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I N TRODUC TION

The classical Philadelphia chromosome-negative (Ph−) my-
eloproliferative neoplasms (MPN) are characterised by the 
overproduction of blood cells derived from haematopoietic 
stem and progenitor cells (HSPCs) that harbour mutations re-
sulting in cytokine-independent or hypersensitive proliferative 
signals. The three most common MPNs are essential throm-
bocythaemia (ET), polycythaemia vera (PV) and primary 
myelofibrosis (PMF), each with overlapping clinical and lab-
oratory findings that can make their distinction challenging, 

particularly at early disease time points.1–3 In over 90% of MPN, 
a driver mutation in the genes encoding JAK2, CALR or MPL 
results in constitutive activation of the MPL-JAK–STAT signal-
ling pathway.4–6 Despite this commonality, the disease pheno-
type and risk of progression in MPN are highly variable.7,8 This 
is partly determined by enhanced mutational allele frequencies 
of oncogenic drivers or the co-occurrence/acquisition of addi-
tional mutations within the clonal population. Genes encod-
ing transcriptional regulators, epigenetic regulators, splicing 
factors and apoptotic signalling pathways are all implicated in 
disease progression in MPN and ultimately contribute to the 
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Summary
The diagnosis of myeloproliferative neoplasms (MPN) requires the integration of 
clinical, morphological, genetic and immunophenotypic findings. Recently, there 
has been a transformation in our understanding of the cellular and molecular mech-
anisms underlying disease initiation and progression in MPN. This has been ac-
companied by the widespread application of high-resolution quantitative molecular 
techniques. By contrast, microscopic interpretation of bone marrow biopsies by hae-
matologists/haematopathologists remains subjective and qualitative. However, ad-
vances in tissue image analysis and artificial intelligence (AI) promise to transform 
haematopathology. Pioneering studies in bone marrow image analysis offer to refine 
our understanding of the boundaries between reactive samples and MPN subtypes 
and better capture the morphological correlates of high-risk disease. They also dem-
onstrate potential to improve the evaluation of current and novel therapeutics for 
MPN and other blood cancers. With increased therapeutic targeting of diverse mo-
lecular, cellular and extra-cellular components of the marrow, these approaches can 
address the unmet need for improved objective and quantitative measures of disease 
modification in the context of clinical trials. This review focuses on the state-of-the-
art in image analysis/AI of bone marrow tissue, with an emphasis on its potential to 
complement and inform future clinical studies and research in MPN.
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disease phenotype.9,10 However, it is increasingly recognised 
that intimate and complex cellular and stromal interactions 
within the bone marrow microenvironment are also central to 
the very earliest stages of MPN initiation.11–14 Indeed, inflam-
matory changes occurring within the stem cell niche, fuelled 
by monocytes and megakaryocytes, may even precede the ac-
quisition of driver mutations in MPN.15,16 In the context of pri-
mary myelofibrosis (PMF), the differentiation of mesenchymal 
stem cells (MSC) to fibrosis-driving myofibroblasts appears to 
be dependent upon these initial inflammatory changes.17–19 
Subsequent progression to severe marrow fibrosis determines 
the distinctive clinical features of PMF, with hallmark cyto-
penias, extra-medullary haematopoiesis, hepatosplenomegaly 
and cytokine-driven systemic symptoms.20,21

Recent insights into the HSPC-intrinsic factors and 
their interactions with the marrow microenvironment have 
driven the development and evaluation of numerous novel 
therapeutics in MPN.22,23 It is anticipated that such agents 
and/or novel combinations will better target the underlying 
cell–cell and cell-stromal pathological processes respon-
sible for refractory disease, therapeutic resistance and dis-
ease progression that are frequently encountered in MPN. 
Notwithstanding these advances, questions remain over the 
adequacy of existing strategies for evaluating new therapies 
and defining therapeutic response. In particular, attention 
has been drawn to the absence of consistent and standardised 
parameters by which disease modification is measured in 
MPN.24 Amongst other parameters, the need for accurate as-
sessment of bone marrow trephine (BMT) features using ro-
bust and reproducible measures of tissue response have been 
highlighted. Without such, there is a serious risk of incor-
rectly evaluating emerging clinical trial data. This may lead 
to the early abandonment of viable therapeutics and/or the 
promotion of agents offering little or no benefit to patients.

