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The Ising chain realizes the fundamental paradigm of spin fractionalization, where locally flipping
a spin creates two domain walls (spinons) that can separate apart at no energy cost. In a quasi-
one-dimensional system, the mean-field effects of the weak three-dimensional couplings confine the
spinons into a Zeeman ladder of two-spinon bound states. Here, we experimentally tune the confine-
ment potential between spinons in the quasi-one-dimensional Ising ferromagnet CoNb2O6 by means
of an applied magnetic field with a large component along the Ising direction. Using high-resolution
single crystal inelastic neutron scattering, we directly observe how the spectrum evolves from the
limit of very weak confinement at low field (with many closely-spaced bound states with energies
scaling as the field strength to the power 2/3) to very strong confinement at high field (where it
consists of a magnon and a dispersive two-magnon bound state, with a linear field dependence).
At intermediate fields, we explore how the higher-order bound states disappear from the spectrum
as they move to higher energies and overlap with the two-particle continuum. By performing a
global fit to the observed spectrum in zero field and high field applied along two orthogonal di-
rections, combined with a quantitative parameterization of the interchain couplings, we propose a
refined single-chain and interchain Hamiltonian that quantitatively reproduces the dispersions of all
observed modes and their field dependence.

I. INTRODUCTION

Fractionalization of coherently propagating spin-flips
into two or more quasiparticles is a phenomenon of much
interest in condensed matter physics. While in two and
higher dimensions such phenomena require highly frus-
trated interactions, in one dimension, reduced mean field
effects lead to fractionalization even in unfrustrated sys-
tems. A canonical example is the Ising chain in tilted
field, with a deceptively simple Hamiltonian

H =
∑
j

−JSz
j S

z
j+1 − hxS

x
j − hzS

z
j , (1)

with J > 0 the Ising exchange, and hx and hz applied
transverse and longitudinal fields, respectively. Consider
first the case hz = 0: starting from a ferromagnetic align-
ment of all spins along the Ising z axis and flipping a
single spin creates two domain walls. These can separate
at no energy cost and move apart independently of each
other in the presence of the transverse field [1, 2], as illus-
trated in Fig. 1A. Therefore, a local spin flip, created for
example in a neutron scattering process, fractionalizes
into a pair of domain wall quasiparticles (spinons, also
referred to elsewhere as solitons or kinks). However, in
the presence of a finite longitudinal field hz > 0, domain
walls are no longer free but have an attractive interaction,
because there is an energy cost proportional to hz that
increases linearly with their separation. The longitudi-
nal field acts as an effective string tension between the
domain walls, not allowing them to separate but confin-
ing them into bound states, realizing a one-dimensional
analogue of the confinement of quarks into mesons [3].

By tuning the strength of the longitudinal field hz, one
could then explore the crossover from the regime of weak
confinement (with hz a small perturbation on the scale of
J) where many closely-spaced bound states are expected,
with energy separation predicted to scale as a power-law

h
2/3
z , to the regime of strong confinement (hz compara-

ble to J), where, depending on the relative sizes of J ,
hz and hx and on what other subleading exchange terms
may be present in the spin Hamiltonian beyond the min-
imal model in (1), only one or at most two bound states
are expected, with their energies scaling linearly with hz.
The motivation behind the present studies was to explore
the manifestation of this physics experimentally in a ma-
terial where an external magnetic field can be used to
tune the longitudinal field hz to cover the full range from
weak to strong confinement.

The material CoNb2O6 is considered to be an excellent
experimental realization of a ferromagnetic Ising chain
with a low enough exchange energy scale that the full
phase diagram in magnetic field is experimentally ac-
cessible [4–10]. It displays a quantum phase transition
in transverse field, from an ordered phase to a quan-
tum paramagnet, and around the critical point it dis-
plays the expected universal properties, such as evidence
for an emergent E8 spectrum [4, 7]. The magnetic ions
are Co2+, arranged into zigzag chains running along the
crystallographic c-direction, with the zigzag in the b-
direction, as shown in Fig. 2. The chains form a distorted
triangular lattice in the ab-plane and the crystal structure
is orthorhombic (space group Pbcn) with lattice param-
eters a = 14.1337 Å, b = 5.7019 Å and c = 5.0382 Å at
2.5 K [11]. The combination of crystal field effects and
spin-orbit coupling leads to an effective S = 1/2 Kramers
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FIG. 1. A) Domain walls (solid lines) can separate apart at
no energy cost in a ferromagnetic Ising chain. B) In a fi-
nite longitudinal field hz, there is an energy cost linear in the
separation, as if the two domain walls interacted via a string
tension λ (curly line between solid dots), which stabilizes con-
finement bound states. C) In the weak confinement regime
(hz ≪ J), many bound states exist, which are coherent su-
perpositions of states with the two domain walls separated by
many sites. Solid lines are the Airy wavefunctions for the first
three bound states as per (4) for parameters λµ/ℏ2 = 0.072,
relevant for the longitudinal mean field due to interchain in-
teractions in CoNb2O6 [4]. The domain wall separation, x, is
in units of the spacing along the chain c/2.

c
c

b

FIG. 2. A zigzag magnetic chain in CoNb2O6, showing Co2+

ions (blue) inside edge-sharing octahedra (blue shading) of
O2– ions (red).

doublet ground state with strong Ising-like character,
which is separated from the next lowest Kramers dou-
blet by 30 meV [12]. Weak interactions between chains
stabilize magnetic order at low temperatures, and be-
low 1.97 K, the spins are ferromagnetically aligned along
each zigzag chain due to a dominant nearest-neighbour
Ising exchange, with an antiferromagnetic pattern be-
tween chains [11, 13]. The magnetic moments lie in the
ac-plane [14, 15], at an angle γ = 30◦ to the c-axis [11],
which we take to be the local Ising z-axis; a field ap-
plied along the b-axis is then transverse to the Ising axes
of all spins. The ferromagnetic nature of the dominant
interactions makes CoNb2O6 an ideal candidate for ex-
perimental tuning of the confinement potential between
spinons.

Here, we report high resolution single crystal inelastic
neutron scattering (INS) measurements that probe the
full wavevector-dependence of the spectrum as a func-

tion of magnetic field applied along the crystallographic
a-axis, with a large longitudinal (along Ising axis) com-
ponent. Our results complement earlier terahertz (THz)
spectroscopy measurements for the same applied field di-
rection, which probed the spectrum at the zone centre
(wavevector transfer Q = 0) [9, 16], as well as THz spec-
troscopy and INS measurements previously taken on the
Ising material CoCl2 ·2 H2O where the interchain cou-
plings are more significant [17, 18]. In particular, we
parameterize the evolution of the bound state spectrum
with field and find good agreement with scaling laws ex-
pected in the regimes of weak and strong confinement,
corresponding to low and high applied fields, respectively.
We also parameterize the effects of the interchain cou-
plings on the high-field dispersive modes for fields along
both a and b to extract pure one-dimensional (1D) dis-
persion relations. We then compare those with exact
diagonalization (ED) calculations to arrive at a refined
spin Hamiltonian that quantitatively reproduces all the
features seen in the full wavevector dependence of the
inelastic neutron scattering data, across a wide range of
applied fields.
The rest of this paper is organized as follows. Sec-

tion II outlines the inelastic neutron scattering experi-
ments and Sec. III presents the experimental results for
the spectrum in field applied along a across a wide range
of field strengths from weak confinement (IIIA) to strong
confinement (III B), with the evolution of the high-order
bound states presented in Sec. III C. Next, in Sec. IV,
we propose a Hamiltonian for the in-chain interactions
and refine the parameters by comparison to the observed
dispersions at zero field and high field along two orthogo-
nal directions (a and b). Sec. V contains our conclusions.
The Appendices contain the characterization and param-
eterization of the effects of the interchain interactions, as
well as comparisons between the data and other param-
eter sets.

II. EXPERIMENTAL DETAILS

Inelastic neutron scattering measurements of the mag-
netic excitation spectrum were performed using the di-
rect geometry time-of-flight spectrometer LET at the
ISIS facility [19]. The sample was a large single crys-
tal (4.59 g) of CoNb2O6 grown by the floating-zone tech-
nique, as described in [20], and mounted in the (0kl)
horizontal scattering plane, where the wavevector trans-
fer Q is labelled as (hkl) in reciprocal lattice units of the
structural orthorhombic unit cell, so Q = 2π

(
h
a ,

k
b ,

l
c

)
.

The sample was mechanically fixed in place using copper
brackets so that it would not move or rotate due to the
torques from the applied field. The sample was cooled
using a dilution refrigerator insert and all data were col-
lected below 0.14 K. A magnetic field up to 9 T was ap-
plied vertically, along the crystallographic a-axis, which
has a longitudinal field component hz = gzµBB sin γ,
where B is the externally applied field magnitude.
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LET was operated to measure simultaneously the in-
elastic scattering of incident neutrons with energies of
Ei = 2.46, 4.30 and 9.33 meV; the measured energy reso-
lutions (full width half maximum, FWHM) on the elastic
line were 0.038(1), 0.085(1), and 0.274(2) meV, respec-
tively. To obtain the overview of the field dependence of
the spectrum, the scattering was measured at each field
for one fixed sample orientation chosen such that data
projected along the chain direction covered a large part of
the along-chain Brillouin zone. For these measurements,
the sample was aligned with the (010) axis at an angle
of 8◦ to the incident beam direction, and scattering was
measured for a typical counting time of 3 hours per field
at an average beam current of 40 µA of protons on tar-
get. In addition to the single orientation measurements,
multi-angle (Horace) scans were performed to obtain a
full four-dimensional data set of scattering intensity as a
function of three momentum directions and energy at two
representative fields, 1.5 and 8 T. For these, the sample
was rotated about the vertical a axis in steps of 2◦ over
an angular range of 88 and 108◦, with 11 and 17 min-
utes counting per step, respectively. Additional Horace
scans were collected in a separate experiment on LET
at 0.14 K in a field of 9 T ∥ b on the same crystal as
in [21] mounted in the (h0l) horizontal scattering plane.
For these measurements, the incident energies used were
Ei = 2.14, 4.02 and 10.17 meV, and the angular range
was 145◦ covered in steps of 1◦ with 6 minutes counting
per step. The Horace scans were used to quantitatively
parameterize the interchain dispersions, as detailed in
Appendix A. The raw time-of-flight neutron data were
converted to scattering intensities S(Q, ω) using mantid
[22], and the resulting data were then analysed using the
horace [23] and mslice [24] packages.

