between the original system Σ in (4)
and Σ̂ is always bounded.

The computation of the reduction error amounts to find theH2 norm
of the following error system:

Ge(s) = Ce(sI −Ae)
−1Be (13)

where

Ae = −
[
L 0

0 L̂

]
, Be =

[
F

F̂

]
, Ce =

[
H −Ĥ ]

.

Note thatAe is not Hurwitz, sinceL and L̂ are both Laplacian matrices
containing zero eigenvalues. Thus, ‖Ge(s)‖H2

cannot be calculated
directly using the state space representation (13). Here, we employ the
following matrices:

Sn =

[−In−1
1�n−1

]
∈ Rn×(n−1), Sr =

[−Ir−1
1�r−1

]
∈ Rr×(r−1) (14)

which are independent of system dynamics and satisfy S�n1n = 0,
and S�r 1r = 0. Consider their left pseudoinverses as
S+
n = (S�nM

−1Sn)
−1S�nM

−1, S+
r = (S�r M̂

−1Sr)
−1S�r M̂

−1,
respectively. Then, using the matrices in (14), we show the following
result.

Lemma 3: Consider the network system Σ in (4) and the reduced-
order network model Σ̂ in (5) with matrices in (11). Then,Σ− Σ̂ ∈ H2

holds for all Ŵ ∈M.
Proof: With Sn and Sr in (14), we construct a nonsingular (n+

r)× (n+ r) matrix as

Ue =

[
σ−1M 1n 0 M−1Sn 0

0 σ−1M 1r 0 M̂−1Sr

]
(15)

where σM := 1�nM1n = 1�rΠ
�MΠ1r = 1�r M̂1r . The inverse of

Ue is given as

U−1e =

⎡
⎢⎢⎣
1�nM 0

0 1�r M̂
S+
nM 0

0 S+
r M̂

⎤
⎥⎥⎦ .

Note that L =M−1Lb and L̂ = M̂−1L̂b, where both Lb and L̂b

are the Laplacian matrices of balanced graphs, satisfying 1�nLb = 0,
Lb1n = 0, and 1�r L̂b = 0, L̂b1r = 0. Using these properties, we
obtain

Ge(s) = CeUe(sI − U−1e AeUe)−1U−1e Be

=
[
C̄e Ce

] [ I/s 0
0 (sI −Ae)

−1

] [
B̄e

Be

]

= 1/sC̄eB̄e + Ce(sI −Ae)
−1Be (16)

where

Ae = −
[
S+
n LbM

−1Sn 0

0 S+
r L̂bM̂

−1Sr

]

Be =

[
S+
n Fb

S+
r F̂b

]
, Ce =

[
HM−1Sn −ĤM̂−1Sr

]
(17)

B̄e : =

[
1�nFb

1�r F̂b

]
, and C̄e := σ−1M

[
H1n −Ĥ1r

]
. (18)

It follows from (2) that 1�r F̂b = 1�nFb, and Ĥ1r = H1n, which yield
C̄eB̄e = σ−1M (H1n1

�
nFb − Ĥ1r1

�
r F̂b) = 0. Thus, (16) becomes

Ge(s) = Ce(sI −Ae)
−1Be. (19)
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It is not hard to verify that both the matrices −S+
n LbM

−1Sn and
−S+

r L̂bM̂
−1Sr are Hurwitz. Consequently, Ge(s) in (19) is asymp-

totically stable, i.e., Σ− Σ̂ ∈ H2, for all Ŵ ∈M.
Next, we discuss the consensus property of the reduced-order net-

work (5) with the matrices in (11). Consensus is a typical property of
diffusively coupled networks, and it implies the nodal states converge to
a common value in the absence of the external input. More precisely, the
network system in (4) reaches consensus if limt→∞[xi(t)− xj(t)] = 0
holds for all i, j ∈ V and all initial conditions.

Proposition 1: Consider the network system Σ in (4) which reaches
consensus. Then, the reduced-order model Σ̂ in (5) also reaches con-
sensus, for any clustering Π and Ŵ ∈M.

Proof: It can be verified that the parameterized Laplacian matrix
L̂ defined in (11) characterizes a strongly connected graph. Thus, L̂
has only one zero eigenvalue. Then, the proof immediately follows
from [19], [22].

The parameterized modeling of the reduced dynamic network using
the graph balanced representation in (6) guarantees the stability of the
error system (13), whose H2 norm can be evaluated via the transfer
function (19) with the Hurwitz matrixAe. Note that in (19), the matrices
Sn and Sr in (14) is only dependent on the sizes of the networks, and Π
is known for a given graph clustering, then the weights in Ŵ become the
only unknown parameters to be determined in the follow-up procedure.
In the following section, we aim for an optimal selection of the edges
weights in the reduced network.