The remainder of this article will focus on the potential for 
improved bone marrow biopsy analysis in MPN. It will outline 
the opportunities to improve the detection and quantitation of 
tissue features relevant to diagnosis and classification in clin-
ical practice and the evaluation of disease modification in the 
context of clinical trials. Particular consideration will be given 
to the emerging application of image analysis techniques pow-
ered by machine learning (ML) and artificial intelligence (AI).

EVA LUATION OF BON E M A R ROW 
BIOPSIE S I N M PN—W H ER E A R E W E 
NOW ?

Despite advances in our understanding of the pathobiology of 
MPN, accurate diagnosis and assessment in routine practice 
remain dependent upon an integrated approach incorporating 
clinical, morphological, immunophenotypic and genetic find-
ings.2,3 The conventional microscopic assessment of BMTs 
remains crucial as it provides unparalleled information on 
marrow cellularity, the topology of haematopoietic cell line-
ages and their maturation, the marrow stroma and bony struc-
tures. Much of this information is obtained with standard 

haematoxylin and eosin (H + E), Giemsa and silver-stained 
BMT sections that are readily prepared in most diagnostic 
laboratories. These tinctorial stains, typically complemented 
by a panel of immunostains directed towards individual cell 
populations, remain the core of MPN tissue diagnosis. In stark 
contrast to the emergence of highly sensitive quantitative tech-
niques for the detection of genetic aberrations in blood cancer, 
the morphological terminology used within the current clas-
sification schema for MPN remains subjective, qualitative and 
variably reproducible. This reflects the traditional practice of 
haematopathology, with haematologists/haematopathologists 
challenged to condense and assimilate highly complicated, 
multifaceted tissue features into a text-based report. These re-
ports typically include very limited semi-quantitative data and 
follow a standardised format (varying between institutions) 
that employs fixed terminology drawn from an accepted lexi-
con of descriptive terms. Diagnostic manuals and companions 
to the WHO and ICC classification schemes typically include 
only selected images that correspond to these descriptive 
terms; single or clustered megakaryocytes with features corre-
sponding to each of the ‘idealised’ MPN subtype descriptions 
are often accompanied by exemplar fibrosis grade (WHO MF) 
reticulin/collagen images.25–28 However, experienced practi-
tioners recognise that significant heterogeneity is seen within 
most MPN samples, with even ‘normal’/reactive BMT samples 
often defying these simplistic schemas.

Over the years, several studies have sought to evaluate the 
consistency of BMT feature assessment by haematopatholo-
gists. Some have demonstrated relatively poor interobserver 
concordance in the identification and interpretation of core 
feature assessments.29–31 In the context of fibrosis (a key com-
ponent of MPN assessment), studies of concordance in WHO 
MF grade assessment have been shown to be highly dependent 
upon the level of expertise and extent of collaboration amongst 
participants.32,33 Similarly, the documented high level of con-
cordance in pre-PMF diagnosis reported by several European 
studies appears to be strongly associated with the collabora-
tive experience of the contributing centres.34,35 Regardless, it 
is widely recognised that many haematologists and haemato-
pathologists have difficulty in consistently applying the WHO 
morphological criteria for MPN. Notwithstanding these 
concerns, even the accurate application of formal diagnos-
tic criteria only allows for the assignment of limited, discrete 
diagnostic entities and non-linear grading categories. The 
spectrum of morphological features encountered within indi-
vidual MPN patient biopsies simply cannot be captured and 
quantitated using current criteria.

A PPLY I NG A I TO BON E M A R ROW 
I N TER PR ETATION

Overview

AI has found increasing application in various fields of medi-
cine and can be broadly defined as the study and develop-
ment of computer systems capable of performing complex 
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tasks that ordinarily require human intelligence.36 With the 
widespread adoption of whole slide scanners, subfields of AI 
dedicated to various image analysis problems have been ap-
plied to pathology. These approaches typically employ algo-
rithms capable of estimating certain bespoke morphological 
criteria from the data.37–39 Taken together, such activities are 
referred to as ML and often employ deep neural networks 
comprising multiple layers of artificial neurons that mimic 
human learning. By repeatedly updating the parameters of 
these artificial neurons, such neural networks can be trained 
to learn their own level of data representation in a process 
referred to as deep learning (DL).40,41