III. RESULTS

A. Weak confinement regime

In the limit of small longitudinal field hz ≪ J , the
confinement of domain walls into bound states can be
captured via a Schrödinger equation for the domain wall
separation distance x in the continuum limit [3, 25, 26]

−ℏ2

µ

d2ψn(x)

dx2
+ λ|x|ψn(x) = (mn − 2m0)ψn(x), (2)

where µ is the reduced mass for the domain wall pair, λ =
2hz/c is an effective string tension between the domain
walls, c/2 is the spacing of sites along the chain, and m0

is the energy cost to create a single domain wall. For the
Hamiltonian (1), m0 = J/2 − hx [27]. Eq. (2) can be
recast as the Airy equation, giving energy eigenvalues

mn = 2m0 +

(
ℏ2

µ

)1/3

λ2/3zn, (3)

where −zn are the zeros of the Airy Ai function; the
corresponding eigenstates are

ψn(x) = Ai

(( µ
ℏ2
λ
)1/3

(
x− mn − 2m0

λ

))
. (4)

The wavefunctions for the lowest three bound states are
sketched in Fig. 1C. This shows that the bound states in
the weak confinement regime are expected to be super-
positions of many states, with finite amplitude even for
states with large separations between domain walls.
Eq. (2) is applicable for CoNb2O6 even in the absence

of an externally applied field. This is because i) there
is a finite longitudinal (internal) mean field due to the
weak interchain interactions hz = 2JλMF⟨Sz⟩, with J
and λMF defined in Sec. IVA and ⟨Sz⟩ the expectation
value of the spin component along the Ising axis; and
ii) there are terms in the spin exchange Hamiltonian be-
yond the dominant Ising exchange (as will be shown in
Sec. IV) that lead to domain wall propagation, so a fi-
nite µ. The bound state spectra observed in previous
INS [4] and THz spectroscopy experiments [7, 9] have
shown good agreement with the predictions of (2) with
hz interpreted as the interchain longitudinal mean field,
which has the same magnitude for all sites in the zero-
field antiferromagnetic phase. Zero-field data collected
in the current experimental setting are shown in Fig. 3A,
where the three lowest bound states are clearly visible at
the lowest energies. Also notable is the sharp mode at the
top of the spectrum with a dispersion curving the oppo-
site way to the lower modes. This mode, which is stabi-
lized by a different mechanism from the low-energy con-
finement bound states, is a single-spin-flip bound state
stabilized by a subleading term in the spin Hamiltonian
of the form −JλS

∑
j

(
S+
j S

−
j+1 + S−

j S
+
j+1

)
/2. This XY

exchange term allows a single-spin-flip state (i.e., two
domain walls on adjacent sites) to hop between nearest-
neighbour sites along the chain as a single entity and this
state was therefore dubbed a kinetic bound state [4].
The zigzag nature of the magnetic chains illustrated

in Fig. 2 leads to a doubling of the unit cell along the
chain direction compared to straight chains, therefore a
doubling of the number of magnetic modes, so each “pri-
mary” mode with dispersion ω(h, k, l) has a “shadow”
version with dispersion ω(h, k, l + 1) obtained from the
“primary” version by Brillouin zone folding. In zero field,
in the approximation of decoupled chains, the intensi-
ties of these modes are proportional to cos2(2πkζ) and
sin2(2πkζ) respectively, where the magnetic ions alter-
nate in position along the b direction as ±ζb between
consecutive sites along the zigzag chain (ζ = 0.165) [21].
In Fig. 3A, the top mode (the kinetic bound state) is a
shadow mode with finite intensity only because of finite k,
whereas all low-energy confinement modes are primary.
Throughout this paper, we refer to the nth lowest energy
(primary) mode as mn, in both the weak confinement
and strong confinement regimes. Modes with the same
label in these two regimes have very different character,
but there is a smooth crossover between the two regimes.
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FIG. 3. INS spectrum as a function of field from 0 to 2 T ∥ a, in the weak to intermediate confinement regimes, with field
increasing from left to right and top to bottom. Color is the raw neutron scattering intensity (i.e., no background has been
subtracted) on an arbitrary scale, collected using a high-resolution configuration (Ei = 4.30 meV) for a fixed sample orientation,
with wavevectors projected along the chain direction.

The remaining panels in Fig. 3 show the evolution of
the spectrum upon increasing field. It is known that low
fields applied along a induce a series of spin-flip tran-
sitions such that above a threshold field of 0.14 T, all
spin components along a are parallel to the applied field
[28–30]. All finite field INS data were therefore collected
at fields at and above this threshold field to ensure all
spin sites experience the same magnitude longitudinal
and transverse fields. Upon increasing applied field, all
bound states move up in energy, with the higher order
ones moving at a faster rate. This is because the higher
order bound states contain in their superposition more
weight for states with domain walls further apart [see Fig.
1C], so with more spins flipped opposite to the applied
field direction, and therefore higher Zeeman energy or
higher effective g-factor. Since the higher modes increase
in energy more quickly, the relative energy separation be-
tween adjacent modes increases and modes become better
resolved, such that whilst at 0.14 T (panel B) only m1

to m3 are resolved, at 0.5 T (panel D), m1 to m7 can be
resolved. The kinetic bound state, however, increases in
energy relatively slowly since it is a single-spin-flip state,
such that the confinement bound states move past it as
field is increased. Upon increasing field, the extent of
the spectrum covers a progressively wider energy range
and so, to probe the full spectrum above 2 T, we use
a higher incident energy, coarser-resolution configuration
with data plotted in Fig. 4. Data at 2 T are shown in
both configurations, [compare Fig. 3H and Fig. 4A]. At
2 T (panel A), modesm1 tom4 (faint horizontal line near
3.7 meV) are clearly resolved, but, upon further increas-
ing field, modes m3 and m4 become progressively fainter

and above 6 T, in the strong confinement regime, only
m1 and m2 remain (panels F to H). In the following we
first discuss the strong confinement regime, then discuss
in detail the intermediate field regime.

B. Strong confinement regime

The INS spectrum at 8 T, representative of the strong
confinement regime, is shown in Fig. 5A. Two disper-
sive modes, lower energy m1 and higher energy m2, are
seen, each with both a (stronger intensity) primary and
a (weaker intensity) shadow version (obtained from the
primary via an l → l + 1 translation). In this regime,
m1 is a magnon mode, a coherently propagating single
spin flip, as expected for the lowest energy excitation in
a field-polarized paramagnet. Meanwhile, the m2 mode
can be understood as a dispersive two-spin-flip state, i.e.
a bound state of two m1 magnons. To understand why
a two-magnon state can still exist in this limit of high
fields, and why it is dispersive, albeit with a much sup-
pressed bandwidth compared to m1, it is insightful to
consider a minimal Ising-like XXZ model in longitudinal
field

HXXZ = −J
∑
j

[
Sz
j S

z
j+1 + λS(S

x
j S

x
j+1 + Sy

j S
y
j+1)

]
−
∑
j

hzS
z
j . (5)

The spectrum can be solved exactly [31] and contains, in
addition to conventional one-magnon (m1) excitations,
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FIG. 4. INS spectrum as a function of field from 2 to 9 T ∥ a, covering the intermediate to strong confinement regimes,
with field increasing from left to right and top to bottom. Color is the raw neutron scattering intensity on an arbitrary scale
(different from Fig. 3), collected using a high-coverage coarser-resolution configuration (Ei = 9.33 meV) for the same fixed
sample orientation as in Fig. 3, with wavevectors projected along the chain direction. Panel A is at the same field as the
higher-resolution data in Fig. 3H.

also a two-magnon (m2) bound state, with dispersion
relations

m1(l) = hz + J(1− λS cosπl)

m2(l) = 2hz + J

[
1− λ2S

2
(cosπl + 1)

]
(6)

and (un-normalized) wavefunctions, expressed in
wavevector units relevant here, as

|m1⟩ =
∑
j

eiπlj | . . . ↑↑↑↓j↑↑↑ . . . ⟩ (7)

and

|m2⟩ =
∑
j

eiπlj
(
| . . . ↑↑↓j↓↑↑↑ . . . ⟩

+ λSe
iπl/2 cos

πl

2
| . . . ↑↑↓j↑↓↑↑ . . . ⟩+O(λ2S)

)
. (8)

For m1, the dispersion comes at first order in the XY ex-
change JλS . For m2, the hopping process occurs in two
stages via an intermediate state in which the spin flips
are separated by one site [second term in (8)], therefore
the hopping process is second order in the XY exchange,
which leads to the dispersive term proportional to λ2S
in (6). We propose that the m2 state seen experimen-
tally has the same qualitative content as the two-spin-
flip bound state for the minimal model in (5), but with
modifications appropriate for the relevant Hamiltonian,
such that the m2 dispersion relation depends on all λ’s
in (9), to be discussed later. The dynamical correlations

calculated for this model are shown in Fig. 5B and cap-
ture all key features of the dispersions and intensities of
both m1 and m2 modes.

Note that a two-spin-flip state cannot usually be seen
in inelastic neutron scattering [it would not be observable
for the Hamiltonian in (5)], since the scattering inten-
sity of a given state is determined by its overlap with
a single spin flip created in a neutron scattering pro-
cess. However, in the present case, the external field
is applied along the crystallographic a-axis, which makes
a finite angle 90◦ − γ with the Ising direction, and so
the field is not perfectly longitudinal but also has a fi-
nite transverse component. In addition, as we discuss
in Sec. IV, there are also sub-leading exchange terms in
the spin Hamiltonian that break spin conservation. Both
the finite (large) transverse field and the (relatively much
smaller) exchange terms in the Hamiltonian that break
spin conservation lead to some mixing between states
with different numbers of spin flips, allowing the predom-
inantly two-spin-flip m2 state to have a finite admixture
of a single-spin-flip state and therefore to be visible in
the present INS experiments.

