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Abstract

This paper introduces the joint problem of locating hubs on a network and determining transportation prices

between the hubs. Two levels of decision makers are present in the problem acting non-cooperatively: hub

transportation provider and customers. The objective of the hub transportation provider is to locate hubs

and to set the prices (per unit of commodity) of crossing the hub arcs maximizing its profit, whereas the

customers aim is to send their commodities, in the cheapest way, having the possibility of using the hub

arcs at the price set by the hub transportation provider or using the existing network at a predefined

tariff. The problem is modeled as a nonlinear bilevel programming formulation, which is in turn linearized,

and strengthened through variable reductions as well as valid inequalities. The case in which the price of

each hub arc is determined by applying a common discount factor to the predefined tariff in the existing

network is also studied. Computational results of mixed integer programming models and a metaheuristic

on instances adapted from the literature are presented.

Keywords: hub location, pricing, bilevel programming

1. Introduction

Hub and spoke topology is commonly used to model networks in air passenger and freight transporta-

tion, package delivery companies, postal service, telecommunications and rapid transit systems, among

others. This topology provides connections between many origins and destinations via hub facilities that

serve as switching, sorting, and consolidation points for flows of freight, passengers, or information. This

transshipment role of the hubs facilities with the consequent consolidation typically provides a considerable

reduction of the number of routes required to connect all origins and destinations in a region. The benefits

of hub systems result from economies of scale because of consolidation flows on relatively few arcs, and

as mentioned, from the reduced number of arcs required to connect all nodes. Hub Location Problems

(HLPs) consider i) the design of hub networks by selecting a set of nodes to locate hubs, and by activating

a set of links connecting origin/destination nodes to hubs and ii) the routing of commodities through the
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Preprint submitted to European Journal of Operational Research November 21, 2021



designed network optimizing an objective function (e.g. transportation costs). Regarding the economies of

scale by the flow consolidation at hubs, most of the models in hub location apply a fixed discount factor to

all inter-hub arcs (hub arcs) costs. HLPs have been studied extensively, with many variants based on the

number of hubs to be located, hub capacity, and objective function type (minisum, minimax, covering, and

ordered median function, among others). We refer the interested reader to the comprehensive reviews by

Alumur and Kara (2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras (2015), Contreras

and O’Kelly (2019), Alumur et al. (2021).

In this paper, we consider a multicommodity transportation problem, called the Hub Location and

Pricing Problem (HLP-P), in which an existing directed network is used to deliver the commodities. A

tariff per unit of transportation commodity is associated with every arc. A hub transportation provider

wants to establish a new system of interlinked hubs that can be used in the origin-destination (O/D)

routes of the commodities. Therefore, two levels of decision makers are present in the problem acting

non-cooperatively (i.e., Stackelberg game). First, the hub transportation provider (the leader or the upper

level) should decide: i) where to locate a fixed number of hubs and ii) the price per unit of commodity

crossing the arcs connecting hubs to maximize its benefit taking into account travel costs of traversing hub

arcs. Second, the customers (the follower or the lower level) should decide the routes for the transportation

of each commodity The follower will choose the cheapest path to route each commodity taking into account

the tariffs of the existing network and the prices set by the leader for using the hub arcs. This will determine

which is the cheapest path for routing each commodity from O/D (i.e., using only the existing network or

using both, if necessary, hub arcs and the existing network). If the follower chooses to route a commodity

using hub arcs, this commodity will use at least one hub arc. Each commodity might be routed to the hubs

or from the hub to the final destination, using the existing network. It is assumed that the follower will

use the hub service for routing a commodity only if the overall amount to be paid for the corresponding

O/D route is cheaper by a factor of γ than the the corresponding amount by using the direct connection

of the existing network. We refer to this condition as the saving threshold condition.

An interpretation of the saving threshold condition comes from the fact that using the existing network

allows for a direct delivery (using the same vehicle from the origin to destination) while using hub arcs

typically entails transshipments at the access and exit node of the hubs system (transportation on hub

arcs is often performed using a different mode, as, for example, big trucks, vessels, high speed trains,

planes, etc...). Hence, γ could represent the minimum saving necessary for a follower to choose a route for

a commodity with transshipments instead of a direct delivery. Actually, direct deliveries may have some

advantages compared to using hub arcs; as for instance, they might be more comfortable (for passengers),

safer (each transshipment of a cargo may damage the freight), sometimes even faster (for perishable freights

this is an important risk factor), they might avoid possible delays (due to lack or errors of coordination in

transshipments), etc. On the other hand, the main advantage of using hub arcs is the saving, therefore the
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follower decides to use the hub arcs for a commodity whenever the saving is large enough.

Regarding the applicability of this model, consider a railway company that wants to establish several

railway terminals to transport new automobiles. Clients or users have two options: i) send the automobiles

directly by trucks from the origin to the destination or ii) take them to one of the terminals using trucks,

then the automobiles will be delivered by train to another terminal from where they will be transported

to the destination by trucks. Clients will choose the O/D routes based on economical reasons whenever it

is worth it (saving threshold condition). The railway company should set the delivery prices between each

pair of its terminals to obtain the maximum benefit taking into account the travel costs.

High prices will mean less flow on hub arcs but more benefit per unit of commodity. On the contrary,

low prices usually mean more flow in hub arcs but less profit per unit of commodity. Another application

could be the case of a container shipping company that wishes to establish several international terminals

that are connected by vessels. The goal of this company is to determine the location of these terminals and

to set the transport prices of a TEU (Twenty-foot Equivalent Unit) between pairs of hubs to maximize its

benefit.

In addition, although the new transportation system is characterised by the location of hubs, it is worth

mentioning that our model differs from the classical hub location models. The goal of our model is not

only to determine the location of hubs and the O/D routes of the commodities, but also to set the price

of crossing every hub arc per unit of commodity to maximize the benefit of the leader (the tariffs for the

arcs on the existing transportation network, the non-hub arcs, are known). In addition, direct connection

routes through the arcs of the existing network remain available to the customers, i.e., the commodities do

not necessarily have to be routed through a hub arc. Moreover, in classical hub location models a common

discount factor (per unit of commodity) is applied for using hub arcs based on economy of scale reasons;

in the proposed model the price for traversing each one of the hub arcs can have a different discount with

respect to the tariff of using the corresponding arc in the existing network. Another difference with respect

to the classical hub location models is the modelling of two decision makers: the leader (setting the hubs

and the prices for using the hub arcs) and the follower (determining the O/D routes for each commodity).

Our contributions in this paper are threefold. First and foremost, we provide an exact nonlinear

model for the HLP-P as well as its linearization, associated valid inequalities, and variable reductions to

strengthen it. Secondly, we present a variant of the HLP-P, in which the decision maker is restricted to set

the prices based on a common discount factor. Thirdly, we provide a hybrid metaheuristic that can solve

both variants.

The rest of the paper is organized as follows. Section 2 reviews relevant literature related to HLP-P.

In Section 3, we present the formal definition of the problem, and a proof of NP-Hardness. In Section 4,

we provide a nonlinear bilevel programming formulation for the HLP-P, and its linearization. Section 5

consists of properties of the HLP-P leading to variable reductions and valid inequalities for the linearized
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formulation. Section 6 provides the transformation of the formulation for the case of prices given by a

common discount factor with respect to the direct connection tariffs, as well as a detailed description of a

hybrid metaheuristic algorithm that we have developed for this variant. Section 7 contains the details of

our computational experiments, and the managerial insights we derive from the experiments. Finally, we

provide our conclusions in Section 8.

2. Literature review

HLPs concern the design of hub-and-spoke networks by locating a set of hub facilities and selecting a

set of links to route flows between O/D pairs. Classical HLPs assume that hubs are fully interconnected

and that direct connections between non-hub nodes are not allowed, i.e., O/D paths must contain at least

one hub node, although many variants of this classical model have been analyzed since the seminal paper

of O’Kelly (1986). The consolidation of flows on the inter hubs arcs allows us to use the economies of scale

through a discount factor to the cost per unit of flow in these arcs.

O’Kelly and Miller (1994) proposed a classification of hub networks according to (i) whether non-hub

nodes are singly allocated (non-hub nodes are assigned to exactly one hub) or multiply allocated (non-hub

nodes may be assigned to more than one hub); (ii) whether hubs are fully or partially interconnected;

and (iii) whether direct connections are allowed between pairs on non-hub nodes. Our model consider

the location of q hubs, see, among others, the following references for different variants of hub location

models considering a fixed number of hubs: Alumur et al. (2009), Aykin (1994), Bryan and O’Kelly (1999),

Campbell (1994a,b, 1996), Ebery et al. (2000), Ernst and Krishnamoorthy (1996, 1998a,b, 1999), Garćıa

et al. (2012), Kara and Tansel (2000), Puerto et al. (2016), Skorin-Kapov et al. (1996).