Several experimental algorithms have been developed 
to automate the detection and cytomorphological descrip-
tion of distinct cell populations within peripheral blood and 
marrow aspirate smears in haematological disease.42–47 The 
evaluation of BMT samples is significantly complicated by 
the variation in object shape due to microtome cutting and 
the presence of ‘higher order’ tissue architecture that is ab-
sent from liquid samples. However, several groups have suc-
cessfully employed ML approaches to identify and quantitate 
specific cell populations within BMTs using immunostain-
ing or routine H + E images.48–52 The segmentation of haema-
topoietic cells into myeloid, erythroid and megakaryocytic 
lineages has also been complemented by the detection of fat 
spaces and bone tissue using periodic acid-Schiff-stained 
slides as part of a more comprehensive description of normal 
marrow tissue.53 In the context of myeloid malignancies, ML 
has been applied to marrow tissue in myelodysplastic neo-
plasms (MDS) using tissue microarrays.54 Morphological 
features extracted from H + E images were used to predict 
relevant genetic abnormalities and demonstrated promise 
in the discrimination of MDS and MDS/MPN from reactive 
samples. The broad application of AI to bone marrow tis-
sue analysis and the attendant challenges have recently been 
reviewed.55

Using AI to improve conventional BMT 
interpretation in MPN

We have recently employed DL approaches to improve the 
analysis of megakaryocyte features in BMTs, aiming to dis-
tinguish ‘normal’/reactive appearances from those encoun-
tered in MPN, and to distinguish between important MPN 
subtypes.56 Using an initial subset of manually annotated 
images, DL methods were applied to detect and delineate 
megakaryocytes, resulting in a curated library of >60 000 
cells. Clustering analysis was performed on this library to 
identify nine candidate cell phenotypes. Although these 
phenotypes were derived in a data-driven fashion using DL, 
several phenotypes displayed features readily recognisable as 
typical of either a reactive marrow or MPN. The phenotypic 
and topographical profiles of these megakaryocytes were ex-
tracted and used to create abstract representations of each 
patient trephine sample (Figure 1A). A random forest clas-
sifier was subsequently trained on these representations to 

distinguish between MPN and reactive samples (area under 
the curve [AUC] = 0.98). This work confirmed a clear asso-
ciation between megakaryocyte cytomorphology/topology 
and the MPN disease subtype and provided evidence of im-
portant mutational–morphological associations. Subsequent 
work employed a multiscale graphical representation to pro-
vide context to local collections or communities of mega-
karyocytes (Figure 1B). This highlighted the importance of 
the local tissue microenvironment in the interpretation of 
individual cellular features. By integrating disease-relevant 
megakaryocyte morphology with overall tissue topology 
using a graph neural network, MPN disease subtypes could 
be identified purely on the basis of the megakaryocyte popu-
lation (accuracy[PV/ET] = 0.94; accuracy[ET/PMF] = 0.93; 
accuracy [PV/PMF] = 0.90).57,58 By applying graph metrics 
to the detected cell communities, we obtained a quantita-
tive description of the local context of the megakaryocyte 
population. Importantly, visualisation of these megakaryo-
cyte communities within the context of the tissue biopsy is 
highly intuitive and well suited to integration with conven-
tional BMT assessment.

Following automated megakaryocyte detection and anal-
ysis, we next sought to refine the assessment of marrow fi-
brosis in MPN.59 Briefly, we extracted uniformly sized tiles 
from images of reticulin-stained BMT sections that were 
then ordered using a ranking DL model. The output scores of 
this ranking model, corresponding to the severity of fibrosis, 
were then mapped onto BMT images. We refer to this ap-
proach as ‘Continuous Indexing of Fibrosis (CIF)’, and it al-
lows the generation of a CIF map where fibrosis within BMT 
samples can be intuitively visualised as a heatmap showing 
both the severity and heterogeneity of fibrosis (Figure 2A,B). 
This strategy enabled us to identify microfoci or ‘hotspots’ of 
advanced fibrosis that could discriminate between import-
ant MPN subtypes (including ET and pre-PMF) and aid in 
the identification of patients at risk of fibrotic progression 
(AUC = 0.77). Importantly, these features were not discern-
ible by experienced haematopathologists using conventional 
BMT assessment and are not captured in current fibrosis 
grading criteria. The visualisation output of the fibrosis 
analysis is readily combined with conventional microscopic 
assessment and can even be integrated with the megakaryo-
cyte features to create a single multifeature output.