It is notable that the m2 mode is expected to sur-
vive up to indefinitely large field (although the inten-
sity would become progressively weaker as the mixing
with the single-spin-flip state would progressively de-
crease upon increasing Zeeman energy). This is because
the binding energy of m2 relative to the 2m1 continuum
for the minimal model in (5, 6) is m2− 2m1 = −J in the
limit λS → 0, i.e. the two magnons gain Ising energy if
they are next to one another. The fact that the m2 mode
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FIG. 5. A) INS spectrum at 8 T, deep in the strong con-
finement regime, obtained by integrating a multi-angle scan
over the transverse wavevector range |h| ≤ 1.5 and |k| ≤ 1.5.
Intensities above the dotted line have been scaled up by a
factor of 2 to make them more clearly visible. The incident
energy used is the same as in Fig. 4. B) Calculated intensity
S(Q, ω) as defined in (13) for the single-chain Hamiltonian
in (9), where interchain interactions are included in a mean-
field approximation as per (15), calculated using ED on a
chain of n = 16 (n/2 zigzag unit cells) sites with periodic
boundary conditions. ED gives the spectrum for a discrete
set of wavevectors spaced by ∆l = 2/n; for visualization pur-
poses, the spectrum is plotted as constant over the interval ∆l
around each discrete wavevector. The ED results have been
convolved with a Gaussian in energy of FWHM 0.16 meV, rep-
resentative of the experimental resolution in this energy range
and obtained by a fit to the observed peak lineshapes. The
white curves are the best fit single-chain dispersion relations
with solid and dashed curves showing primary and shadow
modes (obtained via l → l + 1 translation) respectively. The
hatched region represents the 2m1 continuum obtained by as-
suming that quasiparticles do not interact. Note that m2 is
below the 2m1 continuum at all wavevectors. The m2 and
2m1 intensities have been multiplied by factors of 2 and 40,
respectively.

is lower in energy than the 2m1 continuum means that
it is not possible for it to decay, hence it survives as a
sharp mode.
It is also important to note that at these high fields

the m1 state has non-negligible dispersion bandwidth
perpendicular to the chain direction because of the fi-
nite interchain couplings; this is discussed further in Ap-
pendix A. This has the consequence that the lineshape
of the m1 mode in Fig. 5A appears artificially broad-
ened because the data are integrated over a large range
in the wavevector direction transverse to the chains. The
interchain dispersion at high field is non-negligible be-
cause the hopping strength between chains for a single
spin flip is first order in the interchain exchange. In con-
trast, at lower fields, even the lowest energy mode (m1)
has multiple spin flips, as illustrated in Fig. 1C for ψ1,
so the interchain dispersion is higher order and is thus
much suppressed, such that it is essentially undetectable
at low field.
We also note that the bottom of the m1 dispersion

is visibly flattened compared to a perfect sinusoid [see
Fig. 5A], indicating a double Fourier component along l,
suggesting hopping to next-nearest-neighbour sites along
the chain, which will be further discussed in Sec. IVA.

C. Fate of higher-order bound states

The evolution of the INS spectrum upon increasing
field from 2 to 9 T is shown in Fig. 4. A notable feature
is that, upon increasing field, the higher order bound
states progressively become less dispersive and rapidly
lose spectral weight, with the highest ones doing so at
the fastest rate. In detail, at 2 T (panel A), m1 and
m2 have similar intensities and bandwidths, m3 is fairly
flat and m4 is very flat and fairly weak. Upon increasing
field, m4 moves up in energy and becomes weaker until
it disappears between 4 and 4.5 T. At those fields, m3

is completely flat and weaker in intensity, then becomes
undetectable above 6.5 T.
The field dependence of the m3 mode is summarized

in Fig. 6A. The intensity (red triangles and right ver-
tical axis) drops off very rapidly upon increasing field,
decreasing by more than an order of magnitude between
1 and 4 T. In this field range, the m3 energy (blue round
symbols, left axis) is below the estimated 2m1 continuum
lower boundary (dashed line), so the m3 mode should be
stable, with no mechanism for decay; nevertheless, its in-
tensity drops off very fast upon increasing field. A qual-
itatively similar behaviour is observed for the m4 mode
(panel B): the intensity drop-off is an even steeper func-
tion of increasing field and again the intensity decreases
very quickly even before 2 T, above which m4 enters the
2m1 continuum. Within the sensitivity of the experi-
ments, no systematic intensity change occurs for either
of the m3,4 modes as they enter the continuum and their
signal could be followed even up to significantly higher
fields, when the modes should be deep into the continuum



7

1.5 2 2.5 3 3.5 4 4.5 5 5.5
Energy (meV)

0

100

200

300
4.5T1.5 2 2.5 3 3.5 4 4.5 5 5.5

Energy (meV)

100

200

300
3.5T

100

200

300

In
te

n
s
ity

 (
a

rb
. 
u

n
its

)

2.5T1.5 2 2.5 3 3.5 4 4.5 5 5.5

Energy (meV)

100

200

300
1.5TC

D

E

m3

m3

m3

m4

m4

m3

F

m1

m2

m5

m1

m2

m1

m2

m1

m2

1 2 3 4

Field (T)

3

3.5

4

4.5

5

5.5

E
n

e
rg

y
 (

m
e

V
) 

a
t
l=

0
.5

0

20

40

In
te

n
s
ity

 (
a

rb
. 
u

n
its

) 
a

t
l=

0
.5

m
4

2m
1

continuum boundary

m
4

1 2 3 4 5 6 7

Field (T)

2.5

3

3.5

4

4.5

5

5.5

6

E
n

e
rg

y
 (

m
e

V
) 

a
t
l=

0
.5

0

20

40

60

In
te

n
s
ity

 (
a

rb
. 
u

n
its

) 
a

t
l=

0
.5

m
3

energy

2m
1

continuum boundary

m
3

intensity

A

B

FIG. 6. A,B) Energies (blue symbols, left axes) and integrated intensities (red symbols, right axes) deduced from multi-Gaussian
fits of the m3 (A) and m4 (B) mode at l = 0.5, extracted from cuts from data in the same configuration as in Fig. 4. Solid lines
are guides to the eye and the dashed lines show the estimated 2m1 continuum lower boundary at the same l-value. C-F) Energy
scans showing the field dependence of the various modes (integrated over 0.4 < l < 0.6), solid lines are fits to multi-Gaussian
peaks. Intensities are raw neutron scattering intensities on an arbitrary scale (the same for all panels). Note that a clear
signal at the expected m3,4,5 energy is present even after crossing the 2m1 continuum lower boundary (dashed vertical line in
panels C-F), which has been calculated using fitted dispersion relations for the m1 mode and assuming that m1 particles do
not interact with each other.

energy range [see Fig. 6C-F]. This might suggest that the
matrix elements for the decay processes m3,4 → m1+m1

are relatively weak, and that the dominant effect leading
to the fast intensity drop-off with increasing field is the
progressively reduced mixing of the single-spin-flip state
into the wavefunction of the m3,4 modes, as upon in-
creasing field the number of spin flips becomes a progres-
sively better approximation for a good quantum number.
This picture is consistent with the results of ED calcu-
lations, which indicate that while there is some decay of
the bound states when they overlap with the continuum,
the predicted broadening is of order 0.01 meV, which is
not resolvable within the experimental results presented
here.

As well as studying the disappearance of the higher
bound states, the crossover between the weak and the
strong confinement regimes was quantitatively tested by
doing fits to the expected field dependence of the mode
energies. In the high field regime, a linear dependence
of mode energy on field is expected. This is because,
in this regime, the number of spin flips in the mode is

approximately a good quantum number, with the mn

mode containing states with n spins flipped compared
to the field-polarized state. Thus, the Zeeman energy is
expected to scale linearly with both mode number and
field. Indeed, the band averages are well fit by a linear
dependence of energy on field and mode number, i.e., a
fit where the gradients of the m2, m3 and m4 lines are
constrained to be 2, 3 and 4 times respectively the gradi-
ent of the m1 line, as illustrated in Fig. 7A. A cutoff field
of 3.5 T, assumed to be close enough to the high field
limit, was used, and only data at fields above this were
included in the fit, which was performed simultaneously
to the four lowest energy modes. The quality of this fit,
especially for the m1 and m2 modes, also adds evidence
that these are single-spin-flip and two-spin-flip modes re-
spectively, i.e. derived from modes with wavefunctions
given in (7) and (8). The fit in this regime used the band
averages, as we have found that the band minimum in
this regime is affected by the tilting of the local magneti-
zation towards the field, which leads to a field-dependent
bandwidth. This effect is quantitatively understood and
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A

B

FIG. 7. A) Band averages fit (solid lines) to a form En =
ngµBB + E0n where n labels modes, g = 4.20(2) is an effec-
tive g-factor (for fields along a) and E0n is an effective zero-
field energy. The fit only includes data for B ≥ 3.5 T. B)
One-dimensional band minima, corrected for the effects of in-
terchain hopping, as a function of field in the low field regime.
The band minima have been simultaneously fit (solid lines) to

a form En = αzn|B −B0|2/3 + E0 as per (2), where −zn are
the zeroes of the Airy Ai function, B0 = −0.24(2) T is a field
offset due to the mean field effects of the antiferromagnetic
interchain interactions, α = 0.221(2) meV T−2/3 is a constant

of proportionality related to (ℏ2/µ)1/3, and E0 = 0.92(2) meV
is the energy required to create a pair of domain walls. The fit
only includes data in the field polarized paramagnetic regime
for 0.14 ≤ B ≤ 1.5 T; the zero field data were omitted from
the fit as the magnetic structure is different from that above
0.14 T such that a different value of B0 would be needed. In
both panels, the dashed line shows the energy of the lower
boundary of the 2m1 continuum at l = 0.5 under the assump-
tion that the quasiparticles do not interact.

is discussed in more detail in Sec. IVC.