B. Optimal Edge Weighting

In this section, we aim for an optimization scheme for determining
Ŵ ∈M that minimizes the approximation error ‖Ge(s)‖H2

. Thereby,
the following problem is addressed.

Problem 2: Consider the original network system Σ in (4). Given a
graph clustering Π, find a Ŵ ∈M such that ‖Ge(s)‖H2

is minimized,
where Σ̂ is the reduced network model defined in (5) with the matrices
(11).

To solve this problem, we apply an optimization technique based
on the convex–concave decomposition, which can be implemented to
search for a set of optimal weights iteratively. A fundamental step
toward the implementation is to develop a necessary and sufficient con-
dition for characterizing ‖Ge(s)‖H2

, which leads to suitable constraints
for the optimization problem.

Theorem 1: Given the network system Σ in (4). There exists a
reduced-order network model Σ̂ in (5) such that ‖Ge(s)‖2H2

< γ̂, if and

only if there exist matrices Q̂ = Q̂� > 0 with Q̂ ∈ R(n+r−2)×(n+r−2),
R̂ = R̂� > 0 with R̂ ∈ Rq×q , Ŵ ∈M, and δ̂ ∈ R+, such that

⎡
⎣ Q̂Ā+ Ā�Q̂ Q̂Be Q̂E

B�e Q̂ −δ̂I 0

E�Q̂ 0 0

⎤
⎦+

⎡
⎣−Ā

�
r Ār 0 Ā�r
0 0 0
Ār 0 −I

⎤
⎦ < 0 (20)

[
Q̂ δ̂C�e
δ̂Ce R̂

]
> 0 (21)

tr(R̂) < γ̂ (22)

where Be, Ce are defined in (17), and

Ā =

[−S+
n LbM

−1Sn 0
0 0

]
, E =

[
0 0
I 0

]

Ār =

[
0 −S+

r B̂0Ŵ B̂�M̂−1Sr

0 0

]
. (23)

Proof: Consider the error systemGe(s) in (19), which is asymptot-
ically stable. Following, e.g., [24], we have ‖Ge(s)‖2H2

< γ, with γ ∈
R+, if and only if there exist matrices Q = Q� > 0 and R = R� > 0
such that [

QAe +A�eQ QBe

B�eQ −Ip
]
< 0 (24)

[
Q C�e
Ce R

]
> 0 (25)

tr(R) < γ (26)

where Ae, Be, and Ce are defined in (17).
In the following, we prove that the three inequalities are equivalent

to (20), (21), and (22), respectively. First, it is not hard to verify that
(24) is equivalent to⎡

⎣QAe +A�eQ QBe QE
B�eQ −I 0
E�Q 0 −δI

⎤
⎦ < 0 (27)

for a sufficiently large scalar δ ∈ R+, where E is defined in (23).
Consider a nonsingular matrix

T =

⎡
⎣ I 0 0

0 I 0
−Ār 0 I

⎤
⎦ .

Pre and postmultiplying by T� and T , respectively, (27) then be-
comes (20), where the equationAe = Ā+EĀr , and the substitutions
δ̂ = 1/δ > 0 and Q̂ = (1/δ)Q > 0 are used.

Next, we observe that the following implications hold:[
Q C�e
Ce R

]
> 0⇔

[
1

δ̂
Q̂ C�e
Ce R

]
> 0⇔

[
Q̂ δ̂C�e
δ̂Ce R̂

]
> 0

tr(R) < γ ⇔ 1

δ̂
tr(R̂) < γ ⇔ tr(R̂) < γ̂

with R̂ = δ̂R and γ̂ = δ̂γ. As a result, (21) and (22) are equivalent to
(25) and (26), respectively.

Based on Theorem 1, we reformulate Problem 2 more explicitly as
the following minimization problem

min
Q̂>0,Ŵ∈M

tr(R)

s.t. (20) and (21) hold (28)

where R̂ = δ̂R with a given δ̂ ∈ R+. Note that the constraint (21) can
be solved efficiently using standard LMI solvers, while (20), due to the
nonlinearity term Ā�r Ār , is a bilinear matrix inequality, which causes
the major challenge in solving the problem (28).

To handle the bilinear constraint (20), we adopt the technique called
psd-convex–concave decomposition [20].