Of note, the training and validation phases of AI de-
velopment for this work only utilised samples deemed 
diagnostically adequate for assessment by specialist hae-
matopathologists. Determining sample adequacy in BMT 
is subjective and varies between haematopathologists, with 
some applying arbitrary minimum requirements of intact 
intertrabecular spaces or biopsy length. The potential role 
and utility of AI-based approaches in such evaluations re-
main unclear. Samples whose staining significantly im-
paired interpretation were re-stained until adequate for 
conventional assessment. Similarly, samples in which there 
was insufficient marrow sampling or tissue artefacts (crush, 
folding, tearing, etc.) precluded conventional assessment 
were excluded from our AI training and validation sets. 
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F I G U R E  1  Representation of megakaryocytes within BMT samples. (A) Nine phenotypes were initially identified using unsupervised clustering 
analysis, with phenotypes 8 and 9 being readily identified as typical of the large megakaryocytes with polylobated nuclei frequently encountered in 
many MPNs. The megakaryocyte population within a sample can be graphically represented as a radar plot showing each of the analysed cell features 
or overlaid directly onto a BMT image (panels adapted from ref. [56] with permission from Blood Advances). (B) Overlays of the predictions from the 
graph-based neighbourhood model on exemplar essential thrombocythaemia (ET) and primary myelofibrosis (PMF) samples. The megakaryocytes are 
represented by circles, with the colour denoting the prediction outcome of the binary classification between ET and PMF (applicable to any pairwise 
comparison of MPN or reactive samples). The edges of the constructed graphs, representing the feature similarity of megakaryocytes within cell 
communities, are indicated by lines between cells.

 13652141, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bjh.19154 by Test, W

iley O
nline Library on [28/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



   | 527RYOU  .

F I G U R E  2  Representation of fibrosis within BMT samples. (A) Examples of false-coloured fibrosis heatmaps overlaid onto original reticulin-stained 
BMT images. Radar plots capture the average continuous indexing of fibrosis (CIF) tile score, tile distribution across four bins (broadly corresponding 
to WHO MF grades 0, 1, 2 and 3) and heterogeneity of tile distribution. (B) Enlarged example of a fibrosis heatmap demonstrates the severity and 
heterogeneity of fibrosis frequently encountered in primary myelofibrosis (PMF). (C) Principal component analysis (PCA) plot of the abstract 
representations of sample fibrosis reveals clustering of reactive cases and MPN subtypes. The features captured in PC1 and PC2 are the average sample 
tile CIF score, tile distribution and heterogeneity of tile distribution. Individual patient samples (coloured circles) are plotted against the PCA disease 
space.
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Minor foci of such artefacts within otherwise interpretable 
samples were manually annotated and excluded from anal-
ysis, although such features are well suited for future AI-
based detection and automated exclusion.

Learning to ‘see’ the marrow in  
MPN—Democratising tissue diagnosis?

In most studies applying AI technologies to biopsy inter-
pretation there has been a focus on replicating or improving 
the description and classification of patient samples in line 
with conventional microscopic assessment. This approach 
allows for the application of existing diagnostic criteria and 
integration into current reporting guidelines; it is generally 
welcomed by clinicians and pathologists as familiar and 
readily comprehensible. However, AI-based strategies have 
the potential to identify, quantitate and represent features 
that transcend this approach. In the context of MPN, this 
potential is evident when one considers the challenge of ac-
curately identifying morphological progression across serial 
BMT samples. This is commonly encountered in patients for 
whom repeated biopsies are taken to specifically monitor 
disease or establish evidence of treatment response. Using 
the extracted megakaryocyte and fibrotic features outlined 
above, we demonstrated the potential of representing indi-
vidual patient samples in the context of large patient cohorts 
that span the morphological spectrum of MPN.56,59,60 This 
process employs an intuitive two-dimensional visualisation 
of so-called ‘disease space’ using principal component anal-
ysis (PCA). This disease space provides an informative refer-
ence for individual patient samples (Figure 2C). By directly 
comparing patient samples to the reference cohort (‘Cohort 
Indexing’), classification categories can be quickly deter-
mined, along with inferences about the potential for disease 
progression or regression. This approach is particularly well 
demonstrated using sequential biopsy samples, in which fea-
ture progression can be ‘plotted’ against disease space. This 
visualisation of BMT samples is objective, quantitative and 
impervious to the intraobserver and interobserver variability 
encountered when haematopathologists attempt to compare 
features across samples. Importantly, cohort indexing can be 
used to interrogate single tissue features or combine multiple 
related features to enable integrated evaluation of a patient 
sample. This flexibility has application in both routine clini-
cal assessment and clinical trial evaluation, where discrete 
changes are of relevance for the evaluation of specific drug 
mechanisms of action. These may include improvement in 
marrow fibrosis, normalisation of marrow cellularity and/or 
megakaryocyte maturation.

