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ABSTRACT
The program of “pre-metric electromagnetism,” developed by Hehl and colla
borators, seeks to derive certain aspects of the spacetime geometry of the 
world (in particular, metrical signature) from elementary, empirically informed 
axioms regarding electromagnetic fields. The program should, therefore, be of 
profound interest to both empiricist and relationalist philosophers. Up to this 
point, however, pre-metric electromagnetism has received very little attention 
within the philosophy of physics; this paper seeks to rectify the situation, by 
engaging in a detailed foundational study of the program. In particular, in this 
article, we (a) present a streamlined version of the program, identifying key input 
assumptions, (b) consider the connections between this program and other notable 
projects in the foundations of spacetime theories, for example, (i) the dynamical 
approach to spacetime and (ii) constructive axiomatics, and (c) consider in detail 
the extent to which this program can be generalized beyond electromagnetism. 
In achieving these tasks, we hope to open up to philosophers an extraordinarily 
fecund—but lamentably little-known!—project within the foundations of physics.
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1 INTRODUCTION
No debate in the foundations of spacetime theories has more prominence than that 
between substantivalists and relationalists. According to the former, space and time are 
fundamental and exist independently from material bodies; according to the latter, space 
and time are (in some way or another) ontologically subordinate to material bodies (and 
the relations which obtain between those bodies).1

Debates between substantivalists and relationalists often have a metaphysical flavour 
somewhat removed from the details of the dynamics of specific physical theories. To 
take two examples: (i) according to Maudlin’s (1993) “Newtonian relationalism,” the 
relationalist can shirk a commitment to Newtonian absolute space by countenancing 
trans-temporal relations between material bodies; this equips the relationalist with 
the tools to account for Newton’s thought experiment of the globes as presented in the 
Scholium (say);2 (ii) Sklar (1977) proposes that one needn’t commit oneself to pieces of 
spatiotemporal structure in order to underwrite (say) absolute notions of acceleration, 
for one can instead take such accelerations to be primitive, monadic properties of 
material bodies.

This general “pure metaphysics” emphasis notwithstanding, some recent versions 
of relationalism have been more sensitive to the details of particular physical theories. 
One prominent example is the “dynamical approach” to spacetime theories of Brown 
and Pooley (2001; 2006), according to which spatiotemporal geometrical structure just 
is a codification of the symmetries of the dynamical laws for material bodies: the laws 
of physics feature more prominently on this approach than on other, more traditional 
versions of relationalism.3 That being said, all is not necessarily well with the dynamical 
approach, for it has faced charges of obscurity or circularity (or both) (see, e.g., Dewar 
2020; Fletcher 2021; Norton 2008).4

One approach to subordinating spatiotemporal (geo)metrical structure to properties of the 
equations governing material bodies which one finds in the physics literature, and which 
has on occasion been mentioned in the same breath as the dynamical approach (see in 
particular Fletcher 2021; Read et al. 2018), is the program of pre-metric electromagnetism 
of Hehl and collaborators (see in particular Hehl et al. 2016; Hehl and Obukhov 2003; 
2005, 2006; Itin and Hehl 2004). The question to be addressed by these authors is this: 
is there any way of reformulating or reconceptualising Maxwell’s equations so that they 
in fact do not presuppose ab initio metrical structure, but rather come themselves to fix 

1	 Of course, there is a variety of ways of making more precise the difference between 
substantivalism and relationalism—see e.g. (Baker 2021; Dasgupta 2011; Earman 1977; North 
2021; Pooley 2013)—but for now, this characterisation is sufficient.

2	 Recall that the challenge here is this: how is the relationalist to account for different 
tensions in the string yoking the two globes, when ex hypothesi those are the only material 
bodies in the universe? The Newtonian relationalist can ground facts about the string tension in 
these trans-temporal distance relations.

3	 The term “relationalism” is ambiguous between attempts to reduce to material bodies 
(and the relations between those bodies) (i) manifold points, versus (ii) the distance relations 
obtaining between those points. In this article, we understand “relationalism” to take broad 
scope; on this understanding, attempts to reduce (ii) to material bodies (and the relations 
between those bodies) also count as relationalist projects. In this sense, the dynamical approach 
to spacetime, as well as the program of pre-metric electromagnetism (which constitutes the 
focus of this article), qualify as relationalist agendas.

4	 Another example of relationalism in this spirit is the program of “shape dynamics” of 
Barbour and his collaborators. For a book-length introduction, see (Mercati 2018).
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uniquely that structure? In fact, the question has a long pedigree: it was first raised by 
Kottler in 1922 and was also famously taken up by Peres in 1962 (see Hehl et al., 2016, for 
historical discussion, original sources, and critical assessment). If successful, the program 
derives certain aspects of the metric field of relativistic spacetime theories—in particular, 
its signature—such that (philosophically speaking) these aspects can be regarded as being 
subordinate to the electromagnetic fields. Thereby, the approach appears to meet many 
of the desiderata of the dynamical approach to spacetime, qua relationalist thesis, for 
it indicates that the distinction between space and time—typically taken to be encoded 
in the metric signature5—need not be regarded as being fundamental, but rather can 
be taken to be derivative on material fields and their properties.6 Clearly, if correct, this 
would be a significant insight into the nature of space and time, which would and should 
be of broad philosophical interest.

As of yet, however, the philosophical and foundational implications of the program of pre-
metric electromagnetism à la Hehl et al. have not been scrutinized; exactly the goal of 
the present article is to fill that lacuna. The structure of the article, then, is this. In §2, 
we introduce the program of pre-metric electromagnetism. In §3, we explain how on this 
program the metrical signature can be regarded as being derivative on material fields. In §4, 
we subject the program to a detailed philosophical appraisal, in four respects: (i) its ability 
to liberate electromagnetism of (arguably) problematic commitments to “background” 
structures (in the standard formulation, that of a Lorentizan metric signature), (ii) its 
connection with the dynamical approach to spacetime theories (as mentioned above), 
(iii) its connection to the program of “constructive axiomatics,” which was promulgated 
by Reichenbach in 1924, and (iv) its connection to the à la mode agenda of “spacetime 
functionalism.” In §5, we assess the prospects for generalising this program beyond 
electromagnetism. There is also an appendix, in which we consolidate some relevant 
results from differential geometry.

To answer the title question: while the program of pre-metric electromagnetism offers 
prima facie a technically sound means of reducing metrical signature to material bodies, 
its advantages over the standard approach are on reflection unclear. For example, this 
approach is not any more ontologically parsimonious than the “standard” formulation 
of electromagnetism which it seeks to replace. It is also not clear that this approach 
has achieved more “background independence” than the standard formulation of 
electromagnetism. In addition, there are significant obstacles for generalizing the 
approach beyond electromagnetism, although there remains interesting and important 
technical work to be undertaken on this front. While overall we remain sceptical 
regarding the conceptual merits of pre-metric electromagnetism, nevertheless we would 
like to emphasize that we regard the program as being of significant intrinsic interest 
and importance in the foundations of physics in its attempt to develop empirically and 
conceptually perspicuous physical theories and to reduce their undue dependence upon 
the spacetime metric.

2 PRE-METRIC ELECTROMAGNETISM
In this section, we first remind the reader of the relevant aspects of standard, textbook 
electromagnetism (§2.1), before turning our attention to pre-metric electromagnetism (§2.2).

5	 See Callender, 2017, §6.2.1, for discussion.

6	 See footnote 3 for the sense in which the dynamical approach counts as a version of 
relationalism (cf. also Pooley 2013).
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2.1 TEXTBOOK ELECTROMAGNETISM

We begin with standard electromagnetism. When written in terms of differential forms, 
Maxwell’s equations for electromagnetism read as follows:

	 = ,*d F J � (1)

	 = 0;dF � (2)

here and throughout, d denotes the exterior derivative acting on differential forms; F is the 
Faraday tensor, which encodes facts about the electric and magnetic fields and which is a 
spacetime 2-form (by the Poincaré lemma, which states that every closed form is locally 
exact, it follows from (2) that locally one can write F = dA for some 1-form A, which is the 
electromagnetic potential); J represents a current, and is a spacetime 3-form; d denotes 
the exterior derivative operator, and * denotes the Hodge star operator.7 For our purposes, 
the crucial point to note is that the Hodge star operator presupposes a metric field on the 
manifold—intuitively, given an n-dimensional (pseudo)-Riemannian manifold (M, gab), 
the Hodge star operator ‘completes’ a p-form to the volume form of (M, gab), and thereby 
defines an (n-p)-form on M.8 The point is that presupposition of a metric field is baked into 
the standard formulation of electromagnetism.9

In standard presentations of electromagnetism, in addition to Maxwell’s equations, one 
has the Lorentz force law, which, in the language of differential forms, can be written

	 = .f qu F � (3)

Here,  denotes the interior product operation on differential forms. (3) is the equation 
of motion for a point charge with charge q, describing the electromagnetic force f on said 
charge. On the right hand side, uF is the interior product of the tangent vector u to the 
worldline of the charge with the 2-form F.10

2.2 THE PRE-METRIC PROGRAM

The question to be addressed, then, is this: is there any way of reformulating or 
reconceptualising Maxwell’s equations such that they in fact do not presuppose primitive 
metrical structure? Although—as already mentioned—the question has a venerable 
pedigree, it has over the past twenty or so years been taken up in a particularly intriguing 
manner by Hehl and his collaborators. It is upon this modern version of the pre-metric 
approach which we focus in this article; the presentation of Itin and Hehl (2004) will prove 

7	 Note that in the covariant tensor formulation =μν ν
μF J , the current Jv is a 4-vector. To 

convert the 3-form J in (1) to Jv, we use the Hodge star to convert the 3-form to a 1-form, and 
then use the metric to raise the index. The differential form formulation of Maxwell’s equations 
has the advantage of minimizing the role of the metric and is therefore a good starting point for 
the pre-metric program. For further details on the inter-conversion between these two different 
formulations of Maxwell’s equations, see Baez and Muniain (1994).

8	 One might reasonably ask here: which volume form, since any top-ranked form can in 
principle serve to define a volume element? Typically in these discussions, one means the volume 
form 1– ngdx dx  , which is the top-ranked form “adapted” to the Lorentzian metric gab (and 
in standard electromagnetism, this is the Minkowski metric, which is a non-dynamical entity).

9	 For background on the notions of differential forms introduced in this paragraph, see the 
appendix.

10	 There are well-known foundational issues regarding the consistency of electromagnetism 
when taken as this complete package—see Frisch (2005). We’ll pass over these issues almost 
entirely in this article, since they’re not relevant for the points which we seek to make.
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to be particularly congenial and clear for our purposes, and indeed we will focus upon that 
article in the remainder of this subsection, although where it is helpful to do so we will also 
discuss other entries in the series.

How, then, do Hehl et al. reformulate electromagnetism so as to be independent of metrical 
notions? We begin with a four-dimensional differentiable manifold M which satisfies “hyper
bolicity,” in the sense that it is foliable into singly-indexed three-dimensional submanifolds—
this is a purely topological assumption (i.e., no (geo)metrical assumptions required), made 
precise in the following axiom (the first of five), deployed by Itin and Hehl (2004):11

Axiom 1. Spacetime is a four-dimensional differentiable manifold M that admits 
a foliation into codimension-1 hypersurfaces Σ.

Let the hypersurfaces be labelled by a smooth parameter σ Î (–∞, ∞), which is called 
“topological time.”12 Given σ, we additionally choose a vector field on the manifold v such 
that vdσ = 1.13 The above is an axiom about manifold topology: it is a presupposition of the 
pre-metric approach, which must be taken for granted if one is to proceed.14

Having laid down this axiom, so as to achieve independence from any background metric 
we next use differential forms in order to formalize all mathematical objects representing 
the electromagnetic field. The foliation of the manifold postulated in Axiom 1 allows 
for convenient decompositions of differential forms. These will play a central role in the 
formalism of pre-metric electromagnetism. More specifically, for an n-form α, we have

	 = + ,α β dσ γ � (4)

where β is an (n-1)-form and ɣ is an n-form, which is a unique decomposition if we require 
β to be ‘tangential’ and ɣ to be “orthogonal” to the direction of “time.”15

11	 For the sake of clarity, we have made minor modifications to and comments upon the axioms 
of Itin and Hehl (2004); the greatest differences can be found in the context of Axiom 5, but we’ll 
explain in due course our reasons for deviating there from the presentation of Itin and Hehl.

12	 “Topological time” at this stage has no particular presumed chronometric significance. 
Since topological time is just a label, the assumption of smoothness here is innocuous.