The model analyzed in this paper presents some features that considered simultaneously make the

model novel, although some of them have already been considered in different variants of the classical

hub location models in the literature. i) The case where direct connections are allowed between pairs on

non-hub nodes was already analyzed in Aykin (1994), Nickel et al. (2001), Martins de Sá et al. (2015),

Alibeyg et al. (2018). ii) As mentioned in the introduction, the objective function of HLP-P considers

a profit driven model, Alibeyg et al. (2016, 2018) considers profit-oriented objectives in hubs network

design problems that measure the tradeoff between the revenue due to served commodities and the overall

network design and transportation costs. The main novelty of this model is that there is not a requirement

of serving the demand of every commodity. iii) The transshipments are penalised in our model by the saving

threshold condition to use hub-arcs (factor γ); Martins de Sá et al. (2015) considers that access to the first

hub and the exit from the last hub are time consuming. iv) HLP-P model can be seen as the decision

process of a transportation company (leader) aiming to attract flow (maximizing profit) through its inter

hubs links competing against the existing network. In the literature we find other references considering

competitive hub location models, see Marianov et al. (1999), Wagner (2008), Sasaki and Fukushima (2001),
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Sasaki (2005), Eiselt and Marianov (2009), Sasaki et al. (2014), Mahmutogullari and Kara (2016). The

two main differences between HLP-P and the models in these references are: a) these models consider

two hub transportation systems competing for the same market of origin-destination routes that can both

adjust their prices and in our case, the hub transportation system competes with an existing transportation

network with fixed prices for every arc, and b) every complete O/D route is covered by one of the competing

transportation companies, and in our case, only the inter-hub connections are operated by the new company,

the remaining parts of the O/D routes (from the origin node to the first hub and from the last hub to the

destination node) will be performed using the existing transportation network.

Finally, v) Pricing, it is worth mentioning that network pricing problems have attracted their fair share

of attention. The problem of maximizing the toll revenue collected on a multicommodity transportation

network, assuming that the user of the network are assigned to shortest paths with respect to the sum of

tolls and initial costs, was considered, among others, by Heilporn et al. (2010), Brotcorne et al. (2011),

Dewez et al. (2008). Bilevel programming is the tool of choice in these papers, since this technique

models the customers behavior effectively. The tutorial by Labbé and Violin (2013) provides an excellent

introduction to the use of bilevel programming for network pricing problems. On the other hand, the

problem of jointly locating hubs and pricing arcs connecting the hubs has not been studied yet. The closest

paper is by Brotcorne et al. (2008), in which the problem of Joint Design and Pricing on a Network (JDP)

is considered. The aim is to select arcs of a given network to invest on and subsequently apply pricing

to. The authors provide a bilevel programming formulation, a mixed-integer bilinear formulation, and a

Lagrangian relaxation based solution method. HLP-P differs from JDP, since in HLP-P the arcs to be

invested are given by the location of a given number of hubs, and the parameter γ provides a more general

way of modelling customers behavior (JDP considers the case γ = 1).

Notably, Lüer-Villagra and Marianov (2013) have studied the Competitive Hub Location and Pricing

Problem (CHLPP), where a new company sets its prices to compete with an existing one. The existing

company utilizes a transportation network with a hub-and-spoke topology. The new company offers its

services in the same market, using its own hub and spoke network and setting prices to maximize its profit.

The customers behavior is assumed to conform with a logit model that determines the price-sensitivity

of the customers decisions. The authors present a nonlinear formulation as well as a genetic algorithm.

HLP-P differs from the CHLPP: i) in CHLPP two companies competes utilizing a transportation network

with a hub and spoke topology (in our case, we just have the new company), ii) in CHLPP the commodities

may pass through more than two hubs since the underlying transportation network is incomplete, whereas

in HLP-P any route cannot cross more than two hubs (it is not an assumption in our model, but it results

from the properties of the model), iii) the decision process of customers to choose the company and route

is modeled using a logit model (in our case, each customer decides to use the alternative transportation

system if the percentage of saving exceeds a threshold), and iv) the origin-destination flow could be split
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in different routes and companies (in our case, all the commodities with the same origin and destination

are sent via the same route).

3. Problem definition

Consider a complete directed graph G = (V,A) with vertex set V and arc set A, and a set of commodities

K to be transported. Each arc (i, j) ∈ A is associated with a fee per unit of commodity (known in advance)

for traversing it, called tariff, t̄ij ≥ 0. These are the prices in the existing network. We assume that these

tariffs satisfy the triangle inequality as they represent the most competitive price in the existing network for

a pair of origin and destination. We define Tk as the total amount of commodity k ∈ K to be routed from

its origin o(k) ∈ V to its destination d(k) ∈ V . We denote the transportation costs per unit of commodity

as c̄ij ≥ 0,∀(i, j) ∈ A, and assume that they satisfy the triangular inequality i.e. c̄ij ≤ c̄ik+ c̄kj ,∀i, j, k ∈ V .

Note that the tariffs and costs need not be identical or even smoothly align to each other, since the former

is a result of the existing competition between the transportation providers in the network, and the latter

is a result of the infrastructure.

To maximize its profit the leader has to locate a fixed number of hubs and to set a fee per unit of

commodity for traversing every hub arc, called price. In the decision process of the lower level, the follower

chooses a route for each commodity using a hub arc only if the overall route fee (i.e., the sum of the

prices or tariffs of the arcs in that route) is lower by a factor of γ ∈ (0, 1] with respect to the tariff of

direct connection in the existing network (saving threshold condition). HLP-P is the problem of finding

the optimal locations of q hubs, and the prices pij of traversing the hub arcs to maximize the profit of the

leader.

Before providing a proof of NP-Hardness, we emphasize that defining HLP-P on a complete graph does

not decrease the generality of the problem. To solve an HLP-P arising on an incomplete graph, as most

real-world transportation networks are, it suffices to solve an All-Pairs Shortest (lowest tariff) Path problem

to determine the values of t̄ij . The solution of the resulting HLP-P instance by using the lowest tariff paths

will provide the tariffs of the arcs in this complete graph. Actually, to make his/her decision, the follower

only needs to know the tariff between each pair of nodes and the price between hubs independently of the

path defining these links in the underlying graph. From a practical point of view, the goal of the follower

is to pay the least for transporting their commodities, regardless of the routes defined in the underlying

graph. Note that using the same rationale, the assumption of tariffs obeying the triangle inequality does

not decrease the problem generality.

Proposition 1. HLP-P is NP-Hard.

Proof. By reduction from the Max-Avg Facility Dispersion (MAFD) problem, also known as the Maxisum

Dispersion Problem (Kuby, 1987). We use the formal definition provided by Ravi et al. (1994): Given
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a set of nodes V = {v1, v2, ..., vn}, a nonnegative distance w(vi, vj) for each pair vi, vj of nodes, and an

integer p such that 2 ≤ p ≤ n, find a subset P ⊂ V with |P | = p, such that the objective function

g(P ) = 2
p(p−1)

∑
x,y∈P w(x, y) is maximized.

To solve an instance of MAFD, we construct an instance of the HLP-P with n vertices and q = p hubs.

Starting with an empty commodity set K, we add a commodity k for each pair of vertices vi, vj ∈ V : i < j

with o(k) = i, d(k) = j, and tk = w(vi, vj). We set the tariffs as t̄ij = 1, ∀(i, j) ∈ A, and γ = 0.5. For

this instance, no commodity k would use an existing network arc other than (o(k), d(k)), since its tariff

is greater than γ · t̄o(k),d(k) = 0.5. Consequently, the optimal solution of this instance of HLP-P only

captures the demand of the commodities whose both origin and destination are hubs. To capture all such

demand at maximum revenue, the optimal price of each inter-hub arc should be 0.5 (equal to the value

of γ). Therefore, the optimal hub locations for the HLP-P instance match the optimal set of facilities for

the MAFD, and the optimal objective value of the MAFD instance is equal to that of the HLP-P instance

times 4
p(p−1) .

4. Formulations

In addition to the notation introduced in Section 3, we define δ+
i as the set of outgoing arcs and δ−i

as the set of incoming arcs for each i ∈ V . Moreover, we define parameters tkij for (i, j) ∈ A, k ∈ K to

ease the modelling of the follower’s choice of delivering routes, taking into account the saving threshold

condition. This parameter is given by

tkij :=

t̄ij , if (i, j) ∈ A \ {(o(k), d(k))}

γ · t̄ij , if (i, j) = (o(k), d(k)).

Finally, we define

bki =


1, if i = o(k),

−1, if i = d(k),

0, otherwise.

