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Abstract 6 

The last two decades have seen a surge in gold mining operations around the world. Despite 7 

mining occupying a smaller geographical area compared to other land use/land cover (LULC) 8 

classes, it exhibits strong interconnections with various land uses and serves as a major driver 9 

for changes in mining landscapes. Understanding and evaluating historical and potential future 10 

LULC changes in these landscapes are crucial in assessing the environmental impact of mining. 11 

Traditionally, these assessments heavily rely on geospatial techniques, with limited emphasis 12 

on projecting future LULC trends. This research aims to monitor, analyse the drivers of change, 13 

and predict future changes in LULC under two scenarios: the “business as usual” scenario and 14 

the "remedial measures" scenarios. Utilising the CA-Markov model, this article predicts LULC 15 

changes and offers comprehensive insights into the environmental impacts of mining, 16 

combining geospatial and social research methodologies. The investigation spanned a 34-year 17 

period (1986–2020) and employed a blend of supervised and unsupervised image classification 18 

methods, complemented by interviews, focus groups, and field observations. The findings 19 

reveal substantial land degradation, water pollution, and a significant loss of forest cover, 20 

accounting for 27,333 hectares (36%). Continuation of current mining practices is predicted to 21 

lead to further ecological deterioration. 22 
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1. Introduction  42 

Mining of precious minerals, particularly gold, is a vital economic activity for millions of 43 

people in Sub-Saharan Africa and a significant contributor to the gross domestic product (GDP) 44 

of numerous economies in the region. For instance, despite a notable decline in 2021, the 45 

mining sector in Ghana consistently contributed over 7% annually to the GDP of the country 46 

(The Ghana Chamber of Mines 2022). During the same year, the South African mining sector 47 

accounted for 8.7% of the country's GDP (Minerals Council South Africa, 2022), whereas in 48 

Zimbabwe, its contribution to GDP is approximately 12% (International Trade Administration, 49 

2022). Gold mining operations in Africa can be broadly categorised into two segments: large-50 

scale and small-scale mining. Large-scale mining involves the use of advanced, capital-51 

intensive technology, with formal mining operations registered under existing legal 52 

frameworks, typically representing multimillion-dollar investments by multinational 53 

corporations in mineral-rich countries. In contrast, small-scale mining, legally reserved for 54 

nationals, encompasses mineral extraction and processing using rudimentary tools, relying on 55 

substantial labour (Hilson et al. 2017). Despite its labour-intensive nature, small-scale mining 56 

exhibits variability due to the involvement of foreign nationals, particularly the Chinese, using 57 

sophisticated machine(Crawford et al. 2016; Crawford and Botchwey 2017).  58 

 59 

Over the last two decades, gold mining in Ghana, particularly in the small-scale sector, has 60 

experienced significant growth, driven in part by global market factors such as rising gold 61 

prices(Barenblitt et al. 2021). Local factors, including the ‘get-rich-quick’ mentality, declining 62 

agricultural fortunes, poverty, and opportunities for wealth creation, have also contributed to 63 

this growth (Banchirigah 2008; Hilson and Garforth 2012, 2013; Afriyie et al. 2016; Hilson 64 

and Hu 2022). The small-scale mining sector has emerged as a substantial source of local 65 

employment, offering opportunities to unemployed youth and women (Hilson and Maconachie 66 

2020; Hilson and Hu 2022; Arthur-Holmes and Abrefa Busia 2022; Arthur-Holmes et al. 2022). 67 

However, despite these socioeconomic benefits, the environmental impact of small-scale 68 

mining in Ghana is well-documented, encompassing disturbances to river basins, water 69 

pollution, disruptions to agriculture, deforestation, and land degradation (Schueler et al. 2011; 70 

Awotwi et al. 2018; Hausermann et al. 2018; Obodai et al. 2019; Forkuor et al. 2020; Ofosu et 71 

al. 2020; Barenblitt et al. 2021).  72 

 73 

The severe environmental repercussions of small-scale gold mining in riverbeds and forest 74 

reserves, which employ advanced machinery, prompted a two-year ban on small-scale 75 

activities in 2019. The government also prohibited the issuance of mining permits for gold 76 

exploration/mining in forest reserve zones and imposed a ban on excavator exports. Existing 77 

excavators at illegal small-scale mining sites were destroyed by a joint police-military task 78 

force. These actions have faced criticism for hindering efforts to formalise the small-scale 79 

mining sector (Hilson 2017; Hilson and Maconachie 2020). 80 

 81 

Mining activities are closely intertwined with other land use and land cover (LULC) types, 82 

resulting in changes in adjoining land use/cover with multifaceted implications. Examining 83 

past and future LULC changes in mining landscapes is instrumental in understanding the 84 

environmental footprint of mining, essential for sustainable resource management and long-85 

term planning. Therefore, this study pursues three primary objectives: (1) monitoring land use 86 

and land cover changes in a mining landscape over the past three decades; (2) analysing the 87 

drivers behind these changes; and (3) projecting potential future landscapes under two 88 

scenarios: ‘business as usual’ and ‘remedial’ measures. 89 
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 90 

The advancement of Earth observation tools, specifically remote sensing, and geographical 91 

information systems (GIS) has significantly enhanced the ability of researchers to comprehend 92 

LULC dynamics within mining landscapes. Notable studies demonstrate the impact of these 93 

technologies. For instance, Garai and Narayana 2018) utilised Landsat satellite imagery to 94 

analyse land use and land cover changes in coal mining areas in Southern India over 24 years, 95 

revealing the direct influence of mining on forest cover. Similarly, Lobo et al. (2018) 96 

effectively mapped mining areas in the Brazilian Amazon using Sentinel-2 images, 97 

highlighting the prevalence of small-scale gold and tin mining. Another study in the Peruvian 98 

Amazon by Espejo et al. (2018) illustrated the ecological consequences of gold mining on 99 

deforestation and forest degradation, employing CLASlite and the Global Forest Change 100 

dataset. Furthermore, Barenblitt et al. (2021) employed machine learning and change detection 101 

techniques to reveal the conversion of approximately 47,000 hectares of vegetation cover to 102 

mining in southwestern Ghana. Also, Nyamekye et al. (2021), focusing on the eastern part of 103 

Ghana, used Sentinel-2 data to monitor post-ban small-scale mining activities, indicating a 104 

substantial increase in such mining. In addition to these remote sensing-based findings, several 105 

studies have established the adverse effects of small-scale mining on major natural river 106 

drainage systems in Ghana (Awotwi et al. 2018; Obodai et al. 2019; Boakye et al. 2020).  107 

 108 

While these studies have contributed valuable insights, they primarily rely on remote sensing 109 

and GIS technologies. To achieve a more comprehensive understanding of dynamic LULC 110 

changes in mining landscapes, integrating state-of-the-art GIS technologies with social 111 

research approaches is essential. Also, few studies, apart from Awotwi et al. (2018), have 112 

attempted to predict the future LULC trends in mining areas in Ghana. This article addresses 113 

this gap by employing a combination of geospatial and social research methods to assess LULC 114 

dynamics and their driving forces in mining environment in the southwestern part of Ghana. 115 