13	 In Itin and Hehl (2004), v is not chosen explicitly. This obscures the fact that in a bare 
differentiable manifold, we cannot obtain the vector field v from the scalar field σ alone. 
(In the standard approach with a background metric, v, which equals ∂/∂ σ, can be derived 
from dσ simply by raising the index.) With both σ and v, we are able to uniquely “dissect” 
any differential form into a tangential part and an orthogonal part with respect to time (see 
footnote 15). This issue is recognized in Hehl and Obukhov (2003, 115). Note that both are 
mere “coordinates” that do not have physical significance; note also that the assumption of the 
existence of a differentiable manifold in turn ensures the existence of such a vector field.

14	 The axiom imposes a precursor to global hyperbolicity, the latter of which is very often 
assumed when general relativity (say) is applied to concrete physical scenarios. It is important 
to recognize, however, that the assumption is not innocuous: it is a significant restriction on the 
class of spacetime models which can be considered. It’s also worth flagging that the assumption 
of global foliability is strong, and arguably not strictly necessary—one might choose to weaken 
to a local notion of foliability. Nevertheless, to retain continuity with the work of Hehl et al., we 
will continue to assume global foliability in what follows.

15	 In more detail, given a coordinate system x, y, z, σ, a p-form can be expressed as a linear 
combination of p-wedge products of dx, dy, dz, and dσ. For example, a 2-form can be written as 
adx Ù dy + bdy Ù dz + cdz Ù dσ + rdσ Ù dx for some a, b, c, r. This can be rearranged into the 
decomposition form specified by (4). A decomposition satisfying the form of (4) alone is not 
unique—since, for example, it does not prohibit ɣ to contain dσ. The further constraint that ɣ 
is “orthogonal” to the direction of time means that ɣ(v) = 0, which ensures the uniqueness of 
the decomposition. We say β Ù dσ is “tangential” to time since it contains dσ, and by extension 
we also say that β is “tangential” to time since it is wedged with dσ. Thus, we may call β and ɣ 
respectively the (spatio)temporal and spatial component of α.
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The next axiom deployed is physical in nature (regarding, as it does, the charge current 
density), and reads as follows:16

Axiom 2. The charge current density is a conserved twisted 3-form J, so that when 
J is integrated over a closed 3D submanifold C Ì M (so that ∂C = ∅), one has17

	 = 0.
C

Jò � (5)

From this, it follows that dJ = 0, via Stokes’ theorem. Intuitively, Axiom 2 states that the 
rate of the change of the electric charge ρ (i.e., ρ⋅) in a region is equal to the electric flux 
dj into the region (d is the spacelike exterior derivative and dots denote derivatives with 
respect to σ)—this is clear once one recalls that J can be decomposed into components as 
(ρ, j): ρ and j result from the decomposition of J with respect to “time,” where ρ is a 3-form 
considered as the charge density in “space” and j is a 2-form considered as the current 
density of ρ. We can derive from dJ = 0 (along with other plausible conditions, which 
have to do with the numerical coefficients in the time-space decomposition of J—which, 
however, can be normalized away) that dj + ρ̇ = 0, which amounts to the usual continuity 
equation for the conservation of electric charge.

By de Rham’s theorem (which has to do with the theory of de Rham cohomology groups—
see Hehl and Obukhov 2003, 96–101), one can write18

	 = ,J dH � (6)

where H is a twisted 2-form called the “electromagnetic excitation”; this can be decomposed 
using (4) into two parts  and , respectively (these are called the “electric” and “magnetic” 

16	 Twisted differential forms are defined in the appendix.

17	 As is standard in the context of Stokes’ theorem, by “boundary,” we do not mean 
the notion of “topological boundary” but “boundary of a manifold,” where “manifold” is 
understood as the generalized notion of “manifold with boundary” (namely that a Hausdorff 
space in which every point has a neighborhood homeomorphic to an open subset of 

1 2 1:= {( , , ..., ) , ..., 0}n n
n nx x x x xÎ  |  for some n). The boundary of an n-dimensional manifold M 

is the complement of the interior of M in M, where the interior of M is the set of all points in M 
that have neighborhoods homeomorphic to open subsets of n .

	 It is important to note that the “closed” 3D submanifold C here refers to a compact 
boundaryless manifold, such as a 3-sphere, rather than one of the folia (which is not 
compact). The paradigmatic case in this context is a 3D “cylinder” with its height along 
the time dimension, its top and bottom surface being each a 3-ball, and its cross-sections 
2-spheres. The total flux into or out of  this region being zero is an elegant formulation of 
charge conservation, as explained in the text. Note that if  the region in question is one of the 
folia, then the integral of  the flux may not be zero (but rather equals the total charge of the 
region).

18	 To be clear, de Rham cohomology addresses (at least in part) the question: when can a 
spacetime n-form be considered the curvature of some (n-1)-form potential? The Poincaré 
lemma—which we also consider below—regards all closed n-forms, and finds them to be 
locally exact (i.e., of  the form dη, for some (n-1)-form η). In the pre-metric approach, when 
we are dealing with a closed 2-form F (given (2)), both de Rham theorems and the Poincaré 
lemma are potentially relevant. If  the conditions of de Rham theorems are satisfied, F is 
globally of the form dA; otherwise, given the Poincaré lemma and the fact that F is closed, F 
can still be regarded as being locally of the form dA. For the twisted 3-form J, dynamics do not 
impose that dJ = 0 (unlike the case of F); therefore, only the de Rham theorems are relevant. 
In this case, however, the conditions of those theorems are satisfied, and so the above result 
obtains.
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excitations, respectively).19 Of course, H is not unique: the addition to H of any exact form 
would still satisfy (6). The physical significance of  and  is this: both can be measured 
by ideal electric conductors and superconductors, respectively (Hehl and Obukhov 2003, 
116)—as Hehl and Obukhov state, “the electric excitation  can be measured by means 
of Maxwellian double plates as charge per unit area, the magnetic excitation  by means 
of a small test coil, which compensates the -field to be measured, as current per unit 
length. […] In other words, the extensive quantities  and —and thus the 4-dimensional 
excitation H—have an operationally [sic] significance of their own, since they are related 
to charge at rest or in motion, respectively” (Hehl and Obukhov 2001, 7). In this sense, 
Axiom 2 can be regarded as being imbued with empirical content—the significance of this 
will be explored further below, in §4.3.

We turn now to the third axiom of the pre-metric approach, which has to do with the 
behaviour of point charges:

Axiom 3. The Lorentz force density—a twisted covector-valued 4-form—is

	 = ( ) ,α αf e F J � (7)

where eα is a frame and F is an untwisted 2-form.

This is an alternative formulation of the Lorentz force law (3) that appeals to the frame 
field.20 Note that no metric is required in order to write down this law; thus, treating it as an 
axiom is consistent with the pre-metric methodology. In the pre-metric approach, Axiom 3 
is treated as imbuing the electromagnetic field strength tensor F with empirical content (see 
Hehl and Obukhov 2003, 123); accordingly, its conceptual status is in fact quite subtle—
we’ll return to this in §4.3.21 Once again, one can decompose F into (spatio)temporal and 
spatial parts—these are the electric and magnetic fields, E and B, respectively.22

The fourth axiom of pre-metric electromagnetism is again physical in nature, and involves 
the conservation of magnetic flux:23

19	 That is, = – +H dσ  (Itin and Hehl 2004, 66). This is analogous to the decomposition 
of F into E and B, namely F = E Ù dt + B (see footnote 22); note here that B is to be understood 
as a 2-form which encodes the components of the magnetic vector field. Note, however, that 
the role between the magnetic and the electric components of H is somewhat exchanged when 
compared to those of F:  is temporal and  spatial while E is temporal and B spatial—this 
is perhaps not surprising since H is standardly the Hodge dual of F (note, though, that this 
condition has yet to be imposed in the pre-metric approach). We can derive that  and  satisfy 
inhomogeneous Maxwell equations =d ρ  and – =σd j  , which are respectively the Gauss 
law and the Ampère Law, although these are standardly formulated in terms of the electric and 
magnetic fields. See Hehl and Obukhov (2005) for more details.

20	 For the details of the interconversion between (3) and (7), see Hehl and Obukhov (2003, 
123–124). Operations such as the interior product and wedge product are defined in the 
appendix.

21	 It would be pushing matters too far, however, to suggest (in the absence of any explicit 
operational procedure) that Axiom 3 constitutes an operational definition of F.

22	 Namely, F = E Ù dσ + B. This is entirely analogous to the decomposition F = E Ù dt + 
B (note that here, as in footnote 19, B is to be understood as a 2-form). Just as the latter in 
the case of a curved spacetime requires selecting a local frame, choosing σ and v amounts to 
choosing a local frame. See the discussion in §4.3. See also footnote 19.

23	 We follow the lead of Hehl and Obukhov (2003) in calling this an axiom to do with the 
“conservation of magnetic flux.” But since the axiom expresses a conservation law for the 
Faraday tensor F, arguably it would be better to call this an axiom to do with the conservation 
of electromagnetic flux.



8Chen and Read 
Philosophy of  Physics 
DOI: 10.31389/pop.45

Axiom 4. Magnetic flux is conserved, so that for any 2D closed submanifold C Ì M 
(such that ∂C = ∅),24

	 = 0.
C

Fò � (8)

This entails dF = 0 under Stokes’ theorem. By de Rham’s theorem, the above result 
yields F = dA, where A is an untwisted 1-form, the electromagnetic potential.25 As with 
Axiom 2, this axiom has fairly direct operational meaning, since the electric and magnetic 
components of F can be measured in the lab.26

So far, pre-metric electromagnetism has yielded, inter alia, the equations dH = J and dF 
= 0. At this point, the fields H and F remain independent of one another, so we should 
now consider the ways in which they might be coupled together. In particular, we 
require that this “constitutive relation for vacuum” be local, which means that H at a 
certain spacetime point depends only upon F at that point (and not upon other points 
in addition); moreover, we require the relation to be linear, in the sense that if H = κ(F), 
then ( Φ+ Ψ) = (Φ) + (Ψ)κ a b aκ bκ , for a,b arbitrary constants and Φ, Ψ arbitrary 2-forms. 
In addition, κ is symmetric, such that (Φ) Ψ = Φ (Ψ)κ κ  . These conditions on the 
constitutive relation can be imposed as a further axiom:

Axiom 5. H = κ(F), with κ being local, linear, and symmetric.

Note that this differs from Axiom 5 as presented by Itin and Hehl (2004)—this, indeed, is the 
only point at which we deviate substantially from the presentation of that article. Axiom 5 
as presented by Itin and Hehl (2004) can be understood as a corollary to Axiom 5 presented 
above; Hehl and Itin therefore take Axiom 5 as presented above to be a further postulate. 
Since it is the above condition which will ultimately be required in order to derive the 
Lorentzian metric signature, we have elected to present this condition as an axiom directly.

Axiom 5 is used, first of all, to derive an expression for a quantity Σα, called the “energy-
momentum current” of the electromagnetic field, which is a covector-valued 3-form (the 
object is defined using a frame field eα, hence the index). This quantity is introduced as a 
generalized potential of the Lorentz force—that is, the Lorentz force describes how the energy-
momentum current varies under spatiotemporal variation of the electromagnetic field:

	 Σ = + ,α α αd f X � (9)

where Xα involves the derivative of the frame field eα (for explicit expressions, see (Itin and 
Hehl, 2004, p. 69)).27 Then, substituting (7) from Axiom 3 into (9) and using the properties 

24	 As in Axiom 2, C is a compact manifold without boundary. However, note that since C is 
here a 2D submanifold, it can be entirely spatial, unlike the submanifolds referred to in Axiom 
2. As a result, unlike the electric flux, the magnetic flux should be zero even for a closed spatial 
region, which is related to the closed lines of the magnetic field.

25	 Even if the conditions of the de Rham theorems do not obtain, one will still have this result 
locally, in light of the Poincaré lemma—see Hehl and Obukhov (2003, 132). Recall also footnote 18.

26	 Although see our concerns regarding the operational significance of the electric and 
magnetic fields expressed in §4.3.