In addition to improving the assessment of single and se-
quential MPN samples, AI-driven cohort indexing facilitates 
the interpretation of key biopsy features without the need for 
expertise in tissue microscopy. In principle, such approaches 
may ultimately enable non-specialist healthcare profession-
als and patients to directly review BMT biopsy results and 
extract salient diagnostic and prognostic features, albeit 

with a specialist haematopathologist assuming ultimate re-
sponsibility for formal interpretation.

In considering the future clinical application of such 
diagnostic megakaryocyte and fibrosis algorithms, ques-
tions remain over how such algorithms might be deployed. 
In turn, care must be taken to ensure that any proposed 
validation exercises (+/− prospective trials) are appro-
priate and ref lect the proposed clinical application. It is 
our contention that the purpose and utility of the AI ap-
proaches reviewed and summarised here is not to provide 
a ‘blind’ comprehensive analysis of all BMTs received by 
diagnostic departments. Rather, we consider that our AI-
based approaches are best employed when the key pur-
pose of bone marrow evaluation is to confirm or refute 
an informed clinical suspicion of MPN. In this respect, 
AI-based evaluation of MPNs should be viewed as an an-
cillary tool in the armoury of diagnostic haematopatholo-
gists and haematologists. We do not consider it a candidate 
replacement for specialist reporting or a general diagnos-
tic screening tool for marrow assessment. In developing 
the algorithms outlined above, we therefore utilised train-
ing and validation data from BMT samples in which there 
was a specific putative or established diagnosis of MPN. 
Samples from patients with diagnoses capable of morpho-
logically mimicking MPN (e.g. ITP treated with throm-
bopoietin receptor agonists, systemic inf lammatory or 
autoimmune disorders and other malignancies) were de-
liberately excluded. However, we recognise that such con-
ditions can co-occur or complicate bone fide MPN and are 
frequently captured under the classification of MPN, not 
otherwise specified (MPN, NOS) or MPN, unclassifiable 
(MPN-U).2,3,61 These challenging cases require exhaustive 
clinical and laboratory correlation and sometimes repeat 
biopsy after periods of observation in order to confirm a 
diagnosis of MPN. However, with the application of rigor-
ous diagnostic criteria, they are thought to represent less 
than 5% of all MPNs,62 making them rare and challenging 
to curate and collect for the purposes of AI algorithm de-
velopment. To date, we have therefore not included these 
entities in our work.

L EV ER AGI NG TH E BMT BIOPSY—
CLI N ICA L E N D -POI N TS I N M PN 
A N D TH E EVA LUATION OF 
NOV E L TH ER A PEU TIC S

Disease progression and prognostication in 
MPN

The key aims of any therapeutic strategy in MPN are to 
ameliorate patient symptoms, minimise vascular events 
and delay/prevent disease progression.63 Clinical indicators 
of MPN progression include aggravation of perturbed 
blood counts, worsening constitutional symptoms and the 
occurrence or intensification of thrombohaemorrhagic 
events.7 An associated increase in the blast cell population 
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(>20% blasts in the peripheral blood or bone marrow) 
indicates blast phase MPN (MPN-BP). Such disease 
transformation resembles secondary AML but is often 
refractory to conventional AML therapies, with a dismal 
prognosis of under 6 months.64 Chronic MPNs also have the 
potential to progress to each other, with the development of 
post-ET MF and post-PV MF (termed secondary MF [sMF]) 
occurring in approximately 10%–15% of patients.65,66 The 
progression of prefibrotic PMF (pre-PMF) to PMF appears to 
be significantly higher, with a cumulative risk of 35%–40% 
after 15 years.35 The clinical importance of myelofibrotic 
progression in MPNs is underscored by the associated 
worsening morbidity and mortality. It is therefore evident 
that accurate assessment of severe marrow fibrosis in a BMT 
specimen (WHO grade MF-2 or 3) is critical when seeking 
evidence of sMF or progression of pre-PMF to overt PMF.2

An ongoing challenge in MPN remains stratifying pa-
tients into actionable groups that capture our growing un-
derstanding of the pathogenic mechanisms underlying 
disease. To be meaningful, such stratification should enable 
estimation of the risk of fibrotic or leukaemic progression/
transformation. In response, several prognostic scoring 
systems have been developed, with more recent models in-
corporating a number of (cyto)genetic parameters in addi-
tion to conventional clinical parameters such as thrombotic 
episodes, deranged blood counts and constitutional symp-
toms.7 The inclusion of comprehensive genetic information 
has also been used to develop a personalised risk tool for 
MPN patients that predicts fibrotic progression and trans-
formation to AML.67 Combining the predictive power of 
such approaches with effective, well-tolerated disease-modi-
fying therapies has the potential to effectively intercept these 
most feared consequences of MPN.

