
Energy Reports 10 (2023) 4781–4790

A
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research paper

Evaluating ERA5 reanalysis predictions of low wind speed events around the
UK
Panit Potisomporn ∗, Thomas A.A. Adcock, Christopher R. Vogel
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom

A R T I C L E I N F O

Keywords:
ERA5
Reanalysis
Low wind speed events
Wind energy

A B S T R A C T

Low wind speed events represent one of the biggest challenges in fully de-carbonising the electricity system
due to the growing proportion of wind energy in the UK energy mix. While reanalysis products are a useful tool
to study the spatio-temporal characteristics of these occurrences, their performance and limitations should be
understood prior to usage. In this study, hourly 10 m ERA5 reanalysis wind speed data were evaluated against
in-situ wind speed measurements from 205 onshore and offshore observation stations around the UK. It was
found that ERA5 has biases in mean wind speed of 0.166 m/s and −0.136 m/s for onshore and offshore domains
respectively, and biases in hourly wind speed standard deviation of −0.354 m/s and −0.425 m/s for onshore
and offshore domains respectively. Both errors are more pronounced in autumn and winter. These errors lead
to an underestimation of the percentage frequency of short-duration low wind speed events. Furthermore, the
findings suggest that the largest errors are from sites which are situated in coastal and mountainous regions
where short-range topographical variability and local wind effects may not be resolved by ERA5. Despite
these shortcomings, ERA5 nevertheless outperforms its global reanalysis counterparts in the UK domain and
therefore, can provide valuable information in the context of low wind speed events prediction.
1. Introduction

In March 2021, the United Kingdom experienced the longest ‘‘cold
calm spell’’ in over a decade; for 11 consecutive days, wind farms oper-
ated at 11% of their rated capacity, in a month where low temperatures
drove up heating and electricity demand. In response, the electricity
system escalated gas power output to compensate for the lack of wind
power generation, resorting to the very energy source that the country
has been endeavouring to curb. Such an occurrence, neither an isolated
incident nor limited to the UK, potentially represents one of the biggest
challenges in fully de-carbonising the electricity system (Staffell et al.,
2021). Hence, there is a growing need to characterise the UK’s wind
energy resource, particularly these low wind speed events.

A trend that has emerged in the past decade is the growing preva-
lence of reanalysis data being used as a substitute for observed wind
speed or measured power output in the characterisation of low wind
speed events (Cannon et al., 2015; Bloomfield et al., 2016; Dawkins,
2019). Otherwise known as hindcasts, reanalysis datasets integrate
an atmospheric circulation model with historical climate observations
through the process of data assimilation. Reanalyses offer advantages
over observed data in two main aspects: data consistency and coverage,
as they are provided as regularly gridded datasets that cover a large
area, often the whole world, and are also provided at regular time steps.
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Such consistency overcomes the shortcomings of measured data which
are irregularly spatially distributed and tend to decrease in number
further into the past. These advantages thus allow reanalyses to perform
two tasks that observed data do not permit: the consideration of long-
term trends in wind speed and the investigation of the wind resource
over a wide geographical domain.

However, several studies have highlighted a number of issues as-
sociated with using reanalysis data. First, significant biases in mean
wind speed have been observed in reanalysis datasets which stem from
underlying systemic model errors (Bloomfield et al., 2016). Second,
generation variability represented by reanalyses tends to be underes-
timated over short time scales, which may lead to misrepresentation of
ramp events (Cannon et al., 2015). Third, the coarse spatial resolution
of reanalyses is not able to resolve complex topography and the ensu-
ing effects on airflow (Dawkins, 2019). Hence, a thorough evaluation
of a reanalysis dataset is necessary to understand and mitigate the
uncertainties which arise from these issues.

Hence, a substantial number of evaluations of the accuracy of
reanalysis wind speed have been conducted in various locations in both
onshore and offshore environments. For example, Miao et al. (2020)
evaluated the accuracy of European Centre for Medium-Range Weather
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Forecasts Reanalysis Interim (ERA-Interim), Japanese 55-year Reanal-
ysis (JRA-55), Climate Forecast System Reanalysis (CFSR), Modern-Era
Retrospective analysis for Research and Applications 2 (MERRA-2),
and National Centers for Environmental Prediction (NCEP) reanaly-
ses against observed surface wind speed data in the Northern Hemi-
sphere, Carvalho et al. (2014) assessed the performances of ERA-
Interim, CSFR, NCEP reanalysis 2, and MERRA reanalyses in Portugal
and the Iberian Peninsula, Kumar and Anandan (2009) evaluated NCEP
reanalysis 2 in India, while Stopa and Cheung (2014) similarly vali-
dated ERA-Interim and CSFR reanalysis in United States waters. Ideally
100 m wind speed would be used for validation as this is closer to
the hub height of modern multi-MW wind turbines. However, the
majority of these evaluations resorted to using observed wind speed
from observations at 10 m for validation due to the much greater data
availability at this elevation. Only a few validation studies of reanalysis
wind speed at 100 m have been made (Kiss et al., 2009; Liléo and
Petrik, 2000). Regardless, while most studies have concluded that most
reanalyses show a decent correlation (mean Pearson R > 0.75) of wind
speed with observed data, they also found significant mean biases of
magnitude greater than 0.3 m/s and found RMSEs higher than 3 m/s.