Additionally, the study employs the CA Markov model to predict LULC changes over the next 116 

decade under both “business as usual” (BAU) and “remedial” scenarios. The subsequent 117 

section elaborates on the materials and procedures used in this study. 118 

 119 

2. Materials and Methods   120 

2.1 Study Area  121 

This research was conducted in the Amansie West and South Districts (AWSD) of rural Ghana, 122 

located between Longitude 6.05o, 6.35 o West and Latitude 1.40o, 2.05 o North (Map 1). These 123 

districts account for 5% of Ghana’s Ashanti region total land area and cover a total of 1230km2. 124 

Both the Offin and Oda rivers, as well as their tributaries, provide drainage for these areas, 125 

which are in the Wet Semi-Equatorial climate zone and see a double-maximum rainfall pattern 126 

(March to July: major season, and September to November: minor season). The rain forest type 127 

with moist semi-deciduous characteristics of the vegetation in the AWSD is responsible for the 128 

exceptionally abundant fertile grounds that sustain agriculture as a key livelihood activity 129 

across the district. The average yearly rainfall in AWSD fluctuates between 855mm and 130 

1,500mm. From December to March, the weather is typically dry, marked by elevated 131 

temperatures and early morning fog or moisture with cold conditions. Temperatures remain 132 

consistently high year-round, averaging around 27ºC each month. Humidity levels peak during 133 

the rainy season, but from December to February, humidity drops significantly (Amansie West 134 

District Assembly, 2018). Oda River, Apanprama, Jemira, and Gyeni River Forest Reserves 135 

are the four most significant protected areas in the district. Anthropogenic activities such as 136 

unsustainable farming methods, illegal mining, and logging have recently posed a serious threat 137 

to these forest reserves (Ghana Statistical Service 2014). 138 
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 139 
Map 1. Study Area from continental and national contexts  140 

Source: Obodai et. al. (2023) 141 

  142 

2.2 Method   143 

Fig. 1 provides a graphical flowchart of the research process that guided this investigation. The 144 

procedures and methods are then described and discussed. 145 

 146 
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 204 

Fig. 1: Methodological Flowchart  205 

MCE: Multi-Criteria Evaluation; AHP: Analytical Hierarchy Process; WLC: Weighted 206 

linear combination; FGD: Focus Group Discussion; KII: Key Informant Interview   207 

  208 

2.2.1 Digital and qualitative data acquisition, pre-processing, and analysis  209 

Landsat imagery from the United States Geological Survey, pertaining to our research area, 210 

was acquired via Google Earth Engine for this study. The selected images were from the pre-211 

processed Tier 1 calibrated top-of-atmosphere (TOA) reflectance archive, based on date and 212 

time constraints. As indicated in Table 1, five cloud-free multispectral images from the years 213 

1986, 2002, 2008, 2015, and 2020 were obtained for our analytical purposes. To address the 214 

ETM+ Scan Line Corrector off data issue, the GDAL “fill no data” tool in QGIS Desktop 215 

3.14.16 was applied.  216 
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Hybrid Image Classification  
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Satellite images from Google 

Earth Engine 
 

LULC Maps 
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2015 & 2020 

Change analysis and post-

classification change 

detection  

Predicted LULC pattern for 2030 under ‘Business as 

usual’ and ‘Remedial’ Scenarios 

Fuzzy 
Standardisation 

AHP 

Weighting 

Suitability Maps 

WLC  
Aggregation  

 

Suitability Atlas 

Transition area and 
probability matrices 

(2008-2015; 2015-2020) 
 

Simulated Map of 
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CA-Markov Model  
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and prediction 

Field Observation  

 

Secondary Data  FGD/KII 
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 217 

Table 1: The available Landsat satellite images   218 

 219 
Image ID  Satellite Sensor ID Resolution  

(m) 

Acquisition 

Date 

Path/Row 

LANDSAT/LC08/CO1/TI_TOA/LC08

_194056_20200109 

Landsat 

8 

OLI_TIRS 30 09-01-2020 194/056 

LANDSAT/LC08/C01/T1_TOA/LC08

_94056_20151229 

Landsat 

8 

OLI_TIRS 30 29-12-2015 194/056 

LANDSAT/LE07/C01/T1_TOA/LE07

_194056_20080201   

Landsat 

7 

ETM+ 30 01-02-2008 194/056 

LANDSAT/LE07/C01/T1_TOA/LE07

_194056_20020115 

Landsat 

7 

ETM+ 30 15-01-2002 194/056 

LANDSAT/LT05/C01/T1_TOA/LT05

_194056_19861229 

Landsat 

5 

TM 30 29-12-1986 194/056 

 220 

In addition to utilising digital remote sensing data, the research was supplemented with 221 

qualitative data obtained through a multifaceted approach, encompassing field observations, 222 

oral histories, and interviews. Interviews were conducted with a diverse range of stakeholders, 223 

including local and national mining and farming officials, chief farmers, and small-scale 224 

miners. Furthermore, to gain a comprehensive understanding of the long-term ecological and 225 

socio-economic transformations since the base year of 1986, crucial for assessing dynamic land 226 

use and land cover changes, oral history sessions with long-term residents who had resided in 227 

the study communities since birth or for over three decades was conducted. These oral histories 228 

involved interactions with village elders, appointed and unappointed assembly members, and 229 

traditional leaders. It is noteworthy that all participants in the study volunteered their 230 

involvement, either verbally or in written form. The oral histories were meticulously recorded, 231 

transcribed, and analysed using NVivo 12 Plus. The analysis followed the thematic analysis 232 

method outlined by Braun and Clarke (2006), which consists of six distinct stages. 233 

Additionally, to enrich the primary qualitative dataset, a qualitative content analysis of 234 

pertinent literature was also conducted. 235 

 236 

2.2.2 LULC Classification   237 

The study employed Landsat 5 and Landsat 7 bands B1, B2, B3, B4, B5, and B7 for the years 238 

2002, 2008, and 2015, respectively, and Landsat 8 bands B2, B3, B4, B5, B6, and B7 for the 239 

years 2015 and 2020 in the LULC classification. The classification process integrated elements 240 

of both supervised and unsupervised methods. Initially, an unsupervised classification was 241 

conducted using the ISO Cluster algorithm in ArcGIS Pro version 2.7.1 to automatically group 242 

pixels with similar spectral properties into distinct spectral clusters (classes) for preliminary 243 

interpretation (Lillesand et al. 2015). Subsequently, LULC maps were generated through a 244 

supervised image classification employing the random forest (RF) classifier, known for its 245 

higher accuracy compared to unsupervised methods (Tso and Mather 2009). Field survey data 246 

and visual interpretation from RGB compositions were utilised to establish accurate reference 247 

data for the predefined classes of interest. Six macro classes, following the USGS classification 248 

system(Anderson et al. 1976), were chosen for representation (Refer to Table 2). 249 

