7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Does Code Review Speed Matter for Practitioners?
Kudrjavets, Gunnar; Rastogi, Ayushi

Published in:
Empirical software engineering

DOI:
10.1007/s10664-023-10401-z

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Kudrjavets, G., & Rastogi, A. (2023). Does Code Review Speed Matter for Practitioners? Empirical
software engineering, 29, Article 7. https://doi.org/10.1007/s10664-023-10401-z

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-12-2023

https://doi.org/10.1007/s10664-023-10401-z
https://research.rug.nl/en/publications/cc51d83a-21bf-4137-b393-e585df1982d3
https://doi.org/10.1007/s10664-023-10401-z

Empirical Software Engineering (2024) 29:7
https://doi.org/10.1007/510664-023-10401-z

®

Check for
updates

Does code review speed matter for practitioners?

Gunnar Kudrjavets'® - Ayushi Rastogi'

Accepted: 2 October 2023
© The Author(s) 2023

Abstract

Increasing code velocity is a common goal for a variety of software projects. The efficiency
of the code review process significantly impacts how fast the code gets merged into the
final product and reaches the customers. We conducted a qualitative survey to study the
code velocity-related beliefs and practices in place. We analyzed 75 completed surveys from
SurIndustryDevs participants from the industry and 36 from the open-source community. Our
critical findings are (a) the industry and open-source community hold a similar set of beliefs,
(b) quick reaction time is of utmost importance and applies to the tooling infrastructure and
the behavior of other engineers, (c) time-to-merge is the essential code review metric to
improve, (d) engineers are divided about the benefits of increased code velocity for their
career growth, (e) the controlled application of the commit-then-review model can increase
code velocity. Our study supports the continued need to invest in and improve code velocity
regardless of the underlying organizational ecosystem.

Keywords Code review - Code velocity - Developer productivity - Time-to-merge

1 Introduction

Traditional software development methodologies, such as the waterfall model, focus on a
rigid and highly predictable development and deployment schedule. With the introduction
of the Agile Manifesto in 2001, the focus of modern approaches to software development
has shifted to continuous deployment of incremental code changes (Martin 2002). As a
result, Continuous Integration (CI) and Continuous Deployment (CD) (Fowler 2006) have
become default practices for most of the projects in the industry and open-source software.
A critical objective in the software industry is making code changes reach the production
environment fast. The code review process is a time-consuming part of evaluating the quality

Communicated by: Tayana Conte

B<I Gunnar Kudrjavets
g.kudrjavets @rug.nl

Ayushi Rastogi
a.rastogi@rug.nl

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of
Groningen, 9712 CP Groningen, Netherlands

Published online: 22 November 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10401-z&domain=pdf
http://orcid.org/0000-0003-3730-4692
http://orcid.org/0000-0002-0939-6887

7 Page2of34 Empirical Software Engineering (2024) 29:7

of code changes and approving their deployment. With the wide adoption of Modern Code
Review (Bacchelli and Bird 2013; Sadowski et al. 2018) principles, engineers are now under
more pressure than ever to review and deploy their code promptly. One of the aspects of
Modern Code Review that negatively impacts software production is the perception that the
code review process is time-consuming (Cunha et al. 2021b).

Based on our experiences in the last two decades with commercial and open-source soft-
ware development, we have witnessed various practices and beliefs related to increasing code
velocity. An accepted definition of code velocity is “the time between making a code change
and shipping the change to customers” (Microsoft Research 2019). This paper focuses on code
review s and the total duration of code review completion and merge time. The “customers”
are other engineers, and “shipping” means a code review was accepted and committed. We
include a detailed description of related terminology in Section 2.3.

The opinions related to increasing code velocity range from the willingness to deploy code
faster, even if it means increased defect density (Kononenko et al. 2016; Kushner 2011), to
taking as much time as necessary to “get the code right” (The Linux Foundation 2022).
These opposing views raise questions about the developer community’s prevalent attitudes
and beliefs toward code velocity.

Researchers have investigated the different aspects of the Modern Code Review process
in-depth (Nazir et al. 2020; Weillgerber et al. 2008; Bacchelli and Bird 2013; Czerwonka
et al. 2015). We are unaware of any studies focusing specifically on the beliefs, challenges,
and trade-offs associated with increasing the code velocity. We describe the work related to
increasing code velocity in Section 2.2. The primary goal of this study is to search for the
beliefs and practices about code velocity as-is and the context in which they hold. We target
a variety of experienced practitioners who contribute or review code for commercial and
open-source software.

We formulate the following research questions:

RQ1: What beliefs and convictions are related to code velocity for industry and open-
source software developers?

RQ2: What compromises are engineers willing to make to increase code velocity?
RQ3: What are the essential suggestions from practitioners to increase code velocity?

To gather field data, we survey engineers who either submit or perform code review s as
part of their daily work. We describe the recruitment of survey participants in Section 3.2. Out
of 75 respondents, we classify 39 individuals as industry participants and 36 as open-source
software contributors. We asked survey participants various Likert-style questions related to
the essence of our research inquiries. Finally, we solicited free-form suggestions about how
to increase code velocity.

Our critical findings are that (a) respondents working on both commercial and open-source
software respond similarly on Likert-type items (out of 24 items, only 4 have a statistically
significant difference between these two groups) (b)while there is strong opposition to aban-
doning the code review process, using the commit-then-review model under some conditions
can be acceptable (c) respondents mainly focused on the development process, infrastructure
and tooling support, response time, and the need to schedule pre-allocated time for code
review s to increase code velocity.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 3 of 34 7

Our study suggests that the maximum acceptable size of the code review on the median
is 800 source lines of code (SLOC). This number is an order of a magnitude larger than
developer folklore and existing code review guidelines suggest. We find that the metric
associated with code review periods that engineers find the most useful is time-to-merge,
followed by time-to-accept and time-to-first-response. That finding confirms what previous
studies and grey literature have documented (Izquierdo-Cortazar et al. 2017; Tanna 2021).

Issues of concern include a need for more conviction that increased code velocity benefits
an engineer’s career growth, slow response times from either authors or code review ers, and
faster fault detection from various parts of the infrastructure.

2 Background and Related Work
2.1 Motivation for the Study

Developer velocity plays a significant role in software projects’ success and the overall
job satisfaction of developers. The topic is important enough for Microsoft and GitHub to
have a joint research initiative called Developer Velocity Lab (Microsoft Research 2023).
According to Microsoft, “[ilmproving developer velocity is critical to continued satisfaction,
iteration, and innovation in software teams”’ (McMartin 2021). GitLab considers the reduction
in the code review time as the primary metric that describes the success of the code review
process (Armstrong 2022). Data from Meta shows “a correlation between slow diff review
times (P75) and engineer dissatisfaction” (Riggs 2022). In this context, a diff is a Meta-
specific term equivalent to a code review, pull request, or patch (used mainly in open-source
software).

In industry, the drive to increase the code velocity is significant enough even to warrant
the development of unique bots and tools. These tools periodically remind either an author
or reviewer that they block the completion of a code review. For example, at Microsoft, a bot
that periodically nudges developers “was able to reduce pull request resolution time by 60%
for 8500 pull requests”, with 73% of these notifications being resolved as positive (Maddila
et al. 2022). Meta considers developer velocity as one of its critical investments during
an economic downturn (Vanian 2022). The company gives engineers a general incentive to
“[m]ove fast and break things” (Kushner 2011). In Meta’s development philosophy, engineers
expect certain defects to appear if it results in a faster product deployment (Feitelson et al.
2013). The startup culture practiced by many software companies encourages releasing new
features “as fast as possible, for the sake of fuelling growth” (Frenkel and Kang 2021).

Another critical point in our inquiry is the differences in opinions about code velocity
between industry and open-source software developers. Fundamentally, the industry and
open-source software development process is motivated by different incentives. However,
the attitudes vary even in the context of open-source software. For the Linux kernel, “[t]he
goal is to get the code right and not rush it in”, according to the official kernel development
guide from the Linux Foundation (The Linux Foundation 2022). However, we notice the
desire for increased code velocity in Mozilla. Based on a study about code review practices
in Mozilla, it is sometimes acceptable to be less thorough during code review s if it speeds
up the code review process (Kononenko et al. 2016).

Corporate policies are not necessarily dictated by what individual engineers think but by
business needs. Research shows that developers and managers have different views about
productivity and quality (Storey et al. 2022). To discover the ground truth, we need to under-

@ Springer

7 Page4of34 Empirical Software Engineering (2024) 29:7

stand what engineers think is “right”. The topic of code velocity can surface strong emotions
in engineers (“... I just hate it when things are unreviewed for days”) (Soderberg et al. 2022).
The survey mechanism that we use provides engineers with anonymity. That anonymity
enables engineers to freely share their opinions even if they contradict the company’s or
project’s official policies related to code velocity.

Empirical software engineering involves making daily trade-offs between various project
characteristics. The trade-off between increasing code velocity and product quality has severe
consequences because “poorly-reviewed code has a negative impact on software quality in
large systems using modern reviewing tools” (McIntosh et al. 2015). We want to study what
attributes or values engineers are willing to compromise to achieve higher code velocity.

2.2 Related Work

The industry mainly drives the research related to increasing the code velocity. The default
assumptions in the industry are that increased code velocity is desirable, and the code review
s can never be fast enough (Riggs 2022; Killalea 2019; Greiler 2020). The a priori assumption
is that the code review speed does matter for practitioners.

One focus area in the research related to code velocity is the ability to predict the duration
of code review s. Existing research has resulted in contradicting findings. An industrial case
study from Meta finds that core code review characteristics “did not provide substantial
predictive power” (Chen et al. 2022). However, a study based on Gerrit code review s finds
that “ML models significantly outperform baseline approaches with a relative improvement
ranging from 7% to 49%” (Chouchen et al. 2023).

Another part of the research focuses on various tools and techniques to speed up code
review s. These approaches include optimizing the code review strategy (Gongalves et al.
2020), investigating the effectiveness of bot usage to automate the code review process (Kim
etal. 2022), periodically reminding engineers to make progress with their code reviews (Mad-
dila et al. 2022; Shan et al. 2022), prioritizing the subsets of code review that need
attention (Hong et al. 2022), targeting the optimal reviewers (Thongtanunam et al. 2015),
and improving automation to suggest reviewers (Zanjani et al. 2016).

We are unaware of any research about various compromises that engineers are willing
to make to improve code velocity or explicit ways to improve code velocity. The closest
to our research is a paper that investigates the “misalignments in the code review tooling
and process” (Soderberg et al. 2022) and papers about what factors impact the code review
decisions (Kononenko et al. 2016, 2018).

2.3 Terminology and Metrics
2.3.1 Overview of Terminology

Most commercial organizations share a similar goal: reduce the duration of code review s
and consequently increase the code velocity.

The term code velocity can have different meanings depending on the context. A customer-
centric definition of code velocity is “the time between making a code change and shipping
the change to customers” (Microsoft Research 2019). As a quantifier characterizing code
churn, it is defined “as the average number of commits per day for the past year of commit
activity” (Tsay 2017). In this paper, our definition focuses on the total duration of code review
completion and merge time. We use time-to-merge as the period from publishing the code

@ Springer

Empirical Software Engineering (2024) 29:7 Page 5 of 34 7

review to when accepted code changes are merged to the target branch (Izquierdo-Cortazar
et al. 2017). Terms like review time (from publishing the patch until its acceptance) (Tan
and Zhou 2019) and resolve time (Zhu et al. 2016) that is defined as “the time spent from
submission to the final issue or pull request status operation (stopped at committed, resolved,
merged, closed) of a contribution” are used as well. Using the lifetime of a code review
coupled with merging time matches the period that the DevOps platforms such as GitLab
optimize. The formal definition for GitLab’s metric is “duration from the first merge request
version to merged” (Armstrong 2022).

