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a b s t r a c t 

Action recognition is a very widely explored research area in computer vision and related fields. We 

propose Kinematics Posture Feature (KPF) extraction from 3D joint positions based on skeleton data for 

improving the performance of action recognition. In this approach, we consider the skeleton 3D joints 

as kinematics sensors. We propose Linear Joint Position Feature (LJPF) and Angular Joint Position Feature 

(AJPF) based on 3D linear joint positions and angles between bone segments. We then combine these 

two kinematics features for each video frame for each action to create the KPF feature sets. These feature 

sets encode the variation of motion in the temporal domain as if each body joint represents kinematics 

position and orientation sensors. In the next stage, we process the extracted KPF feature descriptor by 

using a low pass filter, and segment them by using sliding windows with optimized length. This con- 

cept resembles the approach of processing kinematics sensor data. From the segmented windows, we 

compute the Position-based Statistical Feature (PSF). These features consist of temporal domain statistical 

features (e.g., mean, standard deviation, variance, etc.). These statistical features encode the variation of 

postures (i.e., joint positions and angles) across the video frames. For performing classification, we ex- 

plore Support Vector Machine (Linear), RNN, CNNRNN, and ConvRNN model. The proposed PSF feature 

sets demonstrate prominent performance in both statistical machine learning- and deep learning-based 

models. For evaluation, we explore five benchmark datasets namely UTKinect-Action3D, Kinect Activity 

Recognition Dataset (KARD), MSR 3D Action Pairs, Florence 3D, and Office Activity Dataset (OAD). To pre- 

vent overfitting, we consider the leave-one-subject-out framework as the experimental setup and perform 

10-fold cross-validation. Our approach outperforms several existing methods in these benchmark datasets 

and achieves very promising classification performance. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Human Action Recognition (HAR) is one of the most promi- 

ent and challenging research areas of computer vision and ubiq- 

itous computing in recent years [1,2] . HAR plays a fundamen- 

al role in numerous relevant and heterogeneous application fields 

rom the most commercial to the most assistive ones. The most 

ignificant application domains include assistive living, health care, 

ideo-surveillance, augmented reality, patient monitoring, intelli- 

ent surgery, and so on [1,2] . We can also take the help of Ac-
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ive and Assisted Living (AAL) tools to reduce the social-cost and 

itigate the challenges of the aging population in the modern and 

eveloped society. For example, automated vision-based assistive 

ystems can keep track of how often a person drinks water or take 

edicines to coach the users for behavior modifications to main- 

ain a healthy lifestyle. 

Despite the research endeavor by numerous researchers and 

romising advances over the past decade, there are still some vi- 

al challenges for the accurate recognition of human actions. Be- 

ause of the articulated nature of human motion, there lies a ma- 

or issue to model the human actions that are ambiguous, dynamic, 

nd interactive with other objects. This difficulty poses a limitation 

n the performance of video-based action recognition as indicated 

n the previous studies [3] . Modeling specific temporal structures 

f human actions is another challenging task, along with privacy 
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ssues. Most of the previous works on activity classification have 

ocused on RGB videos [ 4–6 ] RFID sensors and radio-based solu- 

ions [7] , a combination of wearable and ambient sensor data [ 8,9 ].

he use of RGB videos performs relatively poor even when there is 

o clutter [2] . Because of the placement of RFID tags, the use of 

his method is generally too intrusive and uncomfortable for the 

sers. RGB videos and images also pose security and privacy issues. 

ecently, cost-effective depth cameras have fostered the progress 

f promising approaches to develop reliable and cost-effective so- 

utions by providing 3D depth and skeleton data of the scene that 

argely eases the task of action recognition. 

In this paper, we have exploited the skeleton data in our re- 

earch work, as depth data perform poorly in low resolution and 

emonstrate poor results in capturing the appearance information. 

s we have the availability of skeletal joint data, the primary hy- 

othesis is to consider the change of joint position across video 

rames to encode complex human actions. In this regard, our pro- 

osed idea considers each available body joint as kinematics sen- 

ors (for example, acceleration sensors or position sensors). The 

ypothesis is that, if we consider a position or acceleration sensor 

n each human body joint location (torso, head, leg, neck, elbow, 

houlder, etc.) and collect time-series data from each sensor, these 

ata can help to identify complex human activities. In this case, 

ody skeleton data (joint position and orientation) can also serve 

he same purpose if we consider those joints as kinematics sensors 

similar to wearable sensors) and extract robust features after the 

ata processing stage. 