Misclassifications of images were anticipated in the utilisation of Landsat images from three 250 

satellites due to their medium spatial resolution, as documented in prior studies (Hassan et al. 251 

2016; Pei et al. 2017). The predominant misclassifications were observed between open forest 252 

and croplands; mining and settlements/bare lands. To rectify the most evident 253 

misclassifications, an ArcGIS Pro post-classification algorithm (Pixel Editor tool) was utilised. 254 

Jo
urn

al 
Pre-

pro
of



6  

  

Table 2: Description of LULC types  255 

Type  Description   Pictorial view of LULC classes in practice  

Closed Forest  Densely forested areas 

mostly located in forest 

reserves   

 
Open Forest   

 

 

 

Sparse forest, trees, 

shrubs, bushes, grasses  

 

 

 

   

Cropland  Arable land, plantation 

land, and 

heterogeneous 

agricultural areas  

 

 

   
Water  Rivers, water in mine 

pits, ponds, wetlands  

  
Mining   

Areas where both large 

and small-scale surface 

mining has taken place 

 

 

 

   
Settlement/Bare 

lands 

Areas including 

villages, towns, cities, 

roads, bare areas   

 

 
 256 

  257 

 258 
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2.2.3 Accuracy Assessment   259 

In order to enhance the utility of the maps for decision-making purposes, a quantitative 260 

accuracy assessment procedure was implemented to detect, quantify, and rectify the map errors 261 

(Congalton and Green 2009). The accuracy of the classified maps was assessed by employing 262 

both a kappa statistic and a confusion matrix, which considered both omission and commission 263 

errors. To create the error matrix required for the validation of the classified maps, data sources 264 

such as Landsat, ESRI High Definition (3m), GPS ground truth data obtained from field 265 

surveys, and Google Earth images were utilised. To ensure the reliability of the classified maps, 266 

a stratified random sampling approach was employed, involving the selection of five hundred 267 

randomly chosen points for verification. A separate set of sampling points was used to train the 268 

land use and land cover classification algorithm. As a result of these efforts, the accuracy levels 269 

of the classified maps for the years 2008, 2015, and 2020 were all greater than or equal to 90%, 270 

yielding kappa indices greater than 0.90. 271 

 272 

2.2.4 Change detection   273 

Quantitative analysis of LULC conversions, along with the determination of LULC change 274 

rates, was accomplished using the Post Classification Comparison (PCC) technique (Hassan et 275 

al. 2016). Notably, the PCC method offers the advantage of providing insights into the nature 276 

of changes, making it the most reliable method (Mas 1999). The assessment of LULC change 277 

was conducted using a spatial analysis model of land use dynamics, which is grounded in the 278 

dynamic degree concept proposed byShenghe and Shu-Jin (2002) and subsequently adopted 279 

by Liping et al. (2018). Given below is the formula for the spatial-based land use dynamic 280 

degree (rate of change): 281 

ss 282 

 CCL= TRLi + IRLi             Equation (1)  283 

  284 

 TRLi          Equation (2)  285 

  286 

 IRLi           Equation (3)  287 

where LA (i, t1) is the area of a certain type of land use at an earlier date, while LA (i, t2) is the 288 

area of a certain type of land use at a later date. ULAi is the part that is not changed. t1 and t2 289 

represent the year before and after the change, respectively. TRLi is the transfer-out rate, IRLi 290 

is the transfer-in rate, and CCLi is the sum of TRLi and IRLi.  291 

  292 

2.2.5 LULC Change Scenarios   293 

Decision-makers leverage LULC scenario modelling to gain insights into the uncertainties 294 

inherent in land processes across various potential future trajectories, their impacts, and 295 

interactions (Höjer et al. 2008; Moss et al. 2010; Armenteras et al. 2019). Two distinct LULC 296 

scenarios were developed: the “business as usual (BAU)” and the “remedial”. The BAU 297 

scenario was initially employed to predict LULC changes by modelling the rates and transition 298 

trends of change from 2008 to 2015, during which significant shifts occurred due to mining 299 

activity. Subsequently, the ‘remedial’ scenario utilised actual rates of change in LULC from 300 

2015 to 2020, presuming the continuation and enhancement of corrective initiatives by the 301 

Ghanaian government, which began in 2016 and resulted in slight reductions in land 302 

degradation and deforestation (Forkuor et al. 2020). The modelling process involved 303 

employing the transition area matrix between 2015 and 2020, with 2020 as the base year. 304 

 305 

Jo
urn

al 
Pre-

pro
of



8  

  

2.2.6 Change Prediction  306 

An efficient and widely employed approach, the CA-Markov model, was adopted for 307 

simulating and predicting LULC changes (Awotwi et al. 2018; Liping et al. 2018; Singh et al. 308 

2018; Mondal et al. 2020; Tariq and Shu 2020). This model adhered to three pivotal standard 309 

procedures for LULC predictions: (a) utilising the Markov Model to establish transition 310 

matrices and probabilities, (b) employing Multi-Criteria Evaluation (MCE) for a suitability 311 

atlas, and (c) using the CA-Model for forecasting future LULC. The time periods 1986-2002, 312 

2002-2008, 2008-2015, and 2015-2020 involved the use of Markov chain analysis to produce 313 

both the transition area matrix and the transition probability matrix. For the BAU scenario, the 314 

Markov transition area matrix data from 2008-2015 was employed to simulate the 2020 LULC 315 

map and make predictions for 2030. In contrast, for the remedial scenario, data from 2015-316 

2020 was utilised to forecast projections for 2030. 317 

 318 

The MCE tool was utilised to create a set of suitability maps for all LULC classes, integrating 319 

various factors into a unified index for specific evaluation purposes (Liping et al. 2018; 320 

Eastman 2020)(See Map 2). Key parameters associated with LULC changes, including slope, 321 

elevation, population density, and proximity to rivers, roads, and towns, were identified 322 

through interviews with key informants and data derived from existing research(Awotwi et al. 323 

2018; Singh et al. 2018). Low-lying areas with low elevation and gentle slopes are particularly 324 

susceptible to changes due to practices such as agriculture, mining, and settlements. Areas in 325 

proximity to river bodies are more prone to changes induced by mining activities, given the 326 

necessity of water for such operations. The population density directly correlates with changes 327 

observed in cropland, closed forest, open forest, and built-up areas. These data sets were 328 

compiled from diverse sources and processed following standard procedures before utilisation. 329 

The 30m x 30m Digital Elevation Model (DEM) of the study region was obtained from the 330 

NASA Shuttle Radar Topography Mission (SRTM) via Earth Explorer and subsequently 331 

utilised for generating the slope map. Image data from each year were compared with road and 332 

river datasets retrieved from OpenStreetMap. Settlement data, crucial for identifying major 333 

settlements in the study area, was sourced from the Land Use and Spatial Planning Authority 334 