Different commercial software companies measure various code review periods. Google’s
code review guidance states that “... it is the response time that we are concerned with, as
opposed to how long it takes a CL to get through the whole review and be submitted” (Google
2023b). The term CL in Google’s nomenclature means “one self-contained change that has
been submitted to version control or which is undergoing code review” (Google 2023a). A
study about code velocity from Microsoft finds that critical points in time for engineers are
the first comment or sign-off from a reviewer and when the code review has been marked
as completed (Bird et al. 2015). A paper that investigates the performance of code review in
the Xen hypervisor project finds that time-to-merge is the metric to optimize for (Izquierdo-
Cortazar et al. 2017). Anecdotal evidence from grey literature about the challenges in Capital
One’s code review process presents a similar finding—*“the most important metric was to
calculate the cycle time—that is, how long it takes from a PR being raised to it being merged
(or closed)” (Tanna 2021). Meta tracks a Time In Review metric, defined as “a measure of
how long a diff is waiting on review across all of its individual review cycles” (Riggs 2022).
One of the findings from Meta is that “[t]he longer someone’s slowest 25 percent of diffs
take to review, the less satisfied they were by their code review process”.

2.3.2 Code Review Metrics

In this paper, we choose the following metrics to characterize code review process:

— Time-to-first-response (Bird et al. 2015; MacLeod et al. 2018a): the time from pub-
lishing the code review until the first acceptance, comment, inline comment (comment
on specific code fragments), rejection, or any other activity by a person other than the
author of the code. Survey participants at Microsoft indicated that “[r]eceiving feedback
in a timely manner” is the highest-ranked challenge that engineers face during the code
review process (MacLeod et al. 2018a). We exclude any code review-related activity by
bots.

— Time-to-accept (Bird et al. 2015): the time from when an engineer publishes code
changes for review until someone other than the author accepts the code review. This
term is more precise than time to completion (Bird et al. 2015). Similarly, we exclude
any code review-related activity by bots.

— Time-to-merge (GitHub 2021; Kononenko et al. 2016): encompasses the entire duration
of the code review process. We define the time-to-merge as “...the time since the proposal
of a change (...) to the merging in the code base ...” (Izquierdo-Cortazar et al. 2017).

2.4 Expectations Related to Code Velocity
We find that expected code review response times between industry and various open-source

software projects differ by order of magnitude. Google sets an expectation that “we expect
feedback from a code review within 24 (working) hours” (Winters et al. 2020). Findings

@ Springer

7 Page6o0of34 Empirical Software Engineering (2024) 29:7

from Meta confirm that “reviews start to feel slow after they have been waiting for around
24 hour review” (Chen et al. 2022). Guidance from Palantir is that “code reviews need to be
prompt (on the order of hours, not days)” and “[i]f you don’t think you can complete a review
in time, please let the committer know right away so they can find someone else” (Palantir
2018). Existing research into code review practices at AMD, Google, and Microsoft similarly
converges on 24 hours (Rigby and Bird 2013). The published guidelines and studies match
our industry experience of 24 hours being a de facto expected period for a response.

The requirements for open-source software are less demanding than in the industry. The
code review guidelines from the LLVM project (LLVM Foundation 2023b) that focuses on
various compiler and toolchain technologies set up an expectation that “code reviews will
take longer than you might hope”. Similarly, the expectations for Linux contributors are set to
“it might take longer than a week to get a response” during busy times (The Linux Foundation
2022). The guidance for Mozilla is to “strive to answer in a couple of days, or at least under
a week” (Mozilla 2023). For Blender, the expectation is that “[d]evelopers are expected to
reply to patches [in] 3 working days” (Blender 2022).

The etiquette for handling stale code review s in open-source software differs from the
industry. According to the guidelines from various projects, approaches like the Nudge bot
are unacceptable (Maddila et al. 2022). The guidance for inactive code review s for the
Linux kernel is to “wait for a minimum of one week before requesting a response” (The
Linux Foundation 2022). The LLVM project also recommends waiting for a week in case of
inactivity before reminding the reviewers (LLVM Foundation 2023b). The FreeBSD commit
guidelines state clearly that “the common courtesy ping rate is one week” (The FreeBSD
Documentation Project 2022).

3 Methodology

3.1 Survey Design

The main goals of our survey are to collect data about the beliefs and experiences about
code velocity, the trade-offs engineers are willing to make to increase the code velocity,
and suggestions from practitioners about how to increase it. Our target audience was both
commercial and open-source software developers.

The survey consists of 16 essential questions. The survey starts with a question that asks
participants for consent. The survey finishes with a question allowing participants to share
their email addresses if researchers can contact them to share the findings from the survey.
All the questions except the one that determined the participants’ consent were optional. We
display the shortened version of the survey questions in Table 1. The entire survey contents
are part of Appendix A.

The first eight questions related to participants’ demographics, such as experience with
software development, code review s, their role in the software development process, and
the application domain they used to answer the survey questions. This question block is
followed by questions that ask participants to rank time-to-first-response, time-to-accept, and
time-to-merge in order of importance to optimize the code velocity. After that, we present
four questions related to the benefits of code velocity and potential compromises related
to increasing code velocity. We inquire about the possibility of using either a post-commit
review model (Rigby and German 2006) or no code review process.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 7 of 34 7

Table 1 List of survey questions

Number Question text

Ql Ask for participant’s consent (mandatory).

Q2 How many years of experience do you have with collaborative software development?

Q3 How many years have you been reviewing other people’s code?

Q4 What is your role in the code review (e.g., diff, patch, pull request) process? Select all
that apply.

Q5 How many times in a month do you submit code changes for review?

Q6 How many times in a month do you review other people’s code changes?

Q7 What code reviewing environments do you use?

Q8 ‘What type of software developer are you?

Q9 Choose an application domain you are most experienced with for the remaining
questions?

Q10 Rank the following metrics in the order of importance to optimize code velocity.

Qll Velocity of your code improves your ...

Q12 I am willing to compromise on ...if it improves code velocity.

Q13 I think the post-commit review model (changes are first committed and then reviewed
at some point later) can improve ...

Q14 Should engineers be allowed to commit their code without the code review depending
on...

Q15 In your opinion, what is the maximum acceptable size of the code review?

Ql6 What is a desired time range for someone to either accept your code review or give
you detailed feedback?

Q17 In your opinion, how can code velocity be improved for your projects?

Q18 Ask for an email address.

All the questions except Q1 are optional

Questions Q11, Q12, Q13, and Q14 contain multiple Likert-type items (Clason and Dor-
mody 1994). Because of the survey’s limited number of questions, we do not use classic Likert
scales. Likert scales typically contain four or more Likert-type items combined to measure a
single character or trait. For example, researchers may have 4-5 questions about the timeli-
ness of responses to a code review. Researchers then merge the results from these questions
into a single composite score. The categories we inquire about come from our combined sub-
jective experiences with software development in the industry and open-source community.
Some choices, such as “Career growth” and “Job satisfaction”, are apparent. Others, such as
“Diversity, equity, and inclusion”, reflect the changing nature of societal processes.

The survey ends with asking participants about the maximum acceptable code review size
and waiting period, followed by an open-ended question about how the code velocity can be
improved. We indicated to participants that the survey would take 5—7 minutes. The complete
list of survey questions is publicly accessible. '

1 https://doi.org/10.5281/zenodo.8242289

@ Springer

https://doi.org/10.5281/zenodo.8242289

7 Page8of34 Empirical Software Engineering (2024) 29:7

3.2 Survey Participants

Ethical Considerations Ethical solicitation of participants for research that involves human
subjects is challenging (Felderer and Horta Travassos 2020). There is no clear consensus in the
academic community about sampling strategy to solicit survey participants. The topic is under
active discussion (Baltes and Diehl 2016). In 2021, researchers from the University of Min-
nesota experimented with the Linux kernel (Feitelson 2023). The approach the researchers
used caused significant controversy and surfaced several issues surrounding research ethics
on human subjects. The fallout from the “hypocrite commits” experiment (Wu and Lu 2021)
forced us to approach recruiting the survey participants with extreme caution.

A typical approach is to use e-mail addresses mined from software repositories (e.g.,
identities of commit authors) to contact software developers. Based on the recent guidance
about ethics in data mining (Gold and Krinke 2021; Gonzalez-Barahona 2020), we decided
not to do this. While research related to code review s has in the past utilized an existing
relationship with a single specific developer community such as Mozilla (Kononenko et al.
2016) or Shopify (Kononenko et al. 2018), we wanted to reach out to a broader audience. We
also wanted to avoid incentive-based recruitment mechanisms that offer rewards. Existing
findings suggest that monetary incentives increase survey response rates (Smith et al. 2019).
However, they do not necessarily reduce the non-response bias (Groves 2006). As a potential
incentive, we promised that participants who share their contact information with us would
be the first to receive the paper’s preprint.

Recruitment Strategy Our goal was to reach a heterogenous collection of practitioners.
We used our industry connections to target professional engineers and hobbyists, industry
and open-source software developers, industry veterans, and junior software developers. We
used our academic connections to share the survey with software engineering researchers
and computer science students who participated in the code review process. Geographically,
most of our contacts reside in Europe and the United States.

We started by composing a Medium post in a non-academic style, making the content
reachable to a broader audience. That post contained a link to our survey to make participation
easier. We then used the breadth-first approach to share the survey invitation on social media.
Our target platforms were Facebook, LinkedIn, Medium, Reddit, and Twitter (X).

Our approach did not use the snowball (chain-referral) sampling strategy to recruit addi-
tional survey participants. Snowball sampling is an approach where already recruited study
participants recruit new people to participate in the survey. We intended to avoid the commu-
nity bias and “the lack of definite knowledge as to whether or not the sample is an accurate
reading of the target population” (Raina 2015).

In addition, we contacted several individuals in commercial software companies and var-
ious open-source software projects to ask their permission to share the survey invite with
their developer community. We received responses from Blender, Gerrit, Free BSD, and Net
BSD. These projects gave us explicit permission to post in a project’s mailing list, or our
contact person circulated the survey internally.

Survey Summary Statistics The survey was published on September 14, 2022, and closed
on October 14, 2022. The survey system received a total of 110 responses. Out of all the
respondents, 76 participants completed the survey, with 75 agreeing to the consent form and
answering the questions. Of 75 individuals who answered the questions, 25 discovered the
survey using social media and 50 via anonymous survey link. For our analysis, we only used
the surveys that participants fully completed.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 9 of 34 7

3.3 Survey Data Analysis

The methods used to analyze data from Likert-style items are controversial without a clear
scientific consensus (Brown 2011; Carifio and Perla 2007; Chen and Liu 2020). This paper
treats Likert-style items as ordinal measurements and uses descriptive statistics to analyze
them (Allen and Seaman 2007; Boone, Jr. and Boone 2012). We do not treat ordinal values as
metric because it can lead to errors (Liddell and Kruschke 2018). For Likert-type items, we
define three general categories: negative (“Strongly disagree”, “Disagree”), neutral (“Neither
agree nor disagree”, “I don’t know”), and positive (“Agree”, “Strongly agree”). We added
the choice of “I don’t know” based on the feedback from the pilot tests that we used to refine
the survey questions.

We use the content analysis to analyze the answers to Q17 (“In your opinion, how can code
velocity be improved for your projects?”’). Two researchers independently manually coded
all the responses to Q17. Once the coding process was finished, the researchers compared
their results and tried to achieve a consensus. In case of disagreements, a third researcher
acted as a referee. Several themes and categories emerged as part of the open coding process.
We repeated the coding process till we classified all the responses under 7 & 2 labels (Miller
1956).

Numerical data, such as the maximum acceptable size of the code review, was analyzed
using custom code written in R. Similarly, the statistical tests conducted in Sections 4.3 and
4.4 to evaluate the differences between various groups were implemented in R.

4 Results
4.1 Demographics

Most of the respondents to our survey are experienced software engineers. Consequently,
this experience translates to the time spent reviewing other people’s code. We present the
participants’ development and code-reviewing experience in Table 2.

When it comes to the number of code review s that participants perform:

— 36% of respondents submit more than 10 code review s monthly, and 43% submit 3—-10
code review s.