Definition 2: A matrix-valued mapping Φ : Rn → S� is called pos-
itive semidefinite convex–concave (psd-convex–concave) if Φ can be
expressed as Φ = Φ1 − Φ2, where Φk, with k = 1, 2, are positive
semidefinite convex (psd-convex), i.e.,

Φk(λw1 + (1− λ)w2) ≤ λΦk(w1) + (1− λ)Φk(w2) (29)

holds for all λ ∈ [0, 1] and w1, w2 ∈ Rn. The pair (Φ1,Φ2) is called a
psd-convex–concave decomposition of Φ.

Consider the bilinear inequality (20), and define the following
matrix-valued mapping:

Φ(Q̂, δ̂, Ŵ ) = ψ(Q̂, δ̂) + ϕ(Ŵ ) (30)
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where

ψ(Q̂, δ̂) =

⎡
⎣ Q̂Ā+ Ā�Q̂ Q̂Be Q̂E

B�e Q̂ −δ̂I 0

E�Q̂ 0 0

⎤
⎦ (31)

ϕ(Ŵ ) =

⎡
⎣−Ā

�
r Ār 0 Ā�r
0 0 0
Ār 0 −I

⎤
⎦ . (32)

Then, the following lemma shows that the pair (ψ,−ϕ) is a psd-convex–
concave decomposition of Φ.

Lemma 4: The matrix-valued mapping Φ(Q̂, δ̂, Ŵ ) in (30) is psd-
convex–concave.

Proof: Note that the matrix ψ(Q̂, δ̂) in (30) is linear with respect to
Q̂ and δ̂. Thus, it is immediate that ψ(Q̂, δ̂) is psd-convex. Then, the
claim holds if −ϕ(Ŵ ) in (30) is psd-convex.

With the structure of Ār in (23), the only nonlinear submatrix in
−ϕ(Ŵ ) can be expressed as

Ā�r Ār =

[
0 0

0 ϕa(Ŵ )

]
(33)

with ϕa(Ŵ ) := S�r M̂
−1B̂Ŵ B̂�0 (S+

r )�S+
r B̂0Ŵ B̂�M̂−1Sr. Then,

showing the psd-convexity of −ϕ(Ŵ ) in (32) is equivalent to prove
that ϕa(Ŵ ) is psd-convex.

Let W1,W2 ∈M, and denote Wλ = λŴ1 + (1− λ)Ŵ2. For any
λ ∈ [0, 1], we have

ϕa(Wλ)− λϕa(Ŵ1)− (1− λ)ϕa(Ŵ2)

= S�r M̂
−1B̂WλB̂�0 (S+

r )�S+
r B̂0WλB̂�M̂−1Sr

− λS�r M̂
−1B̂Ŵ1B̂�0 (S+

r )�S+
r B̂0Ŵ1B̂�M̂−1Sr

− (1− λ)S�r M̂
−1B̂Ŵ2B̂�0 (S+

r )�S+
r B̂0Ŵ2B̂�M̂−1Sr

= − λ(1− λ)(V1(Ŵ1 − Ŵ2)V2(Ŵ1 − Ŵ2)V
�
1 ) ≤ 0 (34)

whereV1 = S�r M̂
−1B̂ andV2 = B̂�0 (S+

r )�S+
r B̂0. Since−λ(1− λ) ≤

0 and V1(Ŵ1 − Ŵ2)V2(Ŵ1 − Ŵ2)V
�
1 ≥ 0, it holds that

ϕa(λŴ1 + (1− λ)Ŵ2) ≤ λϕa(Ŵ1) + (1− λ)ϕa(Ŵ2)

which implies that the mapping ϕa(Ŵ ) is psd-convex from (29), i.e.,
−ϕ(Ŵ ) is psd-convex. As a result, it follows from Definition 2 that the
matrix-valued mapping Φ(Q̂, δ̂, Ŵ ) in (30) is psd-convex–concave.

The psd-convex–concave decomposition in (30) allows us to lin-
earize the optimization problem (28) at a stationary point Ŵ ∈M. To
simplify the optimization procedure, we introduce a new optimization
variable μ to eliminate the equality constraint B̂ŵ = 0 in (12), where
Ŵ = Diag(ŵ), and m is the number of edges in the reduced network.