(LUSPA) of Ghana. Population density data across different time frames was acquired from 335 

WorldPop at the University of Southampton in the UK. Following processing in ArcGIS Pro 336 

(version 2.7.1), the images were imported into TerrSet 2020 Geospatial Monitoring and 337 

Modelling Systems. Utilising the MCE in TerrSet 2020, individual LULC suitability maps 338 

were generated, combining factors through the Weighted Linear Combination (WLC) option. 339 

Standardisation of factors was achieved using the Fuzzy Module in TerrSet 2020, wherein 340 

output was normalised within a range of 0 to 255 employing various fuzzy functions and 341 

control points (refer to Appendix 1). Suitability maps for each class were subsequently created, 342 

with no predefined constraints. The Analytical Hierarchy Process (AHP), as introduced by 343 

Saaty (1977), was implemented within TerrSet 2020 to establish weights for the standardised 344 

factors, ensuring a consistency ratio of 0.03 and 0.8 for the assigned weights for each LULC 345 

class. Compilation of class-specific suitability maps into a unified set was facilitated using the 346 

Collection Editor. Employing a conventional 5x5 contiguity filter and conducting 5 iterations 347 

of cellular automata in TerrSet 2020, a simulated LULC map for the year 2020 was developed 348 

based on the collection of suitability maps, utilising the 2008–2015 Markov transition area with 349 

the 2015 categorised LULC map serving as the base map. 350 

 351 

 352 

 353 
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2.2.7 Model Validation and future LULC Change Prediction   354 

The validation of the model involved comparing the 2020 predicted LULC classified map with 355 

the actual map, resulting in a kappa index of 82%. Consequently, the predicted LULC map was 356 

derived from the simulated LULC, serving as the basis for the 2030 model forecast under 357 

“BAU" and "remedial" scenarios.  358 

 359 

2.2.8 Limitation of the study 360 

The CA-Markov model used for the future prediction heavily relies on historical data and may 361 

not easily integrate real-time data or events, limiting its adaptability to rapidly changing land 362 

use patterns driven by economic, environmental, or policy factors. Notably, it struggles to 363 

capture the full complexity of emergent policy interactions and feedback loops. Despite these 364 

limitations, the CA-Markov model remains an invaluable tool for providing accurate forecasts 365 

of future land use changes. 366 

 367 

 368 

 369 

 370 

 371 
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Map 2. Suitability maps for each land use and land cover class and the input datasets used in its generation. (a) Water (b) cropland (c) mining (d) Closed Forest 

(e) Settlements/ bare lands (f) open forest are suitability maps. (g) slope (h) DEM (i) Population Density (j)river (k) secondary roads (l) tertiary roads (m) major 

settlements are input map

                                                       

       

   

Jo
urn

al 
Pre-

pro
of



 

3. Results and Discussion  1 

3.1 Analysis of the LULC changes and their associated ecological footprints   2 

Map 3 illustrates five LULC maps across the AWSD, encompassing six macro classifications: 3 

closed forest, open forest, farmland, water, mining, and settlement/bare lands for the years 4 

under study (1980, 2002, 2008, 2015, and 2020). Table 3 presents the percentages and 5 

corresponding statistics for these LULC categories over the specified years. The trends in 6 

LULC, evident in both Map 3 and Table 3, can be comprehended in connection with four 7 

distinct phases of LULC dynamics, which are elaborated upon below. 8 

 9 
Map 3: LULC Classification Maps of the study area  10 

Jo
urn

al 
Pre-

pro
of



 

Table 3: Area of LULC classes of the classification and the percentage area change results  11 

 12 

  13 

  14 

  15 

 

LULC Classes 

1986  2002  2008  2015  2020 

Area (ha) % Area  Area (ha) % Area  Area (ha) % Area  Area (ha) % Area  Area (ha) % Area 

Water 4,798 3.90  1,800 1.46  963 0.78  6,169 5.01  3,484 2.83 

Cropland 41,259 33.52  47,390 38.50  40,201 32.67  50,600 41.12  54,851 44.57 

Mining 0.0000 0.00  480 0.39  98 0.08  4,276 3.47  5,589 4.54 

Closed Forest 35,244 28.64  17,710 14.39  16,603 13.49  13,595 11.05  14,074 11.44 

Settlement/bare lands 1,843 1.50  4,320 3.51  15,154 12.31  15,525 12.62  11,308 9.19 

Open Forest 39,926 32.44  51,370 41.74  50,050 40.67  32,904 26.74  33,763 27.43 

Total  123,070 100.0  123,070 100.0  123,070 100.0  123,070 100.0  123,070 100.0 
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3.1.1 First Phase: None to limited mining footprints   16 

In Map 3a, no conspicuous physical evidence of mining activities is evident during the initial 17 

phase in the 1980s. However, oral histories indicate that artisanal miners utilised basic tools—18 

such as pickaxes, shovels, and pans—on small land plots, resulting in faint traces of their work. 19 

Supporting this, an appointed assembly member and elderly resident from a study community 20 

affirmed the historically minimal ecological impact linked to mining activities as follows: 21 

 22 

“Historically, this community was not well known for mining activities, though our 23 

forefathers did engage in some artisanal ‘galamsey’ activities. There were gold nuggets 24 

referred to as ‘nkomra’. They dug deep holes on their farms to extract these golds 25 

nuggets. It was nothing like what is currently being done, where standing here [in front 26 

of a settlement shop] you can see a vast area degraded due to gold mining using 27 

mechanics” (ORH_04_AD). 28 

In this period, the predominant LULC comprised open forest, encompassing 32% of the total 29 

land area, and cropland, accounting for 34% of the total land extent, as indicated in Table 3. 30 

Subsequently, closed forests, predominantly situated within forest reserves, covered 29% of 31 

the total land area, amounting to 35,244 hectares. Natural water bodies, such as rivers, streams, 32 

ponds, and wetlands, occupied 4,798 hectares. Notably, the Offin and Oda rivers4,, along with 33 

their tributaries, served as the primary water sources during this period. Settlements were 34 

notably scarce in these areas. 35 

 36 

3.1.2 Second Phase: Gradual to accelerated increase mining footprints  37 

The classified map from 2002 (Map 3b) illustrates active mining activities and their associated 38 

social and environmental impacts during the second phase (late 1980s to early 1990s). In 39 

response to the escalating ecological effects of the mining industry and other sectors, the 40 

Ghanaian government established the Environmental Protection Agency in 1994. There was 41 

also a restructuring of the mining sector, providing substantial incentives for private entities 42 

(Akabzaa and Darimani 2001; Abdulai 2017), during this period. Consequently, licensed 43 

mining corporations primarily conducted mining activities. Specifically, in the study district, 44 

mineral licenses were granted to the Bonte Gold Mines in 1991 and to Amansie Resources 45 