Thus, we have mainly proposed a novel idea to extract a Kine- 

atics Posture Feature (KPF) set (linear joint position and the an- 

le between bone segments) from 3D joint positions in the tem- 

oral domain based on skeleton data. These KPF feature sets com- 

ine Linear Joint Position Feature (LJPF) and Angular Joint Position 

eature (AJPF), where LJPF encodes normalized linear joint posi- 

ion information and AJPF encodes the information about the an- 

les between bone segments considering each joint as kinematics 

ensors. These Kinematics Posture Feature (KPF) sets across video 

rames can encode the motion information of human body joints 

ith time while performing different actions. After processing and 

egmenting the data from this feature set, we have computed some 

tatistical features (e.g., mean, standard deviation, variance, etc.) 

eparately. Based on these steps, we have produced Position-based 

tatistical Feature (PSF) from the Kinematics Posture Feature (KPF) 

et mentioned earlier. In the next stage, we have classified the ac- 

ions using the Support Vector Machine (SVM) with linear kernel, 

onvolutional Recurrent Neural Network (ConvRNN), CNNRNN, and 

NN using the feature set (PSF) to predict the change of motion 

ith time in real-time application. 

The background and development of RGBD and skeleton 

ata-based action recognition sector have been discussed in 

his Section 1 . The rest of the paper is organized as follows: 

ection 2 provides a brief review of related research work. The 

roposed method of extracting Kinematics Posture Feature (KPF) 

et combining Linear Joint Position Feature (LJPF) and Angular 

oint Position Feature (AJPF), which can encode motion informa- 

ion across video frames from skeleton data has been described 

n detail in Section 3 . Here, we discussed the processing part of 

he extracted features to eliminate noise components and sliding 

indow-based segmentation methods for feature extraction. We 

lso proposed Position-based Statistical Feature (PSF) sets consist- 

ng of statistical features in the temporal domain. We extracted 

SF feature sets from segmented KPF features across segmented 

indows consisting of video frames. Section 4 describes the basic 

nformation of five benchmark datasets used in this work for the 

valuation of our method. Section 5 discusses the applicability of 

ur method in action recognition scenario, showing the results and 

omparison with previous methods on these datasets. Finally, we 
217 
oncluded the paper in Section 6 , highlighting some future chal- 

enges to improve this method. 

. Related works 

In the last several years, a number of solutions are proposed 

or skeleton-based human action recognition. Multi-camera motion 

apture (MoCap) systems can be used to produce more accurate 

D joint positions. However, the MoCap system is based on various 

n-body markers and is very expensive. The low-cost Kinect sen- 

or can capture depth images and track skeletal joints. Each joint 

an depict position and orientation in the 3D space. These are ex- 

lored for action recognition, as affirmed by many propositions in 

he literature. 

Different representations are adopted based on the set of joints, 

uch as the simple joint coordinates, normalized according to the 

ody reference measure [ 10,11 ] or joint distances [12] , histograms 

f 3D joints [13] , EigenJoints in [14] where PCA is applied to static 

nd dynamic posture features to create a motion model, 3D repre- 

entation of skeleton joints positions using Gaussian Mixture Mod- 

ls [15] , Dynamic Bayesian Mixture Model of 3D skeleton features 

16] , or spatiotemporal interest points and descriptors derived from 

he depth image [17] . There are also some other common ap- 

roaches called action lets [ 3,18–20 ] where a hierarchical repre- 

entation is adopted assuming that an activity is composed of a 

et of sub-activities. Skeleton and RGB are jointly explored where, 

he temporal evolution is retained by using RGB [ 5,21 ]. 

Besides, the interaction of humans with objects have been ana- 

yzed for better scene understanding. Research work [20] adopted 

 Markov Random Field, where the edges represent the rela- 

ionships among object affordances, whereas, the nodes repre- 

ent objects and sub-activities along with their relation with sub- 

ctivities. On the other hand, the authors in [20] proposed a 

raph-based representation. The Histograms of 3D Joint Locations 

HOJ3D) [13] is another approach of joint representation. For the 

OJ3D, the 3D space is split into several bins, and the 3D skeleton 

oint locations are associated with the bins by employing Gaus- 

ian weight function. Afterward, a Hidden Markov Model (HMM) 

s modeled to engrave the temporal evolution of posture visual 

ords. The method by [12] employs joint spherical coordinates to 

epresent the skeleton, and a framework composed of a multiclass 

VM and a discrete HMM to recognize activities. 