27	 The frame field eα consists of four tangent vectors at each point. Note that dΣα is not 
defined explicitly by Itin and Hehl (2004), which is problematic because Σα is not an ordinary 
differential form. We can infer from the source that the dΣα is implicitly defined as d(eαΣα), 
namely that we first evaluate Σα at each eα and then apply d to each of them, resulting in a 
4-tuple of 4-forms. Without this explicit definition, the role of the frame field eα is obscured. 
Similarly, “the derivative of the frame field” referred to by Itin and Hehl (2004) does not literally 
mean the exterior derivative of the field since the latter is not a form, but rather the operator 
d(eα), which first contracts a form with the frame field and then applies d to the result.
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of the constitutive relation from Axiom 5, a somewhat lengthy algebraic calculation yields 
(see Hehl and Obukhov 2005, 5)

	 ( ) ( )1 – = ,
2 α α αd e H F d e F H Xé ù ê úë û  � (10)

which gives rise to

	 ( ) ( )1Σ = – .
2α α αe H F e F Hé ù ê úë û  � (11)

This also means that the trace := Σα
αT J  (where αJ  is the coframe field associated to eα) 

of the energy-momentum current Σα vanishes, which ensures that the photon be massless 
(see Itin and Hehl 2004, 70). This trace would not vanish were it not for the conditions 
imposed via Axiom 5; therefore, this can be considered (at least some of) the extra 
empirical content delivered by Axiom 5, over and above that of Axiom 3 alone.

From these axioms, there follows the “electric-magnetic reciprocity relation” that preserves 
the energy-momentum current, which is

	 ,H ζF � (12)

	 1– .F H
ζ

 � (13)

where ζ is a twisted 0-form (which is a scalar function save that it changes signs under 
parity inversion—see appendix) (Itin and Hehl 2004, 71).

3 EMERGENCE OF METRIC SIGNATURE
So far, we have recapitulated the axiomatic version of pre-metric electromagnetism, as 
presented by Hehl et al. (and with particular attention to the presentation by Itin and Hehl 
2004). Supposedly, in this approach no metric occurs in the fundamental posits.28 But—
perhaps surprisingly!—the theory already contains the seeds of metrical information; 
in particular, the seeds of the signature.29 With the work of the previous section in 
hand, we are now ready to derive the metric signature from Axioms 1–5 of pre-metric 
electromagnetism.30 It is worth flagging that we intend this section to be fairly uncritical; a 
thoroughgoing foundational and philosophical assessment of this supposed derivation of 
the metric signature is deferred to §4.

Given the reciprocity relation (12) and (13) and the constitutive relation H = κ(F), it is not 
hard to derive that κ is proportional to the identity operator, and in particular 2 2= –κ ζ  
(see Itin and Hehl 2004, §4.3). In fact, we can now replace ζ by an ordinary (rather than 
twisted) scalar function λ, since the differences between ordinary scalars and twisted 
scalars disappear when the two are squared. We can assimilate the scalar factor by defining 

= /κ λ  so that 2 = – . This reminds us straightforwardly of the Hodge star operator * 

28	 We will assess in §4 whether, strictly, this is true.

29	 We mean this in the sense of Le Bihan and Linnemann (2019), according to which the 
Lorentizan signature is the “seed” of spacetime. Le Bihan and Linnemann argue that (again, 
perhaps surprisingly) this “seed” can be found in many approaches to quantum gravity 
(despite claims in the philosophy literature that spacetime disappears from the fundamental 
commitments of such theories—on which see, for example, Huggett and Wüthrich 2013).

30	 It is possible that all of the background metric—not just the signature—can be derived. 
But we are silent in this paper about whether the other parts of a metric can be derived from 
electrodynamics or other matter theories.
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(see appendix), which has the property that 2 ind* = (–1)  when acting on 2-forms in 
4-dimensional spacetime, where “ind” denotes the number of minus signs in the metric 
signature. We hereby now reverse the order of derivation: instead of deriving the Hodge 
star from the metric signature, we derive the metric signature sig(gab) from , which plays 
the formal role of the Hodge star up to a scalar factor. In particular, we have:

	 ( )
2

2

(+, –, –, –) or (–, +, +, +) = –
sig =

(+, +, –, –) or (+, +, +, +) =abg
ìï ïïíï ïïî

 
 

� (14)

It follows that the sig(gab) is Lorentzian, given Axioms 1–5 of pre-metric electromagnetism 
as presented in the previous section.

Of course, the difference between signatures (+, –, –, –) and (–, +, +, +) is typically (and 
quite reasonably) regarded as being a conventional (rather than factual) one; by contrast, 
the difference between signatures (+, +, –, –) and (+, +, +, +) is far from trivial or a matter 
of convention alone.31 For example, in the former case, one (perhaps surprisingly) has well-
posed Cauchy problems (see Craig and Weinstein 2009; Weinstein 2008, for the mathematical 
details) and so in a straightforward sense can model temporal evolution; this is not so in 
the latter case.32 This is fortuitous, since the different choices of signature associated with 

2 = –  thereby turn out to be physically immaterial; not so for the case 2 = .33

While the Lorentzian metric signature is thereby determined uniquely from assumptions 
regarding the constitutive relation encoded in Axiom 5, we may ask the question as to 
whether other metric signatures are derivable from pre-metric electromagnetism given 
different assumptions regarding the constitutive relation. The answer is affirmative: 
indeed, we have already seen that if 2 = , that is, if 2 2= –κ ζ , then it is underdetermined 
whether we have (+, +, –, –) or (+, +, +, +), both of which are non-Lorentzian signatures. 
Relatedly, in the recent work of Fecko (2022), Hodge star operators associated with Galilean 
spacetime (which is obtained by widening the lightcones of a Lorentzian spacetime 
subject to certain integrability conditions) and Carrollian spacetime (which is obtained by 
narrowing the lightcones of a Lorentizan spacetime) are constructed; in both cases, they 
are nilpotent operators, as one would expect, given 2 ind* = (–1) . This opens up further 
possibilities which could arise from pre-metric electromagnetism: if κ were nilpotent, one 
could in principle situate the theory in Galilean or Carrollian spacetime. As in the 2 =  
case considered previously, however, in this case the signature (and, hence, the spacetime 
structure) would not be fixed uniquely by this particular form of the constitutive relation—
in this regard, a Lorentzian signature appears to be special.34

31	 For presentational clarity, we’re setting aside other possibilities in the second of the above 
categories—for example, (–, –, +, +), (–, +, +, –), or (–, –, –, –). For some brief philosophical 
discussion of these issues, see Read et al. (2018, fn. 35) and (separately) Callender (2017, §6.3).

32	 That being said, the connection between metric signature and the possibility of temporal 
evolution in fact turns out to be quite subtle—see Read and Cheng (2022) and, relatedly, 
Linnemann and Read (2021c).

33	 There is, however, a potential problem for the program of pre-metric electromagnetism in 
this vicinity which, to our knowledge, has thus far gone unacknowledged: even supposing that 

2 = – , why should it be the case that the “time” direction identified in the resulting Lorentzian 
signature be the same as that of the vector field v, orthogonal to dσ? That the two coincide 
appears to be “miraculous”—cf. Read et al. (2018, fn. 35). (Our thanks to Jeremy Butterfield for 
discussion on this point.)

34	 To be clear: the assumptions regarding the constitutive relation which are encoded in 
Axiom 5 suffice to derive a Lorentzian metric signature; in principle, however, a different set 
of assumptions might still yield a Lorentzian metric signature. In practice, however, different 
assumptions regarding the constitutive relation seem to yield different spacetime geometric 
results: see Hehl and Obukhov (2001).
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4 PHILOSOPHICAL APPRAISAL
Technically, the approach to pre-metric electromagnetism of Hehl et al. appears to have 
achieved the following. First, it is (or at least, purports to be) a reformulation of classical 
electromagnetism without presupposing a metric or any structure that is conceptually 
equivalent to, or derivative upon, metrical structure.35 Second, the Lorentzian signature is 
derived from the theory. These points, however, are not completely obvious or indubitable. 
The derivation of the signature from the theory hinges upon the constitutive relation 
between F and H. One may object from this single step of derivation that the constitutive 
relation selected by Hehl et al. is conceptually equivalent to choosing a Lorentzian signature 
along with the standard formula H = *F. In this sense, the thought would go, we already 
introduce the metric signature in disguise via Axiom 5, and therefore this is not metric-
free electromagnetism after all. But this criticism seems unfair, since there is no a priori 
conceptual connection between F, H, and metrical signature. The former are well-defined 
independently of any geometric concept, and their relation being local, linear and symmetric 
are reasonable requirements independent of any considerations to do with a metric.

Although this response seems to us to be reasonable, it’s worth expanding upon some 
conceptual puzzles which arise out of the derivation presented in §3. One significant 
concern is this: as written, (14) implies that that there is some antecedently given piece of 
ontology—the metric field gab—with some associated property (i.e., ideology, in the sense 
of Quine (1951); cf. Pooley (2013))—its signature sig(gab)—not to be regarded as being 
fundamental, but rather to be regarded as having been derived via the program of pre-
metric electromagnetism.36 This would seem to imply that the pre-metric program regards 
there as existing ab inito a metric field after all; it is just that certain properties of said metric 
field are to be derived on the basis of dynamical considerations (cf. our discussion of the 
related program of Schuller et al. in §4.4). This strikes us as an acceptable understanding 
of what is going on in the pre-metric derivation of §3—although it is an understanding the 
discussion of which is often not emphasized in the writings of Hehl et al. on this topic.37,38

It is also worth noting that there seem to be at least two other alternative ways in which 
one could interpret the derivations presented in the previous two subsections. First: one 
could make some attempt to separate out explicitly the signature degrees of freedom of gab 
from all others (this proposal is discussed in greater detail in §4.1); if successful, one could 
thereby treat those degrees of freedom as derivative ontology. Second, one could continue 

35	 One might question whether it’s really possible to understand the approach as having 
proceeded without presupposing a metric; we’ll return shortly to this worry.

36	 In the foregoing, we’ve plumped for an understanding of the metric field gab on which it is a 
piece of ontology—a field “living” on the manifold M. But there is an alternative understanding 
of gab according to which it too is a piece of ideology, for it encodes properties of the spacetime 
points comprising M, in particular distances and angles between said points. For the sake of 
simplifying the narrative, in the above we have elected to identify gab as a piece of ontology.

37	 This might be the preferred position of Hehl et al., since they want to leave room for a 
separate theory of gravity that interacts with other matter fields including the electromagnetic 
field (see Hehl and Obukhov 2003, ch. F).

38	 Continuing on the theme of footnote 36: if  the metric field gab—qua object encoding 
properties of points of M—were indeed to be regarded as a piece of ideology, then one would, 
in analogy with our discussion in the main text, wonder what it could mean to retain a 
commitment to gab in general relativity, yet reject a commitment to the manifold of points 
M—this being the interpretative stance urged by Earman and Norton (1987) in light of the 
hole argument (see Pooley 2021, for a recent review of the hole argument). In turn, this might 
motivate one to reformulate general relativity in terms of, for example, algebraic fields—on 
which see, for example, Earman (1989) and Rynasiewicz (1992) (and, from an angle more 
related to the “dynamical relativity” of §4.2, Chen and Fritz (2021) and Menon (2019)).
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to think of sig(gab) as a piece of derived ideology, but reject the view that this need be 
a property of anything in the model: rather, in this case, one would regard that derived 
property as having modal import: if there were a metric in the model, then it would have 
this signature. We confess that we do not find this latter option particularly compelling, 
for if there were indeed a metric in the model (not to mention the possibility of multiple 
metrics, which would complicate the story yet further), what would compel it to have that 
particular derived signature, rather than some other?39 But in any case, our purpose here 
isn’t to defend one of these options, but rather to chart the space of interpretative questions 
which arise for Hehl et al., having presented the derivation of the metric signature within 
the context of pre-metric electromagnetism which we have recapitulated in §§2–3.40

Even setting aside these issues (at least for the time being), there remains a great deal 
more to explore regarding the philosophical significance of pre-metric electromagnetism. 
In this section, we take up these matters with respect to: (i) the question as to whether it 
is possible to liberate electromagnetism from a commitment to “background” structures 
(§4.1), (ii) the significance of pre-metric electromagnetism for the version of spacetime 
relationism associated with the “dynamical approach” of Brown and Pooley (2001; 2006) 
(some of the issues here were outlined already in §1) (§4.2), (iii) the relation between pre-
metric electromagnetism and the program of “constructive axiomatics” promulgated by 
Reichenbach in 1924 (§4.3), and (iv) the connections between this work and the à la mode 
topic of spacetime functionalism (§4.4).