(1)

For any i ∈ V , let xi be equal to 1 if a hub is located at vertex i, and 0 otherwise. In addition, for any

(i, j) ∈ A and k ∈ K, let ykij be equal to 1 if commodity k is transported on arc (i, j) without using the

hub network, and 0 otherwise. Similarly, for any (i, j) ∈ A and k ∈ K, let wkij be equal to 1 if commodity

k is transported on arc (i, j) using the hub network, and 0 otherwise. In the formulation to be presented

below, the transportation variables are stated as ŷkij and ŵkij for the follower’s perspectives. Finally, let pij

be the price of using the hub network for traversing arc (i, j) ∈ A. A formulation for HLP-P can then be
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stated as: (HLP-P0)

maximize
∑
k∈K

∑
(i,j)∈A

Tk(pij − c̄ij)wkij (2)

subject to
∑
i∈V

xi = q (3)

pij ≤ t̄ij ∀(i, j) ∈ A, (4)∑
j∈δ+i

wkij ≤ xi ∀i ∈ V, k ∈ K, (5)

∑
i∈δ−j

wkij ≤ xj ∀j ∈ V, k ∈ K, (6)

∑
j∈δ+i

(ykij + wkij)−
∑
j∈δ−i

(ykji + wkji) = bki ∀i ∈ V,∀k ∈ K, (7)

pij ≥ 0 ∀(i, j) ∈ A, (8)

xi ∈ {0, 1} ∀i ∈ V, (9)

ykij , w
k
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, (10)∑

(i,j)∈A(tkijy
k
ij + pijw

k
ij) =

minimize
∑

(i,j)∈A(tkij ŷ
k
ij + pijŵ

k
ij)

subject to
∑
j∈δ+i

(ŷkij + ŵkij)−
∑
j∈δ−i

(ŷkji + ŵkji) = bki ∀i ∈ V,

ŷkij , ŵ
k
ij ≥ 0 ∀(i, j) ∈ A,


∀k ∈ K. (11)

The objective function (2) aims to maximize the profit of the leader. Constraint (3) sets the maximum

number of hubs to be located. Constraint set (4) requires the price of each arc to be upper bounded

by its tariff in the existing transportation network, since it is suboptimal for a commodity to traverse a

hub arc with a price that is higher than tariff of the underlying non-hub arc. Constraint sets (5) and

(6) force a vertex to be a hub if at least one commodity is transported using the hub network on an

arc emanating from or ending at it. Constraint set (7) states the flow conservation for the commodities.

Constraint set (8) states that all prices are nonnegative. Constraint sets (9) and (10) require the hub and

transportation decisions to be binary. Finally, constraint set (11) ensures the follower chooses the routes

to pay the minimum amount of money for transporting all the commodities. The definition of tkij ensures

that commodity k uses the direct arc yko(k),d(k) unless there is a path with tariff less than or equal to

γ · t̄o(k),d(k). Note that the lower level model can only use the links available for commodity transportation.

Therefore, the families of constraints (5) and (6), considering x as fixed values by the upper level, should

be in the formulation of the lower level model. However, using Proposition 2 in Brotcorne et al. (2008),

those constraints can be moved to the upper level model. So, the resulting lower level model is a minimum

cost flow problem where the binary nature of (ŷ,ŵ)-variables can be relaxed.

The formulation presented above is nonlinear due to the objective function (2) as well as the bilevel
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programming constraints (11). To linearize this formulation, we define zkij = pijw
k
ij ,∀(i, j) ∈ A, k ∈ K. We

also define the dual variables uki , associated with constraint i ∈ V for commodity k ∈ K within (11). The

resulting linearized formulation is then:

(HLP-P1)

maximize
∑
k∈K

∑
(i,j)∈A

Tkz
k
ij −

∑
k∈K

∑
(i,j)∈A

Tk c̄ijw
k
ij (12)

subject to (3)–(10),

zkij ≤ pij ∀(i, j) ∈ A, k ∈ K, (13)

zkij ≤ tkijwkij ∀(i, j) ∈ A, k ∈ K, (14)

zkij ≥ pij − (1− wkij)t̄ij ∀(i, j) ∈ A, k ∈ K, (15)

zkij ≥ 0 ∀(i, j) ∈ A, k ∈ K, (16)∑
(i,j)∈A

(tkijy
k
ij + zkij) =

∑
i∈V

bki u
k
i ∀k ∈ K, (17)

uki − ukj ≤ tkij ∀(i, j) ∈ A, k ∈ K, (18)

uki − ukj ≤ pij ∀(i, j) ∈ A, k ∈ K, (19)

uki unrestricted ∀i ∈ V, k ∈ K. (20)

Constraint sets (13), (14), and (15) linearize the revenue made by the leader. Constraint set (16)

requires all incomes to be nonnegative. Constraint set (17) replaces (11) to ensure that each commodity is

transported in the cheapest way. Constraint sets (18), (19), and (20) stem from the duals of the follower’s

subproblems. Based on Farkas’ lemma, necessary conditions of optimality for a linear program can be stated

as simultaneous primal and dual feasibility, with equal objective function values. In this case, constraint

set (7) ensures primal feasibility, constraint sets (18), (19), and (20) guarantee the dual feasibility, and (17)

enforces the equality of the objective values. Hence, (17)-(20) is equivalent to (11).

We conclude this section with a remark on the possibility of aggregating commodities to decrease the

problem size, which is a common and successful practice in the hub location literature. However, in the case

of HLP-P, aggregation would require the linearization of the product of general integer variables (flows)

and continuous variables (prices). This is not possible without defining additional variables and constraints

that would result in a more compact yet weaker formulation. Hence, we opt to perform our analysis on

the binary flow variables of model HLP-P1.

5. Problem Properties and Valid Inequalities

In this section, we first demonstrate a number of problem properties. Next, we provide variable reduc-

tions leading to a stronger and more compact model. Lastly, we present valid inequalities to strengthen

9



the upper bound provided by the Linear Programming (LP) relaxation.

5.1. Problem properties

We start by showing that in any optimal solution for the HLP-P, the prices between the hubs obey the

triangle inequality.

Lemma 1. For any instance of HLP-P, there exists an optimal solution for which the prices between the

hubs obey the triangle inequality, i.e. pil ≤ pij + pjl ∀i, j, l ∈ V : xi = xj = xl = 1.

Proof. Assume that we have an optimal solution of an instance of HLP-P where ∃i, j, l ∈ V : xi = xj =

xl = 1 and pil > pij + pjl. If ∃k ∈ K : wkil = 1, then we can construct a solution for the follower’s problem

with ŵkab = wkab ∀(a, b) ∈ A \ {(i, l), (i, j), (j, l))} and ŵkij = ŵkjl = 1, which has a lower objective value for

that problem than the considered solution. This violates (11), which requires the objective value of the

subproblem for the two solutions to be equal. On the other hand, if wkil = 0 ∀k ∈ K, then the solution

can be amended as p′il := pij + pjl. Since no commodities use this hub arc, the new solution has the same

objective function value as the previous one. If this change of price results in a violation of the triangle

inequality, i.e. p′il + plm < pim for some m ∈ V : xm = 1, then the argument can be re-applied to the

variable pim. Indeed, the argument can be recursively reapplied to obtain an optimal solution for which

the prices between the hubs obey the triangle inequality.

Lemma 1 enables us to restrict the search space, as we show next.

Lemma 2. For any instance of HLP-P, the optimal path of each commodity k ∈ K can be restricted to be

only one of the following five types:

i) yko(k),d(k) = 1

ii) wko(k),d(k) = 1

iii) yko(k),i = wki,d(k) = 1, for some i ∈ V \ {o(k), d(k)}

iv) wko(k),i = yki,d(k) = 1, for some i ∈ V \ {o(k), d(k)}

v) yko(k),i = wkij = ykj,d(k) = 1, for some i, j ∈ V \ {o(k), d(k)}.

Proof. The proof is based on three arguments:

a) Consider a path for commodity k, originating at o(k) and ending at d(k), consisting of ykij and wkij

variables. Any sub-path of this path, consisting of only ykij variables, can be reduced to a single arc

starting at the origin of the first arc of the sub-path and ending at the destination of the last arc of the

sub-path, since the tariffs satisfy the triangle inequality.

b) An argument similar to a) applies to the wkij variables, since the prices between the hubs obey the

triangle inequality (Lemma 1).

c) It is never suboptimal to convert a sub-path of three consecutive arcs in a path wkab = ykbc = wkcd = 1
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to wkab = wkbc = wkcd = 1. Assume that we have a solution with wkab = ykbc = wkcd = 1 for some k ∈ K.

Firstly, since the follower is using the hub arc structure for commodity k, we have that the saving threshold

condition is already fulfilled (the total price of the path from o(k) to d(k) is less than or equal to γ ·to(k),d(k)).