Evaluating therapeutic efficacy in clinical trials

Recent insights into the spectrum of mutations encountered 
in MPN and the resulting perturbations in cell signalling 
and cell–cell interactions have led to the identification of 
myriad new therapeutic targets. Novel agents currently 
under evaluation or recently approved for clinical use include 
those directed towards JAK signalling, the PI3K/AKT/mTOR 
pathway, apoptotic signalling (BCL-2/BCL-xL; SMAC), TP53 
ubiquitination via MDM2, epigenetic regulation, telomerase 
activity, monocyte differentiation and immunomodulatory 
signalling (reviewed in refs [22,23]). Some of these agents 
have the potential to change the natural history of disease, 
as seen with the evidence of durable molecular remission in 
a proportion of JAK2V617F-bearing PV patients treated with 
interferon or JAK2 inhibition (ruxolitinib).68–70

While encouraging, challenges remain over how clinical 
trials can incorporate novel therapeutic strategies so that new 
agents can be rapidly and rigorously evaluated using out-
come measures that are of tangible benefit to patients. Bone 
marrow fibrosis represents a key marker for disease activity 
and progression in many MPNs. However, the only known 

curative approach for MPN developing severe fibrosis (PMF 
or sMF) remains allogeneic stem cell transplantation.71 
Although associated with its own increased risk of morbid-
ity and mortality, transplantation demonstrates that fibrosis 
can be reversed with extensive manipulation of the marrow 
microenvironment.72 Indeed, novel therapies targeting the 
drivers of disease present an opportunity to reverse mar-
row fibrosis or prevent progression to sMF/overt PMF. The 
ML approaches described previously can be trained to help 
identify early markers of fibrosis reversal through objective 
quantification and grading of fibrotic foci. At early stages 
of disease, ML algorithms, especially those trained using 
sequential marrow datasets, may be used to identify those 
patients most at risk of disease progression. This predictive 
capacity, coupled with appropriate disease-modifying thera-
pies, could be used to intercept MPN at an earlier stage and 
reduce the morbidity and mortality associated with fibrotic 
progression.

Issues remain over the optimal selection of patients for 
clinical trials and how best to monitor their responses and 
meaningfully compare treatment arms. The European 
Leukaemia Net (ELN) Consortium and the International 
Working Group-Myeloproliferative Neoplasms Research and 
Treatment (IWG-MRT) have issued consensus statements on 
MPN trial design with the purpose of facilitating communi-
cation between regulatory agencies, academic investigators 
and the pharmaceutical industry.73 Central to the design and 
evaluation of MPN trials is the application of rational and 
consistent measurements of disease response. This is compli-
cated by the diverse clinical and laboratory manifestations of 
MPN, each of which may be relevant as a dimension of dis-
ease response. Reduction or normalisation of blood counts; 
reduced organomegaly; disappearance of disease-related 
symptoms; loss or reduced molecular disease signature; and 
improvement in bone marrow histology offer overlapping 
but differing insights into disease response. Attempts to stan-
dardise the measurement and inclusion of these features into 
MPN response criteria were revised and published in 2013 
by the ELN and IWG-MRT.74,75 The inclusion of bone mar-
row morphological evaluation was advanced as a biologically 
relevant measure of disease modification. However, defini-
tions of histological disease response remained qualitative, 
with effects on megakaryocyte hyperplasia (ET), marrow 
cellularity and reticulin fibrosis (PV) subject to the experi-
ence of haematopathologists. Central pathology review was 
recommended and the working group explicitly cited the dif-
ficulty of reaching consensus on the histological definition 
of remission in MF. Indeed, age-adjusted normocellularity 
and grade MF-1 fibrosis were the only marrow histological 
features retained as part of the definition for complete (CR) 
and partial response (PR). In MF, symptom (e.g. total symp-
tom score [TSS] and quality-of-life-based measures), along 
with spleen volume reduction (SVR), have therefore emerged 
as the main primary end-points in most clinical trials. Such 
an approach has therefore focused on symptom relief rather 
than improvements in progression-free survival (PFS), over-
all survival (OS) or modification of the disease course.
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With the development of novel therapeutics, additional 
end-points have emerged in an attempt to better evaluate 
drug efficacy in MPN. These include increased use of pa-
tient-reported outcomes (PRO), OS, PFS, mutation allele 
frequency (MAF), cytokine modulation, event-free survival 
(EFS), leukaemia-free survival (LFS), transfusion indepen-
dence and reduction in bone marrow fibrosis. However, 
incorporating these measures into standardised and mean-
ingful definitions of disease response in MPN represents a 
significant challenge. The impact of novel therapeutics in 
MF and the need to address shortcomings in existing dis-
ease response criteria have recently been reviewed.24 The 
authors emphasised the lack of standardisation across recent 
(and ongoing) MF clinical trials evaluating novel agents and 
highlighted the divergence of disease modification param-
eters. Moreover, they advanced a refined definition of dis-
ease modification that incorporates ‘a clinically meaningful 
impact on survival outcomes and / or restoration of normal 
haematopoiesis in conjunction with improvement in bone 
marrow fibrosis through a substantial and durable reduc-
tion in the clonal burden of disease’. The development of 
AI-based quantitative assessment of BMT samples is ideally 
placed to help address this new definition of disease mod-
ification in MPN. In turn, it can support and improve the 
evaluation of new therapies.

