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Aims The 2021 European Society of Cardiology (ESC) guideline on cardiovascular disease (CVD) prevention categorizes mod
erate and severe chronic kidney disease (CKD) as high and very-high CVD risk status regardless of other factors like age 
and does not include estimated glomerular filtration rate (eGFR) and albuminuria in its algorithms, systemic coronary risk 
estimation 2 (SCORE2) and systemic coronary risk estimation 2 in older persons (SCORE2-OP), to predict CVD risk. We 
developed and validated an ‘Add-on’ to incorporate CKD measures into these algorithms, using a validated approach.

Methods In 3,054 840 participants from 34 datasets, we developed three Add-ons [eGFR only, eGFR + urinary albumin-to-creatin
ine ratio (ACR) (the primary Add-on), and eGFR + dipstick proteinuria] for SCORE2 and SCORE2-OP. We validated 
C-statistics and net reclassification improvement (NRI), accounting for competing risk of non-CVD death, in 5,997 719 
participants from 34 different datasets.

Results In the target population of SCORE2 and SCORE2-OP without diabetes, the CKD Add-on (eGFR only) and CKD Add-on 
(eGFR + ACR) improved C-statistic by 0.006 (95%CI 0.004–0.008) and 0.016 (0.010–0.023), respectively, for SCORE2 
and 0.012 (0.009–0.015) and 0.024 (0.014–0.035), respectively, for SCORE2-OP. Similar results were seen when we in
cluded individuals with diabetes and tested the CKD Add-on (eGFR + dipstick). In 57 485 European participants with CKD, 
SCORE2 or SCORE2-OP with a CKD Add-on showed a significant NRI [e.g. 0.100 (0.062–0.138) for SCORE2] compared 
to the qualitative approach in the ESC guideline.

Conclusion Our Add-ons with CKD measures improved CVD risk prediction beyond SCORE2 and SCORE2-OP. This approach will 
help clinicians and patients with CKD refine risk prediction and further personalize preventive therapies for CVD.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Chronic kidney disease • Cardiovascular disease • Risk prediction • Meta-analysis

Introduction
Chronic kidney disease (CKD) affects more than 10% of the adult popu
lation globally and is widely recognized as an important risk factor for 
cardiovascular disease (CVD).1,2 Indeed, in the 2021 European 
Society of Cardiology (ESC) guideline on CVD prevention,3 individuals 
with moderate and severe CKD [according to the Kidney Disease: 
Improving Global Outcomes staging system based on reduced glomeru
lar filtration rate (GFR) and elevated albuminuria4] are regarded as high 
and very high-risk of CVD, respectively. However, such a qualitative ap
proach misses an opportunity to personalize CVD preventive therapies 
according to quantitative measures of CKD, which are often readily 
available in clinical practice, in addition to traditional CVD risk factors.

We recently developed and validated a new approach, ‘CKD 
Add-on’,5 that allows the inclusion of information on the two 
CKD measures, GFR and albuminuria, into existing prediction mod
els. With this approach, the original predicted risk of CVD is cali
brated in the individual participant having GFR (or albuminuria) 
that differs from their expected GFR based upon the profile of their 
demographic and risk factor characteristics. Using this approach, the 
two CKD measures have significantly improved CVD risk prediction 
beyond two reference CVD risk prediction models, the Pooled 
Cohort Equation (PCE)6 and SCORE.5, 7

Here, we sought to develop and validate a CKD Add-on for sys
temic coronary risk estimation 2 (SCORE2) and SCORE2 in older 
persons (SCORE2-OP) (i.e. the risk prediction algorithms adopted 
by the 2021 ESC CVD prevention guideline), using data from the 
CKD Prognosis Consortium (CKD-PC). We also compared risk clas
sification between our quantitative approach with a CKD Add-on 
and the qualitative approach proposed in the 2021 ESC guideline.

Methods
Study populations
The data sources were 68 datasets taking part in CKD-PC with 
individual-level data necessary for this specific study (namely, GFR, albu
minuria, traditional CVD risk factors, and CVD outcomes defined be
low). These cohorts included both prospective research cohorts and 
health system datasets and enrolled participants from 41 countries 
from Europe, the Middle East, Asia, Australasia, and the Americas. 
These cohorts represented general population cohorts (no specific se
lection of some clinical conditions), high-risk cohorts (selection of 
some specific clinical conditions but not exclusively CKD), and CKD co
horts (explicit inclusion of individuals with CKD). This project included 
cohorts with 50 or more CVD outcomes and 95th percentile of follow- 
up time longer than 5 years among eligible participants without a history 
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of CVD at baseline. This study was approved for use of de-identified data 
by the institutional review board at the Johns Hopkins Bloomberg School 
of Public Health, Baltimore, MD, USA (no. IRB00003324). The need for 
informed consent was waived by the institutional review board.