Moreover, any path with a lower price or the same price will also satisfy this condition. Secondly, constraint

set (4) sets the upper bound of pbc to t̄bc. If pbc < t̄bc, the follower would use the hub arc for commodity

k, due to its lower price. For the case of pbc = t̄bc, we will have a path with the same price. Hence, taking

wkbc = 1 will does not increase the price of the path.

Applying arguments a), b), and c) repeatedly to any feasible solution results in one of the solution types

described above.

Figure 1: A demonstration of Lemma 2, where a given path is reduced to a path of type iv).

An application of Lemma 2 is depicted in Figure 1, where the shaded vertices correspond to the hubs as

in Figure 1. The given path for the commodity comprises of 8 arcs, alternating between hub and existing

network arcs, as shown in Figure 1a. Applying arguments a) and b) in the proof of Lemma 3 shrinks the

consecutive hub and existing network arcs, resulting in Figure 1b. Argument c) in the proof of Lemma 3

allows the conversion of the second arc in Figure 1b to a hub arc, resulting in Figure 1c. A final application

of argument b) brings us to Figure 1d, which depicts a solution of type iv).

A side result of Lemma 2 is that the values of the ykij variables are implied by the values of the wkij

variables.
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Lemma 3. In any solution for the HLP-P, wkij = 1 implies yo(k),i = 1 if o(k) 6= i, and yj,d(k) = 1 if

j 6= d(k).

Proof. Follows from the solution types iii), iv), and v) described in Lemma 2.

Another implication of Lemma 2 is that an HLP-P instance can be solved as an MAFD instance for

small enough values of γ, for which a compact formulation has been presented by Kuby (1987).

Proposition 2. Any HLP-P instance, where γ < mink∈K
mini∈V \{o(k),d(k)}{t̄o(k),i,t̄i,d(k)}

t̄o(k),d(k)
, can be solved as

an MAFD instance.

Proof. For each k ∈ K, a lower bound for the price of solution types iii), iv), and v) of Lemma 2

can be computed as mini∈V \{o(k),d(k)}{t̄o(k),i, t̄i,d(k)}. Dividing this lower bound by t̄o(k),d(k) yields a

lower bound for the values of γ for which the commodity would use one of these solution types. If

γ < mink∈K
mini∈V \{o(k),d(k)}{t̄o(k),i,t̄i,d(k)}

t̄o(k),d(k)
, then none of the commodities would use one of these solution

types. Hence, the optimal hub locations can be determined by capturing solution type ii), through solving

an MAFD on a complete undirected graph, with w(vi, vj) =
∑
k∈K:o(k)=i,d(k)=j

or o(k)=j,d(k)=i

Tk. The optimal price for

each hub arc would be pij = γ · t̄ij .

5.2. Variable reductions

We are now ready to state a transformation of HLP-P1 into a more compact and stronger formulation.

Proposition 3. Replacing the constraint sets (7) and (17) in HLP-P1 with

yo(k),d(k) +
∑

(i,j)∈A

wkij = 1, ∀k ∈ K, (21)

and

tko(k),d(k)y
k
o(k),d(k) +

∑
(i,j)∈A

((tko(k),i + tkj,d(k))w
k
ij) +

∑
(i,j)∈A

zkij =
∑
i∈V

bki u
k
i ∀k ∈ K, (22)

respectively, results in a valid formulation (HLP-P2), which dominates the original formulation.

Proof. The validity of both (21) and (22) follows from Lemmas 2 and 3. The resulting formulation dom-

inates the original one since a feasible solution for the LP relaxation of HLP-P1 can be constructed from

any feasible solution for the LP relaxation HLP-P2. This can be done by setting yko(k),i =
∑
l∈δ+i

wkil and

ykj,d(k) =
∑
l∈δ−j

wklj , ∀k ∈ K; i, j ∈ V \ {o(k), d(k)}. However, there exist solutions for the LP relaxation

of HLP-P1 that contain multiple nonzero values for some k ∈ K, e.g. wko(k),a = ykab = ykbc = wkc,d(k) = 1,

which cannot be translated to a feasible solution for the LP relaxation of HLP-P2. Hence we conclude that

the space of feasible solutions is smaller for the LP relaxation of HLP-P2.
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Note that the resulting formulation does not involve any ykij variables other than yko(k),d(k), decreasing

the number of variables by |K| × (|A| − 1). This reduction, however, cannot be directly reflected onto

the follower’s subproblems. An example is depicted in Figure 2, with three commodities and γ = 0.95

and c̄ij = 0 for any i, j ∈ N . Vertices 2, 3, and 5 are selected as the optimal set of hubs. An optimal

solution is provided in Figure 2a, which provides services to commodities 1 and 2. For commodity 1, there

exist two alternatives with the same price of 2.85, and the commodity follows the direct arc due to the

saving threshold condition. Capturing commodity 3 would require a price of 0.85 for arc (5, 3), effectively

decreasing the price of arc (2, 3) to 1.7 due to the triangle inequality, which is suboptimal. However, if

the follower are restricted to use at most one hub arc for each commodity, the optimal solution becomes

the one shown in Figure 2b, with the prices of (2, 5), (5, 3) and (2, 3) violating the triangle inequality. In

this case, commodity 1 cannot use both arcs (2, 5) and (5, 3) at the indicated price due to the single arc

restriction, and is still limited to a total price of 2.85.

Figure 2: An example of the optimal prices, and the prices when the follower are restricted to use a single hub arc for each
commodity.

We note that the triangle inequality cannot be enforced on all price variables due to Lemma 1, and

enforcing prices that obey triangle inequality only between the hubs requires constraints involving big M

terms. Next, we show that we can discard most members of the constraint set (18).

Proposition 4. Constraint set (19) dominates (18) ∀k ∈ K, (i, j) ∈ A : i 6= o(k) or j 6= d(k).

Proof. The proof follows from the fact that pij ≤ tkij = t̄ij , ∀k ∈ K, (i, j) ∈ A : i 6= o(k) or j 6= d(k) due

the definition of tkij and (4).

Proposition 4 decreases the number of constraints by |K| × (|A| − 1). In addition, a subset of the

constraint set (19) as well as wkij variables can also be discarded, as we now demonstrate.
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Proposition 5. For k ∈ K,Rk = {(i, j) ∈ A : i = d(k) or j = o(k)}, the variables wkij , ŵ
k
ij : (i, j) ∈ Rk

will never assume a positive value in any optimal solution for the HLP-P.

Proof. In the absence of negative tariffs and prices, any optimal path for a commodity would be an acyclic

path, so a commodity returning to its origin or departing from its destination would be suboptimal.

We now focus on tightening the LP relaxation of HLP-P2.

Proposition 6. The constraint sets

c̄ijw
k
ij ≤ zkij ≤ max{0, tko(k),d(k) − t

k
o(k),i − t

k
j,d(k)}w

k
ij ∀(i, j) ∈ A, k ∈ K (23)

is valid and dominates (14).

Proof. The validity of (23) follows from the fact that the price the leader can set for a commodity k on

arc (i, j) is bounded above by the tariff of direct connection times γ, minus the tariff of the arc from o(k)

to i and the tariff of the arc from j to d(k). The domination property follows from the triangle inequality

t̄o(k),d(k) ≤ t̄o(k),i + t̄ij + t̄j,d(k) that yields tko(k),d(k) ≤ tko(k),i + tkij + tkj,d(k), which can be rewritten as

tko(k),d(k) − t
k
o(k),i − t

k
j,d(k) ≤ tkij . Finally, the first inequality comes from the fact that the cost per unit of

commodity of traversing a hub arc should be smaller than or equal to the price.

A consequence of Proposition 6 is that we can eliminate wkij and zkij variables that will never assume a

positive value. In the next proposition, we provide a general result for eliminating wkij variables.

Proposition 7. For k ∈ K,Sk = {(i, j) ∈ A : tko(k),d(k) − tko(k),i − tkj,d(k) ≤ c̄ij} ∪ {(i, j) ∈ A : i, j ∈

V \ {o(k), d(k)} : tko(k),i > tko(k),j or tki,d(k) < tkj,d(k)}, the variables wkij , z
k
ij : (i, j) ∈ Sk can be discarded.

Proof. Sk consists of two subsets, the first of which is a direct consequence of Proposition 6. To prove the

validity of the second subset, consider the optimal path ŷko(k),i = ŵkij = ŷkj,d(k) = 1 for commodity k, with

total price tko(k),i + pij + tkj,d(k) ≤ t
k
o(k),d(k). The property tko(k),i + pij + tkj,d(k) ≥ t

k
o(k),i + tkj,d(k) follows from

the nonnegativity constraints (8). If tko(k),i > tko(k),j , then tko(k),i + tkj,d(k) > tko(k),j + tkj,d(k) ≥ tko(k),d(k) by

the triangle inequality, contradicting the assumption that the path is optimal. Similarly, if tki,d(k) < tkj,d(k),

then tko(k),i + tkj,d(k) > tko(k),i + tki,d(k) ≥ t
k
o(k),d(k).