Fig. 7A also illustrates that the linear fit breaks down
at low fields. This is expected, since at low field the
number of spin flips ceases to be even approximately a
good quantum number, and instead the weak confine-

ment physics described in Sec. IIIA holds. In this low
field regime, a fit was performed simultaneously to the
band minima of all the modes, as shown in Fig. 7B, with
the field dependence having a 2/3 power law form, as per
(3), and the spacing between the energy levels being con-
strained by the zeros of the Airy function. The band min-
ima were corrected for the effects of interchain dispersion
by fitting the experimentally-extracted dispersion points
to a parameterized three-dimensional (3D) dispersion re-
lation of the form given in Appendix A 2 a, then setting
the interchain hopping terms in those parameterizations
to zero to correct for the small energy shifts due to in-
terchain dispersion. The good agreement obtained be-
tween the field dependence of the bound state energies
and the different expected power-law behaviours in the
two field limits in Fig. 7 (solid lines) lends support to the
proposal that, in CoNb2O6, the interchain couplings are
sufficiently small relative to the dominant in-chain ex-
change, and the Ising character sufficiently strong, that
both the weak and the strong spinon confinement regimes
are realized experimentally via tuning of the applied field.
The crossover region is approximately between 1.5 and
3.5 T. We note that, according to the Hamiltonian and
parameters refined in Sec. IV, this crossover region is
where the kinetic term for domain walls and the Zeeman
term are comparable, such that the continuum approxi-
mation used in (2) for the weak confinement regime is no
longer applicable.

IV. QUANTITATIVE DETERMINATION OF
THE HAMILTONIAN

The Horace scans collected at high field have enabled
us to further refine the microscopic model for this sys-
tem beyond the minimal in-chain Hamiltonian proposed
in [32]. In this section, we will describe the refined in-
chain terms, as well as the fitting procedure, with details
of the interchain interactions referred to Appendix A.
There, we revise and extend a minimal model of the in-
terchain interactions previously proposed to explain the
dispersions in large transverse field [21], such that we can
consistently reproduce the high field dispersions for field
along both a and b directions.

The quantitative parameterization of the interchain
dispersions obtained in Appendix A allows us to ob-
tain effective 1D dispersion relations to which a single-
chain Hamiltonian can be fit, which is done in Secs. IVA
and IVB: Sec. IVA introduces the proposed single-chain
Hamiltonian and Sec. IVB describes the fitting method.
In Sec. IVC, we then demonstrate that this proposed
Hamiltonian also quantitatively captures the behaviour
of the magnetic excitations in CoNb2O6 away from the
fields at which the fit was performed. We also show that
the proposed Hamiltonian can account for the spectrum
observed in THz spectroscopy in [33].
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FIG. 8. Graphical representation of the nearest neighbour
part of the exchange Hamiltonian (9) projected onto the bc
(A) and ac (B) planes for a single chain. The blue spheres
represent cobalt atoms while the red ellipsoids at the mid-
point of each nearest-neighbour bond represent the exchange
matrix on that bond. The principal axes of the ellipsoids cor-
respond to the principal axes of the exchange matrix, with
the lengths of the principal axes proportional to the absolute
values of the relevant eigenvalues of the exchange matrix. A)
Consecutive bonds along the chain are symmetry-related by
the c-glide of the crystal structure (mirror in the ac plane
passing through the middle of each zigzag bond followed by
translation by c/2), which leads to the staggered orientations
of the ellipsoids between consecutive bonds along the chain;
this corresponds to the staggered exchange term λyz in (10).
B) The Ising z-axis is at an angle γ to the c-axis in the ac
plane. The absolute signs of λyz and angle γ cannot be de-
termined from neutron scattering measurements, only their
magnitude, so only one of the four possible orientations of
the exchange ellipsoids compatible with the experiments is
shown. The other three options are obtained by mirroring
the exchange ellipsoid for a reference bond in a plane passing
through its centre, parallel to the ab, bc, or ac crystallographic
planes. The resulting orientation is then propagated via crys-
tal symmetry operations onto all the other bonds, i.e. via
the c-glide to obtain the other bonds on the same chain and
via the b (or n glide) to relate bonds on the chain passing
through the origin to bonds on the chain passing through the
body-centre of the orthorhombic structural cell, as described
in Fig. 14.

A. Proposed single-chain Hamiltonian

The proposed single-chain Hamiltonian is an extension
of one recently proposed on symmetry grounds [32], and
it is convenient to write it as

Hsingle chain = H1 +H2 +HMF (9)

where

H1 = J
∑
j

[− Sz
j S

z
j+1 − λS

(
Sx
j S

x
j+1 + Sy

j S
y
j+1

)
+ (−1)jλyz

(
Sy
j S

z
j+1 + Sz

j S
y
j+1

)
]

−µB

∑
j

[gxBxS
x
j + gyByS

y
j + gzBzS

z
j ] (10)

H2 = J
∑
j

[λAFS
z
j S

z
j+2 + λxyAF

(
Sx
j S

x
j+2 + Sy

j S
y
j+2

)
− λA

(
Sx
j S

x
j+1 − Sy

j S
y
j+1

)
] (11)

where j runs over all sites on a single chain. Here, xyz
form an orthogonal right-handed coordinate system with
y along the crystallographic b-axis and z defined to be the
equilibrium spin direction in zero applied field, which for
the Hamiltonian (9) coincides with the direction along
which the spin components have the largest exchange,
i.e. the Ising axis.
We will show that H1 is the minimal Hamiltonian re-

quired to qualitatively reproduce all key features of the
the INS spectra seen in zero field, high field along a, and
high purely-transverse field, while H2 is needed to quan-
titatively capture all details of the spectra.
The first term in H1 is the dominant Ising exchange.

The second (λS) is a symmetric XY exchange term, which
allows single spin flips to hop, and the third term (λyz)
is an off-diagonal staggered exchange term which allows
domain walls to hop. These three terms (together with
HMF, defined below, for zero field and transverse fields
below the critical point) can qualitatively account for all
of the features seen in the INS spectrum, not only in field
parallel to the a-axis presented here, across the full range
of field values considered, but also in purely transverse
field (∥ b) below [34] and above the critical field [32]. In
particular, the XY exchange is needed to account for the
kinetic bound state seen in zero field (near l = −1 in
Fig. 9A) [4], and for the large m1 bandwidth seen in field
parallel to the a-direction (Fig. 9E), as this term allows
single spin flips to hop. The staggered off-diagonal ex-
change term λyz is needed to account for the fact that do-
main walls can hop in zero applied field (seen in the fact
that the bands around l = 0 in Fig. 9A are dispersive)
[32]. The key features of the nearest-neighbour exchange
are graphically illustrated in Fig. 8: the major axis of the
ellipsoids at the middle of each bond corresponds to the
Ising exchange, the diameter in the perpendicular plane
to the Ising direction illustrate the XY exchange λS , and
the staggered orientation of the ellipsoids is due to the
staggered exchange λyz. Finally, the last term in (10) is
the Zeeman interaction with an applied magnetic field,
where we have assumed that the g-tensor is diagonal in
the xyz axes.
In order to quantitatively account for the full wavevec-

tor dependence of the data, however, other, subleading
terms are needed, included underH2: the first term, λAF,
is a next-nearest-neighbour antiferromagnetic Ising term
[4, 32] needed to account for the energy of the kinetic
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x2
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Morris et al. (2021)Fava et al. (2020)
0T

8T//a
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FIG. 9. INS data in (A) zero field, (E) 8 T ∥ a and (I) 9 T ∥ b compared to dynamical correlations computed via ED for different
models for a chain of 16 sites. Panel A is adapted from [4]. White dots in B-D show experimentally-extracted dispersion points
from the data in A, solid white lines in F-H and J-L show the analytic parameterization of the experimental dispersion relations
with interchain terms set to 0. The models used were: the model 1D Hamiltonian in (9) with parameters in Table I (B, F,
J); the model refined in [32] with gx and gz taken from Table I (C, G, K); the model used in [33] with gx and gz taken from
Table I (D, H, L). In E-H, data below 5 meV (dashed line) are integrated over |h| < 1.5 and −1.1 < k < −0.9. Note that
the shadow mode is the more intense mode here, as the range of transverse integration has been chosen in order to show the
whole dispersion along l while minimizing artificial broadening due to interchain dispersion. Data above 5 meV are integrated
over |h| < 1.5 and |k| < 1.5 and intensities in this region have been multiplied by 2 to make the m2 mode more clearly visible.
In I-L, data below 4.1 meV (dashed line) are integrated over 0.8 < h < 1.2 and −0.1 < k < 0.1. Data above the dashed line
have been integrated over −1 < h < 4 and |k| < 1 and intensities in this region have been multiplied by 4 to make the faint
diffuse feature around l = −1 at about 5 meV more clearly visible. The ED calculations have been convolved with Gaussians of
FWHM 0.066 meV, 0.16 meV and 0.3 meV in B-D, F-H and J-L respectively. In B-D, the intensity shown is Sxx(l, ω), as the
data in A have been corrected for the single ion magnetic form factor and the polarization factor under the assumption that
Sxx = Syy and Szz = 0 for inelastic scattering. In F-H and J-L, all components of the dynamical structure factor are included
and the integration range, polarization factor and magnetic form factor have all been accounted for in the calculation.

bound state. The second term, λxyAF, is an XY part to
the next-nearest-neighbour term which accounts for the
flattening of the bottom of them1 dispersion in high field
along a [Fig. 9E]. The third term (λA) is an asymmetry
between the XX and YY exchanges, which is needed to
account for the position and bandwidth of the m2 dis-
persion in large field along a; without this term, the m2

mode is too low in energy. These last two terms are only
of order 2-3% of the Ising term and the necessity for their
inclusion in the parameterization can be seen by compar-
ing Fig. 9E with G. The discrepancies illustrated in the
latter between the empirical and calculated dispersions
motivates our further refinement of the Hamiltonian with
the inclusion of the λA and λxyAF terms which were fixed
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J 2.48(2) meV
λS 0.251(6)
λA −0.021(1)
λyz 0.226(3)
λAF 0.077(3)
λxy
AF 0.031(1)
gx 3.29(6)
gy 3.32(2)
gz 6.90(5)
λMF 0.0158(2)

TABLE I. Single-chain Hamiltonian parameters used in this
work as defined in (10)-(12).

to zero in [32].