Deep learning-based approaches especially neural-networks are 

lso famous for classifying skeletal data. As Long short-term net- 

orks can process the changes over time, this method has been 

nalyzed in research work [22] . They have shown a graph-based 

eep learning approach named as Time based Graph Long Short- 

erm Memory (TGLSTM) network for gait and action recognition, 

hich can learn dynamically while changing over time. 

However, we analyze that to classify complex action, the pro- 

essed kinematics features that are extracted from skeletal joints 

an be a possible option, which has not been explored in pre- 

ious research works. As most of the actions consist of several 

ub-actions, the kinematics of body joint positions across frames 

an play an important role to distinguish among different actions. 

ased on this idea, the work presented in this paper relies on kine- 

atics features, extracted from the joint skeleton data to classify 

he actions based on the motion information of joint positions and 

ngles. The proposed features overcome the limitations of complex 

xpensive algorithms based on RGB and depth data, with good per- 

ormance and execution time. Though there is a recent trend of 

xploiting deep learning-based methods for skeleton-based activity 

ecognition, we feel that this domain can be richer by introducing 

marter features as well combined with a deep learning-based ap- 

roach. 
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. Methodology 

Our proposed feature sets are based on position- and angle- 

ased kinematics that confers some advantages: firstly, there are 

o strict privacy issues for the user due to the use of skeleton data.

econdly, the angle information obtained from skeletons is intrinsi- 

ally normalized. Therefore, angle-based features are independent 

f a users physical build. We tried to capture the motion of per- 

ormed actions across frames by calculating the joint linear posi- 

ion to head. Besides, we also analyzed the angle between bone 

egments to distinguish among the action classes. 

.1. Position-based kinematics feature 

The skeleton data consists of a set of P joints J = 

 J 1 , J 2 , J 3 , . . . ., J P ] where, P = the number of joints, that depends on

he methods used for skeleton tracking. In general, most of the 

atasets contain 15, 20, or 30 joints. Each joint can be represented 

y J i = (p i , o i ) ; where, p i = position vector of each joint, and o i 
 3D orientation vector of each joint with respect to the world 

oordinate. We worked with skeleton joints and computed a vector 

f features for each activity considering the joints as kinematics 

ensors (for example, wearable acceleration or position sensor). 

he posture features were extracted from each video frame using 

he skeleton joints to evaluate the feature vectors, which represent 

uman postures. This feature extraction process consists of three 

teps. Firstly, we extracted the posture features using the distance 

f joint locations with respect to the head. The rate of change of 

oint positions across video frames contains spatial and temporal 

ata along with motion information. We summarized the entire 

rocess in the following parts. 

We computed position-based kinematics feature vector (linear 

oint position) for each skeleton frame, where each joint is repre- 

ented by a three-dimensional vector J i in the coordinate space of 

inect. For the i th joint J i , a feature vector d i (head) has been calcu-

ated. The d i (head) is the distance vector between any joint J i and 

ead joint J head . Moreover, we normalized the distance vector with 

espect to the distance between neck joint J neck and torso joint 

 torso . This normalization procedure makes this feature invariant to 
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ig. 1. Distance vector calculation for each joint with respect to head and normalized b

inematics sensor). 

218 
he physical build of the person. The distance vectors with respect 

o head for each joint are demonstrated in Fig. 1 and d i (head) is 

omputed as follows: 

 i (head) = 

J i − J head 

| | J neck − J torso | | , i = 1 , 2 , . . . ., P − 1 (1) 

here, J neck = position coordinate of the neck joint, J head = position 

oordinate of the head joint, and J torso = position coordinate of the 

orso joint, and P = number of joints. 