Only a limited number of European Centre for Medium-Range
Weather Forecasts Reanalysis 5 (ERA5) reanalysis wind speed evalu-
ations exist in literature due to its relatively recent release. Of those
that have been performed, Gualtieri (2021) validated ERA5 wind speed
against 100 m tower observations in America, Europe, the Middle
East, Africa, and Oceania, Fan et al. (2020) compared ERA5 against
other reanalyses using more than 1000 observation stations across all
six continents, Kardakaris et al. (2021) evaluated ERA5 wind speed
against in-situ measurements in the Greek seas, while Soukissian and
Sotiriou (2022) compared the long-term variability of wind speed
and direction in the Mediterranean Basin with results obtained from
ERA-Interim. As with evaluations of other reanalysis datasets, these
studies reported mean wind speed biases that range from −0.84 m/s
to 2.28 m/s while RMSEs were found to reach as high as 3.69 m/s.
Furthermore, significant spatial variations in mean wind speed bias
were also observed on a global scale. However, due to the superior
spatial resolution, these studies found that ERA5 globally exhibits
better performance, with respect to mean wind speed bias and RMSE,
compared to other reanalysis datasets.

There exist a number of gaps within these evaluations of reanalysis
wind speed data that are relevant to the scope of this study. First,
ERA5 wind speed has never been investigated on a large scale in the
UK (Gualtieri, 2022). Second, only a few studies (e.g., (Sharp et al.,
2015)) have investigated the sources of errors which may stem from
physical factors like topography or model uncertainties. Last and more
importantly, the exclusive usage of error metrics like RMSE, mean wind
speed bias, and Pearson correlation in most studies means the perfor-
mance of ERA5 is only captured in very general terms. While this may
be sufficient for applications like energy yield calculations, this study’s
focus on low wind speed events requires a further examination of the
dataset in terms of low wind speed events which is generally lacking
in the literature. Studies that mention low wind speed validation only
did so with respect to wind speed percentiles that do not stem from
physical reasons and although Cannon et al. (2015) briefly touched on
the comparison between MERRA reanalysis and observed sustained low
wind speed events, it was not the main purpose of the study.

Therefore, the aim of this study is to provide a comprehensive eval-
uation of ERA5 wind speed in the UK. In addition to evaluating ERA5’s
performance using standard metrics for general accuracy of wind speed
prediction, this study also presents an assessment focused on low wind
speed events, as well as the sources of underlying uncertainties.

2. Methodology and data

2.1. Reanalysis data

Released in 2019, ERA5 (Hersbach et al., 2020) is the latest gener-
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ation reanalysis model produced by ECMWF using a four-dimensional r
variational (4D-VAR) assimilation scheme. This offers significant ad-
vantages over a three-dimensional variational (3D-VAR) assimilation
scheme of other widely used reanalyses such as MERRA-2 and CSFR
(Jamet and Loisel, 2013) in terms of its ability to incorporate observa-
tions at the exact time of measurement. At a spatial resolution of 0.25◦

latitude-longitude, or approximately 27.5 km, and a maximum tempo-
ral resolution of 1-h time steps, ERA5 offers the highest spatiotemporal
resolution out of all reanalyses that provide global coverage. The fact
that ERA5 extends back to 1950 is also advantageous because of the
rarity of extreme low wind speed events which necessitates a long
dataset and to capture inter-decadal variability in wind speeds. For ex-
ample, the UK average wind speed during 1960–1980 was significantly
lower than that in 1980-2000 (Watson et al., 2015). Furthermore, in
addition to wind data, which are available in the form of Easterly
and Northerly wind speed components at 10 m and 100 m elevations,
other meteorological variables such as 2 m temperature, boundary layer
height etc. are also provided by ERA5. As the focus of the study is on the
region containing the UK’s wind farm fleet, the scope of ERA5 dataset
used herein extends from 48◦N to 61◦N and from 10◦W to 4◦E in the
orm of gridded data as illustrated in Fig. 1.