Both SCORE2 and SCORE2-OP were designed for adults aged 40–69 
years and those aged ≥70 years, respectively, but were derived from da
tasets including individuals with broader age ranges. Such an age margin is 
advantageous to obtain reliable coefficients of the interaction terms be
tween age and predictors at relevant age thresholds. Thus, for the devel
opment of the CKD Add-on, we applied an age margin of 10 years and 
included all eligible adults aged ≥30 years for SCORE2 and those aged 
≥60 years for SCORE2-OP.8 Nonetheless, as detailed below, the valid
ation of the CKD Add-on was restricted to individuals in the target 
age range of SCORE2 (40–69 years) and SCORE2-OP (≥70 years).

The 2021 ESC guideline classifies all individuals with diabetes mellitus 
as moderate to very high risk according to the disease duration and the 
presence of end organ damage.3 SCORE2 algorithms are therefore pro
posed for individuals without diabetes.8 However, the development of 
SCORE2 algorithms included diabetes as a covariate, to facilitate recali
bration of the models using CVD incidence rates from the general popu
lation that included individuals with diabetes.8 Thus, we also included 
individuals with diabetes in the development of the CKD Add-on. 
Nonetheless, to match the proposed target population of SCORE2 algo
rithms, our primary validation was focused on the population without 
diabetes, and we secondarily explored data from the entire population 
including diabetes.

CKD measures
We focused on the two key CKD measures used for CKD staging in neph
rology clinical guidelines, GFR, and albuminuria.4 Estimated GFR (eGFR) 
was calculated using the 2021 CKD Epidemiology Collaboration 
(CKD-EPI) creatinine-based equation (but results were similar when an 
Add-on was developed for the 2009 CKD-EPI eGFR creatinine-based 
equation).9 Albuminuria was ascertained primarily as urine 
albumin-to-creatinine ratio (ACR)4 but secondarily included dipstick pro
teinuria. Data on urine protein-to-creatinine ratio were converted to ACR 
using a validated equation when ACR information was not available.10

Traditional CVD risk factors
We considered the following predictors in SCORE2 and SCORE2-OP as 
traditional CVD risk factors: age, sex, smoking status (current vs. non- 
current), diabetes, systolic blood pressure, total cholesterol, and high- 
density lipoprotein cholesterol.

CVD outcome
Following the development process of SCORE2 and SCORE2-OP,8

CVD outcome of interest was a composite of myocardial infarction, 
stroke, and CVD mortality. Supplementary material online, Appendix 
S1 summarizes details of how each cohort defined CVD events.

Statistical analysis
We first summarized characteristics [e.g. continuous variables as mean (SD) 
or median (IQI) and categorical variables as proportion or counts] in devel
opment and validation datasets. In general, we conducted two-stage 
meta-analysis in which each cohort was analyzed separately, and then the 
relevant estimates were pooled using random-effects models.11,12

Following the process of developing the CKD Add-ons for PCE and 
SCORE,5 we used 34 datasets able to share de-identified individual-level 
data with the CKD-PC Data Coordinating Centre as development data
sets. These datasets represented a wide range of populations, including 
the general population. The remaining 33 datasets, which could not share 

individual-level data or included highly selected populations (e.g. only 
CKD patients), were included as validation datasets. An exception was 
that we randomly split the OptumLabs® Data Warehouse (OLDW) co
horts into equal halves for the development and validation in order to 
have a good representation of health system databases for validation. 
The OLDW is a longitudinal, real-world data asset with de-identified ad
ministrative claims and electronic health record data. Our datasets also 
included clinical trial cohorts, and we confirmed the results are consist
ent after excluding these cohorts. Even in those studies that could not 
share individual-level data, collaborators ran a statistical code specific 
for the present study and shared relevant estimates and variance- 
covariance with the CKD-PC Data Coordinating Centre, and thus the 
present study should be considered as individual-level data meta-analysis.