In the second stage, for each n th frame, we calculated a pos- 

ure feature vector namely, Linear Joint Position Feature (LJPF), 

os n (head) for each skeleton frame that can be represented by the 

ollowing equation, respectively: 

 os n (head) = [ d { n, 1 } , d { n, 2 } , ., d { n,P−1 } ] , n = 1 , 2 , ., N (2) 

here, P = number of joints, d n, 1 = distance component of joint 1 

f the n th frame with respect to head, d n, 2 = distance component 

f joint 2 of the n th frame with respect to head, Pos n (head) = Linear

oint Position Feature (LJPF) encoding normalized distance vectors 

ith respect to head, and N = number of frames. In this case, a set

f N feature vectors was computed for each case having an activity 

onstituted by N frames. 

.2. Angle-based kinematics feature 

In this case, we compiled the relative positions of the differ- 

nt body parts by encoding each frame of a video sequence as a 

et of angles, which can be derived from the human skeleton data. 

e named this feature as the angle between the bone segments. 

n this approach, we computed the relevant angles between two 

one segments, whose Spatio-temporal evolution characterizes an 

ctivity. The rate of change of angular displacement is useful to 

istinguish between the action patterns. 

Among all possible angles between available joint positions, we 

onsidered only a subset of the possible angles to remove the non- 

nformative angles: e.g., the angles between head and neck for all 

rames are almost constant over time and may not provide useful 

nformation for the discrimination of activities. The entire process 
R. shoulder 6

R. elbow
 7

R. hand 13

R. hip 10

R. knee 11

R. foot 15

Normalizing distance 
vector

joint

Body segment

Right sident side

R. shoulder 6

R. elbow
 7

R. hand 13

R. hip 10

R. knee 11

R. foot 15

Normalizing distance 
vector

joint

Body segment

Right sident side

y the distance between torso and neck (each body joint has been considered as a 
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Fig. 2. Set of three joints for calculating the angle between two bone segments. 
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s illustrated below. To compute the angle between two bone seg- 

ents for each frame, we considered 3 joint positions at the initial 

tage ( Fig. 2 ). 

We considered the following set of joints for calculating the an- 

le between two bone segments after empirical investigation as 

hown in Fig. 3 . Mentioned joint sets for calculating the angle- 

ased kinematics feature, ∠ θ (radian ) : [(Torso, L. hip, L. knee), 

Torso, R. hip, R. knee), (L. hip, L. knee, L. foot), (R. hip, R. knee,

. foot), (L. shoulder, L. elbow, L. hand), and (R. shoulder, R. elbow, 

. hand)], where R. denotes Right and L. means Left side. 

We considered these angle values for each set of joints for each 

rame. This angular kinematics feature has lots of importance, for 

xample, the change of angular information regarding the angle 

etween hip, knee, and left foot and right foot will help to dis- 

inguish between sitting and standing actions. Besides, the angular 

nformation regarding shoulder, elbow, and hand joints can help 

o recognize the actions and gestures mostly performed by hands. 

his angle-based kinematics feature is termed as Angular Joint Po- 

ition Feature (AJPF). 
Torso

Neck 

L. hip 

L. knee 

L. foot 

L. shoulder 

L. elbow 

L. hand

Head

Torso

Neck 

L. hip 

L. knee 

L. foot 

L. shoulder 

L. elbow 

L. hand

Head

Fig. 3. Considered angles be

219 
.3. Kinematics posture feature (KPF) 

We already described the extraction of two feature sets namely 

inear Joint Position Feature (LJPF) and Angular Joint Position Fea- 

ure (AJPF). For each frame, Linear Joint Position Feature (LJPF) en- 

odes the normalized distance vectors of all considered body joints 

ith respect to the head. Similarly, for each frame, Angular Joint 

osition Feature (AJPF) encodes the angles between different bone 

egments (e.g., shoulder, knee, hip, etc.). These two features (posi- 

ion and angular information of all body joints) work as a blueprint 

f the corresponding body-posture for that particular video frame. 

e considered an analogy that, by this approach, we can utilize 

ll of the body joints as individual kinematics position and orien- 

ation sensors. We can track the change of postures across video 

rames by tracking the change in joint position and angles through 

hese two features (LJPF and AJPF). Thus, for each video frame, we 

ombined these two features to generate Kinematics Posture Fea- 

ure (KPF) set. This feature encodes the change in joint position 

nd angles across video frames. 

While combining LJPF and AJPF features to create the KPF fea- 

ure, we considered normalized joint positions with respect to the 

ead and angle between bone segments for the body joints in 

 frame. These positions and angular information are combined 

jointly considered as two feature vectors for each video frame) 

o create a Kinematics Posture Feature (KPF) set for each frame. 

e hypothesized that the change of joint position and angular in- 

ormation across video frames from this feature set can encode the 

ariation in posture. Thus, it can be helpful to encode complex mo- 

ion information for an accurate action recognition procedure. 