— 54% of respondents conduct more than 10 code review s monthly, and 38% conduct 3-10
code review s.

Table 2 Survey participant demographics

Development experience Count Reviewing experience Count

< 3 years 3 (4%) < 1 year 4 (5%)

3-10 years 25 (33%) 1-5 years 20 (27%)

> 10 years 45(60%) 5-10 years 11 (15%)

Unknown 2 (3%) > 10 years 35 (46%)
Does not review code 2 (3%)
Unknown 3 (4%)

@ Springer

7 Page100f34 Empirical Software Engineering (2024) 29:7

For the type of software the survey participants work on, 58% identified as developers
working on application software such as mobile or desktop applications. 27% of respondents
stated that they work on systems software such as device drivers or kernel development.

Regarding different code review environments, 95% of respondents use a code collabo-
ration tool. That tool may be public, such as Gerrit or GitHub, or the private instance of a
company-specific tool, such as Google’s Critique. Nearly every respondent writes or reviews
code as part of their role. Only one individual stated that their role does not require reviewing
code, and they only submit patches. Out of the respondents, 89% of developers author new
code changes. The rest of the survey participants have a different role, such as only reviewing
the code.

4.2 Grouping of Respondents

We divide our participants into two groups based on how they self-identify as a response to
Q8 (“What type of software developer are you?”’). We use the following proxy to understand
the difference between industry and open-source software developers. If a participant chose
only “I work on closed-source and get paid” as a response, we classify them as “Industry”. If
one of the choices by participants was either “I work on open-source and get paid” or “I work
on open-source and do not get paid”, then we classify them as “OSS”. Based on that division,
we ended up with 39 participants from the industry and 36 respondents from open-source
software.

In Q9 (“Choose an application domain you are most experienced with for the remaining
questions?”’), we asked participants what type of software is their primary area of expertise.
We chose not to divide participants based on the abstraction level of the software. We base
that decision on the number of respondents and the varying size of the different groups. Out
of 75 respondents, 42 identified as someone working on application software, 20 on systems
software, 3 on real-time or critical software, 8 on other types of software, and 2 chose not to
answer the question.

4.3 RQ1: Beliefs and Convictions Related to Code Velocity
4.3.1 Expectations for the Size and Velocity of Code Reviews

Our industry experience related to code review size is highly variable. We have participated
in projects where code review s that contained thousands of SLOC were standard. Similarly,
we have experience with projects where engineers required that authors split any review more
extensive than 20-30 SLOC into separate reviews. Existing research suggests that the size
of code review s impacts their quality and speed (Jiang et al. 2013; Weiligerber et al. 2008).
Based on these findings, we investigate what engineers consider a maximum acceptable size
for a code review.

Most open-source software projects do not have fixed guidelines for an upper bound for a
code review. Very little quantitative guidance exists for the size of code review s. Most guide-
lines use qualifiers such as “isolated” (LLVM Foundation 2023a), “reasonable” (Chromium
2023), and “small” (PostgreSQL 2019; Phabricator 2021; MacLeod et al. 2018b). For stable
releases of the Linux kernel, the guidance is “[i]t cannot be bigger than 100 lines ...” (Linux
2023). Google engineering practices specify some bounds: “100 lines is usually a reasonable
size for a CL, and 1000 lines is usually too large” (Google 2023a). The acronym CL means
“one self-contained change that has been submitted to version control or which is undergoing

@ Springer

Empirical Software Engineering (2024) 29:7 Page 11 of 34 7

code review” (Google 2023a). As anecdotal evidence, a respondent to a survey about code
review practices states that “[a]nything more than 50 lines of changes, and my brain doesn’t
have the capacity to do a good code review” (Alami et al. 2020).

The sentiment about larger patch sizes is generally negative. A paper that investigates
the efficiency of a code review process finds that “patch size negatively affects all outcomes
of code review that we consider as an indication of effectiveness” (dos Santos and Nunes
2017). The existing research directs developers towards more minor code changes. Anecdotal
assessment from the Chromium contributor’s guide is that “[r]eview time often increases
exponentially with patch size” (Chromium 2023). A study about code review performance
finds that “review effectiveness is higher for smaller code changes” (Baum et al. 2019).
Another study about participation in Modern Code Review finds that patches with smaller
sizes receive fewer comments than the larger patches, and larger patches go through more
iterations (Thongtanunam et al. 2017; Baysal et al. 2015).

We asked study participants about the maximum acceptable number of SLOC and the
number of files in the code review. Figures 1 and 2 display the density plots (“smoothed
histograms”) of both variables. Before the analysis, we cleaned the data and removed entries
that were “inconsistent with the remainder of the set of data” (Barnett and Lewis 1984)
and “surprising or discrepant to the investigator” (Beckman and Cook 1983). We found
only one entry for each metric that we considered an outlier. Shapiro-Wilk tests (Shapiro
and Wilk 1965) confirmed that neither SLOC (W = 0.33, p < .001) nor the file count
(W = 0.15, p < .001) were normally distributed. A Mann-Whitney U test (Mann and
Whitney 1947) indicated that the difference between medians for SLOC was not statistically
significant U (N1ndustry = 33, Noss = 26) = 979.5,z = —0.16, p = .87. Similarly, we do
not observe differences for the number of files U (Nndustry = 34, Noss = 26) = 1088.5, z =
0.78, p = .44.

0.6

0.4

Density

0.21

0.0

10" 10> 10° 10* 10°
Maximum SLOC

Fig.1 Source lines of code

@ Springer

7 Page120f34 Empirical Software Engineering (2024) 29:7

10° 10" 102 10° 10* 10°
Maximum file count
Fig.2 File count

Observation 1

The median maximum acceptable number of SLOC for code review is 800. This
finding is surprising given the constant theme of suggesting that developers should
aim for more minor changes.

Section 4.3.1 discussed the ambiguity of expectations related to an acceptable code review
size. One of the problems that we have witnessed in practice is that engineers who switch
from one project or team to another will have to adjust to a new definition of small. Having
to invest time into manually splitting their changes differently to appease reviewers can
decrease developer productivity. The existing research proposes solutions to automatically
decompose the code review s into smaller changesets (Barnett et al. 2015). However, we are
not aware of any project that actively uses this approach or a code collaboration environment
that effectively supports splitting code review s. As an early warning mechanism, we propose
that various tools used during the code review process warn engineers when they exceed the
limit for a particular project. Early notification will prevent the unnecessary iteration between
a submitter and a reviewer, where the reviewer will request that the submitter split the changes
into smaller chunks.

We discuss different code review periods and how there is no consensus on what to optimize
in Section 2.1. Our goal is to understand what a heterogeneous collection of practitioners
values the most when optimizing code velocity. We asked the participants to rank time-
to-first-response, time-to-accept, and time-to-merge in the order of importance. A total of
65 participants ranked different code review periods. As a feedback, we also received 3
comments. We present the results in Table 3.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 13 of 34 7

Table 3 Rankings of different code review periods in the order of importance to optimize for code velocity

15¢ priority 27 priority 3" priority

1. TTM 32 (49%) 1. TTA 33 (50%) 1. TTFR 24 (36%)
2. TTFR 19 (29%) 2. TTFR 22 (34%) 2. TTM 21 (32%)
3. TTA 12 (18%) 3. TTM 10 (15%) 3.TTA 20 (31%)
4. Other 2 (3%) 4. Other 0 (0%) 4. Other 0 (0%)

Each column describes how many times a particular metric was ranked as a specific priority. The number of
respondents and percentage of total responses per each entry is given. TTFR = time-to-first-response, TTA =
time-to-accept, TTM = time-to-merge

Our ranking method that results in the data in Table 3 is subjective. We will also use the
Borda count method to objectively evaluate how participants ranked different code review
periods (Llull 1988). The Borda count method is a ranked election system. In the case of
N candidates, the vote for the first place is worth N points, the vote for the second place
is worth N — 1 points, the vote for the third place is worth N — 2 points, and the pattern
continues similarly. The vote for the last place is worth 1 point. According to the Borda count,
time-to-merge receives 202 points, time-to-first-response receives 190 points, time-to-accept
receives 187 points, and other metrics receive 71 points.

In 49% of cases, the time-to-merge was ranked as the first priority metric to optimize.
Similarly, time-to-merge wins the Borda count. This result is like the findings from the
Xen hypervisor project study (Izquierdo-Cortazar et al. 2017), anecdotal evidence from the
industry (Tanna 2021), and our personal experiences for more than two decades. One partic-
ipant pointed out that “all of those metrics are totally irrelevant ...” but did not clarify what
else may be relevant. Two other comments suggested a different set of metrics: “response
time on changes in review by both author and reviewers” (like Time In Review that Meta
measures (Riggs 2022)) and “[t]ime to re-review”.

4.3.2 Perceived Benefits of Increased Code Velocity

We compare each Likert-style item between two groups separately using a Mann-Whitney
U test. No statistically significant differences exist for any of the items between the industry
and OSS groups. Figure 3 shows that for most categories, participants perceive increased
code velocity as beneficial. Participants think that code velocity benefits aspects such as job
satisfaction, reputation, or relationship with peers

The benefits of a code review process generally have been associated with career develop-
ment and growth (Cunha et al. 2021a). However, in our study, the item with the lowest score
is “Career growth”, where only 50% of the industry and 44% of OSS group respondents
rated it positively. Career growth in the corporate environment generally means increased
professional scope, monetary rewards, and promotion speed. This finding is somewhat con-
cerning. While intrinsic motivation is essential, it is hard to motivate engineers to conduct
efficient code review s if there is no substantial payoff.

For the OSS group, one possible explanation is that it is much more challenging to define
career progression in the open-source software community than in a traditional corporate
environment. However, given that only 50% of responses from the industry rated the “Career
growth” category positively, we think this topic is worth exploring further.

@ Springer

7 Page140f34 Empirical Software Engineering (2024) 29:7

Career growth

|
- . B Bl

Job satisfaction

I
- I
oss 0% T

I

Projec’('sI success

Industry 8% I 18%_ 74%
oss 1% - -

I

Relationshi? with peers

W 000
oss e I -

I

Repultation

- = -
oss 6% I -

0

100 50 50 100
Percentage

Response . Strongly disagree . Disagree Neutral . Agree . Strongly agree

Fig.3 Likert scales for the Q11 (“Velocity of your code improves your ...”)

Observation 2

On a median, 74% of rankings are positive regarding the belief that increased code
velocity improves job satisfaction, project success, relationship with their peers, and
reputation of engineers.

Observation 2 serves as a motivating factor behind investments in the developer infras-
tructure to increase the code velocity. This finding confirms our anecdotal observations from
industry that “engineers are happier when they can commit their code changes fast”. Simi-
larly, the data from Meta shows that increase in code review time causes engineers to be less
satisfied with the code review process (Riggs 2022). We recommend that projects include
the metrics related to code velocity as one of the indicators of organizational health. His-
torically, Microsoft used the success of the daily build to indicate the project’s health and
overall state (McCarthy 1995). With the prevalence of CI and CD, metrics such as median
daily time-to-merge can be a suitable replacement.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 15 of 34 7

4.4 RQ2: Compromises that are Acceptable to Increase Code Velocity
4.4.1 Commit-then-Review Model

The foundation of the Modern Code Review is the review-then-commit model. Some projects
use the opposite of that approach. One major software project that started using the commit-
then-review model was Apache (Rigby et al. 2008). While most of the projects have
abandoned commit-then-review for review-then-commit, we wanted to study what devel-
opers think about the resurrection of the commit-then-review model. Several data points
influence the decision to research this possibility. We discuss them below.

Industry Experience The primary motivation to survey developers about commit-then-
review is our industry experience. We have witnessed several complaints and discussions
about the “slowness” of the review-then-commit model. Developers are frustrated that even
for trivial changes, such as one or two lines of code that fix formatting issues or compiler
warnings, they must wait hours or days for someone to approve the code changes formally.
Even organizations that use cutting-edge approaches to software development, such as Meta,
state that “every diff must be reviewed, without exception” (Riggs 2022). We frequently
observe this frustration about the inflexibility of the code review process, primarily in teams
of experienced and senior engineers.