For the sake of brevity, let us define the set of feasible arcs for commodity k as Ak = A \ (Rk ∪Sk), and

the maximum income the leader can get from commodity k on arc (i, j) as t̂kij := tko(k),d(k)− t
k
o(k),i− t

k
j,d(k).

Based on Propositions 5 and 7, constraint set (23) can be rewritten as:

c̄ijw
k
ij ≤ zkij ≤ t̂kijwkij ∀k ∈ K, (i, j) ∈ Ak. (24)
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Note that Proposition 7 cannot be applied to ŵkij , due to Proposition 4 that modified the structure of

the constraints corresponding to the dual of the follower’s subproblems. We now provide the updated form

of HLP-P2, for the sake of readability.

(HLP-P2)

maximize
∑
k∈K

∑
(i,j)∈A

Tkz
k
ij −

∑
k∈K

∑
(i,j)∈A

Tk c̄ijw
k
ij (25)

subject to
∑
i∈V

xi ≤ q (26)

pij ≤ t̄ij ∀(i, j) ∈ A, (27)∑
j∈δ+i ∩Ak

wkij ≤ xi ∀i ∈ V, k ∈ K, (28)

∑
i∈δ−j ∩Ak

wkij ≤ xj ∀j ∈ V, k ∈ K, (29)

yo(k),d(k) +
∑

(i,j)∈Ak

wkij = 1, ∀k ∈ K, (30)

zkij ≤ pij ∀k ∈ K, (i, j) ∈ Ak, (31)

zkij ≤ t̂kijwkij ∀k ∈ K, (i, j) ∈ Ak, (32)

zkij ≥ pij − (1− wkij)t̄ij ∀k ∈ K, (i, j) ∈ Ak, (33)

tko(k),d(k)y
k
o(k),d(k) +

∑
(i,j)∈Ak

((tko(k),i + tkj,d(k))w
k
ij) +

∑
(i,j)∈Ak

zkij

=
∑
i∈V

bki u
k
i ∀k ∈ K, (34)

uko(k) − u
k
d(k) ≤ t

k
o(k),d(k) ∀k ∈ K, (35)

uki − ukj ≤ pij ∀k ∈ K, (i, j) ∈ A \Rk, (36)

uki unrestricted ∀i ∈ V, k ∈ K, (37)

pij ≥ 0 ∀(i, j) ∈ A, (38)

xi ∈ {0, 1} ∀i ∈ V, (39)

yko(k),d(k) ∈ {0, 1} k ∈ K, (40)

wkij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ak, (41)

zkij ≥ c̄ijwkij ∀k ∈ K, (i, j) ∈ Ak. (42)

5.3. Valid inequalities

We now present polynomial-sized valid inequalities for HLP-P1 and HLP-P2.
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Proposition 8. The following two family of constraints are valid for HLP-P1 and HLP-P2:

pij ≥ t̄ij(1− xi), ∀(i; j) ∈ A; (43)

pij ≥ t̄ij(1− xj), ∀(i; j) ∈ A. (44)

Proof. Constraint sets (43) and (44) state that the price of an arc cannot be less than the tariff of direct

transportation unless both ends of the arc are hubs.

Our second valid inequality stems from (28) and (29).

Proposition 9. The inequalities

∑
j∈δ−i ∩Ak

wkji +
∑

j∈δ+i ∩Ak

wkij ≤ xi, ∀i ∈ V, k ∈ K. (45)

are valid for HLP-P2, and dominate (28) and (29).

Proof. These valid inequalities imply that a location is a hub if a commodity flows into or out of it through

a hub arc. The domination property follows from the fact that they are the result of lifting (28) and

(29).

We emphasize that we have presented (45) as a valid inequality rather than part of the formulation,

since we have observed (28) and (29) to have a better computational performance. The next valid inequality

provides upper bounds for the optimal prices.

Proposition 10. The inequalities

pij ≤ t̂kijwkij + t̄ij(1− wkij) ∀k ∈ K, (i, j) ∈ Ak (46)

are valid for HLP-P2.

Proof. Similar to (23), the validity of (46) follows from the fact that it is not profitable for commodity k

to use the hub service on arc (i, j) if the sum of the tariff from o(k) to i, the price of hub arc (i, j), and

the tariff from j to d(k) exceeds the direct connection tariff tko(k),d(k). Hence, commodity k using arc (i, j)

implies that the price pij is less than or equal to t̂kij .

The rest of the valid inequalities we present concerns pairs of commodities, k and k′.

Proposition 11. The following inequalities are valid for HLP-P2:

∑
j∈δ+i ∩Ak′

wk
′

ij ≤ 1− yko(k),d(k)
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∀i ∈ V, k, k′ ∈ K : d(k′) = d(k), t̄o(k),i < t̄o(k′),i, t̄o(k′),d(k′) ≤ t̄o(k),d(k), (47)∑
i∈δ−j ∩Ak′

wk
′

ij ≤ 1− yko(k),d(k)

∀j ∈ V, k, k′ ∈ K, o(k′) = o(k), t̄j,d(k) < t̄j,d(k′), t̄o(k′),d(k′) ≤ t̄o(k),d(k). (48)

Proof. Let (x, y, w, z, p) be a solution of HLP-P2. To prove the validity of inequalities (47), assume that

wk
′

ij = 1 for a given (i, j) ∈ A \ (Rk′ ∪ Sk′) and k′ ∈ K. Then, t̄o(k′),i + pij + t̄j,d(k′) ≤ tk
′

o(k′),d(k′). For any

k ∈ K such that t̄o(k),i < t̄o(k′),i and d(k) = d(k′), we have t̄o(k),i + pij + t̄j,d(k) ≤ t̄o(k′),i + pij + t̄j,d(k′).

If, in addition t̄o(k′),d(k′) ≤ t̄o(k),d(k), then t̄o(k),i + pij + t̄j,d(k) ≤ tko(k),d(k) and if the previous inequality is

strict, it would imply that yko(k),d(k) = 0, otherwise we can assume it without loss of generality, and the

result follows. The validity of (48) can be proved in a similar way.

Proposition 12. The following inequalities are valid for HLP-P2:

wkij ≤ wk
′

ij ∀k, k′ ∈ K : o(k′) = o(k), d(k′) = j; (i, j) ∈ Ak ∩Ak′ , (49)

wkij ≤ wk
′

ij ∀k, k′ ∈ K : o(k′) = i, d(k′) = d(k); (i, j) ∈ Ak ∩Ak′ . (50)

Proof. Given a solution (x, y, w, z, p) for HLP-P2, consider k, k′ ∈ K be such that o(k′) = o(k) and

d(k′) = j, and (i, j) ∈ A \ (Rk ∪ Sk ∪Rk′ ∪ Sk′), with wkij = 1 and wk
′

ij = 0. Then, either yo(k′),d(k′) = 1 or

wk
′

i′,j = 1 for some i′( 6= i) ∈ V .

In the first case, it would imply that (1− γ)t̄o(k′),d(k′) ≤ t̄o(k′),i + pi,d(k′) and then, (1− γ)t̄o(k′),d(k′) +

t̄d(k′),d(k) ≤ t̄o(k),i+pij+t̄d(k′),d(k). In addition (1−γ)t̄o(k′),d(k′)+t̄d(k′),d(k) ≥ (1−γ)(t̄o(k′),d(k′)+t̄d(k′),d(k)) ≥

(1− γ)t̄o(k),d(k). However, since j = d(k′) and o(k) = o(k′), if some of the previous inequalities are strict,

it contradicts the fact that wkij = 1, otherwise we can assume it without loss of generality, and the result

follows.

If wk
′

i′,j = 1, then t̄o(k),i′ + pi′,j < t̄o(k),i + pij , but it contradicts the fact that wkij = 1, because it is

cheaper to get j from i′ than from i.

Proposition 13. The following inequalities are valid for HLP-P2:

zkij ≥ pij − (1− wk
′

ij )t̄ij − t̂k
′

ij (w
k′

ij − wkij), (51)

∀k, k′ ∈ K, (i, j) ∈ Ak ∩Ak′ ,

zk
′

ij − zkij ≤ t̂k
′

o(k′),d(k′)(w
k′

ij − wkij) : ∀k, k′ ∈ K,

(i, j) ∈ Ak ∩Ak′ : o(k′) = o(k), d(k′) = j or o(k′) = i, d(k′) = d(k). (52)
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Proof. Let (x, y, w, z, p) be a feasible solution for HLP-P2. To prove the validity of (51), if wkij = wk
′

ij = 1

the inequality becomes zkij ≥ pij , which is valid since in this case zkij = pij . Analogously, if wkij =

wk
′

ij = 0 the inequality becomes zkij ≥ pij − t̄ij which is valid because in this case zkij = 0 and pij ≤ t̄ij .