.4. Processing, segmentation, and generation of position-based 

tatistical feature (PSF) 

The shape of the position vector and angle vector are noisy and 

nsmooth. Because of any unsmooth amplitude, even after the nor- 

alization procedure with respect to the body joint, the Kinemat- 
R. shoulder

R. elbow

R. hand 

R. hip

R. knee 

R. foot 

 

R. shoulder

R. elbow

R. hand 

R. hip

R. knee 

R. foot 

 

tween bone segments. 
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low pass 
filter (cutoff 
frequency: 

10Hz)

-
based 

Features
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sensor)

1. SVM (linear)
2. RNN
3. ConvRNN
4.CNNRNN
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Fig. 4. Basic workflow diagram of the proposed method. 
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cs Posture Feature (KPF) can contain amplified noise. The main 

eason for this noise augmentation is the propagation of errors 

f the sum or difference between two time-variant amplitudes. 

or polishing the resultant data of the Kinematics Posture Feature 

KPF) set (normalized linear joint positions and the angles between 

one segments), we used the 1st order Butterworth low-pass filter 

ith a corner frequency of 10Hz after empirical investigation. As 

uman actions are usually restricted in the range of 0 ∼10Hz [23] , 

his filtering technique increases the signal to noise ratio with min- 

mal waveform delay. 

After filtering, we extracted some useful statistical features by 

dopting a sliding window technique. We applied the 50% over- 

apping window with a variation of 1 ∼3sec. From the window, we 

xtracted some statistical features namely mean, standard devia- 

ion, variance, and median absolute deviation (MAD) of the filtered 

ignals of filtered Kinematics Posture Feature (KPF) set data. We 

amed the statistical features extracted from filtered Kinematics 

osture Feature (KPF) descriptor, as “Position-based Statistical Fea- 

ure (PSF)”. After separating data from the Position-based Statisti- 

al Feature (PSF) for validation and test, the rest of the data from 

his feature set are finally fed to the classification model for classi- 

ying the complex human actions. The system flow diagram of the 

ntire process is demonstrated in Fig. 4 . 

.5. Classification models 

For classifying actions from skeleton data, we used Support 

ector Machine (SVM) with Linear Kernel, ConvRNN, CNNRNN, and 

NN. For the SVM linear model, we exploited the statistical fea- 

ures, as discussed above. However, in the deep learning model, we 

ed the raw segmented data into the model. We adopted the slid- 

ng window technique for the segmentation. Optimized window 

engths found by cross-validation for each dataset are 0.7s, 2.5s, 

s, 0.5s, 2s for UTKinect, KARD, MSR Pair, Florence 3D, and OAD 

espectively. The purpose of using the RNN model is to utilize the 

emporal relations in input data frames. Besides, in a single data 

rame, skeleton joints have spatial relationships with each other. 

herefore, we also implemented the ConvRNN model and CNNRNN 

long with LSTM. The designs of these deep learning models are 

epicted in Fig. 5 . 
220 
For the first LSTM model, we put two LSTM cells with 100 units 

ach. For the ConvRNN model, we designed the model with a con- 

olution filter and LSTM cell. Before entering the LSTM cell, data 

ave to go through a 1D convolution filter layer. In the convolu- 

ion layer, there are 64 1D convolution filters with kernel size 3, 

nd it is followed by the Relu activation function. In the CNNRNN 

odel, we implemented maxpool operation after two convolution 

ayers. The kernel size of the maxpool is 3 with stride 1. 

We utilized the already separated validation set from Position- 

ased Statistical Feature (PSF) sets for tuning the hyperparameters 

f these models. The test sets for each dataset was prepared in a 

imilar fashion, following the existing research works to compare 

he performance of their proposed methods. The performance re- 

ults also reported by following the same performance measures, 

s described in the previous works for each dataset. 

. Dataset description 

In this section, we summarize five benchmark datasets for the 

valuation of our proposed method. 