Efficacy of Code Reviews Data from Microsoft shows that “[o]nly about 15% of comments
provided by reviewers indicate a possible defect, much less a blocking defect” (Czerwonka
et al. 2015). Given this finding, the trade-off between blocking the commits until the code
review finishes to satisfy the process versus optimizing for code velocity and taking some
risks needs investigation. Our observations indicate that senior engineers consider code
review s to be efficient only if the reviewer is as or more senior than the author. The quality
of various linters and static analysis tools has improved over the years. We observe that tools
automatically flag issues related to formatting, coding conventions, and fundamental coding
issues without any human intervention.

Development Process The establishment of CI and CD as de facto approaches to developing
modern software shows that industry and open-source software value the speed of software
delivery as the critical success metric.

Figure 4 displays how much participants are willing to compromise on various character-
istics to increase the code velocity. We compared each Likert-style item separately using a
Mann-Whitney U test. There are significant differences only between two items: “Code qual-
ity” and “Security”. A Mann-Whitney U test for “Code quality” indicated that the difference in
mean ranks is statistically significant U (Ndusey = 39, Noss = 34) = 1664,z = 2.65, p =
.008. Similarly, for “Security”, a Mann-Whitney U test indicated that the difference in mean
ranks is statistically significant U (Nmdusty = 39, Noss = 34) = 1621, z = 2.33, p = .02.

An encouraging finding in our survey is what developers think about compromises related
to code quality and software security.

Observation 3

For 100% of OSS developers, software security is something they are unwilling to
compromise on to increase code velocity.

@ Springer

7 Page160f34 Empirical Software Engineering (2024) 29:7

Career growth

Industry 36% B 4% e 21%

0SS 50% I 240 . 26%
Code quality

Industry 69% I O oo 21%

oss 91% NG 9%

Diversity, equity, and inclusion

Industry 54% I 6o 21%
0SS 62% I 29% I 9%
Performance
Industry 56% I 189 26%
0SS 65% A 15— 21%
Personal integrity
industry 74% [NEEEE 8% 8%
oss 79% NN 270 9%
Relationship with peers
Industry 54% B 2g% 18%
0SS 62% I 1% . 18%
Security
industry 82% I /4 8%
0SS 100% o 0%
100 50 0 50 100
Percentage

Response . Strongly disagree . Disagree Neutral . Agree . Strongly agree

Fig.4 Likert scales for the Q12 (“I am willing to compromise on ... if it improves code velocity”)

Critical security vulnerabilities such as the OpenSSL Heartbleed bug (Synopsys, Inc.
2020) could have contributed to the increased awareness that a mistake in a single line of
code can cause catastrophic damage. This finding is very positive, given the impact of zero-
day vulnerabilities and society’s increased reliance on software. We interpret it to mean that
even given external factors such as deadlines, pressure from the author of the code, or project
needs, the engineers are not willing to compromise on security. There is no equivalent of
the Hippocratic Oath for software engineers, and licensing software engineers is controver-
sial (Bagert 2002). However, this finding indicates the presence of an internal code of conduct
of “do no harm” that engineers strive to follow.

The 82% of industry developers who gave negative responses and 10% who gave neutral
responses to this question share a similar sentiment. Code quality is something that 91%
of OSS developers and 69% of industry participants are not willing to negotiate over. One
potential explanation for the differences is that industry developers view code quality and
security as one software characteristic regarding what they can make trade-offs. On the other
hand, the OSS developers are “true believers” who are not willing to compromise to release
less secure software.

As anext step, we asked participants what aspects of software a commit-then-review model
can improve. We display the results in Fig. 5. We compared each Likert-style item separately
using a Mann-Whitney U test. There are significant differences only between two items:
“Code velocity and “Job satisfaction”. A Mann-Whitney U test for “Code velocity” indicated
that the difference in mean ranks is statistically significant U (Nndustry = 39, Noss = 33) =
1603.5,z = 2.12, p = .034. The code velocity is also a category that most participants
thought could be improved. Of industry respondents, 64% gave a positive response, with

@ Springer

Empirical Software Engineering (2024) 29:7 Page 17 of 34 7

Career growth

Industry 28% (b 51% N | 21%
0SS 27% [52% | 21%

Code quality

industry 49% I e 33%
0SS 64% el 27%

Code velocity

Industry 13% I > 64%
0SS 30% N oo N 48%

Job satisfaction

Industry 18% N s 46%
0SS 39% N 6 24%

Performance

incusty 46% Eon s 23%
0SS 45% BT s 18%

Project's success

Industry 33% B - 36%
0ss 45% T s 21%

Security

incustry 54% T > 26%
0SS 64% I 5o 21%
50 0

100 50 100
Percentage

Response . Strongly disagree . Disagree Neutral . Agree . Strongly agree

Fig.5 Likert scales for the Q13 (“I think the post-commit review model (changes are first committed and then
reviewed at some point later) can improve ...”)

48% of OSS respondents feeling similarly. Application of the commit-then-review model
means that developers no longer have to wait for a code review to be complete. The potential
improvements in code velocity are a logical result of this process change.

A Mann-Whitney U test for “Job satisfaction” indicated that the difference in mean ranks
is statistically significant U (Nmduswry = 39, Noss = 33) = 1620,z = 2.28, p = .023. Of
industry respondents, 46% gave a positive response, with 24% of OSS respondents feeling
similarly. Approximately half of the survey participants from the industry think that their job
satisfaction could improve with the commit-then-review model. The difference between the
industry and OSS is as significant as two times. This finding makes sense because of how
the industry evaluates the performance of software engineers. Based on our experience, the
ability to complete the assigned tasks on time and reduce code review idle time is directly
associated with engineers’ anxiety levels and productivity.

For “Career growth”, 51-52% of respondents in industry and OSS chose a neutral
response. This finding indicates a need for more clarity regarding the relationship between

@ Springer

7 Page180f34 Empirical Software Engineering (2024) 29:7

code velocity and its direct impact on an individual’s career. While it may be beneficial for
an organization or a project to be released on a faster cadence, there is not necessarily a
significant reward for individuals responsible for that cadence. This finding is like the data
from Section 4.3.2, indicating that developers do not view an increase in code velocity as
beneficial to their careers.

4.4.2 Abandonment of Code Review s in Favor of Code Velocity

Code reviews are optional in some contexts. For example, the Free BSD project defines a com-
mitter as “an individual with write access to the Free BSD source code repository” (FreeBSD
Foundation 2022). While committers are “required to have any nontrivial changes reviewed
by at least one other person before committing them to the tree” (McKusick et al. 2015),
the definition of nontrivial is open to interpretation. Therefore, experienced developers can
commit code changes without the review at will. We have also witnessed multiple instances
in the industry where a similar practice is employed. To increase the code velocity, senior
developers with a significant contribution history to the project have ignored the official code
review process or accepted each other’s changes immediately to “satisfy the process”.

Based on the observations from the industry and the committer model used by projects
such as Dragon Fly BSD, Free BSD, Net BSD, and Open BSD, we decided to survey what
engineers think about the possibility of abandoning code review s. We asked participants
under what conditions engineers can commit code without someone else reviewing that
code. We display the results in Fig. 6 and discuss them below.

We compared each Likert-style item separately using a Mann-Whitney U test. There were
no statistically significant differences for any of the items between the “Industry” and “OSS”
groups.

Observation 4

Developers are uniformly against abolishing the code review process. 92% of the
industry and 94% of OSS respondents think the existence of the code review process
is valuable.

Observation 4 implies that even given the industry’s relentless drive toward increasing the
code velocity, engineers do not perceive the model where anyone can commit code freely
as something genuinely beneficial. At the same time, the committer model that Dragon Fly
BSD, Free BSD, Net BSD, and Open BSD use shows that there is a point where an engineer
can “graduate” to a level where they are no longer required to have their code reviewed. A
worthwhile research avenue is to investigate and estimate the cost of becoming a committer in
one of the open-source software projects. For example, the Free BSD guidelines (FreeBSD
Foundation 2022) say that “[t]he process to gain FreeBSD source access is a long one and
“[i]t can take months of contributions and interaction with the project”. Is the cost-benefit
still there for the engineers who become committers and maintain the committer status?

The highest items with positive responses are “Project’s needs” and “Seniority”. For
“Project’s needs”, 56% of the industry and 41% of OSS respondents thought it permissible
to commit code without conducting a code review. Based on our industry experience, this
sounds reasonable. Engineers must exercise their judgment in cases like build breaks or
issues blocking an entire project and not blindly follow the process. For example, suppose an
application is not building, and an engineer has a potential fix. In that case, it is reasonable
to take a calculated risk to commit the changes immediately without waiting for hours for a
code review.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 19 of 34 7

Abstraction level

Industry 41% T . 31%

Anyone should be able to commit code without a
review

Programming language

vy s [T =% 1 5%

Project's needs

Seniority
100 50 0 50 100

Percentage

Response . Strongly disagree . Disagree Neutral . Agree . Strongly agree

Fig.6 Likert scales for the Q14 (“Should engineers be allowed to commit their code without the code review
depending on ...”)

The choice of “Seniority” is reasonable as well. Senior engineers typically have more tribal
knowledge, related experience, and in-depth knowledge than junior engineers. Therefore, if
anyone can occasionally “break the rules”, it makes the most sense for them to do that. In our
industry experience, code review s can find apparent mistakes. However, finding problems in
either complex algorithms or design nuances works best if a reviewer has a similar or higher
level of knowledge. Code reviews where a junior engineer reviews the senior engineer’s code
are effective in detecting defects only in a subset of cases. Suppose the goal is to improve
code velocity. In that case, we recommend that a project explicitly discuss the risk versus
reward in a situation where senior engineers can exercise their judgment on when to require
reviews for their changes.

4.5 RQ3: Suggestions to Increase Code Velocity

To solicit feedback from developers, we asked respondents, “In your opinion, how can code
velocity be improved for your projects?” We display the word cloud that summarizes the

@ Springer

7 Page20o0f34 Empirical Software Engineering (2024) 29:7

comments from the survey participants in Fig. 7. A word cloud is a widely used visualization
technique to analyze and summarize qualitative data. The rendering of the most frequently
used words (e.g., “commit”, “time”, “tooling”, and “smaller”’) causes them to be displayed
more prominently. While the word cloud is an initial indicator of the themes that emerge
after analyzing the text corpus, a more detailed grouping of the results is necessary.

Two researchers manually analyzed and coded the 47 comments received from the survey
participants. Each comment was assigned one or more labels depending on its content. After
the coding, researchers discussed the results and disagreements (less than ten), normalized
the labels used for coding, and summarized the findings. Our goal was to reach 7 &£ 2 labels
that adequately describe the nature of the suggestions (Miller 1956). We display the labels
and their distribution in Table 4.

