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Abstract: The effects of stress may be alleviated when its impact or a decreased stress-resilience are
detected early. This study explores whether wearable-measured sleep and resting HRV in police
officers can be predicted by stress-related Ecological Momentary Assessment (EMA) measures in
preceding days and predict stress-related EMA outcomes in subsequent days. Eight police officers
used an Oura ring to collect daily Total Sleep Time (TST) and resting Heart Rate Variability (HRV)
and an EMA app for measuring demands, stress, mental exhaustion, and vigor during 15–55 weeks.
Vector Autoregression (VAR) models were created and complemented by Granger causation tests
and Impulse Response Function visualizations. Demands negatively predicted TST and HRV in one
participant. TST negatively predicted demands, stress, and mental exhaustion in two, three, and
five participants, respectively, and positively predicted vigor in five participants. HRV negatively
predicted demands in two participants, and stress and mental exhaustion in one participant. Changes
in HRV lasted longer than those in TST. Bidirectional associations of TST and resting HRV with
stress-related outcomes were observed at a weak-to-moderate strength, but not consistently across
participants. TST and resting HRV are more consistent predictors of stress-resilience in upcoming
days than indicators of stress-related measures in prior days.

Keywords: wearables; heart rate variability; sleep; stress; time series analysis; police; ecological
momentary assessment; resilience

1. Introduction

Stress is associated with an increased risk of numerous diseases [1–7] and mental
disorders [8,9]. Besides these adverse effects on individuals, it also imposes a large fi-
nancial burden on society via absenteeism, healthcare costs, and productivity loss [10,11].
Personalized just-in-time interventions may be able to prevent or alleviate some of these
burdens [12]. To do this, either the negative impact of stress or a decreased resilience to
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cope with stress should be detected early, preferably via unobtrusive monitoring. For in-
stance, unobtrusive detection of the negative impact of stress (e.g., on sleep or physiological
systems) in an early state may help increase awareness that current circumstances may
be causing wear and tear on bodily systems (allostatic load) that may be contributing to
health-related problems if sustained over time [13]. Similarly, recognition of the potential
depletion of resources that are needed for resiliently coping with challenges could be used
to trigger feedback to take it easy that day and avoid overly challenging circumstances
where possible. Recent developments in wearable sensor technology introduce promising
opportunities for this type of unobtrusive monitoring [14,15].

When the first modern wearables came to market around 2009 (e.g., the Fitbit Classic),
these devices initially became popular as pedometers or activity trackers but were already
able to estimate sleep duration via accelerometry as well [16]. Since then, consumer
wearable-based sleep tracking has improved to a point where it is considered proficient
for measuring the Total Sleep Time (TST), while the detection of sleep stages needs further
work [17]. Sleep deprivation is known to have a reciprocal relationship with stress, meaning
that it is both caused and can be caused by stress [18]. Longitudinal studies with repeated
daily measures confirm this bidirectional association [19–21] but tend to rely on subjective
TST measures (e.g., measured via questionnaires) and need verification using objective
sleep measurements [22]. Wearable-based research can therefore contribute to this body of
knowledge and explore the potential of wearables to unobtrusively monitor for signs of the
negative impact of stress or decreased resilience.

Besides behavioral outcomes such as physical activity and sleep, around 2015 (e.g.,
the Fitbit Charge HR) consumer wearables started measuring heart rate after photoplethys-
mography (PPG) sensors were included [23]. Today, PPG sensors are also used to track
physiological outcomes such as heart rate, blood oxygen saturation, blood pressure, and
respiration [24]. Perhaps the most important PPG-based innovation in the context of stress
and resilience is the measurement of Heart Rate Variability (HRV), which can now be
accurately measured using wearables or even camera-based smartphone apps in a resting
state or during sleep [25]. HRV is a measure of the variation in heartbeats and is a proxy
for autonomous nervous system functioning [26]. HRV acutely declines during stress [27]
and afterward can remain suppressed during subsequent sleep [28,29]. Consequently,
individuals with a low resting HRV are more likely to interpret seemingly mild stimuli
as significant stressors [30–32] and have suboptimal emotion regulation [33,34]. Although
these findings are based on population studies that investigated between-subject differ-
ences, the reciprocal nature of these findings illustrates that an initial decline in resting
HRV could potentially cascade into subsequent days and thus have downstream effects.

A recent paper introduced a conceptual model in which the potential underlying
mechanism for such a cascading effect of an initial decline in resting HRV was described [14].
The model suggests that resting HRV buffers against the impact of demands on stress by
making potentially stressful situations seem less stressful [30–32], as well as against the
impact of stress on mental exhaustion via more optimal emotion regulation [33,34]. Since
this model also proposes that the need for recovery (e.g., increased mental exhaustion
and/or decreased vigor) negatively influences resting HRV [28,29], a potential negative
feedback loop is formed. This aligns with the conservation of resources theory, which
states that since resources are needed to cope with demands, an initial loss of resources
may result in a loss spiral [35]. Finally, the model hypothesizes stress to both be negatively
impacted by stress [18–21], as well as to buffer against the negative impact of an increased
need for recovery on resting HRV due to its restorative properties [36,37]. A study was
then performed to test these hypotheses by utilizing wearables to measure TST and resting
HRV, as well as an Ecological Momentary Assessment (EMA) smartphone app to measure
subjective demands, stress, and mental exhaustion [38]. The study confirmed that resting
HRV is both negatively impacted by mental exhaustion and buffers against the negative
associations between demands and stress, as well as stress and exhaustion. Day-to-day
changes in resting HRV may therefore be both indicative of the negative impact of stress and
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predictive of stress-resilience, potentially even on a multi-day level. Further exploration
of these potential multi-day bidirectional associations will improve our understanding
of the degree to which day-to-day changes in wearable-measured resting HRV can be
interpreted as potentially stress-related and in which they should be expected to reflect a
state of lowered resilience.