If wkij = 1 and wk
′

ij = 0, the inequality becomes zkij ≥ pij − t̄ij + tk
′

o(k′),d(k′) − tk
′

o(k′),i − tk
′

j,d(k′), since

tk
′

o(k′),d(k′) − t
k′

o(k′),i − t
k′

j,d(k′) ≤ t̄ij and zkij = pij the inequality is valid. Finally, if wkij = 0 and wk
′

ij = 1, the

inequality becomes zkij ≥ pij − (tk
′

o(k′),d(k′) − t
k′

o(k′),i − t
k′

j,d(k′)) which is valid by (46).

To prove the validity of (52), observe that if zk
′

ij − zkij = 0 then wk
′

ij −wkij = 0 and the inequality holds.

Then assuming that zk
′

ij −zkij 6= 0, by (49) and (50), wk
′

ij −wkij is equal to 1. Hence, wkij = 0 and wk
′

ij = 1 and

inequality (52), becomes zk
′

ij ≤ t̂k
′

o(k′),d(k′) which is valid by (46), which proves the validity of the inequality.

6. A common inter-hub discount factor HLP-P model

Most of the literature on hub location problems applies economies of scale by using a discount factor,

α ∈ [0, 1], to the cost of of traversing any arc connecting the hubs. In the case of HLP-P, using discount

factor decreases the search space, since all prices between the hubs are determined by multiplying the

tariffs of the existing network a common discount factor. Regarding the formulation of this problem, the

follower’s subproblems require the price for each arc, and the leader can set the prices only for the arcs

between the selected hub locations. Consequently, the formulation for a common discount factor HLP-P

model uses all the variables of HLP-P2 and the additional decision variable α ∈ [0, γ] that denotes the

common discount factor. Accordingly, the following constraints must be added to HLP-P2:

pij ≥ α · t̄ij ∀(i, j) ∈ A, (53)

pij ≤ α · t̄ij + (2− xi − xj)t̄ij ∀(i, j) ∈ A. (54)

Constraint set (53) establishes the lower bound for the prices based on α. Constraint set (54) requires

the upper bound to be equal to the lower bound for the arcs between the hubs. In addition, the following

inequalities are valid for a common inter-hub discount factor case, and can replace (13) by

zkij ≤ α · t̄ij ∀k ∈ K, (i, j) ∈ Ak. (55)

We name the the resulting formulation for a common inter-hub discount factor HLP-P as HLP-P2’, and

emphasize that all results of Sections 2 and 3 including the proof of NP-Hardness also apply to HLP-P2’.

Although the use of a common discount factor does not offer a simplification regarding the formulation,

the smaller search space allows us to design an efficient heuristic algorithm. The objective function value of

a given solution (α and hub locations) can be computed in polynomial time, using the well-known method
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of determining the cheapest path for each commodity, identifying the hub arcs that have been used, and

accounting the profit of the decision maker accordingly (O’Kelly et al., 2015). The shortest paths between

all pairs of vertices can be determined at a complexity of O(|V |3) using the Floyd-Warshall algorithm, with

a modification to ensure that the paths verify the saving threshold condition. However, Lemma 2 allows us

to decrease the search space to single hub arcs, and consequently to compute the objective function value

in O(|K|) = O(|V |2) time. The pseudocode to compute the objective value is provided in Algorithm 1.

Within the algorithm, rk denotes the cost of the shortest path for commodity k, whereas sk represents the

leader’s profit from this path.

Algorithm 1 Objective value computation

1: ObjectiveValue (scaling factor α, hub set H ⊂ V )
2: For k ∈ K
3: Initialize rk = tko(k),d(k) and sk = 0
4: For i ∈ H
5: For j ∈ H \ {i}
6: If (rk > tko(k),i+α· t̄ij+tkj,d(k) and αt̄ij ≥ c̄ij) or (rk = tko(k),i+α· t̄ij+tkj,d(k) and sk < α· t̄ij−c̄ij).

Then
7: rk = tko(k),i + α · t̄ij + tkj,d(k)

8: sk = α · t̄ij − c̄ij and T := T ∪ {(i, j)}
9: End If

10: End For
11: End For
12: End For
13: Return

∑
k∈K Tksk

Using Algorithm 1 to compute the objective value enables us to restrict the search to the scaling

factor α and the set of hubs H. A straightforward algorithm for single dimensional nonlinear optimization

is sampling points with uniform intervals within the lower and upper bounds of the decision variable.

Although there exist sophisticated direct search methods (e.g. Pattern Search), we use the direct sampling

approach with a small search interval due to its simplicity. Based on this idea, we present our hybrid

metaheuristic as Algorithm 2, which combines sampling and Tabu Search. Let us define the tabu list as T

and iteration limit as κmax. In addition, let us denote the objective function value of a solution by θ, and

write θ′ for a candidate solution, θmax for the best candidate solution within the local search, and θ∗ for

the best known solution. Finally, we will denote the best known scaling factor as α∗.

The outer loop of Algorithm 2 (S-TS) samples α with intervals of ε (lines 3-25), starting from the

maximum feasible value of γ down to ε. Tabu Search forms the inner loop (lines 6-23), searching for the

best set of hubs by relocating hubs one at a time. The tabu list aims to diversify the search by forcing the

vertices in the tabu list to remain as a hub, or forbidding them to become hubs (line 14). The aspiration

criterion (line 11) overrides the tabu condition to update the best-known solution. The last step (line 27)

consists of solving the linear programming problem of pricing by fixing the variables corresponding to the
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Algorithm 2 S-TS

1: Initialize α = γ, and H as the q-median solution for G = (V,A)
2: α∗ = α, H∗ = H, θ∗ = ObjectiveValue(α∗, H∗)
3: While α ≥ ε
4: H = H∗

5: Initialize tabu list T = ∅
6: For κ = 1 to κmax
7: θmax = 0
8: For i ∈ H
9: For j ∈ V \H

10: θ′ = ObjectiveValue(α, (H \ {i}) ∪ {j})
11: If θ′ > θ∗ Then
12: θ∗ = θ′, α∗ = α, H∗ = (H \ {i}) ∪ {j}
13: θmax = θ′, imax = i, jmax = j
14: Else If i /∈ T and j /∈ T and θ′ > θmax Then
15: θmax = θ′, imax = i, jmax = j
16: End If
17: End For
18: End For
19: H = (H \ {imax}) ∪ {jmax}
20: T = T ∪ {imax} ∪ {jmax}
21: Increment the tabu tenure of the vertices in T
22: Remove the vertices in T that have reached the tabu tenure limit
23: End For
24: α = α− ε
25: End While
26: Use Algorithm 1 to compute the optimal routes for α∗ and H∗

27: Solve the pricing problem by fixing x as H∗ and y, w as the optimal routes for α∗ and H∗

28: Return (α∗, H∗)

hubs in H∗ and the corresponding route decisions computed using Algorithm 1.

7. Computational Experiments

We have implemented HLP-P2 and HLP-P2’ using the callable library of CPLEX 12.10 (64-bits) and

C++. We have conducted experiments on the nodes of computing cluster Balena hosted at the University

of Bath, each with Intel Xeon Platinum CPUs running at 2.70 GHz. Algorithm S-TS was utilized for

generating initial solutions. Even for the largest instances, the heuristic did not take more than 10 minutes

to complete. Our first experiments aim to test the effect of the variable reductions and the valid inequalities,

within a wall clock time limit of 4 hours.

Motivated by the computational success of Contreras et al. (2011) and the work of O’Kelly et al.

(2015), we have opted to use Benders decomposition for our models. We refer the interested reader

to the aforementioned works for the details how Benders decomposition can be applied to hub location

problems. In addition to the traditional branch-and-cut algorithm, we have used the automated Benders

decomposition feature of CPLEX for different levels of granularity of the slave problems. Our initial
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computational experiments have shown the best choice of Benders decomposition to be with K slave

problems, each containing the uki variables and the zkij variables for a commodity, encompassing both

routing and linearization decisions. We have observed this setting to outperform our implementation for

the original formulation and we have used it to solve the instances that we have generated.