4.5.1 Improved Conventions and Standards

We notice the desire for more formalized standards and the establishment of coding conven-
tions. Going forward, we use the notation Ri to indicate a respondent i. An RS states that
“[e]stablishing and following company-wide standards for coding style and code review”
can be helpful. Similarly, R29 suggests that “[tJeam needs established coding conventions or
tooling that enforces conventions to reduce debate”. The standards help to set expectations
and reduce the number of round-trips between an author and reviewer. According to R11,
it will be helpful to “decrease the number of surprises - have the review criteria prepared
and explicit beforehand as much as possible/sensible”. An R56 points out that “[w]e need to
improve our general code review guidelines - both for reviewer and reviewee (like "reviewer
is not tester!")”. The sentiment is shared in R59 by asking for “stricter guidelines”.

must T€PO) promptly folksapplicable critical
builds Stesting developmentchecks

human -
alsidlily g .© £7rePos priitycase 2
systems z; Q. S englneerS times & &
mfeaéureod - automatedg%
2 2 hard ack 3 8
’g gteStS ostyletl l I le.staygﬂ q?§
popeaCOMIMI {28
o — (© o9
s=z {00liNg g £ 532
33T O O=9of
i needsmakllergg 22, 3
= 3feedback 2 O T 2peers
helpsw cod?ngmesvsvaogre » CDB ”8 %%arenwt
o waiting 'Oc E&5s m;ﬁcusg
¢ i developers §® =& = 1S2
ollow i o
£%linters different © c et)r(ungecgrlnepgn(y:ﬁdea

Fig.7 A word cloud of suggestions about how to improve code velocity

@ Springer

Empirical Software Engineering (2024) 29:7 Page 21 of 34 7

Table 4 Different themes that

; Name Count
result from coding the survey

TeSponses Code review size 5
Communication 6
Coordination and scheduling 13
Development process 16
Early fault detection 5
Infrastructure 15
Response time 12

4.5.2 Prioritization of Follow-Up Changes

Determining clearly what is critical and what is not is another suggested improvement. Feed-
back from R56 suggests that “code reviews shall be prioritised over new feature requests”.
An R30 suggests a potential two-phased approach to code review s: “[b]e crisp on what
is critical to fix and what can be done in a follow up” and “[s]top wasting time in LINT
feedback and preferences about what code should look like and focus only on functionality
and correctness”. We have noticed similar behavior in the industry where reviewers try to
separate the feedback into mandatory and optional. The optional items are improvements
that can be made in an independent code review or later.

4.5.3 Infrastructure and Tooling Improvements

The critical requirement from infrastructure is fast capabilities for early fault detection. The
general requirement is for “good code review tooling” for various tools “to perform more
checks before actual "peer" review” (R37). Developers want “[aJutomated testing, tooling”
(R59). The individual responses describe this need as “[f]aster automated signals with more
actionable error” (R6), “[aJutomatic code linters, style cops, CI builds and CI test passes”
(R9), and “...automated CI/CD environments for initial checks, builds, tests ...” (R28).

4.5.4 Response Time

Compared to the status quo, the responses indicate the need for faster responses. The desire to
respond quickly to code review s is hardly a surprise. Various existing studies and code review
guidelines specify that different periods of development processes should optimize (MacLeod
et al. 2018b; Google 2023b; Izquierdo-Cortazar et al. 2017). In addition to the increased
anxiety caused by waiting for feedback, there are other drawbacks, such as the cost of a context
switch and the potential for introducing new defects (Czerwonka et al. 2015). Respondents
use phrases such as “more responsive engineers” (R63), “validation turn-around time” (R41),
“[c]ommunicating with reviewers promptly” (R1), and “reducing the feedback loop” (R12)
to describe the potential improvements. One of the respondents (R12) mentions that reducing
time-to-first-response is crucial. While tooling is essential, one respondent (R4) points out
that “the limiting factor is not really about tooling, but if reviewers are willing to spend the
time it takes to review other people’s changes”.

@ Springer

7 Page22of34 Empirical Software Engineering (2024) 29:7

4.5.5 Scheduling Time for Code Reviews

Existing research shows that developers spend 6.4 hours per week on reviewing code (Bosu
and Carver 2013). That is almost 20% of the typical 40-hour work week. In our industry
experience, the management often classifies the time spent performing code review s as
the “cost of doing the business”. Consequently, nobody accounts for this work during the
formal planning process (if any). The feedback from survey participants indicates that the
time for conducting code review s is an activity that planners need to include in the schedule
formally. Various responses demonstrate the need for better scheduling: “have dedicated
time to spend on code review” (R67), “time allocated on their calendar to review the code”
(R8), and“[m]ore time allocated for reviews” (R10). Planning for the code review time can
(a) reduce the potential anxiety developers have (b) expose the cost of the Modern Code
Review process (c) help to increase code review quality because engineers can now take
time to review code thoroughly. We are not aware of any organizations in the industry that
use the practice of accounting for a specific amount of code review time. According to R37,
“commitment from engineers and the organization” can help to improve the code velocity.

4.5.6 Too Much Focus on Speed

An R33 provides an interesting observation: “[i]f anything development should be slowed
down. Being in a (constant) hurry is a red flag”. While we agree with this sentiment, we
question if decreasing the code velocity is possible for commercial software development.
We have rarely observed cases where industrial software projects attempt to decelerate the
pace of code changes. The rare situations in which that happens falls into two categories. The
first case is related to a stabilization period, such as weeks and months leading to shipping the
product. A second case results from the fallout from significant events, such as discovering
repeated zero-day vulnerabilities in the code.

4.5.7 Size of the Code Review

Other noteworthy themes include the size of the code review and communication. Requests
such as “[s]maller sized patches” (R1), “smaller pieces to review” (R37), “[s]Jmaller merge
requests” (R47), “[h]ave less code to review” (R61), and “[b]reaking up the use cases into
smaller chunks” (R36) indicate the desire for the upper bound of the code review size. While
there is no definitive evidence to show that smaller sizes increase code velocity, the responses
indicate that size is associated with overall job satisfaction. The smaller code review size is a
strong preference amongst the engineers. Anecdotal guidance from FreeBSD suggests that
“[t]he smaller your patch, the higher the probability that somebody will take a quick look at
it” (The FreeBSD Documentation Project 2022).

5 Discussion
We summarize the frequent themes that resulted from the analysis of the survey results.

The concrete application of suggestions and potential solutions to problems depends on the
context, such as corporate culture or the project stage.

@ Springer

Empirical Software Engineering (2024) 29:7 Page 23 of 34 7

Commonalities Between Different Groups The beliefs and willingness to make trade-offs
are very similar between the practitioners in the industry and the open-source software com-
munity. Therefore, whatever solutions will manifest will be helpful for both groups. The
results from our survey indicate that for a majority of answers to Likert-style items, there are
no statistically significant differences between industry and open-source software develop-
ers. The differences focus on career growth, job satisfaction, and what trade-offs engineers
are willing to make to increase code velocity. The financial incentive structure is conceptu-
ally different between industry and largely unpaid open-source software development. We
expected divergent views in these areas.

The Need for Speed Speed is the central theme across all the categories we cover in the
survey. Engineers expect the code review process and the infrastructure to validate the code
changes to be fast and responsive. Most importantly, engineers need the code review ers
to promptly pay attention to the new code changes, follow-up questions, and any other
open issues. In our experience, some of these expectations and behavior are motivated by
organizational culture. Companies evaluate engineers’ performance using metrics such as the
number of open pull requests and their age, features deployed to the production environment,
and even the SLOC that an engineer has committed. These metrics can positively or negatively
impact an engineer’s career. Therefore, it is reasonable to assume that engineers will focus
on improving these metrics.

Engineer’s Career and Code Velocity The impact of code velocity on an engineer’s career
is unidirectional. Actions such as missing deadlines, not completing the work items on time,
or being unable to deploy the code in production to meet agreed-upon milestones negatively
impact the engineer’s career. The item “Career growth” ranks lowest in items that increase in
code velocity impacts positively. This finding is concerning at multiple levels. Engineers can
perform various actions to increase code velocity. For example, they can split their commits
into isolated units, write concise commit messages, and establish an effective working rela-
tionship with their peers. All these tasks are non-trivial and take time. Based on the survey
feedback, there is no objective payoff regarding career growth when engineers invest all that
effort into increasing code velocity.

Splitting the Code Changes Previous research shows that patches introducing new features
will receive slow feedback due to their size (Thongtanunam et al. 2017). There is no clear
solution to mitigate this except splitting the code changes and sacrificing the cohesiveness
of the code review. The current trend in the industry is to split more prominent features into
smaller ones and incrementally enable a subset of functionality. However, implementation in
small chunks is beneficial for only some features and products. For example, the commonly
used software Microsoft Office has 12000 feature flags (Schroder et al. 2022). Each feature
flag can be enabled or disabled. It is not immediately evident that the introduction of 2" of
different configurations software can operate under is beneficial for its maintenance.

Potential for the Return of the Commit-then-Review Model We recommend that projects
consider the application of the commit-then-review model under some conditions. In sit-
uations where most engineers have noticeable experience, in-depth knowledge about the
product, and can make informed trade-offs, letting developers use their judgment to decide
when to ask for code review s seems a good use of time. A potential set of issues associated
with this can be a decisions-process related to who is qualified enough to be permitted to act
this way. For example, can only engineers at a certain level make changes without a code
review? That in itself may be divisive among the engineers. Another issue could be engineers
getting used to the “edit-compile-debug-commit-push” cycle and not requesting code review

@ Springer

7 Page240f34 Empirical Software Engineering (2024) 29:7

s even for more extensive changes. Industry can use a process that open-source software uses
to designate an individual as a committer (McKusick et al. 2015).

6 Threats to Validity

Like any other study, the results we present in this paper are subject to specific categories of
threats (Shull et al. 2008).

A primary threat to internal validity is that a survey, due to its nature, is a self-report
instrument. We mitigate this threat by making the survey anonymous, indicating that all the
questions are optional (except the consent), and avoiding any monetary incentives.

For conclusion validity, we rely purely on what our participants reported. Our primary data
source is a collection of survey results. We rely on the correct self-identification of survey
participants to draw a subset of our conclusions. To draw conclusions from our sample size
and analyze the Likert-style items, we used non-parametric statistical methods recommended
in the literature (Allen and Seaman 2007; Boone, Jr. and Boone 2012; Mann and Whitney
1947; Shapiro and Wilk 1965). Our survey could have reached a very homogeneous audience
because we reached out to our contacts. As a result, the views expressed may be like the ones
that the authors of this paper hold. We mitigated this concern by soliciting responses from
Blender, Gerrit, Free BSD, and Net BSD developer communities.

Another threat in this category relates to readability. While the intent of the questions
may be apparent to the authors, they may be ambiguous to participants. We tried to mitigate
this threat by asking a native speaker to review the questions and adjust them based on the
feedback from a pilot group of participants. Similarly, there are no assurances that all the
survey participants are native English speakers. Therefore, they can misinterpret some of the
questions or terminology. For example, the terms like “Career growth” and “Job satisfaction”
can have different meanings depending on the context and individual. We tried to mitigate this
threat by composing pointed questions and highlighting the key terms. We did not provide
formal definitions for each term to limit the survey’s verbosity and attempt to increase the
completion rate.

For external validity, the concern is if our findings are relevant in different contexts.
Because we decided not to solicit participants based on the data mined from various source
code repositories, such as GitHub or Gerrit, we could not target specific demographics pre-
cisely. We mitigated this by reaching out to several open-source software projects and our
connections in the industry to solicit responses.

7 Conclusions and Future Work

This paper presents the qualitative results from a survey about code velocity and the beliefs
and practices surrounding it. We analyzed the responses to 75 completed surveys. Ethical
solicitation of survey participants was a painstaking process requiring exhaustive usage of
various social media channels. Demographically, 39 participants were from the industry, and
36 respondents were from the open-source software community. Based on what we know,
this is the first paper that studies the trade-offs engineers make to increase the code velocity
and critical impediments that block engineers from increasing code velocity even more.
The software development processes in the industry and open-source community have
conceptual differences. However, our survey suggests that most beliefs and trade-offs related

@ Springer

Empirical Software Engineering (2024) 29:7 Page 25 of 34 7

to increasing code velocity in these ecosystems are similar. Engineers’ critical concern is
the payoff towards their career growth if code velocity improves. A controlled application
of the commit-then-review model scored the highest as a potential means to increase code
velocity. Reduced software security is something that 100% of open-source and 82% of
industry developers will” not compromise, even if it means increased code velocity.

In our future research, we plan to investigate the following topics: (a) the selective appli-
cation of the commit-then-review model in the industry, (b) the benefit of reward-based
incentives to motivate engineers to react faster to code reviews, and (c) the benefit of schedul-
ing dedicated code review time to achieve a more precise planning outcome.

Appendix A: Survey Questionnaire
A.1Q1

Dear participant,

This survey solicits your beliefs and experiences about code velocity (the speed with
which code changes are reviewed and merged) as a software engineer. The results from this
survey will help to improve developer productivity and the daily lives of large numbers of
software engineers. The survey should take approximately 5—7 minutes to complete.