4.1 BACKGROUND INDEPENDENCE

It is sometimes claimed that general relativity occupies a privileged point in the space 
of spacetime theories by virtue of its “substantive general covariance” or “background 
independence” (for reviews of such issues, see, e.g., Norton 1993; Pooley 2017; Read 2023); 
we use the two terms interchangeably in what follows, and will for simplicity tend to use 
the latter term).41 Clearly, this presupposes several things:

1.	 A precise definition of these terms.

2.	 A clear assessment that general relativity satisfies said definitions.

3.	 A clear assessment that other theories do not satisfy said definitions.

Now, when it comes to (1), a cornucopia of definitions present themselves—see Read 
(2023) for a survey and assessment—however, we will focus here on a definition in terms 
of “absolute objects” (going back to Anderson (1967), and subject to significant critical 
scrutiny by Pitts (2006)), since (a) it is one of the most popular and plausible of such 
definitions, and (b) as we will see, it interacts in particularly interesting ways with the 
above-presented results from pre-metric electromagnetism.

The “no absolute objects” definition of background independence says this: a theory is 
background independent just in case it has no absolute objects in its formulation, where an 

39	 This is related closely to concerns regarding “miracle resolution” (see Read et al. 2018), 
which we’ll discuss in §4.1.

40	 On top of—but related to—these questions, there is another: why take it to be that 
case that metric signature derived in the pre-metric approach really is the signature of 
spacetime? This is akin to the “hard problem of spacetime” (itself akin to the “hard problem of 
consciousness” raised in the philosophy of mind: see Chalmers 1996), which has been discussed 
in the content of the (supposed) emergence of spacetime in quantum gravity (see Bihan 2021; 
Chalmers 2021; Lam and Wüthrich 2018; Linnemann 2020).

41	 For an invitation to philosophers to explore the space of spacetime theories, see 
(Lehmkuhl et al. 2016).
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absolute object is an object fixed (up to isomorphism) in all dynamically possible models of that 
theory.42 To illustrate the thought behind this proposal, consider the following two versions of 
special relativity, which Pooley (2017) dubs SR1 and SR2. SR1 has kinematical possibilities 
given by triples (M, ηab, φ) for some fixed Minkowski metric field ηab (i.e., ηab fixed identically in 
all kinematically possible models of the theory) and scalar field φ, and dynamical possibilities 
(a subset, of course, of the kinematical possibilities) given by the Klein-Gordon equation

	 = 0,a b
abη φ  � (15)

where Ñ is the Levi-Civita derivative operator of ηab. By contrast, SR2 has kinematical 
possibilities given by triples (M, gab, φ) for some generic Lorentzian metric field gab in this case 
not fixed identically across kinematical possibilities, and dynamical possibilities given by

	 = 0,a b
abg φ  � (16)

	 = 0,
a

bcdR � (17)

where now Ñ is the Levi-Civita derivative operator of gab. (In both SR1 and SR2, we take it 
to be the case that 4=M  .)

The point of introducing these two different versions of special relativity is this: intuitively, 
SR2 is no more ‘dynamical’ in any interesting sense than SR1, for in essence all that one 
has done is convert the metric field’s being fixed at the level of kinematics to its being 
fixed at the level of dynamics, by way of introduction of a suitable additional dynamical 
equation (imposing flatness of the associated derivative operator). The “no absolute 
objects” definition captures this intuition correctly, for it adjudicates that neither SR1 nor 
SR2 is background independent: both theories fail the definition.

Turn now to general relativity. At first blush, one’s verdict might be that this theory passes 
the “no absolute objects” definition, for in this case the metric field is dynamical, and varies 
from dynamical possibility to dynamical possibility. However, Pitts (2006) demonstrates 
correctly that this verdict is false, for consider the fact that a Lorentzian metric field gab can 
generically be decomposed as

	
2/ˆ= – ,

n
ab abg g g � (18)

where g is the determinant of the metric, ˆabg  is the conformal metric density, and n is the 
dimension of the metric manifold under consideration (for us, n = 4). Note, in particular, 
that locally the scalar density g is indeed fixed (up to isomorphism) in all models of general 
relativity—so, in fact, general relativity does have an absolute object! (For further detailed 
discussion of this point, see Read (2023, §3.3).)

This is very closely related to the fact that the signature of the metric in general relativity is 
fixed (up to isomorphism) in all dynamical (indeed, kinematical) possibilities. To see this, 
note that the metric determinant encodes this signature: if g < 0, one can infer that the 
metric has Lorentzian signature (recall again our discussion of these issues in §3; note also 
that g < 0 underdetermines the particular Lorentzian signature convention). Of course, 
g encodes more than just the metric signature: the magnitude of g encodes in addition 
facts about global volume which, alongside the conformal structure encoded in ˆabg  (which 

42	 For a more formal presentation of Anderson’s account, also commenting on the 
differences between Anderson’s original presentation (Anderson 1967, 83) and Friedman’s later 
reformulation (Friedman 1983, 58–60), see Pitts (2006, 348–353). Cf. also Hiskes (1984).
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essentially fixes the lightcone structure at each point), together via (18) suffice to fix the 
metric gab. But the point is that one can see straightforwardly how the metric signature is 
the same (up to isomorphism) in all dynamical possibilities of general relativity, even if the 
metric itself is not so fixed.

If one could identify a means of modifying general relativity so as to incorporate dynamical 
signature change, then this concern regarding the exhibition of absolute objects even in 
general relativity—insofar as it is indeed a concern!—could be overcome. There is, indeed, 
a precedent for considering signature change in (modified versions of) general relativity 
(see, e.g., Bojowald and Brahma 2018; Brahma 2020; Hartle and Hawking 1983; Huggett and 
Wüthrich 2018). Arguably though, such approaches are lacking, in the sense that they really 
seem to be changing the subject, by moving to theories distinct from general relativity. What 
would seem to be preferable would be an account as to how the metric signature need not 
be regarded as being fundamental in a relativistic theory: in this way, concerns regarding 
any commitment to the fundamentality of this particular absolute object could be avoided.43

This is exactly what the machinery of pre-metric electromagnetism seems to provide: 
at least within the framework of something like Einstein-Maxwell theory, the thought 
would be that the metric signature can be derived from the electromagnetic sector. But 
is it really so? At this point, it might again help to think through the issues in terms of 
kinematical and dynamical possibilities. For clarity of presentation separating out the two 
sub-constituents g and ˆabg  of gab, one could write the kinematical possibilities of standard 
Einstein-Maxwell theory as )ˆ( , , , , a

ab abM g g F J ; dynamical possibilities are given in terms 
of the Maxwell and Einstein equations written in terms of the relevant objects. This won’t 
exactly do for our purposes, however, since we’ve already seen that g encodes more than 
merely signature degrees of freedom.44

What we require, therefore, is a cleaner decomposition of a Lorentzian metric field, which 
allows us to isolate exclusively the signature degree(s) of freedom. One way to proceed 
would be to use frame fields a

ae  in the combination

	 a b
ab= ,ab a bg η e e � (19)

through which the Lorentzian metric field gμν can be taken to be defined in terms of 
the frame fields; ηab = diag (–1, 1, 1, 1) is here to be regarded as being a mere matrix. 
Thus, kinematical possibilities of electromagnetism set in a relativistic spacetime can be 
construed such that it is the frame fields which are primitive; thereby, the models can be 
written (M, ηab, 

a
ae , Fab, Jabc).

45 The merit of this particular decomposition over that discussed 
before is that ηab encodes all and only signature degrees of freedom—so, on the pre-metric 
approach, it is exactly this degree of freedom which is expunged.46 In this case, dynamics are 

43	 Of course, there’s still the open possibility that the theory turns out to have other 
absolute objects. It’s also important to be clear that, in viewing said absolute object as being 
non-fundamental, one has not thereby excised said object (one is, in other words, not being an 
eliminativist about that object, but rather simply reducing it to something else); nevertheless, 
the thought would be that one has made some progress by not having to regard this object as 
being fundamental. (For further discussion of issues regarding the fundamentality of absolute 
objects, see Read (2023, ch. 3).)

44	 In addition, since ˆ
abg  encodes lightcone structure, it also speaks to the metric signature.

45	 Recall from §2 that, in the absence of a metric with respect to contract indices, the 
elementary current J must be understood to be a (twisted) 3-form.

46	 The tradeoff, of course, is that by using frame fields we have introduced surplus degrees of 
freedom (see Pitts 2010). Note also that this decomposition will work only when the manifold M 
is parallelizable.
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picked out by (a) the constitutive relations discussed in §3 which suffice to fix a Lorentzian 
signature and thereby the metric signature (now understood as, in part, a derived object), 
and (b) the Einstein-Maxwell equations (where now, of course, some constituents of such 
equations are to be regarded as being derived, rather than fundamental).47

How does this compare with the case of the move from SR1 to SR2? There, one retains 
the same ontology (of a Lorentzian metric field) and ideology (flatness of the derivative 
operator compatible with said metric field) in both theories—it is simply that the ideology 
is imposed at the level of kinematics in SR1, while at the level of dynamics in SR2.48 By 
contrast, in the move from “standard” electromagnetism to pre-metric electromagnetism, 
one in a certain sense trades ontology for ideology: the metric signature in the former 
theory is encoded in extra relations imposed upon the remaining geometric objects 
which comprise the kinematical possibilities of the latter theory.49 These differences 
notwithstanding, an analogy with the case of SR1 and SR2 is fairly plain: in both cases, 
one has moved kinematical impositions to dynamical ones. By analogy, then, if the original 
version of the theory qualifies as not being background independent in virtue of its 
possession of an absolute object, one might worry that this reformulated version, appealing 
to pre-metric electromagnetism, should also fail to be background independent. But there 
are ways to push back against this: one might argue that because there is an ontological 
reduction in the case of electromagnetism in a way that there is not in the case of SR1 and 
SR2, there is a better case to be made that there is genuine liberation from background 
structures here. On the other hand, if one notes that the metric signature and g are still 
implicitly definable (cf. Barrett 2017), then, as already indicated, one can levy the charge 
of a lack of background independence (understood in terms of the absence of absolute 
objects) in both cases.

We’ll close this subsection with two more criticisms in the vicinity. First: in Read et al. (2018, 
fn. 34), it is argued that in theories such as Einstein-Maxwell (standardly formulated), it’s 
a miracle (by which Read et al. (2018) mean: something surprising and unexplained) why 
the signature associated with the Lorentizan metric field which codifies the symmetries of 
the dynamical equations governing matter coincides with the signature of the primordial 
metric field gab. One might think that the move to pre-metric electromagnetism can help 
to resolve this issue, for one could argue that the signature of gab is nothing other than 
that derived from the equations governing material fields. In fact, however, it’s at least not 
obvious to us that there would be a reduction in “miracles” on making this move, for it 
still appears to be outstanding why the signature obtained from the pre-metric approach 
should interact with the other metrical degrees of freedom (encoded—redundantly—in 
the frame fields) just so as to yield a well-behaved Lorentizan metric field gab.

Second: in standard electromagnetism, one has the constitutive relation H = *F, where * 
is the Hodge star operator associated with gab. Given this, one needn’t commit to H or F as 
being primitive: both can be derived from J. By contrast, in pre-metric electromagnetism, 

47	 As usual in foundational discussions of electromagnetism, there are questions to be 
asked regarding whether to take F or its potential A (mutatis mutandis J or its potential H) as 
ontological primitives. It’s principally for the sake of simplicity that we elect to formulate our 
theories above in terms of F and J.

48	 For more on the kinematics/dynamics distinction in modern theories of physics, see 
Curiel (2016) and Linnemann and Read (2021c).

49	 We say “in a certain sense,” because one could argue that the metric signature is not an 
entity, but a property of the metric field to begin with. Fair enough: in this case, the correct 
thing to say is that one moves from primitively stipulated ideological commitments to ones 
which are derived on the basis of further dynamical considerations, much (again) as in the case 
of the move from SR1 to SR2. (Cf. our discussion in the introduction to this section.)
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one must retain a commitment to H (or J, as presented above) and F as primitive 
ontological posits, in order to derive the Hodge operator for a Lorentzian metric field 
from the constitutive relation between these objects. Thus, ontological parsimony and 
Occamist norms (cf. Dasgupta 2016) do not favour pre-metric electromagnetism in the 
way that one might have expected. Since Occamist motivations are some of the strongest 
militating in favour of relationalism in general (cf. (Babic, 2023; Pooley, 2013)), this point 
is, therefore, arguably a blow to some of the foundational motivations underlying the pre-
metric program.