.2. Observation data

In this study we use in-situ 10 m wind speed measurements taken
rom weather observation stations around the UK to validate the ERA5
eanalysis data. While it is preferable to validate ERA5 at 100 m,
hich is representative of the average wind turbine hub height, most
ind speed measurements are typically taken at 10 m. The majority
f the observed data were obtained from the British Atmospheric
ata Centre’s (BADC) Met Office Integrated Data Archive System (MI-
AS) Land and Marine Surface Stations dataset (Met Office, 2012),
hich comprises hourly weather measurements from the Met Office

tation network from 1853 to the present, and represents the largest
atabase of UK wind speed measurements available in public archives.
ecause most MIDAS stations are located onshore, additional station
ata were obtained from Crown Estate’s Marine Data Exchange (MDE)
atabase, which comprises weather data collected from met-masts near
K offshore wind farms.

Although the actual number of observation stations from these
atasets exceeds 300, only those whose data length is longer than one
ear and with data availability greater than 90% were used, so that
easonal variations could be observed. It is important to note that for
hose stations that met these criteria, while the available data record
an extend to more than 40 years, MIDAS station anemometers had a
ut-in wind speed of 4–5 m/s before the Met Office’s upgrade campaign
educed the cut-in wind speed to 0.5 m/s in 1997 (Sloan and Clark,
012). Since the focus of the present study is placed on low wind
peed events, only data after 1997 were therefore used. The filtering
rocedure resulted in 205 time series with an average data length of
.5 years within 1997–2020, 172 of which are from onshore stations
nd 33 from offshore stations whose locations are illustrated in Fig. 1
nd summarised in Table 1.

Due to the size of the dataset, the data cleaning process was au-
omated based on the criteria employed by Staffell and Green (2014).
irst, data points that did not pass the Met Office’s quality checks were
emoved. Second, non-zero identical repeated values that extended
ver 24 h were deemed measurement instrument errors, and therefore
emoved. Third, anomalously high readings, namely wind speeds above
25 knots, were removed. Finally, data whose units were in knots were
onverted to m/s. For all 205 observation locations, data availability re-
ained greater than 98% after the removal of data points by the quality

heck, especially data from the Marine Data Exchange dataset that are
f consistently higher quality than those from the MIDAS dataset, both
n terms of measurement precision and data completeness. Therefore,
o effort was made to recreate missing or removed observations to
void introducing uncertainty into the data.

In the present study we treat this quality-controlled dataset of
ield measurements as a ground truth against which to compare the

eanalysis data.
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Fig. 1. Primary datasets used in the study. (Left) Locations of meteorological observation stations from the MIDAS dataset and the Marine Data Exchange dataset. (Right) Mean
10-m wind speed of the ERA5 dataset for 2000–2020.
Table 1
Observation station datasets used in the study. Note that 0.51 m/s corresponds to 1
knot, which is the precision of the MIDAS measurement devices.

Dataset Domain Precision No. of Stations

MIDAS Land Observations Onshore 0.51 m/s 172
MIDAS Marine Observations Offshore 0.51 m/s 24
Marine Data Exchange Offshore 0.01 m/s 9

2.3. Methodology

To evaluate the performance of ERA5 in capturing observed wind
speed, the ERA5 wind speed time series was compared against the
observed wind speed time series at the location of each of the 205
observation stations. This represents a total of 17,157,190 hourly data
points drawn from the period 1997–2020. ERA5 wind speed time
series at each specific location was obtained by separately interpolating
Easterly and Northerly wind speed components 𝑢𝑥 and 𝑢𝑦 from the
grid points to the station’s coordinates. Multiple interpolation schemes
were considered: bi-linear interpolation, inverse distance weighting
interpolation, and bi-cubic interpolation. However, it was found the
choice of interpolation scheme does not significantly affect the re-
sultant interpolated time series, and hence, the less computationally
expensive bi-linear interpolation was used. Using four grid points
(𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1), and (𝑥2, 𝑦2) whose corresponding wind speed
components are 𝑢𝑖,11, 𝑢𝑖,12, 𝑢𝑖,21, 𝑢𝑖,22, the bi-linearly interpolated wind
speed component 𝑢𝑖 at (𝑥, 𝑦) is given by:

𝑢𝑖 =
(𝑥2 − 𝑥)(𝑦2 − 𝑦)
(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑢𝑖,11 +
(𝑥 − 𝑥1)(𝑦2 − 𝑦)
(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑢𝑖,21

+
(𝑥2 − 𝑥)(𝑦 − 𝑦1)
(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑢𝑖,12 +
(𝑥 − 𝑥1)(𝑦 − 𝑦1)
(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑢𝑖,22.
(1)

The interpolated wind speed 𝑢 and direction 𝜙 at the desired coordinate
were then computed by:

𝑢 =
√

𝑢2𝑥 + 𝑢2𝑦, (2)

𝜙 = 180
𝜋

arctan
( 𝑢𝑦
𝑢𝑥

)

. (3)