For questions, contact Gunnar Kudrjavets (g.kudrjavets @rug.nl) and Dr. Ayushi Rastogi
(a.rastogi@rug.nl) at the University of Groningen.

You may refuse to take part in the research or exit the survey at any time without penalty.
You may skip any question you do not wish to answer for any reason. Please refer to the link
below for more details about the participation.

Consent form for code velocity survey.pdf.

Choosing “Agree” indicates that

— You have read the above information
— You voluntarily agree to participate
— You are 18 years of age or older

O Agree O Disagree
A.2Q2

How many years of experience do you have with collaborative software development?

O < 3 year
O 3-10 years
O > 10 years

A3Q3

How many years have you been reviewing other people’s code?

2 https://doi.org/10.5281/zenodo.8242289

@ Springer

https://rug.eu.qualtrics.com/CP/File.php?F=F_enGhHp0O6MaYfA2
https://doi.org/10.5281/zenodo.8242289

7 Page260f34 Empirical Software Engineering (2024) 29:7

O < 1 year

O 1to5 years

(O 51to 10 years

O > 10 years

I do not review code (e.g., only contribute code, moderate code review discussions)

A.4Q4

What is your role in the code review (e.g., diff, patch, pull request) process? Select all that
apply.

[J Author (e.g., contribute to a software project, fix a bug, implement a feature)
[J Moderator (e.g., resolve conflicts between participants, make final decisions)
[J Reviewer (e.g., a maintainer for a subsystem, owner of a feature)

U Other, please specify

A.5Q5
How many times in a month do you submit code changes for review?

O 1-2 times

(O3-6 times

(O6-10 times

(O10+4 times

None, my role is different (e.g., I only review code). Please specify:

A.6 Q6
How many times in a month do you review other people’s code changes?

O1-2 times

(O3-6 times

O6-10 times

O10+ times

None, my role is different (e.g., I only submit patches. Please specify:

A.7 Q7
What code reviewing environments do you use? Select all that apply.

L] Code collaboration tools (e.g., Gerrit, GitHub, Phabricator)

[Tools internal to a company (e.g., Google’s Critique, Meta’s Phabricator, Microsoft’s
CodeFlow)

U Mailing lists to review diffs/patches

[J Pair programming

O Other, please specify

@ Springer

Empirical Software Engineering (2024) 29:7 Page 27 of 34 7

A.8Q8

What type of software developer are you? Select all that apply.
O I work on closed-source and get paid
U I work on open-source and get paid
U I work on open-source and do not get paid
[Other, please specify

A.9Q9

Choose an application domain you are most experienced with for the remaining ques-
tions?

(O Application software (e.g., mobile and desktop applications)

QO Systems software (e.g., drivers, kernel development)

O Real-time or critical software (e.g., aeronautics, embedded systems)

(O Other, please specify

A.10Q10

Rank the following metrics in the order of importance to optimize code velocity. Drag the

items 1 or | with 1 being the most important metric.

1. Time-to-first-response (first indication when someone reacted to your code review or
provided any actionable feedback)

2. Time-to-accept (someone formally accepted your code changes and the code changes
can now be officially committed and merged)

3. Time-to-merge (the accepted code changes have finally ended up in the destination
branch)

4. Other, please specify

A.11Q11

Velocity of your code improves your . ..

Table5 Survey question Q11

Strongly Disagree Neither agree Agree Strongly I don’t

disagree nor disagree agree know
Project’s success O O O O O O
Career growth O O O O O O
Relationship with peers O O O O O O
Job satisfaction O O O O O O
Reputation O O @) O O O
A.12 Q12

I am willing to compromise on ...if it improves code velocity.

@ Springer

7 Page28o0f34

Empirical Software Engineering

(2024) 29:7

Table 6 Survey question Q12

Strongly

disagree

Disagree

Neither agree ~ Agree

nor disagree

Strongly
agree

Idon’t
know

Performance
Code quality

Security

Relationship with peers

Career growth

Personal integrity

Diversity, equity, and inclusion

ONONORONONON®)

OO0OO0OO0O0O0OO0

ONONONONONON®)

ONONONONONONO)

OO0OO0OO0O0O0OO0

ONONCNONONONG®)

A.13 Q13

I think the post-commit review model (changes are first committed and then reviewed at
some point later) can improve ...

Table 7 Survey question Q13

Strongly
disagree

Disagree

Neither agree
nor disagree

Agree

Strongly
agree

Idon’t
know

Code velocity
Code quality
Performance
Security

Career growth
Project’s success

Job satisfaction

(ONCHONCHONONG®

(ONCHONCNONONG®

OO0O0OO0O0O0OO0

OO0OO0OO0O0O0O0

(OCNCHONCHONONG®

OO0OO0OO0O0O0O0

A.14 Q14

Should engineers be allowed to commit their code without the code review depending on

Table 8 Survey question Q14

Strongly Disagree Neither agree Agree Strongly Idon’t

disagree nor disagree agree know
Seniority O O O O O O
Project’s needs O O O O O O
Abstraction level O O O O O O
Programming language O O O O @) O

@ Springer

Empirical Software Engineering (2024) 29:7 Page 29 of 34 7

Table 8 continued

Strongly Disagree Neither agree Agree Strongly Idon’t
disagree nor disagree agree know

Anyone should be able O O O O O O

to commit code

without a review

A.15 Q15

In your opinion, what is the maximum acceptable size of the code review?

1. Source lines of code:
2. Number of files:

A.16 Q16

What is a desired time range for someone to either accept your code review or give you
detailed feedback?

O Same day

O < 24 hours

O 1-2 days

O A week

QO Other, please specify

A.17 Q17

In your opinion, how can code velocity be improved for your projects?

For example, is the tooling (branch management, code review infrastructure) lacking, do
other engineers need to be more responsive, are stricter guidelines for the code review process
needed, etc.

A.18 Q18

If you want to share more of your opinions about the the role of code velocity in software
development or code review process then contact the researcher directly.

If you want to be notified about the findings from the survey then feel free to enter your
email address below. We won’t spam you ;-)

Email address:

Acknowledgements We thank all the survey participants for their insightful comments and suggestions. We
are incredibly grateful to the Blender, Gerrit, Free BSD, and Net BSD developer communities. Our contacts
in these teams either circulated the survey internally or allowed us to use their forum platforms or mailing lists
to solicit survey participants.

@ Springer

7 Page300f34 Empirical Software Engineering (2024) 29:7

Data Availability The datasets generated and analyzed during the current study are available in the Zenodo
repository. The dataset includes the anonymized responses to the survey, survey contents, and the R script that
analyzes the survey data.

Declarations

Funding and conflicts of interests The authors declare that they have no conflict of interest. The authors did
not receive support from any organization for the submitted work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alami A, Cohn ML, Waisowski A (2020) How do FOSS communities decide to accept pull requests? In: Pro-
ceedings of the evaluation and assessment in software engineering EASE *20. Association for Computing
Machinery, New York, pp 220-229. https://doi.org/10.1145/3383219.3383242

Allen IE, Seaman CA (2007) Likert scales and data analyses. Qual Prog 40:64—65. http://rube.asq.org/quality-
progress/2007/07/statistics/likert-scales-and-data-analyses.html

Armstrong K (2022) Category direction—code review 4. https://about.gitlab.com/direction/create/code
review/

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 2013 international conference on software engineering ICSE *13. IEEE Press, pp 712—721. https://
doi.org/10.1109/ICSE.2013.6606617

Bagert DJ (2002) Texas licensing of software engineers: all’s quiet, for now. Commun ACM 45(11):92-94.
https://doi.org/10.1145/581571.581603

Baltes S, Diehl S (2016) Worse than spam: issues in sampling software developers. In: Proceedings of the 10th
ACM/IEEE international symposium on empirical software engineering and measurement ESEM ’16.
Association for Computing Machinery, New York. https://doi.org/10.1145/2961111.2962628

Barnett M, Bird C, Brunet JA, Lahiri SK (2015) Helping developers help themselves: automatic decomposition
of code review changesets. In: Proceedings of the 37th international conference on software engineering
ICSE ’15. IEEE Press, Florence, vol 1, pp 134—144. https://doi.org/10.1109/ICSE.2015.35

Barnett V, Lewis T (1984) Outliers in statistical data. Biom J 30(7):866—867. https://doi.org/10.1002/bimj.
4710300725

Baum T, Schneider K, Bacchelli A (2019) Associating working memory capacity and code change ordering
with code review performance. Empir Softw Eng 24(4):1762-1798. https://doi.org/10.1007/s10664-018-
9676-8

Baysal O, Kononenko O, Holmes R, Godfrey MW (2015) Investigating technical and non-technical factors
influencing modern code review. Empir Softw Eng 21(3):932-959. https://doi.org/10.1007/s10664-015-
9366-8

Beckman RJ, Cook RD (1983) Outlier......... s. Technometrics 25(2):119-149. http://www.tandfonline.com/
doi/abs/10.1080/00401706.1983.10487840

Bird C, Carnahan T, Greiler M (2015) Lessons learned from building and deploying a code review analytics
platform. In: 2015 IEEE/ACM 12th working conference on mining software repositories (MSR). IEEE
Computer Society, Los Alamitos, pp 191-201. https://doi.org/10.1109/MSR.2015.25

Blender (2022) Code review. https://wiki.blender.org/wiki/Tools/CodeReview

Boone Jr HN, Boone DA (2012) Analyzing likert data. J Ext 50. https://archives.joe.org/joe/2012april/tt2.php

Bosu A, Carver JC (2013) Impact of peer code review on peer impression formation: a survey. In: 2013
ACM/IEEE international symposium on empirical software engineering and measurement, pp 133-142.
https://doi.org/10.1109/ESEM.2013.23

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3383219.3383242
http://rube.asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
http://rube.asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
https://about.gitlab.com/direction/create/code_review/
https://about.gitlab.com/direction/create/code_review/
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/581571.581603
https://doi.org/10.1145/2961111.2962628
https://doi.org/10.1109/ICSE.2015.35
https://doi.org/10.1002/bimj.4710300725
https://doi.org/10.1002/bimj.4710300725
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1007/s10664-015-9366-8
http://www.tandfonline.com/doi/abs/10.1080/00401706.1983.10487840
http://www.tandfonline.com/doi/abs/10.1080/00401706.1983.10487840
https://doi.org/10.1109/MSR.2015.25
https://wiki.blender.org/wiki/Tools/CodeReview
https://archives.joe.org/joe/2012april/tt2.php
https://doi.org/10.1109/ESEM.2013.23

Empirical Software Engineering (2024) 29:7 Page 31 of 34 7

Brown JD (2011) Likert items and scales of measurement? Shiken: JALT Testing & Evaluation SIG Newsletter
15(1):10-14. https://hosted.jalt.org/test/PDF/Brown34.pdf

CarifioJ, PerlaRJ (2007) Ten common misunderstandings, misconceptions, persistent myths and urban legends
about likert scales and likert response formats and their antidotes. J Soc Sci 3(3):106-116. https:/
thescipub.com/pdf/jssp.2007.106.116.pdf

Chen L, Rigby PC, Nagappan N (2022) Understanding why we cannot model how long a code review will
take: an industrial case study. In: Proceedings of the 30th ACM joint European software engineering
conference and symposium on the foundations of software engineering ESEC/FSE 2022. Association
for Computing Machinery, New York, pp 1314-1319. https://doi.org/10.1145/3540250.3558945

Chen LT, Liu L (2020) Methods to analyze likert-type data in educational technology research. J Educ Tech
Dev Exch 13(2). https://doi.org/10.18785/jetde.1302.04

Chouchen M, Ouni A, Olongo J, Mkaouer MW (2023) Learning to predicts code review completion time in
modern code review. Empir Softw Eng 28(4):82. https://doi.org/10.1007/s10664-023-10300-3

Chromium (2023) Contributing to chromium. https://chromium.googlesource.com/chromium/src/+/HEAD/
docs/contributing. md#Creating-a-change