Limited in 1994. Bonte Gold Mines operated for 13 years, while Amansie Resources Ltd 46 

operated for 8 years before being acquired by Resolute Amansie in 1997. The 'visible' footprint 47 

of mining activities (480 ha in 2002) was observed in the operational areas of these mining 48 

firms (Map34b). Remarkably, since 1986, there has been a notable increase in both open forest 49 

and crop land, with the former expanding from 32% to 39% and the latter from 34% to 42%. 50 

Human settlement areas also grew by 3.5%, accommodating the rising population. In contrast, 51 

closed forest areas significantly decreased from 35,244 hectares in 1986 to 17,710 hectares by 52 

2002. By 2002, nearly half of the freshwater reserves in the district had depleted due to the 53 

disappearance of water puddles in forests. Moreover, the Offin river in the western part of the 54 

district, closer to Keniago, was concealed by trees, potentially due to illicit mining activities, 55 

such as river dredging in the upper reaches of the Offin in adjacent regions, contributing to the 56 

reduced downstream flow. 57 

 58 

 59 

                                                 
4 The Oda and Offin rivers are two major tributaries of the Pra River in Ghana. Together with the main Pra river, 

rivers Anum and Birim, and their tributaries, they form the largest river basin of the three principal south-western 

basin systems of Ghana (i.e., Ankobra, Tano, and Pra). The Pra River basin has a total basin area of 

approximately 23,200 km², with an area of 1174 km2 in the Amansie West and South Districts.   
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3.1.3 Third Phase: Sharp increases in mining footprint  60 

From 2008 to early 2017, the third phase of gold mining in Ghana witnessed a significant 61 

upsurge in small-scale mining activities due to the escalating gold prices (Hausermann et al. 62 

2018; Barenblitt et al. 2021). This era marked a significant ecological impact as advanced 63 

technology such as excavators and wash plants were introduced, establishing a lasting footprint 64 

on the environment of Ghana. Remarkably, it was during this period that other nationals, 65 

predominantly Chinese, and prominent political elite entered the small-scale mining industry. 66 

Research indicates a substantial level of collaboration and collusion between Chinese miners, 67 

Ghanaian miners, traditional leaders, and government officials, leveraging their positions for 68 

personal financial gain (Crawford et al. 2016, p.4). The land use and land cover dynamics in 69 

2008 and 2015, depicted in Map 3c and 3d, illustrate fluctuations in mining activity. Map 3c 70 

showcases a decline in mining operations in the initial half of 2008, followed by a subsequent 71 

spike. The closure of significant licensed mining entities notably contributed to this initial 72 

decrease. Environmental degradation and disputes led to the revocation of licenses for Bonte 73 

Gold Mines in 2004 and the suspension of operations by Resolute Amansie in 2002, likely 74 

influenced by a downturn in gold prices during that time. Additionally, conflicts and the 75 

outbreak of Buruli ulcer in Tontokrom and adjacent communities, as reported by Freiku (2005) 76 

and Owusu-sekyere (2012) respectively, likely contributed to the decline in mining activities. 77 

 78 

Table 3 shows the significant expansion of mining activities between 2008 (98 hectares) and 79 

2015 (4,276 hectares), amounting to 3.5% of the total land area. Concurrently, from 2002 to 80 

2008, the land allocated to settlements or left barren increased from 4,320 hectares (3.5%) to 81 

15,525 hectares (12.7%). This rise in barren areas can be attributed to land clearance for 82 

agriculture and mining, accompanied by the construction of structures to accommodate the 83 

increasing number of miners in the region. The change in land use is evident in the reduction 84 

of agricultural land from 47,390 hectares (38.5%) in 2002 to 40,200 hectares (32.7%) in 2008. 85 

Similarly, the open forest area decreased from 51,370 hectares (41.7%) in 2002 to 50,050 86 

hectares (40.7%) in 2008. Water primarily from mining pits, land surfaces, and redirected river 87 

channels increased over time, tripling from 1,800 hectares (1.5%) in 2002 to 6,170 hectares 88 

(5%) in 2015. This confirms a similar study conducted by Hausermann et al. (2018) along 89 

sections of the Offin River, highlighting a substantial 13,000% increase in mine water 90 

coverage, expanding over 200 hectares between 2008 and 2013. These findings validate the 91 

widespread increases in mine water as a land cover class in mining environments within this 92 

study. Predominantly, small-scale mining operations concentrated along the courses of major 93 

rivers—namely, the Offin and Oda Rivers. Alluvial gold dredging notably expanded the 94 

drainage basins of these rivers, consequently augmenting water accumulation. Moreover, 95 

diversion of river sources to distant locations for gold ore washing further contributed to the 96 

rise in water volume. Resultantly, effluents gather on the land and in abandoned mining pits. 97 

The substantial surge in water coverage largely stems from the development of numerous 98 

water-collecting mining pits and the accumulation of water both on land surfaces and into the 99 

primary river systems of the study districts. In 2015, the area of closed forest reduced further 100 

to 13600 hectares (11.05%), reflecting a continued long-term trend of forest area diminution. 101 

 102 

3.1.4 Fourth Phase: Gradual decrease in mining footprint  103 

From 2017 to 2021, a significant surge in public opposition to illegal small-scale gold mining 104 

practices occurred due to severe environmental repercussions, including deforestation, land 105 

degradation, and water contamination. The public, alongside governmental efforts, led a 106 

movement against these activities. Between March 2017 and December 2018, all forms of 107 

small-scale mining were prohibited, enforced by a combined military and police task force, 108 
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resulting in the arrest of defiant miners and the confiscation of mining equipment. Ghana took 109 

further action on May 1, 2019, imposing a temporary restriction on excavator imports to tackle 110 

illegal mining. Despite prior attempts to curb unlawful mining between 2008 and 2015, the 111 

activities persisted, although at reduced rates. Research by Forkuor et al. (2020) aligned with 112 

this, showing a decline in illegal mining in southwestern Ghana from 2015/2016 to 2018/2019. 113 

Conversely, Nyamekye et al. (2021) reported an increase in scale mining activities in eastern 114 

Ghana between the period 2017 to 2018.  115 

 116 

The data from this current study illustrated in Table 3 reveals an expansion in mining areas 117 

from 4,280 ha (3.5%) in 2015 to 5,590 ha (4.5%) in 2020. In 2015, water decreased 118 

significantly by nearly a half. However, there was an increase in the total area of croplands 119 

from 50,600 ha (41.1%) in 2015 to 54,850 ha (44.6%) in 2020, facilitated by a government 120 

initiative known as "planting for food and jobs." This program provided farmers with resources 121 

like free seedlings and nutrients, enabling increased agricultural land use. Both closed and open 122 

forest cover saw slight increases from 2015 to 2020, with closed forest expanding from 13,595 123 

ha to 14,070 ha, and open forest growing from 32,900 ha (26.7%) to 33,760 ha (27.4%). By 124 