4.2 DYNAMICAL RELATIVITY

One of the central tenets of the “dynamical approach” to spacetime theories of Brown 
and Pooley (2001; 2006) is that spacetime structure is to be understood as nothing more 
than a codification of the symmetries of the dynamical laws governing material fields: 
it is for this reason that Brown and Pooley declared famously that the Minkowski metric 
of special relativity is a “glorious non-entity.”50 Of course, this is a relationalist thesis—
however, when one gets into the weeds of their positions, different projects appear to be 
driving the ambitions of Pooley versus Brown. For the former, it is an Occamist ambition 
to expunge redundant structure from one’s roster of metaphysical commitments (Pooley 
2013).51 For Brown, by contrast, what is problematic are, in particular, objects which violate 
the “action-reaction principle”: which act on other bodies, but which are not acted back 
upon in turn (see the discussions by Brown (2005) and Lehmkuhl and Brown (2016) for 
wider-ranging explorations of this principle).

When it comes to the Minkowski metric field of special relativity, Brown and Pooley’s 
ambitions align, and both authors seek to reduce the metric field to symmetries of the 
dynamical equations via the dynamical approach. However, when it comes to the metric 
field gab of general relativity, the two authors diverge: Pooley is still motivated to expunge 
a commitment to (what’s represented by) this structure on Occamist grounds; by contrast, 
since gab is dynamical, Brown is explicitly uninterested in such a reduction (see Brown 
2005, ch. 9). This being said, Brown recognizes that the signature of the metric in general 
relativity is indeed still fixed, non-dynamical, and action-reaction principle violating—so, 
his reductionist ambitions continue to track this more modest target.

On the face of it, pre-metric electromagnetism may seem to avail Brown of exactly the 
resources he requires in order to expunge any commitment to the fundamentality of the 
metric signature in general relativity. However, for the reasons already articulated in the 
previous subsection, one mustn’t be too hasty here, for (a) this program clearly requires very 
particular material content, so cannot be fully general in the sense of being applicable to all 
possible worlds regardless of their material content (see §5 for prospects of generalisation), 
and (b) as already discussed, arguably the suspect absolute objects are “waiting in the 
wings” even when this program can be applied—so it is at least not obvious that Brown 
should be satisfied with it. Note also the reduction of the metric signature to dynamical 

50	 Actually, this is equivocal between eliminativism about the Minkowski metric—
according to which said object simply does not exist in one’s roster of fundamental ontological 
commitments—and reductionism about the Minkowski metric—according to which said object 
exists, but is reducible to other entities in one’s ontology. In our view, it is better to view this 
version of the dynamical approach as a form of reductionism rather than eliminativism; this 
squares with our comments below on functionalism.

51	 Note that Pooley’s views have evolved over time; in fact, he does not currently endorse 
the dynamical approach at all. In Pooley (2013), he argues that the strongest motivation for this 
version of relationalism which he can identify is an Occamist one.
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considerations will not satisfy authors (such as Pooley, on the above presentation) who 
strive for such a reduction of the full metrical structure of spacetime (for this, some other 
strategy—perhaps a generalisation of Huggett’s “regularity relationalism” (Huggett 2006) 
(see Pooley 2013; Stevens 2020)—may be more effective). Indeed, this is especially so given 
that the Occamist stripes of pre-metric electromagnetism, as we have just seen, are not as 
evident as one might think initially.

Finally, even granting that the metric signature can be derived from electromagnetic 
considerations, this result could, in principle, be co-opted for the purposes of those with a 
more “geometrical” outlook (see, e.g., (Brown and Read 2021) for more on the dynamical/
geometrical debate in the philosophy of spacetime). In particular, having derived said 
signature, one could argue subsequently that it acts as a constraint on the metrical 
signature associated with all other material fields—in this sense, the signature as it is 
manifest in all physics would indeed be specifically electromagnetic in origin. On the other 
hand, those with a dynamical outlook may prefer a more egalitarian stance, according to 
which each set of material fields yields its own distinct metrical signature—these may or 
may not agree, but this is ultimately a contingent matter, or at the very least is dependent 
upon the interactions between those fields. (Of course, this assumes that the pre-metric 
approach can be generalized to other material fields—more on this in §5.) This point is 
consistent with that of Geroch (2010), who stresses that each set of material fields may 
come equipped with its own light cone structure.

4.3 CONNECTION TO CONSTRUCTIVE AXIOMATICS

The dynamical approach discussed in the previous subsection occupies one corner of 
the literature on what is known as the “epistemology of spacetime” (of course, being 
an ontological reduction account, the approach is also metaphysical in nature—but the 
point is that, having secured said reduction, one would thereby also have come to settle an 
epistemological issue—see Dewar et al. (2022)). In another corner of this literature, one 
finds the program of what’s known as “constructive axiomatics.” The idea of constructive 
axiomatics, which is an agenda going back to Reichenbach in 1924 (Reichenbach 1969), is 
that one should build up the entire edifice of one’s theories (including in many theories 
inter alia a commitment to a spacetime metric) from axioms which (supposedly) have 
indubitable empirical content. Thereby, the thought goes, one comes to set one’s theories on 
solid empirical footing. The most famous constructive axiomatisation of general relativity 
is the 1972 approach of Ehlers, Pirani, and Schild (henceforth EPS) (Ehlers et al. 2012),52 
who purport to build up the Lorentzian manifold of general relativity from the trajectories 
of light rays (yielding, the claim goes, conformal structure) and freely falling particles 
(yielding, the claim goes, projective structure). The EPS axiomatisation has recently been 
subjected to detailed foundational scrutiny by Adlam et al. (2022) and Linnemann and 
Read (2021b); in this subsection, we will assume some familiarity with the approach—the 
reader is referred to the cited articles for more background.

The fact that Hehl et al. formulate axioms for pre-metric electromagnetism also affords 
their approach the flavour of a project in constructive axiomatics; Hehl and Obukhov 
(2006), indeed, explicitly identify the approach as such. But the very different nature of the 
axioms of the pre-metric approach as compared with those of EPS means that the former 
warrants some further consideration qua constructivist project. The first question to settle 
is this: which of the axioms of pre-metric electromagnetism are in fact empirical in nature? 

52	 Reichenbach’s own axiomatisation was somewhat of a flop (see Ryckman 2005; 
Rynasiewicz 2005, for the history).
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Tackling each in turn, the empirical content of the pre-metric axioms can—very briefly!—
be summarized as follows:

Axiom 1: This is an axiom about the foliability of the manifold into 
hypersurfaces of constant (topological) time. Insofar as locally we think we 
can distinguish (even phenomenologically) a time direction, it seems to have 
empirical status; however, the global assumption seems to go beyond anything 
which we think we can access empirically.53

Axiom 2: The empirical significance of  and  (which, recall, are the 
magnetic and electric components of H, which in turn is the potential for 
the current J) is this: both can be measured by ideal electric conductors and 
superconductors in the lab (Hehl and Obukhov, 2003, p. 116). J is measured 
indirectly through these objects—so this is the operational significance of the 
axiom. This, indeed, allows the axiom to make contact with the empirical, 
albeit in a much more theory-laden and indirect manner than e.g. the axioms 
of EPS.54

Axiom 3: The motions of charged test bodies can be considered observable 
(albeit perhaps indirectly); such is the empirical justification for this axiom.55 In 
turn, this is used to afford F with empirical meaning.56

Axiom 4: The empirical content of this axiom—which regards the conservation 
of F—derives from measuring in the lab the electric and magnetic parts of F, 
which are the usual electric (E) and magnetic (B) fields, respectively.

Axiom 5: As discussed in §2, the empirical content of this axiom is encoded in 
the energy-momentum trace being zero, which corresponds to the photon being 
massless.57

53	 The weakening of Axiom 1 to “local” foliations presented in footnote 14 thereby appears 
to be better justified on empirical/phenomenological grounds than the “global” version of this 
axiom. Note that (empirical/phenomenological, local) evidence for there being some foliation 
does not imply uniqueness—-so there is no tension here with, for example, footnote 27.

54	 Cf. “theoretical constructivism,” discussed by Adlam et al. (2022).

55	 Of course, there’s more work to be done if this is to be compelling—one might appeal 
to, for example, (a) the fact that we can “track” the trajectories of outgoing bodies in particle 
scattering experiments (such as those at the LHC), or (b) the fact that an operational 
prescription for “tracking” test bodies using radar coordinates is given by Ehlers et al. (2012) 
(see Linnemann and Read 2021b, for discussion).

56	 It might not, however, be sufficient to afford an operational definition of F—see footnote 21.

57	 By “massless,” we mean that the field in question is dispersion-free—that is, propagates on 
null geodesics. There may ultimately be some complications to this understanding, given that it 
has recently been argued in Asenjo and Hojman (2017) and Linnemann and Read (2021a) that 
electromagnetic fields in curved spacetimes can exhibit dispersion; nevertheless, we’ll set aside 
these complications here, on the grounds that (a) such dispersion relations remain to be fully 
understood, and (b) these dispersion relations appear only to be non-vanishing in the context of 
particular spacetimes (e.g., Gödel, Kerr) in any case.

	 It is worth noting here, however, that the characterisation of masslessness in terms 
of dispersion-freeness is not necessarily completely unproblematic, given that the latter 
notion makes sense only once one has to hand a particular metric field (with its associated 
signature)—but this is what one is supposed to be constructing in the pre-metric program! The 
right thing to say here, it seems to us, is this: the motions of photons are empirically detectable 
in any case (at least granting the points raised in footnote 55) but can only be characterized as 
dispersion-free once one has to hand this additional structure. But ultimately, it is the motions 
which are empirically-detectable, and which are underwritten by Axiom 5—not their status as 
dispersion-free/those of massless bodies.
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It is important to note that it is not necessarily possible to isolate the empirical content of 
each of Axioms 1–5 from that of the rest. In fact, one can summarize the inter-relations 
between the axioms as follows. Axiom 1 is basic; the application of Axiom 3 relies on this 
in the sense that to decompose the F field featuring in (7) into its electric and magnetic 
components presupposes the “space”/“time” split of Axiom 1; Axiom 2 and Axiom 4 both 
presuppose both Axiom 1 and Axiom 3, for they both presuppose a “space”/“time” split 
and (in order to be operationalized via, for example, the motions of test bodies) the Lorentz 
force law; finally, Axiom 5 comes last, and relies on the other axioms as it presupposes 
the existence of a constitutive relation which follows only one those other axioms are 
deployed. These inter-relations are not necessarily problematic for the pre-metric program 
qua constructive axiomatisation—indeed, even the axioms of the EPS approach build on 
one another in a similar manner;58 nevertheless, they are worth keeping in mind.

What one learns here is that although all of the axioms of pre-metric electromagnetism 
have empirical content, this is often not as direct as that of the EPS axioms (which pertain, 
as already mentioned, to the observable motions of free particles and light rays). Indeed, 
in this regard there are two further points which we wish to highlight. First, regarding 
Axiom 2 and Axiom 4: without a background metric, we cannot decompose H or F into 
spatial and temporal components uniquely—but it is these very components which are 
the things supposed to have operational significance, on the above presentation!59 This 
raises the concern that the empirical facts encoded in these axioms in fact presuppose 
metrical structure after all. Second, and relatedly: a frame field occurs in Axiom 3 (as 
well as in the construction of Σα after the introduction of Axiom 5—this object being 
used to draw out the empirical content of that latter axiom), but (i) this field is completely 
arbitrary, and (ii) the concept defined in its basis does not obviously have physical 
meaning. In response to these concerns, one could argue that the field is supposed to 
represent a fiducial observer; insofar as we are reasoning from the empirical observations 
of some observer with some rest frame, this should be regarded as being unproblematic.60

In any case, let us now make a further point of comparison between the pre-metric 
approach and that of EPS. From the axioms, one derives (in the manner surveyed in §2) 
various equations of motion, which one then constrains via further theoretical relations, 
e.g. the reciprocity relation (which in this case follow from the axioms directly). The point 
is that, in this approach, the end-point of the axiomatisation is a dynamical theory, rather 
than merely a set of kinematical states as in the case of EPS—in this sense, this approach 
bears a clear conceptual advantage over the latter.