Using the previously published method,5, 13 we first developed the 
‘CKD Add-on’ using the development datasets. The CKD Add-on meth
od consists of the following three steps: (i) linear regression models to 
estimate expected levels of eGFR and log-ACR according to traditional 
CVD risk factors; (ii) subdistribution hazard ratios (sub-HRs) of CVD 
outcome for eGFR and log-ACR adjusted for traditional risk factors; 
and (iii) the calibration of predicted CVD risk based on the deviation be
tween actual eGFR and log-ACR and expected eGFR and log-ACR (from 
the first step) and their adjusted sub-HRs (from the second step) in every 
individual. In the first two steps, we included all possible two-way inter
action terms with age. One exception was log-ACR in the second step 
since age did not statistically significantly modify the association of 
log-ACR with CVD risk (P = 0.12). In the second step, log-sub-HRs for 
traditional CVD risk factors were fixed according to the original 
SCORE2 or SCORE2-OP coefficients, and eGFR was modelled with 
two knots at 60 and 90 mL/min/1.73 m2 to reflect well-known J-shaped 
associations between eGFR and CVD risk.2 Since the main purpose of a 
CKD Add-on is to enhance the predicted risk related to reduced eGFR 
(but not necessarily high eGFR), we only applied sub-HRs for eGFR below 
90 mL/min/1.73 m2 when we implemented CKD Add-ons. Following the 
development process of SCORE2 and SCORE2-OP,8 we used sub-HRs 
based on Fine and Gray models accounting non-CVD death as a compet
ing outcome. In studies with only data on dipstick proteinuria, we second
arily developed a CKD Add-on for dipstick proteinuria and eGFR. Given 
that eGFR is more widely available than albuminuria in clinical practice, 
as we did previously,5 we developed a CKD Add-on with eGFR only first 
[expressed as CKD Add-on (eGFR only) below]. Subsequently, we devel
oped a CKD Add-on with eGFR and measures of albuminuria (CKD 
Add-on [eGFR + ACR] and CKD Add-on [eGFR + dipstick], with the for
mer as our primary Add-on).

Using the validation datasets, we assessed the following prediction sta
tistics after applying CKD Add-ons: Harrel’s C-statistic as a measure of risk 
discrimination14 and categorical net reclassification improvement (NRI).15

According to the 2021 ESC guideline,3 we categorized predicted risk into 
age-specific categories of low/moderate, high, and very high CVD risk. The 
corresponding 10-year risk thresholds were 2.5% and 7.5% in age <50 
years, 5 and 10% in 50–69 years, and 7.5 and 15% in ≥70 years. We 
used normal approximations to calculate 95% confidence intervals of 
C-statistics and NRI. We primarily used the study-specific recalibrated 
baseline risk of each cohort since the evaluation of the improvement of 
an established risk equation like SCORE2 is predicated on the assumption 
that the established equation is well-calibrated in the relevant cohort. We, 
a priori, selected the Clinical Practice Research Datalink (CPRD) for the 
validation of calibration, since both SCORE2 and SCORE2-OP were well- 
calibrated in this UK dataset.8 As done previously,5 in CKD cohorts, as the 
expected values of CKD measures, we used the mean of eGFR and albu
minuria in each cohort given overestimation of expected eGFR and under
estimation of expected ACR when relying on linear regression models 
from non-CKD cohorts.
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We conducted additional analyses to evaluate the public health and 
clinical implications of the CKD Add-ons. First, we described the median 
ratio of newly predicted risk with a CKD Add-on to originally predicted 
risk without a CKD Add-on; we took the median and IQI of median ra
tios from individual datasets. Second, we explored four clinical scenarios 
with a specific combination of traditional CVD risk factors and described 
the changes in predicted risk before and after applying a CKD Add-on for 
two sets of levels of eGFR and ACR representing moderate and severe 
CKD (eGFR 45 mL/min/1.73 m2 + ACR 150 mg/g and eGFR 25 mL/min/ 
1.73 m2 + ACR 500 mg/g, respectively). Finally, we evaluated NRI when 
we applied SCORE2 or SCORE2-OP, as appropriate, with a CKD 
Add-on instead of the approaches recommended in the 2021 ESC guide
line on CVD prevention (i.e. qualitative classification in moderate and se
vere CKD and quantitative risk prediction using SCORE2 or 
SCORE2-OP in mild CKD).