2020, settlements and bare land decreased, demonstrating a change in land use patterns. The 125 

reduction primarily resulted from the decrease in bare lands, specifically those allocated for 126 

mining activities that were exhausted. Additionally, the joint military and police operations 127 

during that period likely contributed minimally to the creation of new bare land. 128 

 129 

3.2 Analysis of the trend and patterns of the LULC changes   130 

Fig. 2 provides visual representations while Table 4 offers numerical summaries of the LULC 131 

changes from 1986 to 2020. Four distinct phases in LULC dynamics are identified, showcasing 132 

significant changes experienced by AWSD during these periods. Notably, prominent changes 133 

in LULC occurred between 2002-2008 and 2008-2015, evident in both Fig. 2 and Table 4. 134 

 135 

During 1986-2002, closed forest diminished by half of its original size (17,534 ha), while water 136 

bodies reduced by over 60% (Table 4). The most substantial increase, a 134% rise, was 137 

observed in settlements and bare land, expanding by 2,478 ha. Only approximately half of the 138 

original settlement/bare land shifted to other LULC categories. Open forest expanded by 139 

11,444 ha, and cropland increased by 6,130 ha, representing 28.66% and 14.86% of the total 140 

increments, respectively. Around 50.82% and 61.78% of open forest area changed to different 141 

vegetation types. The farmland witnessed changes, with 48.22% converted from other land 142 

uses and 54.92% converted into other land uses. 143 

 144 

 145 
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Fig. 2: Comparison of land use and land cover increases and decreases from 1986–2002, 2002–2008, 2008-2015, 2015-2020, 1986-2020 
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Table 4: Net Area of Change and the percentage changes in the observed LULC classes  178 

  1986-2002    2002-2008    2008 - 2015    2015-2020  1986-2020  

LULC 

Classes  

Net area 

of change 

(Ha) 

% 

Change 

 Net area 

of change 

(Ha) 

% 

Change 

 Net area 

of change 

(Ha) 

% 

Change 

 Net area 

of change 

(Ha) 

% 

Change 

 Net area 

of change 

(Ha) 

% 

Change 

Closed 

Forest  

-17534  -49.75    -1107  -6.25    -3008  -18.12    479  3.53    -21170  

  

-60.06  

Cropland  6130  14.86    -7188  -15.17    10399  25.87    4251  8.40    13593  

  

32.94  

Mining  483  0.00    -386  -79.75    4178  4266.73    1313  30.70    5589  

  

100.00  

Open Forest  11444  28.66    -1320  -2.57    -17146  -34.26    859  2.61    -6163  

  

-15.43  

Settlement/ 

bare lands  

2478  134.45    10834  250.76    371  2.45    -4217  -27.16    9466  

  

513.67  

Water  -2996  -62.45    -839  -46.52    5207  540.87    -2685  -43.53    -1314  

  

-27.38  

  179 

  180 

 181 
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Between 2002 and 2008, there was a decline in all LULC categories except settlement/bare 183 

lands. Remarkably, there was a substantial net increase in the settlement/bare land area by 184 

10,834 hectares, marking a 251% rise. Only 25% of settlement/bare land transitioned to other 185 

LULC types, while 79% of all other land categories converted to these uses. Following 186 

settlement/bare lands, the most significant changes were observed in mining (80% decrease, 187 

resulting in a marginal net loss of 386 hectares) and water (-47% decrease, leading to an 839-188 

hectare loss). Closed forest cover decreased by 1,107 hectares (6%) during this period, with 189 

the most significant net area loss occurring in cropland (7,188 hectares), while open forest 190 

experienced a smaller loss of 1,320 hectares. Approximately 58% of arable land was reassigned 191 

to other LULC classifications, and a similar amount was gained (51%). 192 

 193 

The trends in LULC changes from 2002-2008 mirrored those observed between 2008-2015, 194 

indicating a consistent long-term pattern. The most substantial changes occurred in mining and 195 

water categories, both experiencing notable net gains in area during the preceding period. 196 

Simultaneously, all other LULC categories experienced net losses. Mining and water accounted 197 

for most recorded changes, with net gains of 4,178 hectares and 5,207 hectares, respectively. 198 

Nearly the entire extracted land came from other LULC classes. Closed forest (3,008 hectares) 199 

and open forest (17,146 hectares) saw significant net losses, representing 34% and 18% of the 200 

observable changes, respectively. However, cropland reversed its prior losses to register a net 201 

gain of 10,399 hectares, constituting 26% of the total changes. Settlement area saw a minor 202 

increase of 371 hectares, representing only 2% of the overall change during this period. 203 

 204 

From 2015 to 2020, mining and water classes remained the most dynamic, accounting for 31% 205 

and 44% of observed changes, respectively, with a net gain of 1,313 hectares and a net loss of 206 

2,685 hectares in area. Settlements/bare lands experienced a net loss of 4,217 hectares, marking 207 

a 27-percentage point change. Open forest area increased by 859 hectares, and closed forest 208 

increased by 479 hectares. Some net gains were recorded in cropland area (4,251 hectares), 209 

contributing to 8% of the total changes, but these gains were relatively small. 210 

 211 

The changes in land use and land cover types between 1986 and 2020 are illustrated through 212 

change maps in Map 4 (a-f). Green and red layers represent areas gained or lost to other land 213 

uses and cover types, respectively, for each category. The yellow layer indicates areas that have 214 

remained unchanged over time. These changes highlighted in Map 4 signify significant changes 215 

over four periods, aligning with the distinct phases of LULC dynamics discussed previously. 216 

In examining the change maps from 1986 to 2020 (Map 4), notable deforestation is evident due 217 

to the conversion of open forest and closed forest land cover to other uses. Conversely, mining, 218 

croplands, and settlements/bare lands experienced substantial growth during this period. 219 

Specifically, mining activities intensified along the Oda and Offin rivers.  220 

 221 
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 222 
Map 4: The gains and losses in land use and land cover classes over the period 1986 to 2020.  223 

‘Gains’ represent an increase in a particular land use and land cover type, ‘Losses’ represent a 224 

decrease in a particular land use and land cover type and ‘No change’ represent no change in a 225 

particular land use and land cover.  226 

 227 

3.3 The driving forces initiating and perpetuating LULC changes and their associated 228 

footprints  229 

The observed trends and patterns of LULC changes result from a myriad of causes and events. 230 

Simplifying these variables poses a challenge (Lambin et al. 2001). (Geist and Lambin 2002) 231 

categorised these causes into proximate and underlying factors. Proximate driving forces stem 232 

from human activities and immediate local actions that shape planned land use and impact land 233 

cover. Conversely, underlying factors are dominant social processes that directly influence 234 

national or international levels or reinforce proximate causes at the local level (Geist and 235 