Clason D, Dormody T (1994) Analyzing data measured by individual likert-type items. J Agric Educ 35(4).
https://doi.org/10.5032/jae.1994.0403 1

Cunha AC, Conte T, Gadelha B (2021a) Code review is just reviewing code? A qualitative study with practi-
tioners in industry. In: Proceedings of the XXXV Brazilian symposium on software engineering SBES
’21. Association for Computing Machinery, New York, pp 269-274. https://doi.org/10.1145/3474624.
3477063

Cunha AC, Conte T, Gadelha B (2021b) What really matters in code review? A study about challenges and
opportunities related to code review in industry. In: XX Brazilian symposium on software quality SBQS
’21. Association for Computing Machinery, New York. https://doi.org/10.1145/3493244.3493255

Czerwonka J, Greiler M, Tilford J (2015) Code reviews do not find bugs. How the current code review best
practice slows us down. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering,
vol 2, pp 27-28. https://doi.org/10.1109/ICSE.2015.131

Feitelson DG (2023) We do not appreciate being experimented on: developer and researcher views on the
ethics of experiments on open-source projects. J Syst Softw 204:111774. https://doi.org/10.1016/j.jss.
2023.111774

Feitelson DG, Frachtenberg E, Beck KL (2013) Development and deployment at facebook. IEEE Internet
Comput 17(4):8-17. https://doi.org/10.1109/MIC.2013.25

Felderer M, Horta Travassos G (eds) (2020) Contemporary empirical methods in software engineering, 1st
edn. Springer Nature, Cham

Fowler M (2006) Continuous integration. https://martinfowler.com/articles/continuousIntegration.html

FreeBSD Foundation (2022) Obtaining write access to the freeBSD source tree. https://wiki.freebsd.org/
BecomingACommitter

Frenkel S, Kang C (2021) An ugly truth: inside Facebook’s battle for domination. Harper, New York

GitHub (2021) Metrics available with GitHub insights—GitHub docs. https://docs.github.com/en/enterprise-
server @2.21/insights/exploring- your-usage- of- github-enterprise/metrics-available- with- github-
insights#code-review- turnaround

Gold NE, Krinke J (2021) Ethics in the mining of software repositories. Empir Softw Eng 27(1). https://doi.
org/10.1007/s10664-021-10057-7

Gongalves PW, Fregnan E, Baum T, Schneider K, Bacchelli A (2020) Do explicit review strategies improve
code review performance? In: Proceedings of the 17th international conference on mining software
repositories MSR ’20. Association for Computing Machinery, New York, pp 606-610. https://doi.org/
10.1145/3379597.3387509

Gonzalez-Barahona JM (2020) Mining software repositories while respecting privacy. https://2020.msrconf.
org/details/msr-2020-Education/1/Mining- Software-Repositories- While- Respecting- Privacy

Google (2023a) Google engineering practices documentation. https://google.github.io/eng-practices/

Google (2023b) Speed of code reviews. https://google.github.io/eng-practices/review/reviewer/speed.html

Greiler M (2020) Code reviews—from bottleneck to superpower with Michaela Greiler. https://learning.acm.
org/techtalks/codereviews

Groves RM (2006) Nonresponse rates and nonresponse bias in household surveys. Public Opin Q 70(5):646—
675. https://doi.org/10.1093/poq/nfl033

Hong Y, Tantithamthavorn CK, Thongtanunam PP (2022) Where should i look at? Recommending lines that
reviewers should pay attention to. In: 2022 IEEE international conference on software analysis, evolution
and reengineering (SANER), pp 1034-1045. https://doi.org/10.1109/SANER53432.2022.00121

Izquierdo-Cortazar D, Sekitoleko N, Gonzalez-Barahona JM, Kurth L (2017) Using metrics to track code
review performance. In: Proceedings of the 21st international conference on evaluation and assessment

@ Springer

https://hosted.jalt.org/test/PDF/Brown34.pdf
https://thescipub.com/pdf/jssp.2007.106.116.pdf
https://thescipub.com/pdf/jssp.2007.106.116.pdf
https://doi.org/10.1145/3540250.3558945
https://doi.org/10.18785/jetde.1302.04
https://doi.org/10.1007/s10664-023-10300-3
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/contributing.md#Creating-a-change
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/contributing.md#Creating-a-change
https://doi.org/10.5032/jae.1994.04031
https://doi.org/10.1145/3474624.3477063
https://doi.org/10.1145/3474624.3477063
https://doi.org/10.1145/3493244.3493255
https://doi.org/10.1109/ICSE.2015.131
https://doi.org/10.1016/j.jss.2023.111774
https://doi.org/10.1016/j.jss.2023.111774
https://doi.org/10.1109/MIC.2013.25
https://martinfowler.com/articles/continuousIntegration.html
https://wiki.freebsd.org/BecomingACommitter
https://wiki.freebsd.org/BecomingACommitter
https://docs.github.com/en/enterprise-server@2.21/insights/exploring-your-usage-of-github-enterprise/metrics-available-with-github-insights#code-review-turnaround
https://docs.github.com/en/enterprise-server@2.21/insights/exploring-your-usage-of-github-enterprise/metrics-available-with-github-insights#code-review-turnaround
https://docs.github.com/en/enterprise-server@2.21/insights/exploring-your-usage-of-github-enterprise/metrics-available-with-github-insights#code-review-turnaround
https://doi.org/10.1007/s10664-021-10057-7
https://doi.org/10.1007/s10664-021-10057-7
https://doi.org/10.1145/3379597.3387509
https://doi.org/10.1145/3379597.3387509
https://2020.msrconf.org/details/msr-2020-Education/1/Mining-Software-Repositories-While-Respecting-Privacy
https://2020.msrconf.org/details/msr-2020-Education/1/Mining-Software-Repositories-While-Respecting-Privacy
https://google.github.io/eng-practices/
https://google.github.io/eng-practices/review/reviewer/speed.html
https://learning.acm.org/techtalks/codereviews
https://learning.acm.org/techtalks/codereviews
https://doi.org/10.1093/poq/nfl033
https://doi.org/10.1109/SANER53432.2022.00121

7 Page32of34 Empirical Software Engineering (2024) 29:7

in software engineering EASE’17. Association for Computing Machinery, Karlskrona, pp 214-223.
https://doi.org/10.1145/3084226.3084247

Jiang Y, Adams B, German DM (2013) Will my patch make it? And how fast?: Case study on the Linux kernel.
In: Proceedings of the 10th working conference on mining software repositories MSR ’13. IEEE Press,
pp 101-110. https://doi.org/10.1109/MSR.2013.6624016

Killalea T (2019) Velocity in software engineering. Commun ACM 62(9):44—47. https://doi.org/10.1145/
3345626

Kim H, Kwon Y, Joh S, Kwon H, Ryou Y, Kim T (2022) Understanding automated code review process and
developer experience in industry. In: Proceedings of the 30th ACM joint European software engineering
conference and symposium on the foundations of software engineering ESEC/FSE 2022. Association
for Computing Machinery, New York, pp 1398-1407. https://doi.org/10.1145/3540250.3558950

Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: how developers see it. In: Proceedings
of the 38th international conference on software engineering ICSE ’16. Association for Computing
Machinery, Austin, pp 1028—1038. https://doi.org/10.1145/2884781.2884840

Kononenko O, Rose T, Baysal O, Godfrey MW, Theisen D, de Water B (2018) Studying pull request merges: a
case study of shopify’s active merchant. In: Proceedings of the 40th international conference on software
engineering: software engineering in practice ICSE-SEIP ’18. Association for Computing Machinery,
New York, pp 124-133. https://doi.org/10.1145/3183519.3183542

Kushner D (2011) Facebook philosophy: move fast and break things. https://spectrum.ieee.org/facebook-
philosophy-move-fast-and-break-things

Liddell TM, Kruschke JK (2018) Analyzing ordinal data with metric models: what could possibly go wrong?
J Exp Soc Psychol 79:328-348. https://doi.org/10.1016/j.jesp.2018.08.009

Linux (2023) Everything you ever wanted to know about Linux -stable releases. https://www.kernel.org/doc/
html/v4.15/process/stable-kernel-rules.html

Llull R (1988) Blanquerna, 2nd edn. Dedalus Hippocrene books, Sawtry, Cambs, United Kingdom, Dedalus
European classics

LLVM Foundation (2023a) Contributing to LLVM—LLVM 12 documentation. https://llvm.org/docs/
Contributing. html#format-patches

LLVM Foundation (2023b) LLVM code-review policy and practices. https://llvm.org/docs/CodeReview.html

MacLeod L, Greiler M, Storey MA, Bird C, Czerwonka J (2018) Code reviewing in the trenches: challenges
and best practices. IEEE Softw 35(4):34—42. https://doi.org/10.1109/MS.2017.265100500

MacLeod L, Greiler M, Storey MA, Bird C, Czerwonka J (2018) Code reviewing in the trenches: challenges
and best practices. IEEE Softw 35(4):34—42. https://doi.org/10.1109/MS.2017.265100500

Maddila C, Upadrasta SS, Bansal C, Nagappan N, Gousios G, Av Deursen (2022) Nudge: accelerating overdue
pull requests towards completion. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3544791

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50—60. https://doi.org/10.1214/aoms/1177730491

Martin RC (2002) Agile software development, principles, patterns, and practices. Alan Apt Series, Pearson

McCarthy J (1995) Dynamics of software development. Microsoft Press, Redmond

Mclntosh S, Kamei Y, Adams B, Hassan AE (2015) An empirical study of the impact of modern code review
practices on software quality. Empir Softw Eng 21(5):2146-2189. https://doi.org/10.1007/s10664-015-
9381-9

McKusick MK, Neville-Neil GV, Watson RNM (2015) The design and implementation of the FreeBSD oper-
ating system, 2nd edn. Addison Wesley, Upper Saddle River

McMartin A (2021) Introducing developer velocity lab—a research initiative to amplify devel-
oper work and well-being. https://techcommunity.microsoft.com/t5/azure-developer-community-blog/
introducing-developer-velocity-lab-a-research-initiative-to/ba-p/2333140

Microsoft Research (2019) 14th IEEE/ACM international workshop on automation of software test. https:/
www.microsoft.com/en-us/research/event/ 14th-ieee-acm-international- workshop-on-automation-of-
software-test/

Microsoft Research (2023) Developer velocity lab. https://www.microsoft.com/en-us/research/group/
developer-velocity-lab/

Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing
information. Psychol Rev 63(2):81-97. https://doi.org/10.1037/h0043158

Mozilla (2023) Code reviews—Firefox source docs documentation. https:/firefox-source-docs.mozilla.org/
devtools/contributing/code-reviews.html

Nazir S, Fatima N, Chuprat S (2020) Modern code review benefits-primary findings of a systematic literature
review. In: Proceedings of the 3rd international conference on software engineering and information
management ICSIM ’20. Association for Computing Machinery, New York, pp 210-215. https://doi.org/
10.1145/3378936.3378954

@ Springer

https://doi.org/10.1145/3084226.3084247
https://doi.org/10.1109/MSR.2013.6624016
https://doi.org/10.1145/3345626
https://doi.org/10.1145/3345626
https://doi.org/10.1145/3540250.3558950
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1145/3183519.3183542
https://spectrum.ieee.org/facebook-philosophy-move-fast-and-break-things
https://spectrum.ieee.org/facebook-philosophy-move-fast-and-break-things
https://doi.org/10.1016/j.jesp.2018.08.009
https://www.kernel.org/doc/html/v4.15/process/stable-kernel-rules.html
https://www.kernel.org/doc/html/v4.15/process/stable-kernel-rules.html
https://llvm.org/docs/Contributing.html#format-patches
https://llvm.org/docs/Contributing.html#format-patches
https://llvm.org/docs/CodeReview.html
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1145/3544791
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/introducing-developer-velocity-lab-a-research-initiative-to/ba-p/2333140
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/introducing-developer-velocity-lab-a-research-initiative-to/ba-p/2333140
https://www.microsoft.com/en-us/research/event/14th-ieee-acm-international-workshop-on-automation-of-software-test/
https://www.microsoft.com/en-us/research/event/14th-ieee-acm-international-workshop-on-automation-of-software-test/
https://www.microsoft.com/en-us/research/event/14th-ieee-acm-international-workshop-on-automation-of-software-test/
https://www.microsoft.com/en-us/research/group/developer-velocity-lab/
https://www.microsoft.com/en-us/research/group/developer-velocity-lab/
https://doi.org/10.1037/h0043158
https://firefox-source-docs.mozilla.org/devtools/contributing/code-reviews.html
https://firefox-source-docs.mozilla.org/devtools/contributing/code-reviews.html
https://doi.org/10.1145/3378936.3378954
https://doi.org/10.1145/3378936.3378954