All analyses used complete datasets and were conducted with STATA 
16 (College Station, TX). We followed the TRIPOD statement for 
reporting.16

Results

Study characteristics
Development datasets and validation datasets included 3 054 840 in
dividuals and 5 997 719 individuals, respectively. Summary character
istics were largely similar between development and validation 
datasets, although the proportion of men was greater in the 

validation datasets than in the development datasets (Table 1). 
Characteristics across individual studies are summarized in 
Supplementary material online, Table S1.

Development of CKD add-ons in the 
development datasets
The coefficients of traditional CVD risk factors for estimating ex
pected eGFR and log-ACR are displayed in Supplementary material 
online, Table S2. Older age and lower HDL cholesterol were asso
ciated with lower baseline eGFR. Higher systolic blood pressure, dia
betes, and lower eGFR were the major correlates of higher baseline 
log-ACR. As anticipated,2, 5 both lower eGFR and higher ACR were 
significantly associated with elevated CVD risk (Table 2), in the con
text of both SCORE2 and SCORE2-OP. Sub-HR per 15 mL/min/ 
1.73 m2 lower eGFR below 60 mL/min/1.73 m2 was greater when 
we investigated adults aged ≥30 years compared to when we re
stricted to older adults aged ≥60 years [1.74 (1.64, 1.84) at age 55 
vs. 1.33 (1.25, 1.40) at age 75]. Sub-HR for higher ACR was similar 
regardless of age. Dipstick proteinuria also demonstrated a 
dose-response relationship with CVD risk. When we excluded a 
cluster randomized community-level intervention trial in the devel
opment datasets, results were almost identical (Supplementary 
material online, Table S3).

We confirmed the improvement in C-statistics with both the 
CKD Add-on (eGFR only) and the CKD Add-on (eGFR + ACR) in 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Overall baseline characteristics for development and validation datasets

Development datasets Validation datasets

Number of datasets 34 34

Number of participants 3 054 840 5 997 719
Age (SD), y 54 (14) 55 (14)

Male sex, % 43 56

Current smokers, % 7.1 19
Systolic BP (SD), mmHg 126 (17) 127 (17)

Diabetes, % 18 18

Total cholesterol (SD), mmol/L 4.8 (0.9) 4.9 (0.9)
HDL cholesterol (SD), mmol/L 1.4 (0.4) 1.3 (0.4)

eGFR (SD), mL/min/1.73 m2 90 (19) 91 (19)

N for ACR 625 531 (21%) 1 429 373 (26%)
ACR (IQI), mg/g 11 (6–28) 9 (4–29)

N for dipstick 947 323 (36%) 1 229 141 (40%)

Dipstick ≥1+, % 9.1 8.1
Follow-up (SD), y 3.7 (3.6) 4.6 (3.6)

Number of CVD events 90 650 142 379

10-y baseline risk (IQI)a

Men 0.059 (0.031–0.069) 0.050 (0.034–0.064)

Women 0.030 (0.017–0.042) 0.029 (0.021–0.041)

Older men 0.202 (0.128–0.257) 0.155 (0.135–0.206)
Older women 0.141 (0.088–0.174) 0.108 (0.083–0.149)

Values indicated count, proportion, mean (SD), or median (IQI). 
aBaseline risk was estimated in the 10-year time frame with each predictor centred at age 60 years, systolic blood pressure 120 mmHg, total cholesterol 6 mmol/L, HDL cholesterol 
1.3 mmol/L, never smokers, and no diabetes for younger age scenario and 73 years, 150 mmHg, 6 mmol/L, and 1.4 mmol/L for older age scenarios (smoking status and diabetes stayed 
the same). For cohorts with only 5-year follow-up time, 5-year baseline risk was converted to 10-year by 1-(1-risk)2. Between-study difference was considerable even within the 
development or validation datasets, and the IQIs for the baseline risk in the validation studies overlap the estimates in the development datasets.
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the development datasets in the context of both SCORE2 and 
SCORE2-OP (see Supplementary material online, Table S4). For ex
ample, in the study population aged ≥30 years, the CKD Add-on 
(eGFR only) and the CKD Add-on (eGFR + ACR) for SCORE2 im
proved C-statistic by 0.004 (0.003–0.006) and 0.015 (0.011– 
0.019), respectively. Similarly, the CKD Add-on (eGFR only) and 
the CKD Add-on (eGFR + ACR) for SCORE2-OP demonstrated 
C-statistic improvement (0.008 [0.006–0.010] and 0.022 [0.016– 
0.027], respectively) in the study population aged ≥60 years. We 
also observed positive overall NRIs in all comparisons with the 
CKD Add-on (eGFR only) and the CKD Add-on (eGFR + ACR) 
(see Supplementary material online, Table S3). The CKD Add-on 
(eGFR + dipstick) also improved risk prediction. Results across indi
vidual datasets are shown in Supplementary material online, Tables 
S5 and S6 [CKD Add-on (eGFR only)] and Supplementary material 
online, Tables S7 and S8 [CKD Add-on (eGFR + ACR)].