For completeness, we note that, as mentioned in
[32], two other nearest-neighbour exchange terms are
symmetry allowed, λxzJ

∑
j

(
Sx
j S

z
j+1 + Sz

j S
x
j+1

)
and

λxyJ
∑

j(−1)j
(
Sx
j S

y
j+1 + Sy

j S
x
j+1

)
. However, the defini-

tion of the axes used so far — that z is the direction of
the equilibrium spin in zero field — places a constraint
between these two terms, i.e., only one can vary indepen-
dently. This is because each of these two terms on their
own when added to (9) leads to a rotation of the zero-field
equilibrium spin direction away from the z-axis, but for a
given λxz one can choose a corresponding λxy of appropri-
ate magnitude and sign such that, when both terms are
present, the zero-field equilibrium spin direction is still
along z. However, we find that allowing finite λxz and
λxy with the above constraint does not measurably im-
prove the agreement with the present experimental data,
so in the following we assume λxz = λxy = 0.

Finally, HMF captures the effects of interchain cou-
plings in a mean-field approximation, where in zero and
low transverse field

HMF = −J
∑
j

2λMF⟨S⟩ · Sj . (12)

In fields above 0.14 T applied along the a-direction, the
relevant form is instead given in Sec. IVC, and, at high
field, this simplified form is no longer sufficient as excita-
tions acquire a finite interchain dispersion at first order
in the interchain couplings. Therefore, in this high field
regime, we use the full explicit form for the relevant in-
terchain exchanges proposed in (A4).

The refined parameter values are shown in Table I.
The Hamiltonian shown above quantitatively reproduces
the spectrum seen in zero field, high field ∥ a and high
field ∥ b. Furthermore, it also reproduces data at low
fields along b, as shown in [34] and at intermediate fields
along a, and also accounts for previously published THz
spectroscopy data in low transverse field, as we discuss
later in Sec. IVC.
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FIG. 10. Energies of dispersion points as calculated from
ED on 16 sites compared to their values as calculated from
the empirical dispersion relations. The one-to-one agreement
obtained is excellent.

B. Fitting procedure

The fitting procedure used a global simultaneous fit to
the dispersion relations corresponding to data taken in
zero field, 8 T ∥ a and 9 T ∥ b, with the aim of arriving
at a consistent description of all these different regimes
within the same Hamiltonian.

First, cuts were taken through the data as a function
of energy transfer at constant wavevector transfer. Dis-
persion points were obtained by fitting Gaussian peak
shapes to these cuts. Many dispersion points were ex-
tracted from each data set (over 500 for the 8 T ∥ a data).
Empirical dispersion relations were then fit to these dis-
persion points. For the high field data, these were 3D
dispersion relations, as per (A2) and (A8) for field along
a and b respectively. In zero field, the interchain hop-
ping effects are negligible, due to the multi-spin nature
of the bound states as well as the antiferromagnetic or-
der pattern between chains, which suppresses interchain
hoppings for the kinetic bound state (see Appendix B) so
a 1D form was used. The single-chain Hamiltonian was
then fit to these empirical dispersion relations with the
interchain parameters set to zero. It was not possible to
use the parameters derived from linear spin wave theory
fits directly, since the predominantly 1D nature of the
magnetic interactions together with the small effective
spin S = 1/2 leads to strong quantum fluctuations that
renormalize the dispersions even at the high magnetic
fields investigated. In addition, we wanted to capture
the various bound states, i.e. the zero field confinement
bound states, as well as the high field ∥ a m2 bound
state; this is not possible in linear spin wave theory. In-
stead, exact diagonalization (ED) calculations on finite
chains were used, with periodic boundary conditions at
the ends of the chains. The fits used calculations on
12 sites as the best compromise between minimal finite
size effects and the computation being quick enough to
be carried out many times for fitting (for fitting to the
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kinetic bound state, 10 sites were used as this required
more eigenstates to be found and is not strongly affected
by finite size effects). Lanczos algorithms were used to
diagonalize only the low energy subspace and speed up
the calculation. There were 10 parameters in the fit but
13 pieces of information across these different data sets,
so the fit was not underconstrained. In particular, the
pieces of data used for the fit were the dispersions of the
first two confinement bound states and the kinetic bound
state from the zero field data [4], the m1 and m2 disper-
sions from the 8 T ∥ a data, and the magnon dispersion
from the 9 T ∥ b data. For each of these data sets, the
squared difference χ2 between the ED at each momen-
tum point and the empirical fitted dispersion relation
was calculated, normalized by the uncertainty on the fit-
ted dispersion relation as calculated from the covariance
matrix of the fitted dispersion parameters, and summed;
the fit minimized this total χ2. When calculating χ2 for
the high transverse field data, only the portion of the
dispersion for l ≤ 0.5 was used, as at higher values of
l, quasiparticle breakdown occurs [32, 35], meaning that
the dispersion relation ceases to be well defined. The
optimization used a quasi-Newton algorithm and the ini-
tial parameters were varied in order to make sure that
a global minimum was found. The very good one-to-one
agreement obtained in the simultaneous fits of the ED to
the empirical dispersion relations is shown in Fig. 10.

Uncertainties on the fitted parameters were estimated
by varying the parameters of the empirical dispersion re-
lations according to their covariance matrices. There are
significant correlations between some of the parameters,
especially between J and λS and between λS and gx.
However, while a number of slightly different parameter
sets give similar agreement with the features to which
the single-chain Hamiltonian was fit, the final parameter
set presented in Table I gives the best agreement not
only with the features to which the Hamiltonian was fit,
but also to other features in the spectra. These include
the relative intensities of different features, the full band-
width of the magnon in the high transverse field data, the
energy and intensity of the faint diffuse feature around
l = −1 at about 5 meV in the high transverse field data,
the field dependence of the bandwidths of the m1 and m2

modes in field along a, and the spectra in low transverse
field (see [34]).

A comparison between the data to which the Hamilto-
nian was fit and the spectrum calculated by exact di-
agonalization using this refined Hamiltonian is shown
in the first two columns of Fig. 9. In these plots, the
color indicates the measured/calculated scattering inten-
sity, while the overlaid white dots/curves show the data
points/dispersion relations that were being fit to. It
can be seen that very good quantitative agreement is
achieved. In these calculations, the plotted intensities
are

S(Q, ω) = |f(Q)|2
∑
α,β

(
δα,β − Q̂αQ̂β

)
Sαβ (13)

where α, β both run over x, y, z, f(Q) is the magnetic

form factor, and Q̂α is the component along direction α
of the unit vector parallel to the wavevector transfer Q.
The partial dynamical structure factors Sαβ are

Sαβ = gαgβ
∑
λf

⟨GS|Sα(Q)|λf ⟩⟨λf |Sβ(Q)|GS⟩δ(Eλf
−ℏω)

(14)
where the sum is over all excited states |λf ⟩ with en-
ergy Eλf

relative to the ground state |GS⟩ and where

the Fourier transformed spin is Sα(Q) =
∑

r S
α
r e

iQ·r,
summing over all sites r.

The right hand columns of Fig. 9 contain comparisons
to previous models that cannot quantitatively or qualita-
tively account for key features in the experimental data.
These are discussed in Appendix C. This comparison
provides evidence that all of the parameters are indeed
needed in order to quantitatively capture all features in
the data.

C. Comparison of the Hamiltonian to experiment
at other fields

The refined Hamiltonian can also be compared to the
results of INS data taken at fields other than those to
which the fit was performed. The data agree significantly
better with the calculation when using the fit with all
terms included than when omitting any of the terms in
H2.

Fig. 11 shows comparisons between ED calculations
and the data at fields away from those used for the fits.
Excellent quantitative agreement is found. In the cal-
culations shown here, the component of interchain in-
teractions parallel to the magnetization direction was
taken into account in a mean field picture. For the
field-polarized phase in field above 0.14 T along the a-
direction, the form of the interchain mean field in (12)
does not hold because the ordering pattern of the chains
changes, and instead the relevant form of the mean field
term is

HMF =
∑
j

2 (J1 + J ′
1) ⟨S⟩ · Sj − 4J2⟨Sz⟩Sz

j , (15)

where the interchain exchanges are defined in Ap-
pendix A 2b. This was the form used in Fig. 11.

In addition, in Fig. 12, we compare recently reported
THz spectroscopy data (white dots) with predictions
based on the Hamiltonian proposed here. The compari-
son is shown for fields up to 3.5 T, which we consider to
be in the region where ED is sufficiently reliable, as the
gap is still large (i.e., finite size effects are small), and
interchain effects are also small. All the trends in the
THz spectroscopy data are reproduced. The good agree-
ment in the intensities can be seen visually by comparing
Fig. 12 to Fig. 2c of [33] (not shown).
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FIG. 11. Band minima (A) and maxima (B) showing exper-
imentally extracted points (symbols) corrected for interchain
dispersion. The results of ED calculations on 16 sites (solid
lines) are overlaid in the corresponding color, with effects
of interchain couplings included as a mean-field correction.
There is good agreement over the whole field range probed.
The dependence of the band maxima on field was found to
discriminate more strongly between different models than the
field dependence of the band minima. Note that the higher
bound states cease to be well defined in ED once they overlap
with the continuum; for this reason solid lines stop when they
intersect the dashed line indicating the lower boundary of the
2m1 continuum in A. In B, the discrepancy between ED and
experiment where the m1 and m2 ED curves touch is due to
the fact that experimental values were extracted by fitting to
the hopping form (A2) and points were not extracted in re-
gions where different modes overlapped, as they do in Fig. 4C
and D. The interchange in the gradient of the maxima of m1

and m2 modes with respect to field where they intersect is due
to the exchange in character of the top of the mode: between
approximately 2 T and 4 T, it is the top of the m2 mode that
has single-spin-flip character around l = 1.

FIG. 12. Dynamical structure factor at zero momentum
transfer as a function of transverse field. Color indicates
Sxx(0, ω) as per (14), calculated using ED for a chain of
16 sites for the Hamiltonian in (9) and convolved with a
Gaussian of FWHM 0.067 meV. White dots are data points
extracted from the estimated local intensity maxima in the
energy-dependent THz spectroscopy data presented in [33] at
1.5 K (Fig. 2c of that work).