At each observation station location, the observed wind speed time
series 𝑢𝑂𝐵𝑆 was compared against the interpolated ERA5 wind speed
time series 𝑢𝐸𝑅𝐴, both of length 𝑁 , using three metrics, namely: Root
Mean Squared Error (RMSE) as a general error metric, Mean Error
to capture bias, and Standard Deviation Error to capture the hourly
variability as given by:

RMSE (m/s) =

√

𝛴𝑁
𝑖=1(𝑢𝐸𝑅𝐴,𝑖 − 𝑢𝑂𝐵𝑆,𝑖)2

, (4)
4783

𝑁

Mean Error (m/s) = 𝑢𝐸𝑅𝐴 − 𝑢𝑂𝐵𝑆 , (5)

StDev Error (m/s) = 𝜎𝐸𝑅𝐴 − 𝜎𝑂𝐵𝑆 . (6)

Error metrics related to the Weibull distribution, which is given by

𝑓 (𝑢, 𝜆, 𝑘) =

{

𝑘
𝜆 (

𝑢
𝑘 )

𝑘−1𝑒−(𝑢∕𝜆)𝑘 ; 𝑢 ≥ 0
0 ; 𝑢 < 0

, (7)

which are associated with the distribution’s two governing parameters,
namely the scale factor 𝜆 and the shape factor 𝑘 were also used as
performance metrics as given by:

Scale Factor Error (%) =
𝜆𝐸𝑅𝐴 − 𝜆𝑂𝐵𝑆

𝜆𝑂𝐵𝑆
, (8)

Shape Factor Error (%) =
𝑘𝐸𝑅𝐴 − 𝑘𝑂𝐵𝑆

𝑘𝑂𝐵𝑆
. (9)

Finally, to capture the discrepancy between observed wind speed and
ERA5 wind speed concerning low wind speed events, the error in the
percentage frequency of wind speed less than the typical cut-in wind
speed of a wind turbine of 4 m/s was used as a metric:

𝑃𝐸𝑟𝑟𝑜𝑟(𝑢 ≤ 4) = 𝑃𝐸𝑅𝐴(𝑢 ≤ 4) − 𝑃𝑂𝐵𝑆 (𝑢 ≤ 4), (10)

where 𝑃𝑖 is the respective probability density function.
A caveat that comes with such an approach is that there is no

physical basis to support the use of the Weibull distribution to approx-
imate wind speed. In the context of the present study, this is often
the case for observed wind speed distributions for which there is a
non-zero frequency of calm conditions (below the cut-in threshold of
measurement devices), whereas a zero frequency of 0 m/s wind speeds
is enforced by the two-parameter Weibull distribution. Although this
fact has been acknowledged, these distribution-based error metrics are
predicated on the commonly adopted practice of using the Weibull
distribution as a standard engineering tool to approximate wind speed
distributions (Burton et al., 2011; Carta and Ramírez, 2007; Seguro and
Lambert, 2000). Hence, taking into account these limitations and given
the scope of this study, the use of the Weibull distribution was deemed
as adequate.

3. Results and discussions

3.1. Errors

3.1.1. Overview
Fig. 2 provides an overview of the errors between the 205 observed–

ERA5 wind speed time series pairs in terms of the relationship between
mean error and RMSE. With a mean RMSE of 1.849 m/s and a mean
of mean error of 0.119 m/s, a small but not insignificant positive bias
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Fig. 2. Mean errors plotted against Root Mean Square Errors for each observed-ERA5 time series pair. Each cross represents errors from a single validation site, with green crosses
indicating onshore locations and blue crosses indicating offshore locations. Note the scaling of the 𝑥-axis on the right to clearly display extreme errors. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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is observed in ERA5 wind speed. While there is a clear correlation
between RMSE and mean error, for locations that exhibit insignificant
mean error, the non-zero RMSE when mean wind speed error is 0 m/s
shows that a significant proportion of RMSE is also driven by wind
speed noise. The relationship presented also shows that the largest
RMSEs exhibited are caused by the underestimation of wind speed by
ERA5 and that such an effect is only observed in the onshore domain;
all locations with an RMSE greater than 3.5 m/s were onshore.

While the error profile presented here indicates that the reanalysis
dataset is imperfect, ERA5 demonstrates superior performance in terms
of these error metrics when compared with other datasets. For example,
ERA-Interim, CSFR, and MERRA reanalyses exhibit mean RMSEs and
means of mean errors upwards of 2 m/s and 0.34 m/s respectively
when validated against observations in Northern Europe, the Iberian
Peninsula, and Portugal (Carvalho et al., 2014; Gualtieri, 2021; Murcia
et al., 2022). While these studies were conducted in different locations,
a more direct comparison can be made between the present evaluation
and the validation of the CSFR reanalysis dataset by Sharp et al. (2015).
Like the present study, this was conducted in the UK against MIDAS
stations data. The study reported mean RMSE and mean of mean error
of 2.35 m/s and 0.33 m/s respectively, both of which are significantly
higher than the ERA5 errors presented in this study.