Validation of CKD add-ons in the 
validation datasets
Both the CKD Add-on (eGFR only) and the CKD Add-on (eGFR + 
ACR) improved C-statistics in the target populations for SCORE2 
and SCORE2-OP in the validation datasets (Table 3). In the study 
population aged 40–69 years without diabetes, the CKD Add-on 
(eGFR only) and the CKD Add-on (eGFR + ACR) for SCORE2 im
proved C-statistic by 0.006 (0.004–0.008) and 0.016 (0.010– 
0.023), respectively. The corresponding estimates of the CKD 
Add-on (eGFR only) and the CKD Add-on (eGFR + ACR) for 
SCORE2-OP were 0.012 (0.09, 0.015) and 0.024 (0.014, 0.035) in 
the study population aged 70 years or older without diabetes. 
Overall NRI was also significantly positive in all comparisons (e.g. 
0.039 [0.018–0.059] with the CKD Add-on [eGFR + ACR] for 
SCORE2). The CKD Add-on (eGFR + dipstick) also improved the 
risk prediction (Table 3). The results were largely consistent when 
we focused on individuals at high risk of CVD, as defined in the 
ESC 2021 CVD prevention guideline3 and noted above (see 

Supplementary material online, Table S9). The improvement of risk 
prediction was generally more evident when we included individuals 
with diabetes (see Supplementary material online, Table S10) as well 
as when we removed the two clinical trials in individuals with dia
betes from the analyses (see Supplementary material online, 
Table S11). The vast majority of individual studies demonstrated im
provement in C-statistic and positive NRIs with the CKD Add-on 
(eGFR only) (see Supplementary material online, Tables S12 and 
S13) and the CKD Add-on (eGFR + ACR) (see Supplementary 
material online, Tables S14 and S15). When we focused on general 
population cohorts, the results were largely consistent (see 
Supplementary material online, Table S16). In CPRD, the application 
of the CKD Add-on (eGFR only) or the CKD Add-on (eGFR + ACR) 
did not alter the calibration of SCORE2 and SCORE2-OP much 
(Supplementary material online, Figure S1).

Implications of CKD add-ons
The median predicted risk ratio (i.e. with a CKD Add-on over with
out a CKD Add-on) across the validation datasets by different stages 
of CKD is shown in Figure 1. In the study population aged 40–69 
without diabetes, the median predicted risk ratio was ∼2.8 in severe 
CKD (cross-categories of eGFR and ACR in red in Figure 1), ∼1.7 in 
moderate CKD (cross-categories in orange), and ∼1.3 in mild CKD 
(cross-categories in yellow). The corresponding ratios were ∼1.6, 
∼1.3 and ∼1.1 in the study population aged ≥70 years without dia
betes. We observed largely similar patterns for the CKD Add-on 
with dipstick (Supplementary material online, Figure S2). The results 
were similar in the study population including diabetes (see 
Supplementary material online, Figure S3). Figure 2 demonstrates 
the extent to which the CKD Add-on (eGFR + ACR) influences pre
dicted risk based on SCORE2 and SCORE2-OP in a few hypothetical 
scenarios (details in see Supplementary material online, Appendix S1).