DISCUSSION A N D 
FU T U R E PER SPEC TI V E S

Despite a central role in the diagnosis and assessment of 
MPN, the assessment of BMT samples by haematologists and 
haematopathologists remains bound to a set of descriptive 
and subjective morphological criteria, many of which 
predate the development of effective treatments. However, 
novel therapeutics have the potential to modify the course of 
disease by halting or even reversing the complex cellular and 
stromal abnormalities that characterise MPN initiation and 
progression. In order to ensure that only the most effective 
therapies advance through clinical trials, there is now a 
clear need to develop rational and reproducible measures 
of disease response in MPN. Given the clear association 
between the pathological processes observed in the marrow 
microenvironment and the clinical course of MPN, it would 
seem natural to include marrow histological interpretation 
as a feature of disease modification in future clinical trials. 
However, incorporation of existing histological criteria 
relating to marrow cellularity, megakaryocyte hyperplasia/
atypia and MF fibrosis grade are subjective and qualitative, 
with scope for significant interpathologist variation. This 
makes reliable interpretation of morphological response 
challenging and risks missing important signals of disease 
modification, particularly in small-scale early-phase trials.

The quantitative bone marrow biopsy analysis outlined 
in this review has the potential to complement and inform 
recent insights into the genetic and molecular basis of 
MPN and may help to address emerging challenges. The 

identification of numerous mutations in MPN by NGS 
and whole exome sequencing has raised questions about 
the significance of certain mutations and their role in de-
termining or modifying the disease phenotype (‘disease 
drivers’ and ‘clonal drivers’ respectively). Some muta-
tions appear to exert no obvious functional alteration in 
phenotype (‘passenger’ mutations), with the significance 
of others remaining uncertain (‘variants of unknown 
significance [VUS]’), beyond simply providing evidence 
of clonal haematopoiesis (recently reviewed in ref. [76]). 
Objectively identifying changes in bone marrow tissue 
that accompany VUS and comparing them to those of 
known driver mutations may provide objective evidence 
of perturbations in bone marrow biology. Such analysis 
can also inform the experimental functional assays re-
quired to unravel the nature of VUS. Improved marrow 
morphological assessment also has the potential to inform 
the understanding of ‘clonal haematopoiesis of indetermi-
nate potential’ (CHIP), a potentially premalignant state in 
individuals with evidence of cancer-associated mutations 
but no evidence of a haematological malignancy.77,78 The 
incidence of CHIP depends upon the technical thresholds 
of mutant allele detection (variant allele frequency [VAF]), 
but has been estimated at around 3% of the Danish popu-
lation (VAF >0.01% for JAK2 V617F).79 These patients have 
an ~10-fold increased risk of developing a haematological 
malignancy, including MPN, but are also at increased risk 
of cardiovascular disease (hazard ratio of ~12 for JAK2 
V617F).80,81 Identifying which of these patients are at im-
minent risk of developing a haematological malignancy 
and may benefit from early intervention is a significant 
challenge. However, highly sensitive and accurate ap-
proaches to the identification of MPN-like features in the 
marrow in patients with CHIP and an objective measure 
of morphological progression informed by AI approaches 
could play a significant role. Finally, a comprehensive and 
quantitative evaluation of the spectrum of marrow mor-
phological features in MPN may help to inform the inter-
pretation of molecular testing at diagnosis and follow-up. 
The identification of robust MPN-like features in patients 
with a diagnosis of triple-negative ET may prompt a more 
exhaustive search for mutations outside of known hotspots 
in established driver mutations.67,82–85 Conversely, fea-
tures in keeping with reactive/normal marrow samples 
may prompt early discharge and/or reduced resource al-
location for further molecular testing. Finally, accurately 
documenting morphological progression in patients with 
established or advanced disease using serial biopsies will 
inform our understanding of the genetic prognostic scor-
ing in MPN. The specific morphological correlates of 
acquired high molecular risk mutations in myelofibrosis 
(ASXL1, EZH2, IDH1, IDH2 and SRSF2) may be used to 
help identify and evaluate additional mutations or combi-
nations of mutations also associated with disease progres-
sion and impaired survival.86