To test the computational performance of our models and algorithms, we have adapted the Civil Avia-

tion Board data that is available on the ORLIB website (Beasley, 2005). We have computed the tariffs using

the formula t̄ij = dij ∀(i, j) ∈ A. We have determined the variable arc costs as c̄ij = λ × dij ∀(i, j) ∈ A,

where λ is a parameter we have used for experimentation. We have generated instances for each value of

|V | ∈ {10, 15, 20, 25}, q ∈ {3, ..., b|V |/3c}, γ ∈ {0.9, 0.925, 0.95, 0.975, 1}, and λ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

For instances with |V | < 25, we have deleted data that pertain to the nodes with indices higher than |V |.

The instances are available upon request from the first author.

7.1. Results for arc pricing

The computational results of HLP-P2 for |V | ∈ {10, 15, 20} are provided in Table 1. We have observed

the value of γ to have no significant effect on the optimality gap and the CPU time requirement of an

instance, so we opt to display our results for each value |V |, q and λ, averaged over the listed values of γ. The

results clearly show the necessity for the valid inequality sets (43) and (44), since their presence improves

the average CPU time requirement in most of the cases. There also is a clear trend of decreasing CPU time

requirement as λ increases. This is expected since an increase in λ means an increase in the variable arc

costs c̄ij , which results in many of the arcs becoming disadvantageous for the hub transportation provider,

thereby decreasing the search space. The formulation HLP-P2 with the valid inequalities (43) and (44) has

successfully solved all instances |V | ∈ {10, 15, 20}.

For the larger instances with |V | = 25, our results are presented in Table 2. A significantly smaller

number of instances were solved to optimality. Based on the results of Table 1, we believe that the final

incumbent solutions of all the instances are of high quality, which are not reflected onto the table due to

the weaker upper bounds provided by HLP-P2. We conclude that the computational reach of HLP-P2 is

limited to |V | = 25.

7.2. Results for a common discount factor

We have replicated the tests described in the previous subsection for HLP-P2’. The results are presented

in Tables 3 and 4. The results of HLP-P2’ can be observed to be better than that of HLP-P2. We attribute

this to both the reduced search space for the prices due to the common discount factor, and the affinity of

Algorithm S-TS to the common discount factor by its design that searches over the possible values of α.

Similar to HLP-P2, we conclude that the computational reach of HLP-P2’ is limited to |V | = 25, albeit

with a much better performance for the instances with small q values.
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Table 1: Arc Pricing results for |V | ∈ {10, 15, 20}
Without (43) and (44) With (43) and (44)

|V | q λ Average gap Average CPU time (sec.) Average gap Average CPU time (sec.)

10 3

0 0.00% 23.56 0.00% 18.61
0.1 0.00% 22.86 0.00% 17.69
0.2 0.00% 21.68 0.00% 18.47
0.3 0.00% 21.36 0.00% 17.75
0.4 0.00% 17.73 0.00% 13.72
0.5 0.00% 11.37 0.00% 9.12

15

3

0 0.00% 93.73 0.00% 79.14
0.1 0.00% 92.77 0.00% 71.53
0.2 0.00% 82.02 0.00% 67.87
0.3 0.00% 76.30 0.00% 57.00
0.4 0.00% 68.83 0.00% 51.57
0.5 0.00% 57.07 0.00% 48.87

4

0 0.00% 88.37 0.00% 79.88
0.1 0.00% 87.97 0.00% 72.59
0.2 0.00% 73.91 0.00% 70.56
0.3 0.00% 70.43 0.00% 72.35
0.4 0.00% 66.60 0.00% 53.79
0.5 0.00% 56.47 0.00% 47.45

5

0 0.00% 104.45 0.00% 100.78
0.1 0.00% 90.31 0.00% 76.61
0.2 0.00% 80.03 0.00% 75.73
0.3 0.00% 71.88 0.00% 64.02
0.4 0.00% 60.92 0.00% 53.00
0.5 0.00% 64.59 0.00% 51.51

20

3

0 0.00% 873.33 0.00% 628.84
0.1 0.00% 766.71 0.00% 450.14
0.2 0.00% 851.37 0.00% 409.74
0.3 0.00% 578.69 0.00% 385.69
0.4 1.62% 3476.67 0.00% 282.41
0.5 0.00% 494.68 0.00% 258.84

4

0 0.00% 1890.98 0.00% 825.70
0.1 0.00% 989.93 0.00% 583.07
0.2 0.00% 676.10 0.00% 320.08
0.3 0.00% 776.36 0.00% 273.43
0.4 0.00% 514.22 0.00% 243.60
0.5 0.00% 362.05 0.00% 189.67

5

0 0.67% 11705.25 0.13% 7634.34
0.1 0.38% 8103.68 0.00% 3240.06
0.2 0.04% 3959.85 0.00% 1411.87
0.3 0.00% 872.88 0.00% 697.06
0.4 0.00% 645.29 0.00% 356.83
0.5 1.06% 3942.78 0.00% 210.45

6

0 4.85% 14400.00 3.92% 14400.00
0.1 4.09% 14400.00 3.90% 14400.00
0.2 1.52% 14400.00 0.84% 10692.68
0.3 0.34% 5923.45 0.00% 6063.56
0.4 0.00% 2560.81 0.00% 854.68
0.5 1.38% 6063.96 0.00% 366.29
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Table 2: Arc pricing results for |V | = 25

q λ Average gap Average CPU time (sec.)

3

0 5.11% 14440.00
0.1 2.26% 14440.00
0.2 0.35% 8524.02
0.3 0.07% 4900.43
0.4 0.04% 3750.18
0.5 0.43% 3529.07

4

0 11.73% 14440.00
0.1 8.13% 14440.00
0.2 5.91% 14440.00
0.3 1.50% 14440.00
0.4 0.23% 6381.52
0.5 0.00% 1433.74

5

0 13.06% 14440.00
0.1 12.13% 14440.00
0.2 6.90% 14440.00
0.3 4.64% 14440.00
0.4 1.74% 11916.22
0.5 0.12% 4038.04

6

0 16.32% 14440.00
0.1 12.59% 14440.00
0.2 9.07% 14440.00
0.3 4.83% 14440.00
0.4 2.96% 14440.00
0.5 1.32% 9778.79

7

0 16.20% 14440.00
0.1 15.08% 14440.00
0.2 10.79% 14440.00
0.3 7.26% 14440.00
0.4 3.80% 14440.00
0.5 2.24% 14440.00

23



Table 3: Common discount factor results for |V | ∈ {10, 15, 20}
Without (43) and (44) With (43) and (44)

|V | q λ Average gap Average CPU time (sec.) Average gap Average CPU time (sec.)

10 3

0 0.00% 16.74 0.00% 17.87
0.1 0.00% 15.16 0.00% 16.51
0.2 0.00% 15.00 0.00% 14.84
0.3 0.00% 12.06 0.00% 12.73
0.4 0.00% 12.23 0.00% 10.55
0.5 0.00% 8.76 0.00% 8.98

15

3

0 0.00% 82.52 0.00% 77.86
0.1 0.00% 72.10 0.00% 71.12
0.2 0.00% 71.69 0.00% 84.19
0.3 0.00% 66.18 0.00% 64.08
0.4 0.00% 58.73 0.00% 64.62
0.5 0.00% 46.55 0.00% 55.51

4

0 0.00% 78.04 0.00% 72.83
0.1 0.00% 76.83 0.00% 83.05
0.2 0.00% 70.30 0.00% 72.03
0.3 0.00% 65.55 0.00% 62.60
0.4 0.00% 57.39 0.00% 60.92
0.5 0.00% 47.31 0.00% 54.48

5

0 0.00% 77.46 0.00% 80.35
0.1 0.00% 70.57 0.00% 72.25
0.2 0.00% 72.24 0.00% 74.71
0.3 0.00% 67.58 0.00% 72.27
0.4 0.00% 52.61 0.00% 56.43
0.5 0.00% 49.30 0.00% 56.76

20

3

0 0.00% 589.77 0.00% 511.87
0.1 0.00% 565.69 0.00% 385.74
0.2 0.00% 567.57 0.00% 369.97
0.3 0.00% 537.39 0.00% 297.65
0.4 0.00% 393.20 0.00% 258.63
0.5 0.00% 730.25 0.00% 235.33

4

0 0.00% 925.28 0.00% 562.83
0.1 0.00% 623.88 0.00% 450.22
0.2 0.00% 476.91 0.00% 343.32
0.3 0.50% 3224.45 0.00% 297.92
0.4 0.00% 414.56 0.00% 262.19
0.5 0.00% 2569.09 0.00% 186.53

5

0 0.00% 1321.31 0.00% 1139.61
0.1 0.00% 865.31 0.00% 538.82
0.2 0.00% 598.33 0.00% 431.70
0.3 0.00% 906.81 0.00% 324.18
0.4 0.00% 681.39 0.00% 285.53
0.5 0.00% 3892.30 0.00% 204.25

6

0 0.00% 3342.60 0.00% 2274.24
0.1 0.00% 2046.16 0.00% 1879.77
0.2 0.00% 1570.62 0.00% 1264.79
0.3 0.00% 738.27 0.00% 821.97
0.4 0.00% 646.08 0.00% 570.65
0.5 0.00% 664.80 0.00% 541.33
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Table 4: Common discount factor results for |V | = 25

q λ Average gap Average CPU time (sec.)