In 13 European datasets in CKD-PC including 57 485 participants 
with CKD, according to the approach in the 2021 ESC CVD preven
tion guideline (i.e. qualitative classification of severe and moderate 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Meta-analyzed sub hazard ratios (95% CI) in development datasets

Variables Sub hazard ratio (95% CI) Sub hazard ratio (95% CI)

CKD Add-on (eGFR only) Age 30+a CKD Add-on (eGFR only) Age 60+b

eGFR <60 at age 55, per –15 mL 1.74 (1.64–1.84) eGFR <60 at age 75, per –15 mL 1.33 (1.25–1.40)
eGFR 60–89 at age 55, per –15 mL 1.09 (1.00–1.19) eGFR <90 at age 75, per –15 mL 1.08 (1.05–1.11)
eGFR 90 + at age 55, per –15 mL 0.75 (0.70–0.82) eGFR 90 + at age 75, per –15 mL 0.62 (0.52–0.74)
eGFR <60 × age, per –15 mL × 5y 0.92 (0.91–0.94) eGFR <60 × age, per –15 mL × y 0.99 (0.98–0.99)
eGFR 60–89 × age, per –15 mL × 5y 1.01 (0.98–1.03) eGFR <90 × age, per –15 mL × y 0.99 (0.98–1.00)
eGFR 90+ × age, per –15 mL × 5y 0.98 (0.95–1.00) eGFR 90+ × age, per –15 mL × y 0.99 (0.98–1.01)

CKD Add-on (eGFR + ACR) CKD Add-on (eGFR + ACR)
ACR, per eight-fold 1.28 (1.21–1.34) ACR, per 8 fold 1.27 (1.21–1.33)
CKD Add-on (eGFR + dipstick) CKD Add-on (eGFR + dipstick)
Trace 1.30 (1.22–1.39) Trace 1.29 (1.20–1.37)
+ 1.51 (1.37–1.66) + 1.47 (1.34–1.62)
++ or more 1.61 (1.50–1.73) ++ or more 1.52 (1.42–1.64)

Bold indicates statistical significance. 
aAge 30+, all population including diabetes and no diabetes (in the context of SCORE2). 
bAge 60+, all population including diabetes and no diabetes (in the context of SCORE2-OP).
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CKD to very-high and high CVD risk and SCORE2 or SCORE2-OP 
in mild CKD), the proportion of individuals in the CVD risk of low/ 
moderate, high, and very-high was 40.9%, 38.0%, and 21.2%, respect
ively. The corresponding proportion was 44.2%, 35.5%, and 20.3% 
when using a CKD Add-on. Compared to the approach in the 
2021 ESC guideline, the new approach of calibrating SCORE2/ 
SCORE2-OP with a CKD Add-on in this CKD population in 
Europe resulted in 13.8% (4524 out of32 703) of the individuals re
classified upward to a higher CVD risk group and 14.6% (4788 out 
of32 703) downward to a lower risk group, with overall positive 
NRI in the study populations aged 40–69 years [0.100 (0.062– 
0.138)] and ≥70 years [0.063 (0.014–0.112)] (see Supplementary 
material online, Table S17).

Discussion
Using data from >9 million individuals from 68 datasets, we have de
veloped and validated CKD Add-ons for SCORE2 and SCORE2-OP, 

the latest risk algorithms designed for primary CVD prevention in 
Europe.8 The improvement of risk prediction was generally greater 
with the CKD Add-on (eGFR + ACR) than the CKD Add-on 
(eGFR only). For example, in the target population of SCORE2 
(age 40–69 years without diabetes) in the validation datasets, in
creases in C-statistics were 0.017 (95%CI 0.011–0.023) vs. 0.007 
(0.005–0.008), respectively. NRI also supported the risk prediction 
improvement with either CKD Add-on. The improvement in risk 
prediction with the CKD Add-on was confirmed when we used dip
stick proteinuria instead of ACR, included populations with diabetes, 
and focused on the high CVD risk group.

It is not easy to appreciate clinical values of specific risk prediction 
models from changes in C-statistics or NRI, and thus we have compre
hensively evaluated other matrices such as a ratio of the predicted risk 
after an Add-on to the originally predicted risk, which demonstrated 
the impact of accounting (or not accounting) for the CKD measures. 
For example, in the target population of SCORE2, the median ratio in 
our validation datasets was ∼1.7 in moderate CKD (e.g. eGFR 45–59 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 C-statistics and NRI with the CKD Add-ons in the SCORE2 and SCORE2-OP populations from the validation 
datasets

CKD Add-on (eGFR only) CKD Add-on (eGFR + ACR) CKD Add-on (eGFR + dipstick)

Overall SCORE2 in age 40–69, non-diabetics population
N 2 817 487 510 622 684 170

Base C-statistic (IQI) 0.686 (0.658–0.719) 0.634 (0.604–0.697) 0.688 (0.671–0.715)
ΔC-statistic (95% CI) 0.006 (0.004–0.008) 0.016 (0.010–0.023) 0.019 (0.013–0.025)