Insofar as the pre-metric approach derives (or at least purports to derive) the metric 
signature from certain dynamical equations denuded of metrical structure (subject 
to the relevant additional strictures already outlined)—viz., dH = J, dF = 0, and the 
constitutive relation between H and F—it is also (as already discussed) clearly a version 
of the dynamical approach. To our knowledge, therefore, it is unique in lying at the 
intersection of constructivism and dynamicism. Qua constructive axiomatisation, there 
are also perhaps some reasons for a proponent of the dynamical approach to favour it 
over that of EPS: in the case of the latter, Brown (for example) complains that, given 
its impoverished empirical base, it is “too operational” (personal communication; see 

58	 For further discussion in the context of EPS, see Adlam et al. (2022).

59	 Recall footnote 13.

60	 Fletcher (2023) argues that to introduce a frame field is to step outside of the theoretical 
architecture of a given theory, such as general relativity or Einstein-Maxwell theory. In light of 
the responses offered here, we’re unconvinced by the claim.
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Adlam et al. 2022, for further discussion). Given that pre-metric electromagnetism has a 
much richer empirical base (potentially encompassing a range of empirical phenomena 
to do with electromagnetism), a proponent of the dynamical view need not levy the same 
complaint in this case.

Hehl and Obukhov’s own main complaint against EPS is that the latter appeal to the 
notion of a point particle, which they claim is no longer tenable in light of e.g. quantum 
mechanics (Hehl and Obukhov 2006). Here, they may have failed to appreciate that point 
particles and light rays are meant to be empirical starting points rather than fundamental, 
theoretical descriptions of matter that predict these empirical outcomes, which is not 
the concern of EPS.61 But still the complaint against EPS hints at a perhaps legitimate 
concern about the paradoxical nature of their starting points. How we formulate the 
observational statements is not devoid of theoretical postulates: we neither observe a point 
particle nor that it follows a smooth trajectory, as assumed by EPS. It is unclear why these 
theoretical postulates are less problematic, or more indubitable, than (say) the waves and 
the dynamical equations of electromagnetism, especially considering that the latter has 
the virtue of guiding and correcting the empirical observations and may thereby have an 
elevated epistemic status.62

4.4 CONNECTION TO FUNCTIONALISM

Spacetime functionalism is sometimes presented in the contemporary philosophy of 
physics literature as the thesis that “spacetime is as spacetime does” (Lam and Wüthrich 
2018). Absent further details, this is of course vague: Butterfield and Gomes (2020) put 
flesh on the bones by understanding “functionalism as a species of reduction” in the sense 
of Lewis (1970), so that if the primitive posits of one’s theory fix uniquely some piece of 
(putatively) spatiotemporal structure, then the latter is reduced to the former, and (in 
this sense) one can be a functionalist about said latter structure. Butterfield and Gomes 
give several examples of this approach to spacetime functionalism, including inter alia 
the functional reduction of the temporal metric in the “Machian relationalist” theories of 
Barbour and collaborators (see Mercati 2018, for an introduction). The case which they 
discuss which is most relevant for our purposes is the program of Schuller et al. (see Düll 
et al. 2018; Schuller 2011). As in previous subsection vis-à-vis the EPS axiomatisation, here 
we assume some basic familiarity with this work of Schuller et al.; Butterfield and Gomes 
(2020) provides an accessible introduction.

In Schuller’s program, one begins with a Lagrangian theory of matter coupled to some 
tensorial geometrical structure, the exact nature of which (e.g., index structure) is 
left unspecified. By imposing certain constraints on such theories (e.g., “predictivity” 
and “quantizability”: note that these constraints are yet more theoretical—that is, less 
directly connected to empirical phenomena—than the axioms deployed in Hehl’s pre-
metric approach (cf. again Adlam et al. 2022)), Schuller et al. can, for example, rule out 
birefingence (according to which there are multiple possible lightcone structures at each 
spacetime point)63 and ultimately arrive at the conclusion that the geometrical structure 

61	 Although note that authors such as Lämmerzahl have sought to modify the EPS approach 
by using more realistic—but theoretical!—quantum mechanical models of matter as inputs (see 
Lämmerzahl 1998 and Adlam et al. 2022, for discussion).

62	 For more on different degrees of theoretical inputs in constructive axiomatic approaches, 
see Adlam et al. (2022).

63	 Notably, some of Hehl’s axioms can also be understood as ruling out birefrigence—see 
Perlick (2011).
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postulated at the outset must in fact be that of a Lorentzian metric field (with its associated 
unique lightcone structure at each spacetime point), satisfying the Einstein equation.64

The (Lewisian) functionalist strategy of Schuller et al. does indeed seem to afford another 
means of not regarding the metric field of (say) general relativity as being fundamental. 
However, as already indicated in parentheses above, the assumptions which it makes are 
more theoretical than those of Hehl’s approach; moreover, the approach begins by assuming 
that there is some geometrical structure before proceeding to pin down its properties, 
whereas the pre-metric electromagnetism approach of Hehl et al. does not begin with 
an ontological assumption of this form (at least explicitly—although recall the concerns 
raised at the beginning of this section that this may in fact be the case after all). This being 
said, on the other hand the payoff from the approach of Schuller et al. is arguably larger, 
insofar as the entirety of the metrical structure—rather than just the metric signature—is 
derived alongside the salient dynamics.65 Moreover, the approach of Schuller et al. is (at 
least at present) more general than that of Hehl et al., in the sense that it is not wedded to 
electromagnetism in particular. (Though, again, see below for the prospects for generalising 
Hehl’s approach.) And finally: insofar as the approach of Schuller et al. proceeds in terms 
of action principles rather than in terms of equations of motion, it might ultimately have 
the merit of being more amenable to, say, path integral quantisation.

5 PROSPECTS FOR GENERALISATION
There are compelling motivations for seeking to extend the pre-metric approach to 
electromagnetism to other matter theories, such as non-abelian Yang-Mills theories.66 
One important such motivation is to avoid a dependence of the metric field upon the 
electromagnetic field in particular—the issue here is that if other matter theories necessarily 
were to involve the metric field, then they would also be counterfacturally dependent on 
the electromagnetic field; however, there is little reason to think that the electromagnetic 
field should play such a privileged role amongst all matter fields. Additionally, the desire 
to isolate and minimize the role of the metric field in the formulation of electromagnetism 
applies to other matter theories as well. By reasoning analogous to that of Hehl et al. in 
the case of electromagnetism, this leads to a conceptually clearer formulation of those 
theories.

In this section, we investigate the feasibility of generalising the pre-metric approach to 
non-abelian Yang-Mills theories. We demonstrate that while this is possible in principle, 
the resulting formulation is less straightforward or attractive due precisely to the non-
abelian nature of a generic Yang-Mills theory. We close this section with some more 
general reflections on the prospects for a philosophy of non-abelian Yang-Mills theories.

64	 Schuller considers the conditions which he imposes to be “classically hardly negotiable 
necessary requirements for the field equations and their geometric optical limit” (Schuller, 
2022, 685). But arguably there is a parallel between the approach of Schuller et al. on the one 
hand, and that of Hehl et al. on the other, in the sense that just as one might argue that the 
latter’s postulates regarding the relationships obtaining between H and J bake in what one is 
after (and so are no more conceptually perspicuous than simply postulating that the metric 
signature be Lorentzian), one might also argue that the former’s primitive postulates again bake 
in what one is after.

65	 Hehl et al. in fact regard the metric field as being on a par ontologically with all material 
fields. As outlined in their book, Hehl and Obukhov (2003) aim to purge the metric from 
electromagnetism so that the electromagnetic current density can be a pure matter contribution 
to the Einstein field equations, interacting with the metric field.

66	 Yang-Mills theories are gauge theories based upon a special unitary gauge group SU(N). 
For N = 1, we have electromagnetism.
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5.1 PRELIMINARIES FOR YANG-MILLS THEORIES

A generic Yang-Mills theory is characterized by two equations of motion which look very 
similar to the Maxwell equations of electromagnetism (1) and (2) (see, e.g., Skinner 2022):

= 0,Ad F � (20)

= ;*Ad F J � (21)

Despite this apparent similarity, there are two crucial differences between (20) and (21) and 
the Maxwell equations of electromagnetism. The first is that the field strength F, current 
J, and “connection” A are here not ordinary differential forms, but rather Lie algebra-
valued differential forms (for technical background here, see the appendix).67 The second 
is that instead of using ordinary exterior derivative operators on physical quantities, in the 
above equations one uses a “covariant exterior derivative” dA associated with a connection 
A, which is a g-valued 1-form (where g denotes the Lie algebra in question). For any g
-valued form P, we have dAP = dP + [A, P], where d is the exterior derivative applied to 
such forms (see appendix) and [A, P] is the Lie bracket defined by that of g (again, see 
appendix). Furthermore, F is a g-valued 2-form, which is also called a “curvature form,” 
but physically represents the field strength of a given Yang-Mills field. Technically, this 
means that the curvature can be obtained by applying the covariant exterior derivative 
with respect to the connection A to A itself, namely F = dAA = dA + [A, A] (which also 
amounts to F = dA + A Ù A68).

5.2 THE PRE-METRIC APPROACH TO YANG-MILLS 
THEORIES

In generalising the pre-metric approach to generic Yang-Mills theories, we notice 
first that, as with electromagnetism, all the primary physical quantities (in this case g
-valued forms) and all the operators other than the Hodge star are independent of the 
metric. Thus, to apply the methodology of Hehl et al., we mainly need to reconstrue the 
Hodge star in (21) as a relation between two physical fields, and from there to derive the 
metric signature. Furthermore, in order to implement fully the pre-metric methodology, 
we need to reformulate the differential equations in integral forms to highlight their 
empirical meaning.69 However, as we explain below, these tasks cannot be carried out 
straightforwardly in the case of a generic Yang-Mills theory because the techniques to 
which Hehl et al. appeal rely on the abelian property of electromagnetism. That said, we 
can make use of some less well-known techniques for non-abelian theories in order to 
make progress here.

We proceed now by imitating the axioms in §2 in formulating the axioms of a generic non-
abelian Yang-Mills theory. For reasons which will become clear, however, this presentation 
does not follow the original order.

67	 It is easiest to understand the objects under consideration here and the relations obtaining 
between them via the formalism of principle fibre bundles—on which see, for example, 
Nakahara (2003). The terminology of “connection” is appropriate to that setting. For our 
purposes in this article, the presentation in this paragraph will suffice.

68	 The A Ù A term does not vanish in the non-abelian case; this is straightforward to see once 
one restores suppressed Lie algebra indices.

69	 Our point here is that what we can measure more directly is the accumulative effect of the 
electromagnetic field over a region rather than its value at a point. In this sense, the integral 
form of the equations is more empirically grounded. (Cf. Curiel 2000, 45.)
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5.2.1 Derivation of the signature
Begin with Axiom 1, which concerns the topology of spacetime. This axiom stays 
essentially the same here:

YM Axiom 1. Spacetime is a 4-dimensional differentiable manifold M that 
admits a foliation into codimension-1 hypersurfaces Σ.

This is the background arena of our theory, on which we shall define all the primitive 
physical quantities and operators for Yang-Mills theories.

Let’s jump ahead to the final axiom of §2.2 (i.e., Axiom 5), which postulates the spacetime 
constitutive relation between the current potential H and the field strength F, from which 
we derive the metric signature. Assume for the time being that the existence of F and H are 
legitimized by other axioms. The good news is that this axiom also remains essentially the 
same for a generic Yang-Mills theory, with F and H now being Lie algebra-valued (twisted) 
differential forms:

YM Axiom 5. H = κ(F), with κ being local, linear and symmetric.

As with Hehl et al., we would like to derive from this axiom that the energy-momentum 
current Σα (which, in the absence of a force f, can be defined directly by H and F as 
before) is anti-symmetric with respect to H and F, namely Σ ( ) – ( )α α αe H F e F H    . 
Fortunately, the derivation is essentially the same as in electromagnetism because all the 
operators involved essentially “ignore” the Lie algebra values (see appendix). This gives 
us the same reciprocity relation between H and F, namely 1, – ζH ζF F H  , which is a 
symmetry of Σα. The derivation of the metric signature from the reciprocity relation is 
also the same as in electromagnetism. That is, we obtain that 2= –κ ζ , which plays the 
role of the Hodge star and gives rise to the Lorentzian signature in the same manner as 
before. Therefore, we have successfully obtained the Lorentzian signature from the theory 
so formulated.

5.2.2 From an abelian to a non-abelian Stokes’ theorem
The impact of the non-abelian feature of a generic Yang-Mills theory arises from the point 
that one seeks to generalize Axiom 4, which (recall) states that magnetic flux is conserved, 
so that = 0C F∮ for any closed submanifold C, from which we can deduce dF = 0 by applying 
Stokes’ theorem as usual. There are (at least) two problems with generalizing this axiom to 
generic Yang-Mills theories:

1.	 Recall that dAF = dF + [A, F]. In the generic case, the commutator [A, F] does not 
vanish because the Lie algebra in which A and F take their values is non-abelian. 
Thus, we cannot apply Stokes’ theorem in order to generate a conservation law in 
the style of Hehl et al.