V. CONCLUSIONS

In summary, we tuned the confinement potential be-
tween spinons in the ferromagnetic Ising chain material
CoNb2O6 by applying an external magnetic field along
the crystallographic a direction, such that there was a
large longitudinal (along Ising axis) field component. In
the low field, weak confinement regime, we found a hier-
archy of bound states, with their energy varying as field
to the 2/3 power and the spacing between modes de-
termined by the zeros of the Airy function, as expected
in a picture of domain walls in a linear confining po-
tential proportional to the strength of the longitudinal
field. Upon increasing field, higher-order bound states
increase more quickly in energy and progressively dis-
appear from the spectrum such that in the limit of high
field, in the strong confinement regime, we found only two
bound states whose energies depend linearly on field. The
higher energy of these two bound states is a dispersive
two-spin-flip bound state which is stabilized by the prox-
imity to the Ising limit. By performing a global fit to the
full wavevector dependent spectrum observed in various
fields, we also proposed a microscopic Hamiltonian in-
cluding both in-chain and inter-chain interactions, down
to 2% of the dominant Ising exchange. This Hamiltonian
quantitatively reproduces the INS data obtained across
a wide range of field conditions including zero field, high
near-longitudinal field and high transverse field, as well
as intermediate fields to which the Hamiltonian was not
fit, leading to a fully-consistent description of the spin
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dynamics using a single set of exchange parameters.

ACKNOWLEDGMENTS

L.W. acknowledges very useful discussions with
Michele Fava. We thank Alexander Chernyshev and
César Gallegos for helpful comments and discussions. We
acknowledge doctoral studentship funding from Lincoln
College and the University of Oxford (L.W.), the Engi-
neering and Physical Sciences Research Council (D.M.),
and the University of Oxford Clarendon Scholarship
Fund and NSERC of Canada (J.D.T). We acknowledge
support from the Engineering and Physical Sciences Re-
search Council grant numbers EP/H014934/1 (I.M.C.
and R.C.) and GR/M47249/01 (D.P.). R.C. acknowl-
edges support from the European Research Council un-
der the European Union’s Horizon 2020 research and in-
novation programme Grant Agreement Number 788814
(EQFT). R.C. also acknowledges support from the Na-
tional Science Foundation under Grants No. NSF PHY-
1748958 and PHY-2309135, and hospitality from KITP
where part of this work was completed. The neutron
scattering experiments at the ISIS Facility were sup-
ported by beamtime allocations from the Science and
Technology Facilities Council. Figures 2 and 8 were made
using the crystal visualization software vesta [36]. Ac-
cess to the data will be made available from Ref. [37].

Appendix A: Interchain dispersions in high field

In this Appendix, we present the characterization of
the experimentally observed interchain dispersion rela-
tions at high field and their quantitative parameteriza-
tion.

1. Characterization of the interchain dispersions in
high field

INS data probing the dispersions in the interchain di-
rections are plotted in Fig. 13. Panel A shows that in
large field along a, no systematic dispersion bandwidth
is detected along h within the experimental resolution
used. Therefore, all data taken with field along a pre-
sented in the rest of this work were integrated across the
entire range of h in the data, that is, over −1.5 < h < 1.5.
Along k, however, there is visible dispersion and further,
the bandwidth and even sign of the dispersion depends on
the mode energy, i.e. on l. This is illustrated in Fig. 13B,
where the lower energy and higher energy modes have k
dispersions that are of opposite signs (white solid lines
are fits as described in Appendix A 2 a). Note that the
bottom mode is the shadow version of the primary m1

mode wavevector-translated from l = 0 whereas the top
mode is the primary m1 mode at l = 1. This coupled
kl dispersion is accounted for by the exchange pathways

shown schematically in Fig. 13I and is discussed mathe-
matically in the following subsection.
Panels D, E, G and H of Fig. 13, meanwhile, show the

dispersions in the directions perpendicular to the chains
in a transverse field, 9 T ∥ b. It can be seen that in this
regime, there is interchain dispersion along both h and
k, of similar magnitude to that seen along k for B ∥ a.
However, while the dispersion along k remains of similar
magnitude but switches sign when moving from l = 0
(Fig. 13E) to l = −1 (Fig. 13H), i.e. from the bottom
to the top of the dispersion, similarly to what is seen for
B ∥ a, the dispersion along h is strongly suppressed
at l = −1 (Fig. 13G) compared to at l = 0 (Fig. 13D).
The model proposed in [21] captures some, but not all,
of these interchain dispersion effects. In particular it
predicts that the interchain bandwidth is suppressed at
higher energy (i.e. l = −1 compared to l = 0). This is
indeed seen along h, but not along k. The same model
also predicts that there will be very little interchain dis-
persion for near-longitudinal field, which is again seen
along h but not along k; in fact, the dispersion band-
width along k at l = 1 in near longitudinal field is ap-
proximately the same as in transverse field (the l = 0
transverse field k dispersion bandwidth is enhanced by
the bonds in the ab-plane). We therefore expand and
revise the interchain interaction model in [21] with the
proposal that the bonds with a component along the a-
direction (the dash-dot light blue J2 paths in Fig. 13J)
are approximately Ising, whereas those in the bc plane
[the solid and dashed light blue paths in Fig. 13I, i.e., J1
(t1) and J

′
1 (t′1)] are approximately Heisenberg.

2. Parameterization of the dispersions relations in
high field

Parameterization of the interchain dispersion relations
was done by assuming that the dispersion of single spin
flips in directions perpendicular to the chains could be
quantitatively captured using a linear spin wave formal-
ism, but with in-chain parameters which may be renor-
malized compared to those deduced from the exchange
Hamiltonian. The linear spin wave formalism is expected
to be asymptotically exact in the limit of high field (when
the gap is much larger than the bandwidth). In this limit,
the linear spin wave dispersion relation can be perturba-
tively expanded to become equivalent to a spin-flip quasi-
particle hopping (or tight-binding) formalism. As the
hopping formalism depends only on the exchange path-
ways, this same formalism can also be applied to quasi-
particles composed of multiple spin-flips. In the case of
field along the a-direction, we seek to parameterize the
dispersion of bound states of various different numbers of
spin flips within a single formalism, and therefore use a
hopping formalism. For high transverse field, we seek to
parameterize only a single magnon mode, but in a case
where the gap is fairly small compared to the bandwidth
such that a perturbative expansion in terms of a hopping
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FIG. 13. Interchain dispersions at 8 T ∥ a (A, B) and 9 T ∥ b (D, E, G, H). White curves represent best fit dispersion relations.
Color is the raw neutron scattering intensity on an arbitrary scale. The incident energies Ei used were 9.33 meV (A, B),
2.14 meV (D, E) and 10.17 meV (G, H), and the overall intensity scale is different for each experimental configuration. C, F)
Comparison of observed and calculated energies with best fit parameters for the 8 T ∥ a hopping dispersion (A2) and 9 T ∥ b
linear spin wave theory dispersion respectively, with ω1,2(Q) = ω±(Q) and ω3(Q) = ω−(Q + a∗), with ω± as per (A8). I, J)
Exchange interaction paths in the bc and ab planes, respectively. Labels t1,3,4 and t′1 are hopping parameters for the dispersion
model in (A2), while J1 and J2 refer to the Hamiltonian (A4). Dark/light colored lines indicate in-chain/inter-chain bonds,
respectively. The gray shaded area indicates the structural unit cell shifted from the conventional Pbcn unit cell such that the
origin is at one Co2+ site. The site labels α and β are used in the hopping calculations for the Hamiltonian in (A1) and in the
linear spin wave theory calculations for the full interchain Hamiltonian in (A4). Filled/open circles represent spins with the local
Ising axis at an angle ±γ to the c direction respectively. The experimental data were integrated in the transverse wavevector
directions as follows: −1.05 ≤ k ≤ −0.95, −0.05 ≤ l ≤ 0.05 (A); −1.5 ≤ h ≤ 1.5, 0.95 ≤ l ≤ 1.05 (B); −0.1 ≤ k ≤ 0.1,
−0.05 ≤ l ≤ 0.05 (D); 0.8 ≤ h ≤ 1.2, −0.05 ≤ l ≤ 0.05 (E); −0.1 ≤ k ≤ 0.1, −1.05 ≤ l ≤ −0.95 (G); 0.8 ≤ h ≤ 1.2,
−1.05 ≤ l ≤ −0.95 (H).

formalism does not hold; we therefore use a linear spin
wave theory formalism.

a. Hopping model parameterization of the 3D dispersions
in high near-longitudinal field (∥ a)

To account for the coupled kl dispersion observed in
high field ∥ a (see Fig. 13B), we propose a hopping model,
shown schematically in Fig. 13I, where solid and dashed
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bonds indicate paths across which excitations could hop.
This approach was used in order to be able to describe
both the m1 and the m2 modes using the same formal-
ism. The effects of the Ising parts of the interchain cou-
pling are taken into account at a mean-field level (see
Sec. IVC) which affects both the m1 and m2 states.
This more phenomenological formalism is also able to
capture the full 3D dispersions of higher bound states
in lower fields. In Fig. 13I, the dark blue lines repre-
sent in-chain bonds (parameterized by t3 and t4), whose
Hamiltonian is described in detail in (9), while the light
blue lines represent inter-chain bonds (parameterized by
t1 and t′1). The next-nearest-neighbour in-chain hopping
(t4) accounts for the flattening of the bottom of the dis-
persion [see Fig. 5A] while the diagonal interchain bonds
(t′1) explain why the dispersion bandwidth along k de-
pends on l.