Let B̄ ∈ Rr̄×m be a full row rank matrix obtained by removing lin-
early dependent rows of the B̂ ∈ Rr×m, and it still holds that B̄ŵ = 0.
Then, there exists a column permutation matrix P ∈ Rm×m such that

B̄ŵ =
[ B̄a B̄b ]Pŵ = B̄aμa + B̄bμ = 0, with Pŵ =

[
μa

μ

]

where B̄a ∈ Rr̄×r̄ is full rank. μ ∈ Rm̄
+ , and m̄ = m− r̄, is defined as

the new optimization variable. Note that

ŵ = P�
[−B̄−1a B̄b

Im̄

]
μ (35)

which projects the weights ŵ into ker(B̂). Thereby, we rewrite the con-
straint Ŵ ∈M as μ ∈ Rm̄

+ (35). Now, we redefine the matrix-valued

Fig. 2. Connected directed sensor network containing 14 vertices,
in which the red vertices are controlled, and the shadowed ones are
measured.

mapping ϕ(Ŵ ) in (30) as

φ(μ) = ϕ(Ŵ ) (36)

which remains psd-convex due to the linear relation in (35). The
derivative of the matrix-valued mapping φ(μ) at μ is a linear mapping
Dφ : Rm̄

+ → S�, with � = n+ 2r + p+ pq − 3, which is defined as

Dφ(μ)[h] =
m̄∑
i=1

hi
∂φ

∂μi

(μ) ∀ h ∈ Rm̄. (37)

Given a point μ(k) ∈ Rm̄
+ , the linearized formulation of the problem

(28) at μ(k) is formulated as

min
Q̂>0,μ∈Rm̄

+

f(μ) = tr(R)

s.t.

[
Q̂ δ̂C�e
δ̂Ce R̂

]
> 0, δ̂ ∈ R+, R̂ = δ̂R > 0

ψ(Q̂, δ̂) + ϕ(Ŵ (k)) +Dφ(μ(k))[μ− μ(k)] < 0 (38)

where the derivative of φ(μ(k)) is given as

Dφ(μ(k))[μ− μ(k)] :=
m∑
i=1

(μi − μ(k)
i )

∂φ

∂μ
(k)
i

(μ(k))

with j = 1, . . . , m̄. Note that the optimization problem (38) is convex,
of which the global optimum can be solved efficiently using standard
SDP solvers, e.g., SeDuMi [25]. Moreover, the computational complex-
ity of Algorithm 1 mainly depends on solving the problem (38), more
precisely, on adopting which solver to solve the LMIs in (38). Thus,
different solvers will lead to different complexity of Algorithm 1.

Based on Lemma 4 and (38), we are now ready to present an
algorithmic approach for solving the minimization problem in (28)
in an iterative fashion, see Algorithm 1, where the main procedure
follows [20] and ε ∈ R+ is a prefixed error tolerance determining
whether to terminate the iteration loop.

The initial condition μ(0) can be chosen as an arbitrary vector with
all strictly positive entries. With (35), it will guarantee Ŵ 0 ∈M, i.e.,
the reduced graph is balanced. Furthermore, we can also initialize μ
using the outcome of graph clustering projection in [18], and [19].
Specifically, from a given clustering Π, we construct an initial reduced
Laplacian matrix in (10) as L̂(0)

b := Π�LbΠ, with Lb the Laplacian
matrix of the balanced graph Gb. Then, the initial weight of the edge
(i, j) in the quotient graph Ĝb is the (i, j)th entry of L̂(0)

b . By doing so,
μ(0) can be formed such that Ŵ 0 ∈M.

The convergence analysis of Algorithm 1 follows naturally
from [20], and it means that a local optimum can be obtained. More
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Fig. 3. (a) Quotient graph obtained by the clustering, where the controlled vertices are labeled with red color, and measured vertices are filled by
green color. The weights of the edges are parameters to be determined. (b) Approximation errors of clustering-based projection and the proposed
edge weighting method. (c) State trajectories of the original and reduced networks, indicated by solid and dash lines, respectively.

Algorithm 1: Iterative Edge Weighting.

Input: L, F , H , Π, and a small scalar δ̂ ∈ R+

Output: Ŵ ∗.
1: Compute the incidence matrix B̂ of the quotient graph Ĝb.
2: Choose an initial vector μ(0) ∈ Rm̄

+ .
3: Set iteration step: k ← 0.
4: repeat
5: Solve (38) to obtain the optimal solution μ∗.
6: k ← k + 1, and μ(k) ← μ∗.
7: until |f(μ(k+1))− f(μ(k))| ≤ ε.
8: Compute ŵ∗ using (35), and return Ŵ ∗ ← Diag(ŵ∗).

importantly, if we select the initial condition from the clustering-based
projection, it is guaranteed that, through iteration, the approximation
accuracy of reduced-order network model with the weights obtained
by Algorithm 1 will be improved. In this sense, the approximations
obtained by the proposed method is at least better than the ones
obtained by clustering-based projection methods in, e.g., [18] and
[19]. We will show this merit from a numerical example in the next
section.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the proposed edge weighting ap-
proach, we implement it to a sensor network example from [3] and
[18]. The topology of this network is shown in Fig. 2, which consists
of 14 strongly connected vertices, and all the edge weights are 1. In
this example, two external input signals are injected into the network
via vertices 2 and 7, respectively, and the states of vertices 9 and 10 are
measured.