3

0 0.06% 7316.26
0.1 0.00% 3398.63
0.2 0.00% 1527.35
0.3 0.00% 1156.08
0.4 0.00% 983.12
0.5 0.00% 772.50

4

0 1.29% 13172.81
0.1 0.18% 7697.50
0.2 0.00% 3444.30
0.3 0.00% 2018.72
0.4 0.00% 1702.84
0.5 0.00% 970.00

5

0 16.09% 14400.00
0.1 9.67% 14400.00
0.2 3.11% 12329.40
0.3 0.46% 7604.84
0.4 0.00% 3039.48
0.5 0.00% 2970.20

6

0 15.51% 14400.00
0.1 12.50% 14400.00
0.2 10.11% 14400.00
0.3 8.07% 14400.00
0.4 1.21% 7657.66
0.5 0.00% 3741.38

7

0 17.02% 14400.00
0.1 14.84% 14400.00
0.2 13.95% 14400.00
0.3 12.27% 14400.00
0.4 7.22% 14400.00
0.5 2.70% 7931.19
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7.3. Results for the S-TS algorithm

The performance of the S-TS algorithm was instrumental to the successful solution of many instances,

which we present below in Table 5. The results we provide are based for the instances with |V | ∈

{10, 15, 20}, for which the optimality gaps are small. We analyze the performance of the algorithm based

on its result before and after the solution of the pricing algorithm in step 27, which we refer to as “Stage

1” and “Stage 2”, respectively. The results are aggregated on instances with the same |V |, q, and λ as in

the preceding subsections.

For the arc pricing problem, Stage 1 results have an overall average deviation of 7.77%, and we observe

the average deviation to increase as |V | and q increase. This relatively low performance can be attributed to

the design of Algorithm 1 that computes the objective value based on the common discount factor method.

However, the pricing problem step remedies this behaviour, and successfully decreases the average gap

after Stage 2 to 3.87%.

For the common discount factor case, Stage 1 performance of S-TS is significantly better, with an overall

average deviation of 0.40%. The subsequent pricing problem successfully finds a near-optimal solution for

every instance we have attempted to solve. The overall average deviation of Stage 2 is consequently 0.04%.

We conclude that S-TS performs well for for the arc pricing case, and remarkably well for the common

discount factor case.

7.4. Managerial insights

Our analysis and computational result reveal two major managerial insights. The first one is the

performance gap between arc pricing and mill pricing. Indeed, comparison of the results for HLP-P2 and

HLP-P2’ show that HLP-P2 may result in an objective function value that is 7.5% higher than the HLP-P2’

on the average. The minimum and maximum performance differences were observed to be 3% and 15.5%,

respectively. Decisions makers should therefore be aware that the simplicity of a common discount factor

implies higher operational costs. Assessing the economic implications of the arc strategy is therefore an

important task.

We have also performed an analysis of the effect of the pricing model on the location decisions on

randomly generated instances in the Euclidean plane. HLP-P2’ aims to compensate for the price restriction

by relocating a number of hubs. The hub decisions are identical for approximately 20% of the instances,

and the difference is a single hub for approximately 30% of the instances. Consequently, the solutions differ

by 2 or more hubs for 50% of the solutions, a significant difference given that q ∈ {3, ..., 7}.

As an example, the instance depicted in Figure 3 with |V | = 20, q = 3, λ = 0, σ = 0.5, γ = 0.925 has

two drastically different optimal solutions based on the type of pricing. The values associated with the

arcs in Figure 3 are the ratios of the optimal prices to the costs, for ease of comparison. It can be observed
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Table 5: Performance of the S-TS algorithm for |V | ∈ {10, 15, 20}
Arc pricing Common discount factor

|V | q λ Stage 1 gap Stage 2 gap Stage 1 gap Stage 2 gap

10 3

0 7.93% 3.67% 0.34% 0.00%
0.1 7.48% 3.16% 0.40% 0.01%
0.2 7.67% 3.31% 0.51% 0.00%
0.3 8.00% 3.34% 0.45% 0.09%
0.4 9.06% 4.75% 0.44% 0.08%
0.5 8.15% 4.96% 0.71% 0.03%

15

3

0 6.38% 2.56% 0.18% 0.00%
0.1 6.33% 3.27% 0.26% 0.05%
0.2 6.59% 3.06% 0.40% 0.08%
0.3 6.97% 4.04% 0.46% 0.00%
0.4 7.66% 4.64% 0.41% 0.00%
0.5 7.24% 4.82% 0.65% 0.00%

4

0 5.84% 3.30% 0.28% 0.06%
0.1 5.76% 2.88% 0.34% 0.00%
0.2 6.06% 3.00% 0.39% 0.00%
0.3 6.46% 2.87% 0.41% 0.02%
0.4 7.21% 2.87% 0.50% 0.03%
0.5 7.33% 3.12% 0.74% 0.00%

5

0 8.52% 5.04% 0.30% 0.00%
0.1 8.00% 4.40% 0.34% 0.00%
0.2 7.68% 3.51% 0.34% 0.01%
0.3 7.67% 3.39% 0.41% 0.00%
0.4 8.31% 3.94% 0.50% 0.00%
0.5 9.66% 4.73% 0.65% 0.07%

20

3

0 4.98% 2.89% 0.25% 0.00%
0.1 4.77% 2.39% 0.28% 0.00%
0.2 4.73% 1.99% 0.32% 0.00%
0.3 5.28% 2.04% 0.39% 0.09%
0.4 6.12% 2.79% 0.41% 0.04%
0.5 6.76% 3.48% 0.44% 0.09%

4

0 7.20% 4.28% 0.27% 0.07%
0.1 6.75% 3.43% 0.28% 0.05%
0.2 6.54% 2.71% 0.29% 0.03%
0.3 6.53% 3.23% 0.33% 0.00%
0.4 6.56% 3.26% 0.42% 0.05%
0.5 6.31% 2.89% 0.59% 0.12%

5

0 8.72% 2.81% 0.22% 0.01%
0.1 9.26% 2.55% 0.24% 0.00%
0.2 10.07% 2.03% 0.29% 0.04%
0.3 10.66% 5.44% 0.34% 0.03%
0.4 10.93% 7.12% 0.44% 0.01%
0.5 10.48% 6.96% 0.92% 0.27%

6

0 9.41% 4.66% 0.19% 0.10%
0.1 9.79% 4.17% 0.23% 0.13%
0.2 9.61% 4.76% 0.42% 0.25%
0.3 10.28% 6.08% 0.39% 0.06%
0.4 11.31% 7.47% 0.31% 0.02%
0.5 12.02% 7.55% 0.55% 0.03%
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that the arc pricing model deviates from the optimal α value of 0.445 for every hub arc, and also utilizes

asymmetrical prices to maximize the overall profit. The performance gap between these two solutions is

5.54%. We conclude that the hub location and pricing decisions are tightly coupled, and the choice of

the pricing model is crucial to the long-term performance of the system, since the location decisions are

usually long term.

Figure 3: Comparison of the optimal solutions of HLP-P2 and HLP-P2’, for an instance with |V | = 20, q = 3, σ = 0.5, γ =
0.925.

8. Conclusion

In this paper, we have introduced the HLP-P, the joint problem of determining hub locations and the

price of service between each pair of hubs. We have provided a proof of NP-Hardness and a nonlinear

model. We have presented a linearized model and structural properties of its optimal solutions that have led

to variable reductions and valid inequalities. We have analyzed both arc pricing and a common inter hub-

hub discount factor HLP-P models. We have also developed a metaheuristic, and tested our formulations

and metaheuristic on instances adapted from the literature.

The computational reach of the formulations is observed to be |V | = 25. The metaheuristic consistently

returns optimal or near-optimal solutions, with an average deviation of 0.40 from the optimal solution or

the best known bound for the common discount factor model. The average deviation for the arc pricing
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model is 3.87%. We hope to improve upon these results in subsequent work, possibly through solving the

pricing problem (by fixing the hub decisions and the follower’s routes and) at regular intervals within the

metaheuristic.

Our problem definition and the resulting models depend on the assumption of completely rational

behaviour for the followers, i.e. always using the cheapest path. However, it is well-known that the

customers may not opt for shortest path every time they use the system, due to temporal disruptions of

the transportation network, or other external conditions. We hope to remedy this limitation by using a

logit model to describe the follower behaviour, as in the paper by Lüer-Villagra and Marianov (2013).
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