To further evaluate the performance of ERA5 in the UK, ranges
and distributions of each error metric are presented in Figs. 3 and
4. Moreover, due to the differences between onshore and offshore
topography and weather regimes, it was also of interest to consider
the performance of ERA5 separately in each environment. It was found
that offshore sites demonstrate a smaller range of RMSEs due both to
the extreme onshore errors previously mentioned and also that RMSE
at the majority of sites lies between 1 and 2 m/s, with a mean of
1.889 m/s and a median of 1.628 m/s for onshore locations, and a mean
of 1.841 m/s and a median of 1.771 m/s for offshore locations.

There are two major differences in mean errors between onshore
and offshore sites. First, offshore sites exhibit fewer extreme errors than
their onshore counterparts and, second, while there is a 0.166 m/s pos-
itive bias of mean wind speed in the onshore environment, a 0.136 m/s
negative bias is observed in the offshore environment. Furthermore,
both the onshore and offshore mean error distributions are loosely cen-
tred around their respective mean, while also displaying considerable
variance. This observation is also reflected in the error distribution
of scale factor, as scale factor is approximately proportional to mean
wind speed for a given location. Similarly, the distribution of standard
deviation error are also loosely centred around their respective mean,
while also displaying considerable magnitudes of variance., albeit cen-
tred on a value that is below zero for both the onshore and offshore
environments. This is reflected in the shape error distribution, which
shows a very low frequency of negative error, suggesting that ERA5
4784
consistently underestimates the hourly variability of wind speed. As
a result, the ERA5 wind speed time series shows a clear tendency,
especially in the onshore environment, to underestimate the percentage
frequency of low wind speeds, as shown in the distribution of 𝑃 (𝑢 ≤ 4)
rrors whose magnitude can approach 50%.

.1.2. Seasonal variation
Seasonal variation of ERA5’s predictions also has important impli-

ations on the reanalysis’ ability to accurately simulate observed wind
peed. Wind speed time series from all observation sites were sorted
nto each season as defined by a three-month period (spring starts
n 1st of March and ends on 31st of May etc.), and the results are
resented in Fig. 5. There is a clear difference between errors present in
pring and summer and those in winter and autumn, where the former
ave an average mean error of −0.05 and 0.00 m/s whereas the latter
air’s average mean errors are 0.28 m/s and 0.23 m/s respectively.
t 1.78 m/s and 1.65 m/s, the RMSEs in spring and summer are also
arkedly lower than the RMSEs of 2.04 m/s and 1.90 m/s in winter and

utumn. As well as the similar pattern observed for standard deviation
rrors, these trends lead to the fact that the percentage frequency of
ow wind speed, defined as that below 4 m/s, is only underestimated
n average by 0.29% and 0.42% in spring and summer, compared
o 5.46% and 5.81% in autumn and winter. These results are not
nexpected as wind speeds tend to be higher in winter and autumn
han in spring and summer due to the increase in temperature gradient
nd hence, the pressure gradient, between the approaching and the
isplaced air masses (Sinden, 2007; Baker et al., 1990). Therefore, on
verage, ERA5 would be expected to predict higher wind speeds in
hese months. Such an error trend is significant because winter and
utumn are the two seasons where low temperatures lead to high
lectricity demand for heating, hence, the underestimation of low wind
peed percentage frequency may lead to an overestimation of wind
nergy production’s ability to match demand during these periods.

.1.3. Low wind speed events
𝑃 (𝑢 ≤ 4) error is included as an error metric as the focus of this

tudy is on low wind speed events. Although the percentage frequency
f low wind speed 𝑃 (𝑢 ≤ 4) provides a convenient measure to compare
he performance of ERA5 in terms of extreme events across multiple
ocations, the duration of these events is of greater importance, as long
eriods of wind droughts can have more significant impacts on wind
nergy production than multiple scattered short-term events. There are
ultiple ways to quantify these longer-term events, as presented in

ach row of Fig. 6 for both the onshore and offshore environments.
First, low wind speed events, defined as periods where the wind