The systematic characterisation of cell populations re-
cruited to the marrow microenvironment in MPN and the 

 13652141, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bjh.19154 by Test, W

iley O
nline Library on [28/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



   | 531RYOU  .

associated perturbations in cytokine/chemokine signal-
ling can also be explored using biopsy material. The devel-
opment of spatial transcriptomic approaches employing 
multiplexed immunofluorescence (IF), next-generation 
sequencing (NGS), in situ sequencing (ISS) or in situ hy-
bridisation (ISH) strategies have the potential to transform 
our understanding of the detailed interactions between 
the cellular and stromal components of the marrow in 
health and disease.87–90 While these techniques are cur-
rently unsuitable for routine marrow assessment in MPN, 
they have the power to identify novel features and targets 
within the marrow that can be translated into future clin-
ical studies. Complementary advances in AI-driven image 
analysis of BMTs have the potential to further transform 
the field with the provision of an objective, quantitative 
framework for the evaluation of distinct cellular and stro-
mal features that can be combined into an integrated anal-
ysis (Figure 3). Sequential patient samples can be directly 
compared to assess for post-treatment changes with per-
sonalised feature descriptions/measurements contextual-
ised against large patient cohorts.

Notwithstanding the promise offered by AI in the assess-
ment of tissue morphology in MPN, it is sobering to consider 
that despite numerous publications demonstrating the appli-
cations of AI to pathology, only a small number of success-
ful applications for regulatory approval have been made to 
the US Food and Drug Administration (FDA) or European 

Medicines Agency (EMA). In part, this can be explained 
by the fragility of some ML methods when applied to ‘real 
world’ samples that differ from those used during the ini-
tial phases of training and validation. These differences may 
include technical variation in slide preparation or quality, 
but can also result from disease variation or heterogeneity 
that only emerges during the analysis of large and exhaus-
tive datasets.90,91 Another potential obstacle is the desire by 
regulatory agencies to ensure the basic explainability of how 
AI software works, with a perceived lack of interpretability 
of deep neural networks. However, these barriers can be 
overcome with suitably robust algorithm validation, as evi-
denced by the FDA's recent approval of Paige Prostate for AI-
based histological diagnosis of prostate cancer. The extent 
to which the bone marrow AI algorithms outlined in this 
article can follow this pathway of approval remains unclear, 
as does the likely timescale. Indeed, while determining the 
accuracy of certain tasks such as the detection of bone mar-
row fibrosis may be relatively straightforward and require 
limited validation studies, demonstration of improved MPN 
diagnostic quality may require more exhaustive prospec-
tive clinical trials. Some of these issues have recently been 
reviewed in the specific context of bone marrow biopsy eval-
uation.55 More generally, as growing numbers of AI-based 
pathology reporting algorithms proceed to regulatory ap-
proval, it can be expected that guidelines and recommen-
dations will emerge that support translational pathology 

F I G U R E  3  Layered approach to quantitative image analysis of bone marrow trephines in MPNs. Patient samples can be analysed with respect to 
individual cell or stromal features or represented in terms of biologically relevant tissue microenvironments. For clinical applications, these features can 
be combined to provide whole slide-level descriptions that enable individual patient samples (x) to be contextualised against large patient cohorts using 
computational descriptions of disease space.
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groups. Such stage-specific reporting guidelines for the early 
and live clinical evaluation of AI have already emerged in the 
comparatively mature field of AI-driven radiology (reviewed 
in ref. [92]).
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