Suppose that five clusters are given for this directed network
as C1 = {1, 3, 4, 5}, C2 = {2}, C3 = {6, 8, 9}, C4 = {7}, and
C5 = {10, 11, 12, 13, 14}, which leads to the quotient network in
Fig. 3(a), with incidence matrix

B̂ :=

⎡
⎢⎢⎢⎢⎣

1 1 −1 −1 0 0 0 −1
−1 0 1 0 0 0 0 0
0 −1 0 1 1 1 −1 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1

⎤
⎥⎥⎥⎥⎦

There are eight edges in the quotient graph, and each edge is as-
signed with a symbolic weight as labeled in Fig. 3(a). These variables,

determining the reduction error, are to be determined by our optimiza-
tion approach.

First, the parameterized reduced model in (9) of the quotient graph
is generated with matrices

L̂b =

⎡
⎢⎢⎢⎢⎣

ŵ1 + ŵ2 −ŵ1 −ŵ2 0 0
−ŵ3 ŵ3 0 0 0
−ŵ4 0 ŵ4 + ŵ5 + ŵ6 −ŵ5 −ŵ6

0 0 −ŵ7 ŵ7 0
−ŵ8 0 0 0 ŵ8

⎤
⎥⎥⎥⎥⎦

M̂ =
[
2.1921 0.6803 0.3779 0.0756 0.4157

]

F̂b =

[
0 0.6803 0 0 0
0 0 0 0.0756 0

]�
, Ĥ =

[
0 0 1 0 0
0 0 0 0 1

]

and the weight vector ŵ in (7) satisfy the following constraints for a
balanced graph: ŵ1 = ŵ3, ŵ2 = ŵ4 + ŵ8, ŵ6 = ŵ8, and ŵ5 = ŵ7.

Next, we implement Algorithm 1 to solve the optimization prob-
lem (28) with μ = [ŵ1, ŵ2, ŵ5, ŵ6]

� ∈ R4
+ as the optimization vari-

able. Particularly, the SeDuMi solver [25] is adopted to solve
the convex problem (38). We choose the initial edge weights ob-
tained by the clustering-based projection [18], [19], which gives
ŵ(0) = [0.6803, 0.2268, 0.6803, 0.0756, 0.0756, 0.1512, 0.0756,
0.1512] and the approximation error ‖Ge(s)‖H2

= 0.0322. With δ̂ =
ε = 10−5, Algorithm 1 stops after 72 iterations. The convergence
trajectory of the resulting H2 reduction error is shown in Fig. 3(b).
The final solution of the edge weights are given as ŵ∗ = [0.6826,
0.2394, 0.6826, 0.0948, 0.0537, 0.1446, 0.0537, 0.1446], which pro-
vides the approximation error ‖Ge(s)‖H2

= 0.0187. Through itera-
tion, the edge weighting method further reduces the error by 41.93%,
compared with the clustering-based projection. Therefore, our method
can provide a reduced network systems with a betterH2 approximation
error. Then, we compare the state trajectories of reduced and original
networks in Fig. 3(c). The data are obtained with u1 as a step sig-
nal when u1(t) = 1, if t ∈ [0, 1], and u1 = 0, otherwise, and u2 =
0.2 sin(2t). We observe that each trajectory of the reduced network
provides an approximation of the average states of the corresponding
cluster in the original network.

V. CONCLUSION

In this article, the H2 model reduction problem for dynamical
networks consisting of diffusively coupled agents has been formu-
lated as a minimization problem, in which the edge weights in the
reduced network are parameters to be chosen. Necessary and sufficient
conditions have been proposed for constructing a set of optimal edge
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weights. An iterative algorithm has been provided to search for the
desired edge weights such that theH2 norm of the approximation error
is small. Finally, compared with the projection-based method in [12],
the feasibility of this method is illustrated by an example. The advantage
of this proposed model reduction method is that not only the structure of
the original network has been preserved but also the approximation error
has been optimized. For future work, the performance of the iterative
algorithm can be studied further to benefit from applying more efficient
optimization methods. Moreover, an extension to networked high-order
linear subsystems is also of interest.
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