peed is continuously below 4 m/s, from all 205 locations were sorted
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Fig. 3. Onshore (green) and offshore (blue) errors of ERA5 wind speed compared to observations at 205 validation sites. The left plot shows hourly wind speed mean error,
tandard deviation error, and RMSE while the right plot shows errors in scale parameter, shape parameter, and percentage frequency of low wind speed. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Distributions of onshore (green), offshore (blue), and combined (grey) errors of ERA5 wind speed compared to observations at 205 validation sites. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. ERA5 errors sorted into seasons. The left plot shows hourly wind speed mean error, standard deviation error, and RMSE while the right plot shows errors in scale parameter,
shape parameter, and percentage frequency of low wind speed.
based on their duration and plotted against their number of obser-
vations. The first notable finding is the periodicity in the number of
observations of onshore low wind speed events that is not seen in
the offshore environment. This effect is explained by the clearer and
more consistent diurnal variations of wind speed on land that arise
from the presence of short time-scale changes in land temperature and
4785
their absence in sea surface temperature (Barthelmie, 1993). However,
a more important trend that can be observed for both environments is
that the number of observations of short-term (below 25 h for onshore
and 15 h for offshore) low wind speed events is significantly underes-
timated by ERA5. For example, 1-h events are underestimated by over
260,000 observations. On the other hand, the number of observations
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Fig. 6. Errors in terms of the persistence of low wind speed events from observation (blue) and ERA5 (red) data. The left column shows errors from onshore locations while
the right column shows errors from offshore locations. The top row considers the raw frequency of these sustained low wind speed events while the bottom row considers the
cumulative frequency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
of longer low wind speed events is overestimated by ERA5, though by
a smaller margin. For example, ERA5 overestimates the observations of
a five-day-long low wind speed event by 53 observations.

A more useful representation of low wind speed events, which has
been employed in previous studies (Cannon et al., 2015; Potisomporn
and Vogel, 2022), is to present these events as a cumulative sum and
as a percentage of time rather than the raw number of observations,
as illustrated in the second row of Fig. 6. For example, for the onshore
environment, low wind speed events that persist for at least 15 h make
up 1.1% of the data record. Here, it can be seen more clearly that
considering the severity of events, the observed and ERA5 data show a
decent level of agreement for wind speed events over 16 h for onshore
and 6 h for offshore, while shorter wind speed events are significantly
underestimated.

While the cumulative density at a low wind speed threshold (𝑃 (𝑢 ≤
4)) demonstrates that ERA5 tends to underestimate the number of ob-
servations of low wind speed, a further investigation into the duration
of these events indicates that this discrepancy is heavily influenced by
the underestimation of low wind speed events shorter than one day.
This observed discrepancy can be explained by ERA5’s underestimation
of the hourly wind variability caused by small-scale fluctuations that
are not captured by the macro-scale-driven ERA5 simulation, hence,
the inability to capture small, frequent drops in wind speed that give
rise to short events. Overall, it can be argued that ERA5’s performance
in capturing longer low wind speed events, which have a greater impact
on wind energy’s generation than short, intermittent ones, is more
significant than its inability to capture the number of shorter events.

3.2. Sources of uncertainty

3.2.1. Coastal and elevated sites
Fig. 7 illustrates the spatial variation of the differences between

ERA5 and observed wind speeds to gain insight into the errors and
uncertainty associated with ERA5 reanalysis around the UK. While
there is no apparent spatial pattern of error distribution across the
UK, there exist some features of interest. First, a number of sites with
high underestimation of mean and standard deviation, and hence high
RMSE and overestimation of 𝑃 (𝑢 ≤ 4), are observed onshore of North
Western England and Western Scotland. This is a high-elevation region
that typically experiences high wind speed but is represented by the
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lowest mean wind speed in ERA5 as shown in Fig. 1. Second, sites with
large magnitude of mean wind speed errors and hence, high errors in
low wind speed percentage frequency are often situated along the coast,
particularly Great Britain’s Southern coast.

Two observed trends are that coastal and elevated areas give rise
to particularly significant errors, consistent with Sharp et al. (2015)’s
evaluation of CFSR reanalysis wind speed. To further clarify this obser-
vation, the 205 sites were sorted into four categories, namely coastal
locations (45 sites), elevated locations (22 sites), both coastal and
elevated locations (3 sites), and locations that are neither coastal nor
elevated (135 sites), where coastal locations are defined as those within
27.5 km of the coastline (the resolution of ERA5) and elevated locations
are those situated over 200 m above sea level. The results presented
in Figs. 8 and 9 corroborate this finding in a number of ways, as
exemplified by the mean RMSE of non-coastal-non-elevated sites of
1.67 m/s compared to the RMSE of 3.17 m/s from sites in the other
three categories.