Lambin, 2002).  236 

 237 

Despite occupying a relatively small area compared to other land uses, mining significantly 238 

influences the observed patterns and trends, alongside its associated ecological footprint, 239 

according to the interviews and field observations. Small-scale gold mining activities directly 240 

cause three main ecological footprints: land degradation, water pollution and diversion, and 241 

deforestation. Significant land deterioration was observed due to the use of excavators and 242 

other sophisticated machinery for gold extraction, spanning a substantial area (refer to Map 5). 243 

 244 
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 245 
Map 5: A collage of satellite imagery showing the extent of land degradation from mining in 246 

2020  247 

Source: ESRI (2021) High Resolution 30cm Imagery  248 

  249 

The cartographic representation in Map 5 illustrates the extent of land degradation within the 250 

primary communities of the study area. Data acquired from interviews and field observations 251 

corroborate these degradation patterns and reveal various causative factors. Notably, the 252 

adoption of advanced mining techniques by foreign nationals, particularly the Chinese, has 253 

significantly contributed to environmental ramifications. This aligns with findings of Hilson 254 

and McQuilken (2014); Crawford et al. (2016); and Owusu-Nimo et al. 2018), emphasising 255 

extensive Chinese involvement in the mining industry of Ghana and the utilisation of high-tech 256 

equipment.  Addressing the profound impact of advanced Chinese technology on LULC 257 

changes, a local miner succinctly conveyed as follows:  258 

 259 

“Had the Chinese operations persisted, our forests would have been obliterated by 260 

now. What takes a local miner months to clear, the Chinese accomplish in days due 261 

to their superior technology” (SSI_003_M). 262 

 263 

This perspective illuminates the substantial consequences of technological advancements as a 264 

key driver of land cover changes, echoing the shared apprehensions of a significant portion of 265 

the participants of the study. 266 
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The lax enforcement of laws exacerbates the extent of land degradation. The regulatory bodies, 267 

the Mineral Commission and the Environmental Protection Agency, mandated by law to 268 

oversee mining operations and land reclamation, have been found lacking. A report by the 269 

Ghana Audit Service (2021) revealed their failure to implement reclamation bonds, overlook 270 

submission of operating plans, neglect monitoring of reclaimed lands, and take no action to 271 

enforce pre-agreed land reclamation conditions before mining commences. 272 

 273 

Secondly, the natural water resources, particularly the Oda and Offin rivers, suffer adverse 274 

effects from excessive water withdrawal through surface water diversions for mineral ore 275 

processing and dewatering mining zones. Illicit small-scale extraction of alluvial gold using 276 

mercury from riverbeds further impacts both the quality and quantity of these rivers. This 277 

destruction extends to smaller water bodies such as streams and ponds, crucial for household 278 

functions, significantly diminishing river water quality over time. The research participants 279 

unanimously affirmed that small-scale gold mining severely pollutes the main rivers and 280 

streams in the towns, rendering them unsuitable for human consumption or agricultural 281 

purposes. Apau and Enyemadze (2014) conducted a study involving drinking water samples 282 

collected from boreholes, hand-dug wells, and streams across 23 communities in the study area. 283 

Their findings revealed arsenic concentrations ranging between 0.24-37.22 µg/L in streams, 284 

13.49-26.41 µg/L in boreholes, and 24.11-39.43 µg/L in hand-dug wells. On average, the study 285 

indicated that 61%, 69%, and 68% of the total arsenic constituted the more toxic arsenic (III) 286 

form in boreholes, hand-dug wells, and streams, respectively. 287 

 288 

Fig. 3 illustrates the significant murkiness evident in parts of the Oda and Offin rivers due to 289 

this pollution. Consequently, former fishermen in these areas no longer have access to fishable 290 

waters. The pollution not only diminishes the water supply but also escalates the cost of 291 

obtaining clean, drinkable water. Interviews with vegetable farmers revealed their reliance on 292 

these water sources for year-round irrigation. Nonetheless, due to contamination from the 293 

mines, some farmers are compelled to use unsuitable mine pit water for irrigation, despite its 294 

inappropriateness for human consumption. The presence of dissolved toxins in this mining pit 295 

water raises concerns about potential contamination in the food chain over time. 296 

 297 

 298 

 299 
 Fig. 3: (a) The polluted Oda River at Watreso (b) The polluted Offin at Keniago   300 

  301 

 302 

 303 
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The examination of interviews revealed that mining significantly impacts water resources 304 

beyond its immediate vicinity, leading to direct and indirect ecological consequences. For 305 

example, despite treating the polluted River Oda, the Ghana Water Company Limited utilises 306 

it as a water reservoir to provide drinking water to communities situated far from the mining 307 

areas (see Fig. 4). This practice escalates the cost of purifying water due to increased chemical 308 

usage. Moreover, substantial amounts of purified water are wasted, resulting in inadequate and 309 

unsafe water supply to reliant communities. 310 

 311 

 312 

 313 
Fig. 4: Turbid water from Oda River undergoing treatment to be used as drinking water  314 

   315 

Mining operations directly contribute to the depletion of forest cover, a correlation extensively 316 

documented in the escalating trends of mining activities. Through a comprehensive 317 

examination involving interviews, focus groups, and field observations, it was evident that 318 

extensive areas of farmland were repurposed into mining sites. This change was substantiated 319 

by our on-site investigations, revealing a consequential outcome: numerous farmers 320 

increasingly clearing forested areas to accommodate agricultural activities. The remote sensing 321 

and geospatial analysis confirmed a disconcerting reality, showcasing a loss of 36 percent of 322 

all forest cover (comprising both open and closed forests) between 1986 and 2020, amounting 323 

to 27,333 hectares. This translates to an annual deforestation rate of 1.07 percent, surpassing 324 

the 0.4% to 0.7% rates recorded by Acheampong et al. (2019) in the Ashanti Region between 325 

1990 and 2015. This disparity underscores the higher deforestation rates within mining zones. 326 

The accelerated pace of deforestation has been associated with a reduction in ecosystem 327 

services and a decline in biodiversity, echoing established findings in various studies (Pereira 328 

et al. 2012; Costanza et al. 2014; Acheampong et al. 2019; Zabel et al. 2019; Hasan et al. 2020). 329 

Furthermore, it influences regional climate and weather patterns (Click or tap here to enter 330 

text.. 331 

 332 

While mining was highlighted as the primary immediate cause of observed changes and their 333 

ecological repercussions, participants also recognised logging, construction, and agricultural 334 

expansion as contributing factors. Inadequate law enforcement, coupled with the utilisation of 335 

advanced technologies, along with population growth (including immigration), agricultural 336 

challenges, unemployment, and poverty, were cited as additional factors. The forthcoming 337 

section of this study will forecast LULC changes and their correlated ecological impacts over 338 

the next decade to offer valuable insights for policymaking. 339 

 340 
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3.4 Prediction of future LULC changes  341 