UTKinect-Action3D Dataset: In this dataset [13] , they collected 

0 different classes of human action, by 10 subjects (including a 

eft-handed person) in the indoor environment from a Kinect sen- 

or. The classes are: walk, sit down, stand up, pick up, carry, throw, 

ush, pull, wave, and clap hands. The dataset is challenging due 

o some factors. The first reason is the divergence among differ- 

nt understandings of the same action, for example, in order to 

erform the “pick up” action, some participants do this using one 

and, while others prefer to utilize both hands. Another challenge 

as the notable variation of the action clip’s duration. 

Kinect Activity Recognition Dataset (KARD): KARD 

10] dataset has 18 activities. Of them, 10 are gestures type 

e.g., horizontal arm wave, high arm wave, high throw, draw x, 

raw tick, two hand wave, forward kick, side kick, hand clap, and 

end), and other 8 activities (e.g., catch cap, toss paper, walk, 

hone call, drink, take an umbrella, sit down, and stand up). 

ach activity is performed 3 times by 10 subjects (9 males and 1 

emale). 

MSR 3D Action Pairs Dataset: The Microsoft Research (MSR) 

D Action Pairs Dataset [24] contains 3D actions that are selected 
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Fig. 5. Designs of the deep learning models. 
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n pairs, so that the 2 actions per pair have similarities in terms 

f motion information or similar trajectories, and similar objects. 

he relation between motion and shape is different in this dataset. 

0 subjects acted 12 actions for 3 times. The actions are: picking 

p a box, put down the box, lift box, place box, push a chair, pull

 chair, wear a hat, take off a hat, put on a backpack, put off a 

ackpack, stick a poster, and remove a poster. 

Florence 3D Dataset: This dataset [25] has 9 activities including 

ave, drink from a bottle, answer phone, clap, tight lace, sit down, 

tand up, read watch, and bow. 10 subjects were asked to perform 

ach action for 2/3 times. 

Office Activity Dataset (OAD): The OAD dataset has 14 activities 

y 10 subjects (equal genders and one left-handed person) in dif- 

erent office environments [26] . The classes are: drinking, getting 

p, pour a drink, scrolling book pages, grabbing an object from 

he ground, sitting, stacking items, talking on the phone, throw- 

ng something in the bin, take objects from a shelf, waving hand, 

earing coat, writing on a paper, and working on computer. 

. Result and analysis 

.1. Experimental setup 

We validated our proposed feature set (PSF) in five benchmark 

atasets by showing an ablation experiment. For proper evaluation 

nd to prevent overfitting, we followed the “New Person” method 

18] . For overcoming subject bias, we selected one subject ran- 

omly for testing purposes while we used other subjects for model 

raining. We exploited the SVM classifier with the linear kernel for 

lassifying the actions. Besides, we have also tried other classifi- 

ation methods like Random Forest, K-Nearest Neighbors (KNN), 

inear Discriminant Analysis (LDA), Naive Bayes, and Decision Tree 

DT). The performance of SVM with linear kernel was better than 

he rest of the classifiers. This is why we have reported the results 

sing SVM with linear kernel for the rest of the analysis. Besides, 

e also used deep learning-based approaches, ConvRNN, CNNRNN, 
221 
nd RNN to prove the generalization and robustness of our pro- 

osed feature sets. We have compared our results achieved by the 

New person” setting with other existing works on the datasets. 

.2. Ablation experiment with the kinematics features 

Here, we performed an ablation experiment considering sub- 

ets of feature vectors to validate the importance of our proposed 

JPF and AJPF features. We performed this experiment for all of 

he datasets by considering the ConvRNN model. Later, we found 

hat this model demonstrated the best performance in most of the 

atasets. The goal behind this experiment is to identify the impor- 

ance of our proposed features for classifying different actions by 

tilizing skeleton data. Thus, we considered three different cases 

ith three sets of features. We analyzed the results considering 

he construction of PSF features based on – (i) the combination 

f LJPF and AJPF features, which we named KPF features, (ii) only 

oint-based LJPF feature, and (iii) only angle-based AJPF feature. In 

able 1 , our analysis demonstrates the importance of the Kinemat- 

cs Posture Feature (KPF), which is constructed based on the com- 

ination of LJPF and AJPF features. 