2.	 The ordinary integral is not even well-defined in the case of non-abelian Lie 
algebra-valued forms. For one thing, the ordinary integral is largely insensitive to 
the order of integration (the order in which one “adds up” the integrand quantity 
along a path or a region does not matter, except for the overall direction). But the 
integration order does matter in the non-abelian case since the Lie group elements 
do not commute. Besides, we also need a connection in order to compare Lie 
algebra elements at different spacetime points. So the ordinary integral is clearly 
inadequate.
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These problems can be addressed to some extent by appealing to a non-abelian version of 
Stokes’ theorem.70 Let Ξ be a simply-connected hypersurface of dimension d < n, where 
n is the dimension of the manifold. Let F and A be Lie algebra-valued d-forms and (d-1)-
forms (respectively), satisfying = . ,AF d A   are appropriate terms built out of F and A 
(which will be illustrated by a concrete example below). One non-abelian version of Stokes’ 
theorem then implies (Ferreira and Luchini 2012b, eq. 1.1):

	 –1 = .d dP e P e XXò ò  � (22)

Here, nP e ⋅ò ⋅ denotes a path-ordered integral which integrates over Lie algebra elements and 
produces a Lie group element, with n referring to the dimension of the integral (e.g., P1 is 
a path-ordering and P2 is a surface-ordering). Each Pn introduces n parameters through 
maps from loops –1{ : | (0) = a fixed base point}nγ S M γ . To illustrate, consider a concrete 
lower-dimensional instance of (22) (Σ is a 2-dimensional surface while its boundary ∂Σ is 
a closed curve) (Ferreira and Luchini, 2012b, eq. 3.1):71

	
–1–

1 2 .
μ μ νdx dx dxμ μνdσ dσ dτ

dσA dτdσW F WP e P eS Sò=∮ � (23)

Here, σ is a parameter on the closed curve ∂Σ introduced by the path-ordering P1; τ is a 
second parameter on the surface Σ introduced by the surface-ordering P2, which roughly 
amounts to scanning Σ with τ-indexed loops, which in turn consist of σ-indexed points. 
In this way, the order of integration is specified fully. On the LHS of (23), since Aµ is a 
1-form, we feed it the tangent vectors μdx

dσ
 on the path ∂Σ in integrating it over the path. 

This results in a Lie group element, since Lie algebra elements specify “infinitesimal paths” 
in the principal bundle space and adding them up produces a path which amounts to a 
Lie group element. The RHS of (23) is similar except for the addition of W and its inverse 
W–1. The role of these objects is to parallel transport Fμν(x) to the base point in the outmost 
loop.72 Intuitively, we parallel transport all Fμν(x) with x Î Σ to a point using A, and then 
integrate them up in the order specified by P2. The result again is a Lie group element. It is 
important to note that (23) and more generally (22) are invariant under reparametrization 
(Ferreira and Luchini 2012b, 344).73 Otherwise, the equations would be unphysical, since 
the parameters introduced by the Pn-ordering are arbitrary.

Note that under the non-abelian Stokes’ theorem, (23) and more generally (22) are 
equivalent to their associated differential equations in the form of dAH = F for appropriate 
H,F (the derivation works in both directions). In this sense, they are integral forms of these 
equations, which we will utilize below.

With (22) in hand, we are now ready to derive the integral form of the conservation laws. If 
the hypersurface in the RHS of (22) is a closed submanifold, and namely has no boundary, 

70	 There is a large literature here (see, e.g., Alvarez et al. 1998, 2009; Aref ’eva 1980; Bralić 
1980; Constantinidis et al. 2017; Ferreira and Luchini 2012a,b; Fishbane et al. 1981).

71	 Note that we have omitted the integration constant WR in this equation for simplicity, 
which is the value of W at the base point σ = τ = 0. The negative sign results from the 
differential equation relating W and Aµ (see Ferreira and Luchini 2012b, eq. 2.1). See also 
footnote 72. The negative sign in this equation is a matter of convention adopted by Ferreira 
and Luchini (2012b), which is related to how we define the relation between transported 
quantities and the connection that transports them. The negative sign convention implies that 
for a positive connection, the quantities decrease along the direction of transport.

72	 Let L be a path joining x and the base point. Then W is defined as –
1

μ

L μ
dxdσA
dσP e ∮ .

73	 On this point, see also Alvarez et al. (1998, 2009) and Ferreira and Luchini (2012a).
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then on the LHS the integral over the boundary is trivial—it yields the identity element in 
the Lie group. In this case, we have

	 = ,dP e Xò  𝟙𝟙 � (24)

where 𝟙 is the identity element in the Lie group. It is easy to see that the curvature of a 
curvature vanishes by applying the non-abelian Stokes’ theorem to the LHS of (24) twice in 
different directions (one involving d – 1 and one involving d + 1). Note that this is different 
from claiming the covariant derivative dA is nilpotent, which is false, since two different 
connections are involved. As a special case, however, we do have 2 = 0Ad A .

Based on this, it is straightforward to formulate the integral form of the conservation law 
of the Lie algebra-valued curvature 2-form F in Yang-Mills theory equivalent to (20) (dAF = 
0), and analogous to Axiom 4 in the case of electromagnetism:

YM Axiom 4. For any closed two-dimensional submanifold Ξ,

	 2 = ,P e Xò  𝟙𝟙 � (25)

There cannot be a net flux into the region Ξ, thus the flux is conserved. Thus we have 
obtained a version of Axiom 4 suitable to non-abelian Yang-Mills theories. Note that, 
unlike Axiom 4, the above axiom is expressed in terms of  ; since, however, this object 
is built from F, one can still argue that YM Axiom 4 has empirical significance—albeit 
perhaps not quite as direct a manner as Axiom 4. In short: if F has empirical significance, 
then   will inherit this.

Similarly, we can give an analogous version of Axiom 2, which concerns the conservation 
of electric current J. In Yang-Mill theories, J is a Lie-algebra-valued twisted 3-form. Let   
be an appropriate term constructed from J,

	 –1:= .
μ ν λ

μνλ
dx dx dxdζdτdσW J W
dσ dτ dζ

 � (26)

We then postulate:

YM Axiom 2. For any closed three-dimensional submanifold Ξ,

	 3 = ,P e Xò  𝟙𝟙 � (27)

Here, however, there is an important caveat: to derive the covariant derivative equation 
dAJ = 0 from the integral form, we need to apply the non-abelian Stokes’ theorem to a 
four-dimensional path-ordered integral. While we do not see an obvious reason why the 
four-dimensional case does not hold,74 we are not aware of any explicit proof for this in 
the literature (note that d in (22) is less than the dimension of spacetime and therefore at 
most d = 3). This technical lacuna may be attributed to the fact that the integral version 
of the standard Hodge star formulation of Yang-Mills theories does not require a higher-
dimensional non-abelian Stokes’ theorem (the integral version of equation =*Ad F J  
involves only up to a three-dimensional volume-ordered integral) as opposed to our pre-
metric formulation in the spirit of Hehl et al.

74	 Intuitively, since Ξ can be any closed 3D region, we can shrink it to an infinitesimal region 
(a 4-hypercube spanned by 4 tangent vectors), so the integral in YM Axiom 2 would become 
the desired covariant derivative. But we should be very cautious about such intuitions given 
that the high-dimensional case is notorious non-amenable to intuitions, not to mention the 
additional obstruction of non-abelianness. Even the simpler notion of exterior derivative is 
difficult to picture in the higher-dimensional case.
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5.2.3 From an abelian to a non-abelian Poincaré lemma
But even if we can successfully derive dAJ = 0 from YM Axiom 2, the second difficulty 
that we face is that we cannot apply the Poincaré lemma to this equation in order to infer 
J = dAH—namely, that there is a potential or excitation field H for J. Recall that the field 
H plays a central role in Hehl et al.’s approach—the constitutive relation between F and H 
gives rise to the metric signature, as we have already seen. But this reasoning does not hold 
in the Yang-Mills theory because the Poincaré lemma does not apply to the non-abelian 
covariant exterior derivative.75

As with Stokes’ theorem, generalizing the Poincaré lemma to the non-abelian case has 
been a sustained research focus, and there are various strategies offered in the literature to 
varying degrees of rigor (Al-Zamil and Montaldi 2012; Asada 1986; Gross 1985; Kycia and 
Šilhan 2022; Voronov 2009). For example, Gross proves that if we formulate non-abelian 
Lie algebra-valued forms as path-dependent forms called “lasso forms,” then we can apply 
the non-abelian Poincaré lemma to derive the connection A from dAL(σ) = 0 where L(σ) 
is the path-dependent lasso form for F (Gross 1985, 38–39). The virtue of this approach is 
that we do not need to appeal to A explicitly in the Yang-Mills equations, which as Gross 
argues results in a more analogous formulation to electromagnetism. Unfortunately, Gross’ 
non-abelian Poincaré lemma applies only to 1-forms and 2-forms (Gross 1985, 32), and 
therefore remains inadequate for our purposes, since the current J is a (twisted) 3-form. 
There are other results pertaining to inverting the covariant exterior derivative (e.g., Kycia 
and Šilhan 2022; Voronov 2009), but the conditions for applying those methods are also not 
satisfied by our problem.

Of course, one can choose to dodge these technical difficulties by postulating the existence 
of H in an axiom. For example, one can postulate an axiom in the following form ( is the 
appropriate term associated with H—not to be confused with the “magnetic” excitation of 
H introduced previously):

	 2 3= .P e P eX Xò ò  � (28)

But this axiom would be highly unattractive, especially in the program of Hehl et al. For 
one thing, is much less simple conceptually and foundationally than the conservation 
law for J. Moreover, it postulates another primitive field H in addition to F and J, and 
thus renders this formulation ontologically extravagant. This problem can be mitigated by 
postulating H instead of J if H has more significant empirical meaning. In this case, J can 
be straightforwardly derived by J = dAH.

In summary: although the standard formulation of Yang-Mills theory appears beguilingly 
similar to Maxwell equations for electromagnetism, a closer examination reveals several 
as-yet unresolved technical difficulties which prevents us from following through exactly 
with Hehl et al.’s approach. We therefore conclude that the pre-metric program extends 
only partially to generic Yang-Mills theories.76

75	 Recall that in the abelian case, we do not need a separate covariant exterior derivative 
since [A, ·] = 0 and thus dA = d.

76	 In our discussion here, we haven’t mentioned the non-abelian version of Axiom 3—that 
is, a non-abelian Lorentz force law. Suffice it to say that such a law does exist in the non-
abelian case: see, for example Boozer (2011). So, as far as we can see, this axiom would remain 
unproblematic in the non-abelian case.
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5.3 OUTLOOK

What we have achieved here—modulo the substantial caveats mentioned above—is 
a metric-free reformulation of a generic Yang-Mills theory, from which we derive the 
Lorentzian signature. In this sense, the Lorentzian signature is not just grounded in 
electromagnetism, but in more general matter theories. But we should be completely 
explicit about the above-mentioned substantial caveats:

1.	 A satisfactory reformulation of the conservation laws hinges on technical 
developments on the non-abelian generalized Stokes’ theorem in higher dimensions.

2.	 The potential field H for the conserved current J may need to be posited as an axiom. 
This is undesirable because it is less intuitive as a physical axiom than conservation 
laws, and moreover because the resulting theory is thereby committed to more 
ontological primitives.

What can we conclude from these points? Barring further technical developments, this 
reformulation amounts to less than that to which Hehl et al.’s program aspired. Still, we 
may (a) accept this reformulation and conclude that the Lorentzian signature is grounded 
in a general matter theory and is therefore subject neutral. Or, we may (b) reject this 
reformulation and conclude that metrical signature is in nature electromagnetic and 
electromagnetic alone, precisely because the electromagnetic field commutes with the 
connection while a generic Yang-Mills theory does not.

Ad (a): Following this route seems to lead to further philosophical puzzles, for example: why 
is it, then, that the signatures derived from all different material Yang-Mills fields happen 
to coincide? (Recall §4.2, in which this question was already raised.) Ad (b): this route can 
lead to further pessimism about the pre-metric program in general—for why should we 
prescribe a special ontological status to the electromagnetic field (namely, providing the 
fabric of spacetime for all other material fields), just because of its seemingly conceptually 
insignificant feature of having this commutation relation? This may suggest that Hehl’s 
program of reducing the metric signature to electromagnetism in particular is dialectically 
unstable. We may either achieve a fully satisfactory generalization or conclude that the 
metric signature is not reducible to matter fields in the way Hehl et al. envision after all.