Category NRI (95% CI) Overall 0.030 (0.023–0.037) 0.039 (0.018–0.059) 0.095 (0.071–0.120)

Event 0.050 (0.039–0.060) 0.104 (0.069–0.139) 0.124 (0.093–0.154)
Non-event –0.012 (–0.014 to –0.010) –0.041 (–0.053 to –0.029) –0.027 (–0.034 to –0.021)

Overall SCORE2-OP in age 70+, non-diabetics population
N 556 887 57 696 121 312
Base C-statistic (IQI) 0.641 (0.601–0.656) 0.613 (0.568–0.661) 0.640 (0.626–0.670)

ΔC-statistic (95% CI) 0.012 (0.009–0.015) 0.024 (0.014–0.035) 0.024 (0.017–0.031)

Category NRI (95% CI) Overall 0.033 (0.024–0.042) 0.046 (0.019–0.074) 0.068 (0.044–0.093)
Event 0.088 (0.065–0.111) 0.150 (0.101–0.200) 0.214 (0.165–0.262)

Non-event –0.044 (–0.057 to –0.032) –0.077 (–0.100 to –0.055) –0.146 (–0.191 to –0.100)

C-statistic was calculated within each gender group, no comparison between men and women. 
Risk category was defined as low/moderate risk (<2.5% for age <50, <5% for age 50–69 and <7.5% for age 70+), high risk (2.5–7.5% for age <50, 5–10% for age 50–69 and 7.5–15% 
for age 70+), very high risk (>7.5% for age <50, >10% for age 50–69 and >15% for age 70+).

CKD stages risk heat map In valida�on datasets
SCORE2 popula�on (age

40-69, no diabetes
SCORE2-OP popula�on (age

70+, no diabetes)
ACR

CKD Stages
Risk ra�o of CKD Add-on
(eGFR+ACR) to SCORE2

Risk ra�o of CKD Add-on
(eGFR+ACR) to SCORE2-OPeGFR <30 30-299 300+

90+ Risk ra�o, Median (IQI)
60-89 No CKD 0.98 (0.97, 1.00) 0.97 (0.93, 0.99)
45-59 CKD at moderate risk 1.29 (1.24, 1.30) 1.15 (1.11, 1.17)
30-44 CKD at high risk 1.70 (1.63, 1.74) 1.29 (1.23, 1.34)
<30 CKD at very high risk 2.78 (2.59, 3.05) 1.60 (1.38, 1.65)

Overall 1.03 (1.00, 1.07) 1.04 (0.99, 1.07)

Figure 1 Chronic kidney disease staging and risk ratio of the chronic kidney disease add-on (estimated glomerular filtration rate + 
albumin-to-creatinine ratio) in the SCORE2 and SCORE2-OP populations from the validation datasets.
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mL/min/1.73 m2 plus ACR 30–299 mg/g) and ∼2.8 in severe CKD (e.g. 
eGFR 30–44 mL/min/1.73 m2 plus ACR 300 + mg/g). The correspond
ing ratios were slightly smaller in the targeted population for 
SCORE2-OP, ∼1.3 and ∼1.6, respectively. Importantly, in both target 
populations, the ratio was ∼1 in individuals without CKD, confirming 
that those without CKD can simply rely on SCORE2 or SCORE2-OP. 
Of note, in CKD populations from 13 European cohorts, SCORE2 or 
SCORE2-OP with a CKD Add-on demonstrated a better risk classifi
cation than the quantitative approach proposed in the ESC 2021 CVD 
prevention guideline.

The discussion of the value of a novel predictor intrinsically in
cludes the concept of whether that predictor should be newly 
measured or not. However, the situation of CKD measures is 
quite different in this regard since the assessment of eGFR and al
buminuria is already recommended in several clinical scenarios. 
In fact, in the US, serum creatinine is measured ∼300 million times 
annually.17 Likewise, the evaluation of albuminuria is recom
mended in patients with diabetes, hypertension, and reduced 
eGFR. Thus, in many individuals, the data on these CKD measures 
are readily available, and their omission is a critical missed oppor
tunity to further personalize risk prediction and prevention 
approaches of CVD. Therefore, our CKD Add-ons would provide 
a validated means for clinicians and patients to incorporate exist
ing CKD measures into SCORE2 algorithms and further person
alize CVD preventive therapies.