.3. Experimental results 

Results on UTKinect-Action3D Dataset: We achieved the high- 

st accuracy of 94.73% by using the Position-based Statistical 

eature (PSF) in the “New Person” setting using ConvRNN. For 

he classification of this dataset, we segmented each action se- 

uence by the 1sec sliding window technique with 50% overlap- 

ing. Our method achieved an accuracy of 94.73% by utilizing our 

SF method with ConvRNN in this dataset. The comparison with 

xisting works is presented in Table 2 . 

Results on the Kinect Activity Recognition Dataset (KARD): 

imilar to the previous dataset, the sliding window method also 

erformed well on this dataset. For extracting PSF feature, we used 

 3s sliding window with 50% overlapping. For this dataset, exist- 

ng research works published their results based on precision and 
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Table 1 

Comparison of our proposed kinematics features for classifying human actions in five benchmark datasets. 

Dataset PSF Feature Component Extracted From Model Comparison Parameter 

KPF (LJPF + AJPF) LJPF AJPF 

KARD 98.11 96.27 68.32 ConvRNN Accuracy (%) 

OAD 98.44 96.87 94.09 ConvRNN Precision (%) 

Florence 96.00 87.50 66.67 ConvRNN Accuracy (%) 

UTKinect 94.73 91.43 77.14 ConvRNN Accuracy (%) 

MSR Pair 95.45 93.94 68.18 ConvRNN Accuracy(%) 

Table 2 

Accuracy comparison with existing works on UTKinect dataset. 

Method Accuracy (%) 

HOJ3D [13] 90.90 

Spatiotemporal features and joints fusion [27] 91.90 

APJ3D and Random Forest [28] 92.00 

UPCV [29] 90.95 

STFC: Spatiotemporal feature chain [30] 91.50 

Skeleton contexts [31] 91.90 

cHCRF (Coupled hidden conditional random fields) [32] 92.00 

LARP + mfPCA (manifold functional PCA) [33] 95.10 

Pachinko allocation model [34] 94.80 

3d-based Deep CNN [35] 96.00 

Latent SVM [36] 91.50 

Covariance Descriptor [37] 97.02 

Decision fusion strategy with LOOCV [38] 84.00 

CFM + DNM+LSTM [39] 94.36 

SM + MM [40] 92.93 

Modified spherical harmonics [41] 93.00 

N-posture selection [12] 93.10 

RA-GCN [42] 89.23 

STA-LSTM [43] 79.26 

ST-TR [44] 86.30 

HCN [45] 90.10 

HDM-BG [46] 87.50 

IndRNN [47] 82.40 

SVM-Linear + PSF 93.91 

RNN + PSF 85.96 

CNNRNN + PSF 89.47 

ConvRNN + PSF 94.73 

Table 3 

Precision and recall comparison with existing works on KARD. 

Method 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

K-means + SVM + HMM [10] 84.80 84.50 90.83 

N-posture selection (N = 7) [12] 94.00 93.70 - 

N-posture selection (N = 15) [12] 95.10 95.00 - 

Fusion of features + multiclass SVM [48] - - 99.31 

Depth data + SVM [49] - - 96.64 

Skeleton data + ConvNet [50] - - 98.50 

SVM-Linear + PSF 97.43 97.61 97.51 

RNN + PSF 96.83 97.22 96.27 

CNNRNN + PSF 96.83 97.22 96.27 

ConvRNN + PSF 98.22 98.25 98.11 

r

w

a  

t

l

c

w

n

c

f

s

9

Table 4 

Accuracy comparison with existing works on MSR Pair dataset. 

Method Accuracy (%) 

Skeleton + LOP [19] 63.33 

DMM + HOG [51] 66.11 

Skeleton + LOP + Pyramid [19] 82.22 

HON4D [52] 93.33 

Lie Group + SVM [53] 93.33 

Lie Group + CNN [54] 93.68 

Spatiotemporal feature + SVM [55] 94.50 

SVM-Linear + PSF 74.78 

RNN + PSF 86.36 

CNNRNN + PSF 92.42 

ConvRNN + PSF 95.45 

Table 5 

Accuracy comparison with existing works on Florence dataset. 