We can write this hopping model for the paths illus-
trated in Fig. 13I as a two sublattice model (a single
zigzag chain with two sites per effective unit cell) with
sublattices labeled α and β. The different Ising direc-
tions on the two chains in the structural unit cell can be
neglected as we do not include interactions along the a
direction since no dispersion along h is detected within
the resolution of the experiment. This is consistent with
the picture of the interchain couplings presented in the
following subsection where the only coupling with a com-
ponent along a, J2, is Ising like. This means that the
hopping induced by J2 is suppressed by a factor of sin2 θ
where θ is the angle between the local Ising axis and the
local magnetization direction, and is small even for large
fields along a. Therefore, in high field along a, we can
approximate the Hamiltonian as being decoupled into bc
planes with hopping interactions within planes and we
write it as

Hhopping =
∑
R

ω0

(
c†R,αcR,α + c†R,βcR,β

)
+

[
t3

(
c†R,αcR,β + c†R,βcR+c,α

)
+t4

(
c†R,αcR+c,α + c†R,βcR+c,β

)
+t1

(
c†R,αcR+b,α + c†R,βcR+b,β

)
+t′1

(
c†R,βcR+b,α + c†R,βcR+b+c,α

)
+Hermitian conjugate

]
. (A1)

where c†R,α (cR,α) creates (annihilates) a quasiparticle on
the α sublattice in the unit cell with origin atR. The sum
runs over all single-zigzag-chain unit cells, with primitive
lattice vectors (a − b)/2, b and c (the projection of the
primitive unit cell in the ab plane is shown by the shaded
area in Fig. 14B). The dispersion relations in this two

Parameter Value (meV)
2t1 −0.0147(4)
2t′1 0.0477(6)

J1 −0.008(2)
J ′
1 0.040(2)

J2 0.023(1)

JλMF 0.0391(7)

TABLE II. Interchain parameter values. 2t1, 2t
′
1 are hopping

parameters from the 8 T ∥ a fit to the m1 dispersion. These
should be compared to the values of J1 and J ′

1 respectively.
The fact that the respective values are comparable is evidence
that these bonds are approximately Heisenberg. J1, J

′
1 and

J2 are from the fit to 9 T ∥ b data. JλMF is the value of
the zero-field interchain mean field derived from the fit to
zero field data. We expect JλMF = J1 + J ′

1 = 0.032(1) meV,
under the assumption that J1 and J ′

1 are Heisenberg. This
number is comparable to the fitted value.

sublattice model are then obtained as

E± = A± |B| ,
A = ω0 + 2t4 cos 2πl + 2t1 cos 2πk,

B = 2 cosπl
(
t3e

4πikζ + t′1e
−2πi(1−2ζ)k

)
. (A2)

Here, ti are parameters of the model that ultimately orig-
inate from spin exchange interactions between sites con-
nected by the bonds indicated in Fig. 13I and ζ is the
fractional distance in the b-direction of the Co2+ ions
from the centre of the zigzag. The ± signs are to be
chosen for the primary/shadow modes respectively for
|l| < 0.5 and vice-versa for 0.5 < l < 1.5. If the hop-
ping quasiparticle is a spin flip, the dynamical structure
factor in inelastic neutron scattering is expected to be
proportional to

I± = 1± cos (argB) . (A3)

The very good agreement between the observed and
calculated m1 dispersions using the best fit parameter
values is shown in Fig. 13C and corresponding values for
the interchain hopping parameters are listed in Table II.
Similarly good agreement is found for the m2 mode; in
this case the interchain parameters t1 and t′1 were set to
zero because the m2 state is a two-spin-flip state, and so
any interchain dispersion would be second order in the
interchain interaction strength, and thus expected to be
too small to resolve experimentally.

The hopping model dispersion relation in (A2) was
used to parameterize each mode at each field in the
B ∥ a data. One-dimensional band characteristics
were obtained by setting t1 and t

′
1 to zero and calculating

the relevant characteristic based on the fitted values of
the other parameters, that is ω0 (the energy offset due
to Ising and Zeeman terms), t3 and t4. For the fits in
Sec. III C, these were the band average, Eaverage = ω0
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and the band minimum, Emin = ω0 + 2t3 + 2t4 (note
that t3 is negative for all bands as the dominant nearest-
neighbour interaction is ferromagnetic). It was found
that, as the field decreases, the interchain dispersion de-
creases, which is consistent with the picture that upon
lowering field, quasiparticles acquire a more pronounced
multi-spin-flip character and the hopping of multi-spin-
flip excitations is suppressed as it is of higher order in the
interchain couplings. The kinetic bound state remains
dispersive down to 0.14 T, consistent with this being a
single-spin-flip mode, but has unresolvable dispersion in
zero field, consistent with the zero field magnetic struc-
ture, in which the interchain hopping of the single spin
flip is suppressed, as shown in Appendix B. These trends
were extracted from fits to the single orientation data,
where the wavevector components k and l are coupled,
and were confirmed by investigation of the Horace scan
data set at 1.5 T.

We also note that the generic intensity from (A3) cap-
tures the general intensity dependence along the inter-
chain directions as observed, e.g., in Fig. 13B. Together
with the good agreement with the dispersions, this jus-
tifies a posteriori the use of a hopping model to param-
eterize the excitations in this regime.

b. Linear spin-wave theory parameterization of the 3D
dispersions at high transverse field (∥ b)

We here discuss the formalism used to describe the
interchain dispersion in high transverse field (∥ b).
In the actual crystal structure of CoNb2O6, there are

two zigzag chains per structural unit cell, shown in
Fig. 14A (gray shading), one at the corner of the ab cell
(filled circle) with Ising axis tilted at an angle +γ away
from c towards a, and one chain in the center (open cir-
cle) with Ising axis tilted at an angle −γ. In order to
make progress analytically, we work in a reference frame
where the Ising axes of the central chains are rotated
to match those of the chains in the corners, such that
the unit cell halves (as shown in Fig. 14B), reducing the
problem from a four sublattice to a two sublattice prob-
lem. This is possible because the interchain couplings are
assumed to have a simplified form, being Heisenberg or
Ising-like. In this frame, the Hamiltonian is

Htotal =
∑

chains

H1 +H2

+
∑
R

J1 (SR,α · SR+b,α + SR,β · SR+b,β)

+J ′
1 (SR,α · SR+b,β + SR,β · SR−b+c,α)

+J2

[
Sz
R,α

(
Sz
R+(a+b)/2,α + Sz

R+(a−b)/2,α

)
+ Sz

R,β

(
Sz
R+(a+b)/2,β + Sz

R+(a−b)/2,β

)]
.

(A4)

a

B) Rotating frame, xyz

b

A) Fixed frame, xyz ~~~

c,z

a,x

z

x
xy

z

x
xy

γ γ

~

~

FIG. 14. A) ab plane of the crystal structure where filled/open
circles represent Co2+ ions with the local Ising axis at an angle
±γ away from c towards a. This alternation of the local Ising
axis leads to two zigzag chains per orthorhombic unit cell
(rectangular shaded area). These two chains are symmetry-
related by both a b glide (mirror in the 1

4
ỹz̃ plane followed by

translation by b/2) and an n-glide (mirror in the x̃ỹ 1
4
plane

followed by translation by (a+b)/2) of the Pbcn space group
of the crystal structure. Here x̃ỹz̃ define the fixed spin axes
frame parallel to the orthorhombic abc crystal axes. Bottom
diagrams show definition of a mathematically convenient spin
axes frame xyz that rotates between the two chains such that
z is always along the local Ising axis. B) In this rotating spin
axes frame the two chains become equivalent and the unit cell
halves (shaded parallelogram).

where H1,2 contain in-chain interactions defined in the
(10,11). Here, R runs over all single zigzag chain unit
cells, as in (A1).
We now solve this Hamiltonian in linear spin wave the-

ory. Assuming spins polarized along the b-axis, after a
Holstein-Primakoff transformation and a Fourier trans-
form, the Hamiltonian in (A4) takes the form (up to
quadratic order in magnon operators and omitting the
constant term)

H =
1

2

∑
Q

Υ†
QD(Q)ΥQ (A5)

where Υ†
Q = (a†Q, b

†
Q, a−Q, b−Q) and a†Q and b†Q are the

magnon creation operators for the two single-chain sub-
lattices. The matrix D(Q) has the form

D(Q) =

 A B C D∗

B∗ A D C
C∗ D∗ A B
D C∗ B∗ A

 , (A6)

where A, B, C and D are functions of Q and are given
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by

A =J (λS − λA − λxyAF)− J1 − J ′
1 + gyµBB

+J
λAF + λxyAF

2
cos 2πl + J1 cos 2πk + J2 cosπh cosπk

B =

[
−J (λS + λA + 1)

2
+ J ′

1e
2πik

]
e−4πiζk cosπk

C =J
λAF − λxyAF

2
e−2πil + J2e

−πih cosπk

D =J
λS + λA − 1

2
e4πiζk cosπl. (A7)

Note that the off-diagonal staggered exchange, λyz, does

not appear in these expressions, since this term vanishes
in the linear spin wave theory approximation when the
ground state is fully aligned along the y direction. How-
ever, this term leads to higher order interactions which
cause quasiparticle breakdown in the region where this is
kinematically allowed [32, 35]. This effect is not captured
in the linear spin wave treatment.
The spin wave Hamiltonian in (A5, A6) has the same

functional form as another two sublattice system dis-
cussed in detail in [38] so the derivation of the dispersion
relations and dynamical correlation functions is identical
and we only reproduce key steps here.
The dispersion relations are obtained by diagonalizing

the matrix GD(Q) where G = diag(1, 1,−1,−1) and are
given by

ω2
± = A2 + |B|2 − |C|2 − |D|2 ±

√
(2AB − CD∗ −D∗C∗)(2AB∗ − CD − C∗D) + (BD −B∗D∗)2. (A8)

To calculate the neutron scattering intensities, we need the right eigenvectors of GD. The components of these
are

W (ω) =− (A+ ω)(A2 + |B|2 − |C|2 − |D|2 − ω2) + 2A|B|2 −BDC∗ −B∗D∗C

X(ω) =(A2C∗ + |B|2C∗ − |C|2C∗ + |D|2C − C∗ω2)−A(BD −B∗D∗) + ω(BD −B∗D∗)

Y (ω) =B∗ [(A+ ω)2 − |B|2 + |C|2
]
− (ACD +ADC∗ + CDω + C∗Dω) +BD2

Z(ω) =D(A2 + C∗2 − |D|2 − ω2) +B∗2D∗ − 2AB∗C∗

up to a normalization

N (ω) =
√

| − |W |2 + |X|2 − |Y |2 + |Z|2|.