A few recent studies have shown that measures of albuminuria are 
less likely to be assessed compared to eGFR even when it is clinically 
indicated (e.g. patients with diabetes or hypertension). For example, 
in a US clinical database study, eGFR was measured at least once in a 
1-year period among most patients with diabetes, whereas only half 
of them had measures of albuminuria.18 Our data further support 
the importance of taking into account albuminuria for CVD risk as
sessment. Importantly, the present study has validated a CKD 
Add-on using dipstick proteinuria as well for improving risk predic
tion of CVD, which adds to the applicability of our findings.

Several limitations of the present study should be acknowledged. 
The assessment of eGFR, albuminuria, and traditional CVD predictors 
and the ascertainment of CVD events were not necessarily standar
dized across all the cohorts. In addition, the data availability of albumin
uria in clinical database cohorts is limited to a subsample, reflecting 
clinical indications. However, the overall consistent results across 
most of the cohorts, with diverse demographic and clinical character
istics, support the robustness of our study. Also, although we included 
13 datasets from Europe, all are from low- or moderate-risk regions. 
Also, we have not included information on primary causes of CKD.

In conclusion, our CKD Add-ons improved CVD risk prediction 
according to SCORE2 and SCORE2-OP. This approach will help clin
icians and patients refine risk prediction and further personalize pre
ventive therapies for CVD when information on the CKD measures 
is available and indicates CKD.

Pa�ent A Pa�ent B Pa�ent C Pa�ent D

European low risk region
Predicted
risks, %

CVD risk
classifica�on

Predicted
risks, %

CVD risk
classifica�on

Predicted
risks, %

CVD risk
classifica�on

Predicted
risks, %

CVD risk
classifica�on

Original CVD risk 2.0 Low/Moderate 1.6 Low/Moderate 4.5 Low/Moderate 8.8 High
eGFR 45 + ACR 150 6.1 High 4.3 Low/Moderate 10 Very high 16 Very high
eGFR 25 + ACR 500 16 Very high 9.4 High 18 Very high 22 Very high

European moderate risk region
Original CVD risk 2.5 Low/Moderate 1.9 Low/Moderate 5.8 High 12 High
eGFR 45 + ACR 150 7.7 Very high 5.1 High 13 Very high 20 Very high
eGFR 25 + ACR 500 20 Very high 11 Very high 23 Very high 28 Very high

European high risk region
Original CVD risk 2.6 High 2.4 Low/Moderate 6.0 High 18 Very high
eGFR 45 + ACR 150 8.0 Very high 6.5 High 14 Very high 31 Very high
eGFR 25 + ACR 500 21 Very high 14 Very high 23 Very high 42 Very high

European very high risk region
Original CVD risk 4.7 High 5.1 High 11 Very high 31 Very high
eGFR 45 + ACR 150 14 Very high 13 Very high 24 Very high 50 Very high
eGFR 25 + ACR 500 35 Very high 28 Very high 39 Very high 64 Very high

Pa�ent A: Age 42 man, current smoker, SBP 128, no DM, total cholesterol 3.8, HDL-C 1.4
Pa�ent B: Age 52 woman, not current smoker, SBP 128, no DM, total cholesterol 4.5, HDL-C 1.2
Pa�ent C: Age 62 man, not current smoker, SBP 128, no DM, total cholesterol 4.5, HDL-C 1.6
Pa�ent D: Age 72 woman, no current smoker, SBP 148, no DM, total cholesterol 3.8, HDL-C 1.6
CVD risk classifica�on was defined as low/moderate risk (<2.5% for age <50, <5% for age 50-69 and <7.5% for age 70+), high risk (2.5-7.5% for
age <50, 5-10% for age 50-69 and 7.5-15% for age 70+), very high risk (>7.5% for age <50, >10% for age 50-69 and >15% for age 70+).

Figure 2 The chronic kidney disease add-on (estimated glomerular filtration rate + albumin-to-creatinine ratio) impact on predicted risk based on 
SCORE2 and SCORE2-OP in four hypothetical scenarios. Cardiovascular disease risk classification was defined as low/moderate risk (<2.5% for age 
<50, <5% for age 50–69 and <7.5% for age 70+), high risk (2.5–7.5% for age <50, 5–10% for age 50–69 and 7.5–15% for age 70+), very high risk 
(>7.5% for age <50, >10% for age 50–69 and >15% for age 70+).
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