This section undertakes LULC predictions for the 'remedial' and 'business as usual' scenarios 342 

discussed in Section 2.2.6. The comparison in Map 6 shows the predicted LULC maps for 2030 343 

under both scenarios against the 2020 map generated through simulations. Related statistics 344 

are detailed in Table 4. The remedial LULC modification scenario suggests a potential 345 

reduction in land degradation and deforestation, promising an enhanced local landscape and 346 

improved wellbeing for inhabitants. Projections indicate a decrease in all land uses, except for 347 

a modest 1.62% increase in cropland by 887 hectares, maintaining a positive trajectory 348 

compared to 2020 standards. Forest land cover is anticipated to show improvement in this 349 

context. 350 

 351 
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 352 
Map 6: Simulated and Predicted LULC Maps (a) Simulated LULC map of 2020 (b) Predicted LULC Map of 2030 under ‘remedial’ scenario (c) 353 

Predicted LULC Map of 2030 under BAU scenario.  354 

 355 

Table 4: Area and percentage of LULC classes of 2020 classified and the predicted LULC for 2030 under remedial and business as usual scenarios  356 

   

2020 LULC 

2030 LULC 

‘Remedial’ Scenario 

2030 LULC ‘BAU’ 

Scenario 

2020 to 2030 

‘Remedial’ Scenario 

2020 to 2030 

‘BAU’ Scenario 

LULC Classes  Area 

(Ha) 

% 

Area 

Area (Ha) % 

Area 

Area (Ha) % 

Area 

Net area of 

Change (Ha) 

% Change Net area of 

Change (Ha) 

% 

Change 

Water  3,484  2.83  2,465   2.00  4,082  3.32  -1,019  -29.25  599  3.36  

Cropland  54,851  44.57  55,738  45.29  54,139  43.99  887  1.62  -712  -0.18  

Mining  5,589  4.54  4,925  4.00  6,997  5.69  -663  -11.87  1,409  2.24  

Closed Forest  14,074  11.44  15,236  12.38  12,525  10.18  1,162  8.25  -1,549  -0.63  

Settlements/ 

bare land  

11,308  9.19  8,951  7.27  15,772  12.82  -2,357  -20.85  4,464  1.23  

Open Forest  33,763  27.43  35,752  29.05  29,552  24.01  1,990  5.89  4,210  0.26  

357 
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Additionally, anticipated changes in LULC in the study area suggest a decline of 1,019 hectares 358 

(29%) in water and 663 hectares (12%) in mining activities. The interrelation between water 359 

and mining operations is evident, where reduced mining leads to less water accumulation in 360 

mine pits. Consequently, costs associated with treating drinking water, malaria prevalence, 361 

drowning risks, and other adverse effects linked to increased water-filled mine pits are expected 362 

to decrease. Furthermore, a 21% reduction in land used for settlements and bare lands is 363 

projected, primarily attributed to deforestation for mining purposes, resulting in less bare land. 364 

Forests are anticipated to experience a positive change under the remedial scenario, with an 365 

expected increase of 1,162 hectares (6%) in open forest and 1,990 hectares (8%) in closed 366 

forest. These increments stem from natural forest regeneration following reduced human 367 

intervention. However, further improvements in forest cover necessitate comprehensive 368 

initiatives focused on land reclamation and tree replacement. Simplification of regulations is 369 

imperative to ensure goal attainment, with strict criteria for land reclamation contracts to be 370 

awarded exclusively to reputable firms. 371 

 372 

Contrarily, the 'business as usual' scenario foresees expansions in certain land uses and cover 373 

classes compared to the remedial LULC scenario. It is anticipated that water and mining land 374 

uses will expand by 599 hectares (3%) and 1,409 hectares (2%), respectively, from their 2020 375 

projections. Predicted reductions in croplands by 712 hectares (0.18%) and closed forests by 376 

1,549 hectares (0.63%) will notably impact smallholder farmers, who constitute the majority 377 

of the farming community in Ghana. Given that approximately 95% of farmlands in use are 378 

smaller than 10 hectares, with an average size of less than 1.6 hectares (Environmental 379 

Protection Agency 2020), these changes could displace around 445 farmers by 2030 under the 380 

'business as usual' LULC change scenario for cropland. Moreover, the study predicts an 381 

increase of 4,464 hectares (1.23%) in settlements/bare lands and 4,210 hectares (0.26%) in 382 

open forest by 2030 under the 'business as usual' scenario. These projections underscore the 383 

potential repercussions of continuing current land use trends, especially concerning 384 

smallholder farmers and the landscape's ecological balance. 385 

 386 

4. Conclusions and recommendation  387 

This paper quantifies the dynamics of LULC changes, their associated footprints, and the 388 

driving forces initiating and sustaining these changes. Future projections, encompassing both 389 

"business as usual" and "remedial" outcomes, have been established. Four distinct phases of 390 

LULC dynamics for mining footprints have been identified: zero to low, slow to moderate, 391 

rapid to extreme, and steady decline. Land degradation, deforestation, and water pollution and 392 

diversions are directly and indirectly linked to these LULC dynamics, primarily stemming from 393 

mining activities. Degradation occurs across substantial regions, causing a decrease in both the 394 

quality and quantity of natural water supplies, significantly impacting individuals and 395 

communities. Over a 34-year period, forest resources diminished by 27,333 hectares, 396 

representing a 36% loss in forest cover due to an average annual deforestation rate of 1.07%. 397 

Using the CA-Markov model, the study predicts a rise in mining and water usage, adversely 398 

affecting forest ecosystems in a business-as-usual scenario. However, under a remedial 399 

scenario, the analysis foresees the preservation of forest ecosystems and livelihoods. Despite 400 

its smaller spatial coverage compared to other LULC classes, mining is intricately linked with 401 

and significantly influences observed LULC trends. The study advocates for the integration of 402 

remote sensing/geographic information systems (RS/GIS) and social sciences approaches in 403 

analysing LULC changes, asserting that their combination yields more comprehensive, robust, 404 

and nuanced insights than either approach in isolation. 405 

 406 

 407 
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Appendices 408 

Appendix 1 409 

Factors (s) Membership 

function type 

Membership function shape Control points 

Slope (o) Linear  Monotonically decreasing  c = 0, d = 15 

Eleven (m) Sigmoidal  Symmetric a = 95, b = 185 

c = 190, d = 618  

Proximity to rivers (m) J Shaped Monotonically decreasing c = 160, d = 3000 

Proximity to major 

settlements (m) 

Sigmoidal Symmetric a = 225, b = 2700 

c = 3000, d = 

22000 

Proximity to 

secondary roads (m) 

J Shaped Monotonically decreasing a = 280, b = 3000 

Proximity to tertiary 

roads (m) 

J Shaped Monotonically decreasing a = 80, b = 1400 

Population density 

(people per km2) 

Sigmoidal Symmetric a = 20, b = 60 

c = 80, d = 420 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 
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 434 

 435 

 436 

 437 

 438 
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