From this we obtain, in the rotating frame,

Sxx(Q, ω) =|W −X + Y − Z|2 [δ
+(Q) + δ−(Q)]

4N

Szz(Q, ω) =|W +X + Y + Z|2 [δ
+(Q) + δ−(Q)]

4N
Syy(Q, ω) =0. (A9)

where δ±(Q) = δ(ω − ω±(Q)).

We now transform to global coordinates x̃ỹz̃, defined to
be parallel to the abc crystallographic axes respectively,
with the two local z axes defined as ẑ± = z̃ cos γ±x̃ sin γ
with the sign alternating between the layers along the a-
direction as shown in Fig. 14A.

Thus we have

Sx(Q) =
∑
r

(Sx̃ cos γ − e2πirx̃/aS z̃ sin γ)eiQ·r

Sz(Q) =
∑
r

(S z̃ cos γ + e2πirx̃/aSx̃ sin γ)eiQ·r

Sy(Q) =
∑
r

SỹeiQ·r

where r runs over all magnetic sites and where rx̃ is the
component of r along x̃. Transforming the other way,

Sx̃(Q) =
∑
r

(Sx cos γ + e2πirx̃/aSz sin γ)eiQ·r

S z̃(Q) =
∑
r

(Sz cos γ − e2πirx̃/aSx sin γ)eiQ·r

Sỹ(Q) =
∑
r

SyeiQ·r

such that

Sx̃(Q) =Sx(Q) cos γ + Sz(Q+ a∗) sin γ

S z̃(Q) =Sz(Q) cos γ − Sx(Q+ a∗) sin γ.
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Thus the Fourier transformed magnetization components
are (in units of µB)

M x̃(Q) =gxS
x(Q) cos γ + gzS

z(Q+ a∗) sin γ

M z̃(Q) =gzS
z(Q) cos γ − gxS

x(Q+ a∗) sin γ.

From this, we get the dynamical structure factor includ-
ing the neutron polarization factors as

S(Q, ω) =(
1− Q2

x̃

Q2

)(
g2xS

xx(Q, ω) cos2 γ + g2zS
zz(Q+ a∗, ω) sin2 γ

)
+

(
1− Q2

z̃

Q2

)(
g2zS

zz(Q, ω) cos2 γ + g2xS
xx(Q+ a∗, ω) sin2 γ

)
,

(A10)

where Qx̃,z̃ are the components of Q projected along x̃
and z̃ respectively. In this expression, there are no mixed
polarization terms as Sxz = −Szx, and there are no
cross-terms involving Fourier transformed spins at dif-
ferent wavevectors since these are zero by conservation
of momentum.

To obtain intensities to compare with experiment, the
delta functions in (A9) are replaced by Gaussians in en-
ergy to reflect the finite instrumental energy resolution
and the intensity is multiplied by the squared spherical
magnetic form factor for Co2+. The analytic calculations
presented here were cross-checked against numerical cal-
culations performed using SpinW [39].

The fact that the intensity contains terms with shifted
wavevector Q + a∗ is a mathematical expression of the
real space unit cell doubling (due to alternation of Ising
axes) leading to Brillouin zone folding and a consequent
shadow mode. This shadow mode is responsible for the
additional weak scattering intensity at slightly higher en-
ergy than the main mode in Figs. 13D and E. We see from
(A10) that the intensity of the shadow mode relative to
the primary mode is proportional to tan2 γ. Note that
this shadow mode is distinct from the shadow mode due
to the zigzag of the chains, such that the full model in
the fixed frame has a total of four dispersion relations,
ω±(Q) and ω±(Q+ a∗).

In order to extract a parameterization of the 3D disper-
sion in high transverse field, fits were done to the linear
spin wave dispersion relations (A8). The fitted values
for the interchain parameters are shown in Table II. We
note that these parameters yield minima in the magnon
dispersion relations at (1,±q, 0) with q ∼ 0.39 which is
compatible with the minima observed at 7 T ∥ b in Fig. 5
of [21], and can thus be related to the propagation vec-
tor q = 0.37 of the spontaneous incommensurate spin
density wave order that sets in at the magnetic order-
ing temperature 2.95 K in zero field [11]. To draw a
direct comparison with interchain exchange parameters
proposed in Ref. [21], the relevant value to compare to
J1 in [21] is J1 + J ′

1 in the present work.

Appendix B: Suppression of the interchain hopping
of the kinetic bound state in zero field

A surprising result found experimentally is that the ki-
netic bound state, the sharp mode near l = −1 at the top
of the spectrum in zero field (Fig. 9A), has no measur-
able dispersion in either interchain direction, even though
it is a single-spin-flip state, and generically one expects
interchain dispersion at first order in the interchain cou-
plings. We explain in this Appendix that this is due to
the combination of the particular antiferromagnetic or-
der pattern between chains and the form of the interchain
couplings by introducing a simplified toy model.
As the interchain J2 bonds in Fig. 13J are Ising like,

and in zero field the spins are aligned along the Ising axis,
the J2 terms create no hopping along h. The J2 bonds
also do not contribute to a mean field, as the triangular
lattice and the antiferromagnetic pattern mean that the
effects of the two bonds cancel out. We therefore only
need to consider the interchain bonds in the bc plane. In
the simplest approximation, we consider straight (ζ = 0)
ferromagnetic Ising chains along the c-direction, with an
antiferromagnetic Heisenberg interaction between chains
in the b direction, i.e.,

Hsimple =
∑
r

−JSz
rS

z
r+c/2 + J1Sr · Sr+b

where the sum is over all magnetic sites. In the absence
of any applied field, the chains order in an antiferromag-
netic pattern along the b-direction (both in this simplified
model and in the real material). Therefore, to calculate
the linear spin wave spectrum, the quantization axis must
be rotated by 180◦ about the y-direction on alternating
chains along the b-direction such that the ordered spin
is along the +z direction on all chains. In this rotating
frame, the quadratic spin wave Hamiltonian is

1

2

∑
Q

Υ†
QD(Q)ΥQ

where Υ†
Q = (a†Q, a−Q) and

D(Q) =

(
J + J1 J1 cos 2πk

J1 cos 2πk J + J1

)
.

This gives a dispersion relation

ω(Q) =
√

(J + J1)2 − J2
1 cos

2 2πk.

Now, J1 ≪ J (experimentally, J1/J ≲ 2%), so this can
be Taylor expanded, such that the bandwidth along k is
proportional to J2

1/J , i.e. appears at second order in J1.
This is not experimentally resolvable, which explains why
no interchain dispersion is observed for the kinetic bound
state in zero field. In contrast, in field ∥ a above 0.14 T,
the spin components along a are all parallel, with the con-
sequence that the interchain dispersion along k appears
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Parameters fixed χ2

None 2008.17
λA = 0 2718.21
λxy
AF = 0 5910.82

λA = λxy
AF = 0 7009.55

TABLE III. Values of χ2 corresponding to fixing some of the
Hamiltonian (9) parameters to zero

at first order in J1. This is experimentally resolvable,
and indeed is clearly detected experimentally, with the
kinetic bound state at 1.5 T having a bandwidth along k
of 0.114(2) meV (not shown).

Appendix C: Comparison to other Hamiltonian
parameter sets

In this Appendix, we provide evidence that all the
terms in the Hamiltonian (9) are indeed needed in or-
der to fit all features of the dispersive modes in the full
data set.

The values of χ2 corresponding to fits in which some
of the parameters in H2 are fixed to zero are shown in
Table. III. We only consider setting to zero those param-
eters which were not included in the parameterization of
Ref. [32], as the parameters fit in that work were shown
to all be necessary to parameterize just the zero field
data. It is seen that it is not possible to fit all features
in the data well without using all parameters. These val-
ues have not been divided by the number of data points
because the fits were not done directly to the data but
instead to the empirical 1D dispersion relations corrected
for interchain dispersion effects. However, the fit was in-
directly performed to many hundreds of data points.

In addition, Fig. 9 shows comparisons between the data
and ED calculations using different Hamiltonian models.
The third column (panels C, G, K) presents calculations
using the Hamiltonian model proposed in [32], with gx
and gz taken from Table I. The calculation for the 8 T ∥ a
data (panel G) does not fully capture the flattening of the

bottom of the m1 dispersion and the calculated m2 dis-
persion is shifted downwards from where it is found em-
pirically. It is found that in order to capture the former
effect, it is necessary to include either λxyAF or λA in the
fits, and that in order to capture the position and shape
of the m2 dispersion, both of these must be non-zero.
The right-most column of Fig. 9 presents calculations

using the Hamiltonian model used in [33], which contains
a subset of the nearest-neighbour exchange terms in (10)
and (11) with certain constraints between the parameter
values. While that model can capture the energy levels
at the zone center (l = 0) in zero and transverse field, i.e.,
the regime probed in [33], we find significant qualitative
and quantitative discrepancies between calculations us-
ing that model and the full spectrum observed via INS.
The model does not capture the wavevector dependence
of the spectrum either in zero field, where the kinetic
bound state near l = −1 is not captured at all [compare
Fig. 9D (calculation) with A (data)], or in field applied
along either a or b, where the predicted magnon band-
widths are much smaller than observed experimentally
(compare H and L with E and I, respectively). More-
over, in high field along a (panel H), the model does
not capture the spectrum even at l = 0, as the small
magnon bandwidth, which is underestimated by almost
a factor of 2, leads to too large a predicted magnon gap.
We ascribe these differences primarily to the fact that
in the model used in [33] there is no Sx

j S
x
j+1 exchange

term and only a very small Sy
j S

y
j+1 term. In contrast, in

the present work, we find that the Sx
j S

x
j+1 and Sy

j S
y
j+1

exchange terms are of very similar size, and of magni-
tude comparable to that of the staggered off-diagonal
exchange, those being the main subleading terms after
the dominant Ising exchange, as already noted in [32].
The fully refined Hamiltonian model we propose in (9)
accounts quantitatively not only for the full energy and
wavevector-dependence of the INS spectrum at all probed
fields aligned along two orthogonal directions, but also
for the THz spectroscopy data in [33] without any ad-
justable parameters, as discussed in Sec. IVC. Therefore,
we propose that it is an accurate model of the actual spin
Hamiltonian in CoNb2O6.
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