First, elevated and elevated/coastal sites were found to be nega-
tively biased whereas it was previously observed that ERA5 wind speed
tends to be positively biased in the UK. High elevation implies moun-
tainous regions that are predominantly situated in Scotland (e.g., the
Grampion mountains, the Maell Gorm peak etc.) and some of the sites
where ERA5 has the highest underestimation of mean wind speed are
situated in such region, therefore implying the effects of topography
on these discrepancies. Wind in mountainous regions is subjected to
both the ridge-acceleration effect, where wind layers are accelerated
over a peak, and the Venturi effect, where passes and valleys parallel
to the wind direction increase the wind speed (Mathew, 2006). How-
ever, these topographic features are too small to be captured by the
resolution of ERA5 grids, hence, physical features affecting the flow are
under-resolved, leading to the underestimation of wind speed in these
regions. This is further corroborated by Fig. 9 where underestimations
of mean wind speed by ERA5 are more significant for elevated sites
with higher observed wind speed than overestimations of mean wind
speed at non-elevated sites with lower observed mean wind speed,
hence implying localised, topography-induced acceleration. Therefore,
rather than indicating a flaw in ERA5’s performance, these outlying
errors point to the placement of certain observation stations in lo-
cations where the winds are highly localised and greater resolution
(e.g. through down-scaling) would be required. Regardless, it should be
noted that these elevated sites, especially those with the largest errors

in the North, are situated in remote mountainous regions that do not
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Fig. 7. Spatial distribution of ERA5 errors around the UK. Each circle represents the location of the observation station used to validate ERA5 data in this study.
Fig. 8. Errors according to the classification of each site which is one of: coastal (blue), elevated (red), coastal and elevated (green), and neither (purple). Coastal sites are defined
as those within 27.5 of the coastline (the resolution of ERA5) and elevated sites are defined as those over 200 m above sea level. The left plot shows hourly wind speed mean
error, standard deviation error, and RMSE while the right plot shows errors in scale parameter, shape parameter, and percentage frequency of low wind speed. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. (Left) Relationship between mean error and RMSE. (Right) Relationship between mean error and observed mean speed. Each cross represents errors from a single validation
site sorted into the classification of each site (coastal (blue), elevated (red), coastal and elevated (green), and neither (purple)). Coastal sites are defined as those within 27.5 of
the coastline (the resolution of ERA5) and elevated sites are defined as those over 200 m above sea level). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
currently accommodate nor are particularly suitable for wind farms and
so will not have significant effects on the analysis of the UK’s wind
resource.

Second, although coastal sites exhibit a similar range of mean wind
speed errors to sites that are neither coastal nor elevated, they contain
more extreme errors. Characterised by the variability of topography,
surface roughness, and thermal gradient, coastal areas have always
4787
been regarded as a modelling challenge (Beaucage et al., 2007; Sharp
et al., 2015). This is, again, partly due to the resolution of reanalyses
which cannot resolve the changes that occur over the short distance
that is the interface between the offshore and the onshore environment.
But unlike elevated sites whose terrains are not always suitable for
wind farms, coastal regions, especially the West coast, are home to
several wind farms both offshore and onshore and hence, are more
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Fig. 10. Diurnal variation of observed and ERA5 wind speed taken from a validation site at 50.86, −3.24, with the discontinuities at 0900–1000 and 2100–2200 highlighted.
Fig. 11. Distributions of hourly wind speed gradient from (a) 0700–1200 UTC (b) and 1900–0000 UTC. (Bottom) Spatial difference of mean gradient difference (c) between
0900–1000 UTC and the mean of 0700–0900 UTC and 1000–1200 UTC, and (d) between 2100–2200 UTC and the mean of 1900–2100 UTC and 2200–0000 UTC.
consequential when evaluating reanalysis data. However, at an aver-
age RMSE of 2.05 m/s, ERA5’s performance in coastal areas already
surpasses other global reanalyses (Sharp et al., 2015).

3.2.2. Assimilation window error
Another major source of uncertainty stems from the underlying

data assimilation model of ERA5 reanalysis. Reanalyses rely on the
process of data assimilation to incorporate observed data to correct
the forecasts made by the underlying weather prediction model. This
process takes place in assimilation windows which extend for a short
period of time, within which the cost function that captures the dif-
ference between the forecast and the observed data is minimised. In
a 3D-VAR model where time is not involved, observations within the
assimilation window are only used to correct a single point in the time
domain Fujiwara et al. (2017). However, in ERA5’s underlying 4D-VAR
assimilation model, including time as the fourth dimension means that
the initial state of the assimilation window is adjusted in the process
to optimise the forecast for the entire window (Hersbach et al., 2020).
More specifically, ERA5 utilises two 12-h assimilation windows per 24-
h cycle where one begins at 1000 UTC and another at 2200 UTC. Since
the initial state of these windows is also subjected to adjustments in
a 4D-VAR model, discontinuities between 0900–1000 UTC and 2100–
2200 UTC are present in several climate parameters, including 𝑢𝑥 and
𝑢𝑦 components of wind speed.