Empirical Software Engineering (2024) 29:7 Page 33 of 34 7

Palantir (2018) Code review best practices. https://blog.palantir.com/code-review-best-practices-
19¢02780015f

Phabricator (2021) Writing reviewable code. https://secure.phabricator.com/book/phabflavor/article/writing_
reviewable_code/#many-small-commits

PostgreSQL (2019) Submitting a patch - PostgreSQL Wiki. https://wiki.postgresql.org/wiki/Submitting_a_
Patch

Raina S (2015) Establishing association. Indian J] Med Res 141(1):127. https://doi.org/10.4103/0971-5916.
154519

Rigby PC, Bird C (2013) Convergent contemporary software peer review practices. In: Proceedings of the 2013
9th joint meeting on foundations of software engineering ESEC/FSE 2013. Association for Computing
Machinery, New York, pp 202-212. https://doi.org/10.1145/2491411.2491444

Rigby PC, German DM (2006) A preliminary examination of code review processes in open source projects.
Tech. rep., Concordia University, https://users.encs.concordia.ca/pcr/paper/Rigby2006TechReport.pdf

Rigby PC, German DM, Storey MA (2008) Open source software peer review practices: a case study of
the apache server. In: Proceedings of the 30th international conference on software engineering ICSE
’08. Association for Computing Machinery, New York, pp 541-550. https://doi.org/10.1145/1368088.
1368162

Riggs P (2022) Move faster, wait less: improving code review time at Meta. https://engineering.fb.com/2022/
11/16/culture/meta-code-review-time-improving/

Sadowski C, Soderberg E, Church L, Sipko M, Bacchelli A (2018) Modern code review: a case study at google.
In: Proceedings of the 40th international conference on software engineering: software engineering in
practice ICSE-SEIP ’18. Association for Computing Machinery, Gothenburg, pp 181-190. https://doi.
org/10.1145/3183519.3183525

dos Santos EW, Nunes I (2017) Investigating the effectiveness of peer code review in distributed software
development. In: Proceedings of the XXXI Brazilian symposium on software engineering SBES ’17.
Association for Computing Machinery, New York, pp 84-93. https://doi.org/10.1145/3131151.3131161

Schroder M, Kevic K, Gopstein D, Murphy B, Beckmann J (2022) Discovering feature flag interdependencies
in Microsoft Office. In: Proceedings of the 30th ACM joint European software engineering conference
and symposium on the foundations of software engineering ESEC/FSE 2022. Association for Computing
Machinery, New York, pp 1419-1429. https://doi.org/10.1145/3540250.3558942

Shan Q, Sukhdeo D, Huang Q, Rogers S, Chen L, Paradis E, Rigby PC, Nagappan N (2022) Using nudges to
accelerate code reviews at scale. In: Proceedings of the 30th ACM joint European software engineering
conference and symposium on the foundations of software engineering ESEC/FSE 2022. Association
for Computing Machinery, New York, pp 472-482. https://doi.org/10.1145/3540250.3549104

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3—4):591-611. https://doi.org/10.1093/biomet/52.3-4.591

Shull F, Singer J, Sjgberg DIK (2008) Guide to advanced empirical software engineering. Springer, London

Smith MG, Witte M, Rocha S, Basner M (2019) Effectiveness of incentives and follow-up on increasing survey
response rates and participation in field studies. BMC Med Res Methodol 19(1). https://doi.org/10.1186/
$12874-019-0868-8

Séderberg E, Church L, Borstler J, Niehorster D, Rydenfilt C (2022) Understanding the experience of code
review: misalignments, attention, and units of analysis. In: Proceedings of the international conference
on evaluation and assessment in software engineering EASE ’22. Association for Computing Machinery,
New York, pp 170-179. https://doi.org/10.1145/3530019.3530037

Storey MA, Houck B, Zimmermann T (2022) How developers and managers define and trade productivity
for quality. In: Proceedings of the 15th international conference on cooperative and human aspects of
software engineering CHASE ’22. Association for Computing Machinery, New York, pp 26-35. https:/
doi.org/10.1145/3528579.3529177

Synopsys Inc (2020) The heartbleed bug. https://heartbleed.com/

Tan X, Zhou M (2019) How to communicate when submitting patches: an empirical study of the Linux Kernel.
Proc ACM Hum-Comput Interact 3(CSCW). https://doi.org/10.1145/3359210

Tanna J (2021) Improving team efficiency by measuring and improving code review cycle time. https://www.
jvt.me/posts/2021/10/27/measure-code-review/

The FreeBSD Documentation Project (2022) Committer’s guide. https://docs.freebsd.org/en/articles/
committers-guide/#pre-commit-review

The Linux Foundation (2022) A beginner’s guide to Linux Kernel development. https:/trainingportal.
linuxfoundation.org/learn/course/a-beginners-guide-to-linux-kernel-development-1fd 103/

Thongtanunam P, Tantithamthavorn C, Kula RG, Yoshida N, Iida H, Matsumoto Ki (2015) Who should review
my code? A file location-based code-reviewer recommendation approach for modern code review. In:

@ Springer

https://blog.palantir.com/code-review-best-practices-19e02780015f
https://blog.palantir.com/code-review-best-practices-19e02780015f
https://secure.phabricator.com/book/phabflavor/article/writing_reviewable_code/#many-small-commits
https://secure.phabricator.com/book/phabflavor/article/writing_reviewable_code/#many-small-commits
https://wiki.postgresql.org/wiki/Submitting_a_Patch
https://wiki.postgresql.org/wiki/Submitting_a_Patch
https://doi.org/10.4103/0971-5916.154519
https://doi.org/10.4103/0971-5916.154519
https://doi.org/10.1145/2491411.2491444
https://users.encs.concordia.ca/pcr/paper/Rigby2006TechReport.pdf
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1145/1368088.1368162
https://engineering.fb.com/2022/11/16/culture/meta-code-review-time-improving/
https://engineering.fb.com/2022/11/16/culture/meta-code-review-time-improving/
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3131151.3131161
https://doi.org/10.1145/3540250.3558942
https://doi.org/10.1145/3540250.3549104
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1186/s12874-019-0868-8
https://doi.org/10.1186/s12874-019-0868-8
https://doi.org/10.1145/3530019.3530037
https://doi.org/10.1145/3528579.3529177
https://doi.org/10.1145/3528579.3529177
https://heartbleed.com/
https://doi.org/10.1145/3359210
https://www.jvt.me/posts/2021/10/27/measure-code-review/
https://www.jvt.me/posts/2021/10/27/measure-code-review/
https://docs.freebsd.org/en/articles/committers-guide/#pre-commit-review
https://docs.freebsd.org/en/articles/committers-guide/#pre-commit-review
https://trainingportal.linuxfoundation.org/learn/course/a-beginners-guide-to-linux-kernel-development-lfd103/
https://trainingportal.linuxfoundation.org/learn/course/a-beginners-guide-to-linux-kernel-development-lfd103/

7 Page34of34 Empirical Software Engineering (2024) 29:7

2015 IEEE 22nd international conference on software analysis, evolution, and reengineering (SANER),
pp 141-150. https://doi.org/10.1109/SANER.2015.7081824

Thongtanunam P, Mcintosh S, Hassan AE, lida H (2017) Review participation in modern code review. Empirical
Softw Eng 22(2):768-817. https://doi.org/10.1007/s10664-016-9452-6

Tsay JT (2017) Software developers using signals in transparent environments. PhD Thesis, Carnegie Mellon
University. https://doi.org/10.1184/R1/6723026.v1

Vanian J (2022) Internal Facebook memo warns company must be disciplined, prioritize ruthlessly. https://
www.cnbc.com/2022/06/30/internal- facebook- memo- warns-company-must-be- disciplined- prioritize.
html

Weiligerber P, Neu D, Diehl S (2008) Small patches get in! In: Proceedings of the 2008 international working
conference on mining software repositories MSR *08. Association for Computing Machinery, Leipzig,
pp 67-76. https://doi.org/10.1145/1370750.1370767

Winters T, Manshreck T, Wright H (2020) Software engineering at google: lessons learned from programming
over time, 1st edn. O’Reilly, Beijing Boston Farnham Sebastopol Tokyo

Wu Q, Lu K (2021) On the feasibility of stealthily introducing vulnerabilities in open-source
software via hypocrite commits. https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/
OpenSourcelnsecurity.pdf

Zanjani MB, Kagdi H, Bird C (2016) Automatically recommending peer reviewers in modern code review.
IEEE Trans Softw Eng 42(6):530-543. https://doi.org/10.1109/TSE.2015.2500238

Zhu J, Zhou M, Mockus A (2016) Effectiveness of code contribution: from patch-based to pull-request-based
tools. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of
software engineering FSE 2016. Association for Computing Machinery, New York, pp 871-882. https://
doi.org/10.1145/2950290.2950364

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1007/s10664-016-9452-6
https://doi.org/10.1184/R1/6723026.v1
https://www.cnbc.com/2022/06/30/internal-facebook-memo-warns-company-must-be-disciplined-prioritize.html
https://www.cnbc.com/2022/06/30/internal-facebook-memo-warns-company-must-be-disciplined-prioritize.html
https://www.cnbc.com/2022/06/30/internal-facebook-memo-warns-company-must-be-disciplined-prioritize.html
https://doi.org/10.1145/1370750.1370767
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1145/2950290.2950364
https://doi.org/10.1145/2950290.2950364

	Does code review speed matter for practitioners?
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Motivation for the Study
	2.2 Related Work
	2.3 Terminology and Metrics
	2.3.1 Overview of Terminology
	2.3.2 Code Review Metrics

	2.4 Expectations Related to Code Velocity

	3 Methodology
	3.1 Survey Design
	3.2 Survey Participants
	3.3 Survey Data Analysis

	4 Results
	4.1 Demographics
	4.2 Grouping of Respondents
	4.3 RQ1: Beliefs and Convictions Related to Code Velocity
	4.3.1 Expectations for the Size and Velocity of Code Reviews
	4.3.2 Perceived Benefits of Increased Code Velocity

	4.4 RQ2: Compromises that are Acceptable to Increase Code Velocity
	4.4.1 Commit-then-Review Model
	4.4.2 Abandonment of Code Review s in Favor of Code Velocity

	4.5 RQ3: Suggestions to Increase Code Velocity
	4.5.1 Improved Conventions and Standards
	4.5.2 Prioritization of Follow-Up Changes
	4.5.3 Infrastructure and Tooling Improvements
	4.5.4 Response Time
	4.5.5 Scheduling Time for Code Reviews
	4.5.6 Too Much Focus on Speed
	4.5.7 Size of the Code Review

	5 Discussion
	6 Threats to Validity
	7 Conclusions and Future Work
	Appendix A: Survey Questionnaire
	A.1 Q1
	A.2 Q2
	A.3 Q3
	A.4 Q4
	A.5 Q5
	A.6 Q6
	A.7 Q7
	A.8 Q8
	A.9 Q9
	A.10 Q10
	A.11 Q11
	A.12 Q12
	A.13 Q13
	A.14 Q14
	A.15 Q15
	A.16 Q16
	A.17 Q17
	A.18 Q18

	Acknowledgements
	References