Stepping back somewhat, what this section reveals is that there is much work to be done 
towards developing a systematic philosophy of non-abelian Yang-Mills theories—inter 
alia, a prospectus would include: (i) the field copy problem—when does the curvature of 
a gauge field underdetermine its potential, and to what degree?; (ii) non-abelian Stokes’ 
theorem—how does one generalize this theorem to arbitrary Yang-Mills fields in arbitrary 
dimensions?; (iii) non-abelian Poincaré lemma—how does one generalize this result 
to arbitrary Yang-Mills fields in arbitrary dimensions?; (iv) non-abelian Lorentz force 
law—what are the properties of such a law in the general case?; and so on. All of these 
questions have deep philosophical significance. Ad (i): if the curvature of a gauge field 
underdetermines its potential, then this may lead to further issues of underdetermination 
in gauge theories beyond those raised by the familiar gauge orbits of these theories (U(1) 
in the case of electromagnetism). Ad (ii): answers to this question invite comparison with 
the notoriously vexed issue of conservation of gravitational energy in general relativity (on 
which see, e.g., de Haro 2022, for a recent masterly review). Ad (iii): inter alia, this raises 
questions for theoretical equivalence (on which see, e.g., Weatherall 2019a, b, for recent 
surveys)—if a field strength tensor cannot always be written as the exterior derivative 
of some potential, does this thereby stand in the way of the two formulations’ being 
equivalent? And ad (iv): one might ask, do such laws raise similar issues of inconsistency 



28Chen and Read 
Philosophy of  Physics 
DOI: 10.31389/pop.45

as those presented for the case of electromagnetism by Frisch (2005)? It goes without 
saying that answering any and all of these questions will have to remain a task for another 
day; nevertheless, the forgoing discussion should already make evident the philosophical 
and physical (as well as, of course, mathematical) significance of doing so.

A MATHEMATICS OF DIFFERENTIAL FORMS
In this appendix, we review some basics of differential forms, twisted differential forms, 
and Lie algebra-valued differential forms.

A.1 DIFFERENTIAL FORMS

Definition 1. A differential r-form is a totally antisymmetric tensor of rank (0, r).

As a tensor of type (0, r), a differential form takes r vectors and yields a number. As a totally 
antisymmetric tensor, it changes sign under the exchange of any two of its indices (for 
example, a 3-form Tijk is such that Tijk = –Tjik = Tjki = –Tkji = …). Geometrically, an r-form in 
an n-dimensional space indicates the density and alignment of (n-r)-dimensional surfaces. 
For example, a 2-form in 3D space can be represented by aligned lines. (For some beautiful 
diagrams illustrating this visualisation of differential forms, see Burke 1985.)

Definition 2. The interior product of an r-form ω with a vector a, written as aω, is the 
(r – 1)-form such that (aω) (a2, a3, …ar) = ω(a, a2, …, ar).

In particular, the interior product (sometimes called the “contraction”) of a 1-form with a 
vector amounts to evaluating the 1-form on the vector. For any scalar function f (which is a 
0-form), we have that afω = faω = f(aω).

Definition 3. An exterior product Ù (also called the “wedge product”) is a mapping from 
any p-form ω and any q-form ɣ to a (p+q)-form such that it satisfies associativity, and for any 
vector a, we have a(ω Ù ɣ) = (aω) Ù ɣ + (–1)pω Ù (aɣ).

Such a mapping can be shown to be unique. It is useful to note that we have ω Ù ɣ = (–1)pq 
ɣ Ù ω, due to the antisymmetry of forms. Geometrically, as a simple example, the exterior 
product of 1-forms in 2D space can be visualized by arrays of points with an orientation 
(like screws).

Definition 4. An exterior derivative d is a mapping from an r-form to an (r+1)-form such 
that for any 0-form f, any p-form ω, and any q-form ɣ, (i) df is the differential of f, and 
d(df) = 0; (ii) d(ω Ù ɣ) = dω Ù ɣ + (–1)pω Ù dɣ.

Such a mapping can be shown to be unique. The integration of differential forms, which 
plays a central role in Hehl et al.’s formalism, is defined as follows. Let Γ be an embedding 
of k  into M, and let Σ be the region of k  such that Γ(Σ) is the integration region. Γ* is the 
pullback of Γ. Then we have:

Definition 5. = ΣΓ(Σ) 1
1 2* .:= ( ( )) ...k

k
x x

ω ω dx dx dx 
 

ò ò ¼ G 

This requires assigning an orientation to the integration region given by dx1dx2 …dxk, which 
one might find unnatural. This is an important reason for favoring twisted differential 
forms (see Burke 1985, 197–198).
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Regarding the integration of forms on manifolds, there is the following famous result 
(where Γ is a region and ∂Γ is its boundary):

Theorem 1 (Stokes’ theorem). Γ=ω dωGò ò

In physics, we are often concerned with the differential forms which can be understood to 
be the potentials (i.e., exterior derivatives) of other forms. For such matters, the following 
definitions and results are relevant.

Definition 6. (Exact form). A differential form ω is exact if there is a form H such that 
ω = dH.

The study of when a differential form is exact has to do with the theory of de Rham 
cohomology.

Definition 7. (Closed form). A differential form ω is closed if it is such that dω = 0.

For closed differential forms, even if they cannot be understood globally to be the potential 
of some other form, the following result underwrites this result locally:

Theorem 2 (Poincaré lemma) In a space contractible to a single point, every closed form is 
exact.

Finally, on a manifold with metric, we can define the following important operations on 
differential forms:

Definition 8. On manifold with metric gab, the sharp operator  maps any 1-form α into a 
tangent vector α such that, for arbitrary vector , ( ) =a a b a

ab aY g α Y α Y .

Definition 9. In an n-dimensional space, a Hodge star operator * is a linear operator from 
a p-form to an (n-p)-form such that, for β any r-form and α a 1-form, *(β Ù α) = α Ù *β.

The Hodge star operator can be shown to be unique. For the above definition to be well-
defined, we have to define the Hodge star of a 0-form—so pick *1 to be an n-form of unit 
density and positive orientation (Burke 1985, 160). The Hodge star contains information 
about the metric and the orientation of the space. Geometrically, we may visualize the Hodge 
star as mapping p-dimensional surfaces to (n-p)-dimensional orthogonal surfaces. As stated 
in the main text, the Hodge star operator “completes” a p-form to the metric-compatible 
volume form of (M, g) (where g is the metric on M), and thereby defines an (n-p)-form on M.

A.2 TWISTED DIFFERENTIAL FORMS

With the above basics of differential forms established, we turn now to twisted differential 
forms. To prepare, an orientation of a vector space is given by an equivalence class of all 
volume forms that have the same sign.

Definition 10. A twisted form is an equivalence class of pairs consisting of an ordinary form 
ω and an orientation of whole space Ω under the equivalence relation ( , Ω) (– , –Ω)ω ωº . The 
twisted form represented by (ω, Ω) is said to have an orientation Ωω which satisfies Ω = Ωω ω .

For example, the orientation of the twisted form (dx, dx Ù dy Ù dz) is given by dy Ù dz. 
Suppose we represent dx visually by the surface spanned by the y and z axis. Then we can 
consider the orientation of dx as pointing out from the surface. We can call this an “outer 
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orientation.” Now, the twisted form (dx, dx Ù dy Ù dz) has the orientation given by dy 
Ù dz, which can be visualized as pointing counterclockwise (or clockwise depending on 
the convention) inside the surface. We can call this an “inner orientation.” Thus, twisting 
amounts to changing an outer orientation to an inner orientation. Note that it is often 
more natural to represent physical quantities using twisted forms than ordinary ones. For 
example, a twisted 3-form electric current in 4D spacetime can be visualized as directed 
lines, namely lines with inner orientations. (For more illustrations of twisting, see Burke 
1985, 183ff.)

As Burke writes of twisted differential forms,

Do not let the fact that twisted forms are being represented in terms of ordinary 
forms lead you to think that twisted forms are less fundamental. The situation 
here is symmetric: we could define an ordinary vector as a pair consisting 
of a twisted vector and an orientation under the same equivalence relation. 
(Burke 1985, 189–90)

The point here is that one can define “ordinary” differential forms in terms of twisted forms 
or vice versa, but ultimately one can regard either as being the more primitive notion; 
in this sense, twisted differential forms need not be construed as being mathematically 
derivative upon “ordinary” differential forms, despite potential notational implications 
to the contrary. Under the operations defined in the previous subsection, twisted forms 
behave in the expected ways:

Definition 11. (Wedge product (twisting)). ( , Ω) = ( , Ω) = ( , Ω)ω γ ω γ ω γ   .

Definition 12. (Exterior derivative (twisting)). ( ,Ω) = ( , Ω)d ω dω .

Since the Hodge star operation itself presupposes an orientation, it too can be twisted, 
which is what allows for the possibility of a twisted Hodge star operator:

Definition 13. (Hodge star (twisting)). ( , Ω)( , Ω) = ; ( , Ω) = ( , Ω)* ** *ω ω ω ω

As illustration: the twisted Hodge star maps an ordinary 1-form in 3D space to a twisted 
2-form, and a twisted form to an ordinary form. Ironically, because the Hodge star depends 
upon an orientation, the twisted Hodge star in fact does not depend on the orientation of 
the space, despite its more complicated notation.

Despite its appearance, a twisted differential form can be integrated over in a space without 
orientation, for example, the Möbius strip. For twisted differential forms, we define

Definition 14 (Integration (twisted)). (Γ, Ω)( , Ω) =ω ωGò ò

Here, Ω is an orientation for the whole space, and (Γ, Ω) is a subspace that has an outer 
orientation (Burke 1985, 197). Given this, we then have the following result pertaining to 
the integration of twisted forms (see Burke 1985, 199–200)):

Theorem 3 (Stokes’ theorem (twisted)). (Γ, Ω) ( Γ, Ω)( , Ω) = ( , Ω)d ω ω¶ò ò

A.3 LIE ALGEBRA-VALUED DIFFERENTIAL FORMS

Finally, the formalism of non-abelian Yang-Mills theories mandates recourse to Lie algebra-
valued differential forms. To introduce these, first recall the definition of a Lie algebra:
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Definition 15 (Lie algebra). A Lie algebra is a vector space g over a field F, together with a 
binary operation [ , ] :⋅ ⋅ g g g×  called the Lie bracket, satisfying the following axioms:

1.	 Bilinearity: [ + , ]= [ , ]+ [ , ]; [ , + ]= [ , ]+ [ , ]ax by z a x z b y z z ax by a z x b z y  for all scalars a, 
b Î F and all elements x, y, z Î g.

2.	 Alternativity: [x, x] = 0, for all elements x Î g.

3.	 Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all elements x, y, z Î g.

Before proceeding further, we must define the following elementary notion:

Definition 16. Let Sn be the symmetric group of degree n. Then a permutation s Î Sk+l is 
called a (k, l)-shuffle if it satisfies s(1) < … < s(k), and s(k+1) < … < s(k+l).

Now, a Lie algebra-valued differential form—naturally!—takes values in some Lie algebra. 
On such objects, we can define the following operations:

Definition 17 (Wedge product (g-valued)) If α is a g-valued k-form on M and β is a g-valued 
l-form on M, then their wedge product α Ù β is a (k+l)-form given by:

1 2 + (1) ( ) ( +1) ( )( )( , , ..., ) = Σsgn( )[ ( , ..., ), ( , ..., )],k l s s k s k s k ls
α β u u u s α u u β u u +

where the sum is over all (k, l)-shuffles s.

Here, sgn(s) := (–1)n, with n being the number of swappings of which s consists, which can 
be shown to be well-defined. Note that the Lie bracket on the right-hand side above is that 
equipped by the Lie algebra g.

Definition 18 (Exterior derivative (g-valued)) The exterior derivative d is an anti-derivation 
with respect to the Lie bracket. If α and β are g-valued forms on a manifold, then we have 

deg( )[ , ]=[ , ]+ (–1) [ , ]αd α β dα β α dβ .

Intuitively, we can consider a g-valued form as a tensor product of an ordinary form and g. 
Then, the exterior derivative on the form is obtained by simply “ignoring” the Lie algebra 
part. That is, we first apply the operation to the ordinary form and then reattach the Lie 
algebra part—hence an apparent similarity between Definition 4 and Definition 18.
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