Although such an issue has been recognised by the ECMWF (Eu-
ropean Centre for Medium-range Weather Forecasts, 2018), to the
author’s knowledge, no previous evaluation of ERA5 wind speed has in-
vestigated the impacts that these discontinuities have on data reliability
especially in the context of low wind speed events. Hence, to observe
4788
such effect on wind speed, Fig. 10 illustrates the diurnal variation of
wind speed from a typical observation site, averaged over the period
2010–2020, showing clearly the discontinuities in wind speed at the
junction of these 12-h assimilation windows. A question that arises
is whether these discontinuities are the result of consistent drops in
wind speed. The top row of Fig. 11 shows the distribution of the
hourly wind speed gradients at these two junctions. While the wind
speed gradients around these two periods (two hours before and after)
approximate a normal distribution (𝑝-value > 0.9 by Kolmogorov–
Smirnov test) with a positive mean, the gradient at these two time
junctions approximate a normal distribution with a negative mean and
a relatively larger variance, thus indicating that the discontinuities are
the result of a random process rather than a consistent drop in wind
speed. It can also be clearly seen that the effect is more pronounced at
the 0900–1000 UTC discontinuity than that at 2100–2200 UTC, though
the larger-than-usual variance of wind speed gradients at the later
junction is still a cause for concern. To investigate the spatial variation
of these discontinuities, the mean difference between the gradient at
each junction and the two adjacent time steps are shown in the bottom
row of Fig. 11. It is apparent that the effect is more pronounced at the
0900–1000 UTC than at the 2100–2200 UTC discontinuity and more
importantly, that some locations are more susceptible to this effect,
most visibly Southern Great Britain and the Southern North Sea.

There are two major implications of this modelling error. First,
ERA5’s representation of wind speed diurnal variation will not be
representative of reality. Second, and more importantly, this error
could lead to a misrepresentation of low wind speed events. Unlike a
natural diurnal pattern where the likelihood of a low wind speed event
starting at 1000 UTC is moderately low, ERA5’s diurnal pattern exhibits
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a spike in likelihood at this hour of the day. Similarly, a significant
drop in the likelihood of a low wind speed event ending at 1000 UTC
was also observed. The likelihood of low wind speed event starting or
ending at adjacent hours of the day remain comparable to the natural
diurnal pattern. Hence, this implies that, for shorter events, this error
will only increase the percentage frequency of one-hour low wind speed
events and that for longer events, it will only extend the duration of low
wind speed events by one hour. On balance, while such model error
is undesirable, it is also unavoidable, and given that the impacts are
limited, the utilisation of the fourth dimension in a 4D-VAR system still
offers more advantages than disadvantages.

4. Conclusion

Prolonged low wind speed events, such as that in March 2021 in
the United Kingdom, represent one of the big challenges in fully de-
carbonising the electricity system, hence the need to quantify these
occurrences. While their superior temporal and spatial coverage, com-
pared to observation data, make reanalysis data useful in assessing
these rare events, their accuracy in predicting wind speed should be
assessed prior to usage.

This paper evaluated ERA5 reanalysis wind speed data at 10 m
against observation data from 205 weather stations, both onshore and
offshore, around the UK from the year 1997 to 2020. ERA5 exhibits
a positive mean wind speed bias in the onshore domain of 0.166 m/s
and a negative mean wind speed bias of −0.136 m/s in the offshore
domain. For both domains, ERA5 reanalysis under-predicts the hourly
variability of wind speed by −0.365 m/s. Furthermore, it has been
emonstrated that these errors are more pronounced in winter and
utumn than in summer and spring. The spatial distribution of these
rrors indicates that the most extreme errors come from onshore vali-
ation sites that are situated in coastal or mountainous regions where
RA5’s resolution is unable to resolve localised wind effects. While
ountainous regions, which are not suitable for wind farms, may be

ess consequential, coastal regions do accommodate a number of wind
arms and hence, point out to the need for higher-resolution models
hat can well capture this interface.

These errors, therefore, lead to an underestimation of the percentage
requency of low wind speed. However, a further investigation into
he discrepancy between observed and ERA5 percentage frequency
f low wind speed shows that this is mainly influenced by a large
nderestimation of short-term low wind speed events that persist for
ess than 12 h whereas longer events, which have higher significance
n the electricity system, are shown to be markedly more accurately
epresented.

Reanalysis data are less than perfect and these findings show that,
n agreement with evaluations of other reanalysis datasets, ERA5 is
lso subject to a significant level of bias, topography-induced errors, a
isrepresentation of short-duration low wind speed events. However,

he mean levels of mean wind speed bias and RMSE exhibited by
he 205 validation sites demonstrate that despite these errors, ERA5
till outperforms its global reanalysis counterparts in the UK domain
ompared to results reported by previous studies. Hence, despite the
hortcomings highlighted in this paper, ERA5 proves to be an important
ool which can provide valuable information in the context of low wind
peed events prediction.
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