Method Accuracy (%) 

Multi-part bag-of-poses [25] 82.00 

Trajectory Riemannian manifold + kNN [56] 87.04 

LARP [57] 90.90 

LARP + mfPCA (manifold functional PCA) [33] 89.70 

N-posture selection [12] 84.70 

Pachinko allocation model [34] 90.23 

Latent maxmargin multitask learning [58] 93.42 

Covariance Descriptor [37] 91.00 

CFM + DNM+LSTM [39] 94.36 

RA-GCN [42] 81.36 

STA-LSTM [43] 80.29 

ST-TR [44] 85.20 

HCN [45] 89.30 

HDM-BG [46] 91.30 

IndRNN [47] 85.60 

Lie Group + CNN [54] 93.00 

SVM + PSF 71.58 

RNN + PSF 91.66 

ConvRNN + PSF 96.00 

Table 6 

Accuracy comparison with existing works on OAD. 

Method Precision (%) Recall (%) 

Joint orientations [26] 80.85 80.86 

Skeleton approach [21] 80.60 80.50 

RGB (20 sectors) [21] 85.80 85.90 

Score-level fusion of RGB & skeleton [21] 90.60 90.40 

SVM + PSF 94.92 92.14 

CNNRNN + PSF 92.37 91.25 

ConvRNN + PSF 98.44 97.25 

RNN + PSF 95.34 88.69 

t

t

t

d

a

h

w

ecall. By utilizing ConvRNN along with our proposed PSF feature, 

e achieved the highest accuracy of 98.11%, precision of 98.22%, 

nd recall of 98.11%. In Table 3 , we have shown a comparison be-

ween our results and other existing results. 

Results on MSR 3D Action Pairs Dataset: This dataset is chal- 

enging because of the similar motion information among action 

lasses. For this reason, we segmented an action with a higher 

indow duration, so that we can get as much information as 

eeded in a single window. For the segmentation process, we 

hose a sliding window with a duration of 3s for extracting the PSF 

eature set. In Table 4 , we showed the comparison between our re- 

ults and existing works on this dataset. We achieved the highest 

5.45% accuracy using ConvRNN and our proposed PSF feature set. 
222 
Results on Florence 3D Dataset: Due to the very short dura- 

ion of each action in this dataset, we segmented the dataset using 

he 1sec sliding window. Because of the large inter-class correla- 

ion, high inter-class variability, and short duration of actions, this 

ataset is a challenging dataset. Despite the presence of transitory 

ctions, our proposed PSF feature set with ConvRNN obtained the 

ighest 96% accuracy. The comparison of our method with other 

orks is shown in Table 5 . 
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Results on Office Activity Dataset (OAD): To process this 

ataset, we used a sliding window (duration 2sec and 50% overlap- 

ing) for extracting PSF feature set. We achieved the highest pre- 

ision of 95.34% and recall of 92.14% by using the Position-based 

tatistical Feature (PSF) in the “New Person” setting using RNN ar- 

hitecture and SVM model respectively. In Table 6 , we compared 

ur method with the existing works on this dataset. From the Ta- 

le, we can infer that the activities in this dataset can be differen- 

iated more accurately by the PSF. 

. Conclusions 

Skeleton-based action recognition has flourished recently, espe- 

ially due to the advent of low-cost Kinect sensors and OpenPose. 

n this work, we classified the daily actions by extracting Kine- 

atics Posture Feature (KPF) from skeleton data, which combines 

inear Joint Position Feature (LJPF) and Angular Joint Position Fea- 

ure (AJPF) to encode motion while performing different actions. 

his method separates the actions based on a feature set, that fo- 

uses on normalized joint positions with respect to the head, and 

ngles between the bone segments. The change of joint position 

nd angular information across video frames from these KPF fea- 

ure sets can also encode the variation in posture. In our pro- 

osed method, we considered the body joints as kinematics sen- 

ors (e.g., position and orientation sensors). Thus, we processed 

nd segmented the extracted Kinematics Posture Features (KPF) by 

xploiting filtering techniques and sliding window-based approach 

ith optimized window length. Afterward, we computed Position- 

ased Statistical Feature (PSF) to train SVM (linear), RNN, CNNRNN, 

nd ConvRNN models. For evaluation, we applied our method on 

ve benchmark datasets. We obtained excellent or comparable re- 

ults for these publicly available benchmark datasets. Our proposed 

osition-based Statistical Feature (PSF) takes into account the pri- 

ary posture and the key directional snippets of action, which out- 

erformed more complex existing algorithms. It is indeed rare in 

he literature to find a method that is suitable for 5 benchmark 

atasets. However, we would like to explore 2-persons interactions 

nd multi-view cases in the future. 
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