To summarize: wearable-measured sleep and resting HRV have both been bidirec-
tionally associated with subjective stress-related outcomes, but within-subject research
investigating the potential patterns in multi-day associations in a real-world context is lack-
ing. Increased insight into the degree to which these relationships are consistently observed
in individuals may help improve models for the early recognition of the negative impact
of stress and of lowered resilience. Such insights could contribute to the development of
automated resilience interventions that may help to prevent stress-related problems. These
interventions are especially relevant for individuals working in safety-critical professions,
such as police officers [39]. Therefore, this study explores whether wearable-measured TST
and resting HRV in police officers (1) can be predicted by stress-related EMA outcomes
(demands, stress, mental exhaustion and vigor) in the preceding days, and (2) predict
stress-related EMA outcomes in the subsequent days.

2. Materials and Methods
2.1. Study Design

An observational multiple n-of-1 study design was used [40], where individuals
collected data on a daily basis, which were then individually assessed as independent
time series. The results are therefore presented as a series (n = number of participants)
of independent quantitative analyses on within-subject associations (e.g., a case series)
based on samples with a high number of observations per participant (N = number of
observations per participant) that can be relatively well-intercompared due to consistency
in the applied methods. The current design is therefore optimized to provide a first
exploration of possible multi-day associations at a within-subject level based on high-
quality data, as is the aim of this study. Additionally, a rough estimate of the extent to
which the respective associations may be found across individuals can be described in
order to guide future studies. The current methods were based on a prior study that
investigated nested within-day associations [14,38]. Missing data are problematic for
time-series analysis. To limit missing data, we made several adaptations to optimize the
previously used research design. We included automatic resting HRV measurements, a
shorter daily Ecological Momentary Assessment (EMA) questionnaire, and an improved
reward for adhering to the measurement protocol (participants were allowed to keep the
wearable if they collected at least 100 complete daily observations). Data were collected
for two purposes: (1) comparing longitudinal (5-week) trends in daily resting HRV and
fluctuations therein to full questionnaire outcomes for stress, somatization, anxiety, and
depression, and (2) the assessment of potential bidirectional and/or multi-day associations
of sleep and resting HRV with stress-related EMA outcomes. The results of the former are
published elsewhere [41], whereas the results of the latter are presented in this paper. The
study protocol was approved by the ethical committee of the Hanze University of Applied
Sciences Groningen (heac.2020.012).

2.2. Participants

Police officers working in a large Dutch city and possessing an Android- or iOS-
based smartphone were invited to participate by the human resources bureau of their
office. Interested respondents received the study information via e-mail. Participation was
voluntary. The data collection period lasted a minimum of 15 weeks but could be extended
with a number of additional 5-week periods. Extending the data-collection period was
optional. Since at least 20 but preferably 50 observations with limited missing data are
needed for accurate time series analysis [42,43], this data collection period (105–140 days)
was expected to be appropriate to collect sufficient data. To also minimize potential missing



Sensors 2023, 23, 332 4 of 18

data participants could keep the wearable and received a personal feedback report after the
study as a reward if they collected complete daily data for at least 100 days and completed
all baseline and 5-weekly questionnaires. The recruitment period lasted until the maximum
capacity of 10 participants was reached (i.e., it ran from June 2020 and July 2020). Before the
start of their data collection, participants had a conversation with the first author during
which the study requirements were explained, and participants gave their written informed
consent. Due to COVID-19 restrictions, all contact with the participants occurred via
teleconferencing and e-mail. After data collection, one participant was excluded because
they were diagnosed with atrial fibrillation. This participant’s data were excluded from
the study, because this may have interfered with the accuracy of the HRV measurements.
Another participant of whom only 56.3% of the daily observations were available was also
excluded from the analysis. The remaining eight analyzed participants were predominantly
male (n = 6), had an average age of 37.0 years (range: 29–51), and contributed at least 80%
(range: 80.7–96.8%) of complete observations.

2.3. Data-Collection
2.3.1. Baseline Questionnaires

Immediately after consent was provided, participants were asked to fill in a baseline
questionnaire. The baseline questionnaire included two items on gender and birthdate, as
well as full questionnaires on personality traits (the Big Five Inventory; BFI) [44], symp-
toms of distress, somatization, depression, and anxiety (the Four-Dimensional Symptom
Questionnaire; 4DSQ) [45], burnout (the Oldenburg Burnout Inventory; OLBI) [46] and
work engagement (the Utrecht Work Engagement Scale; UWES) [47]. The outcomes of the
baseline questionnaires and the mean values of the daily wearable and EMA outcomes
were summarized per participant and on aggregate and used to describe the current sample
for generalization purposes and as background information on the characteristics of the
participants (Table 1). The age and gender of the individual participants were not described
out of privacy considerations.

2.3.2. Wearable-Based Variables

The Oura ring (generation 2, Oura Ring, Oulu, Finland) was used to measure TST
and resting HRV during sleep. The Oura ring is a consumer wearable that measures sleep,
physical activity, temperature, heart rate, and HRV. The consumer-available ring contains
2 infrared Light-Emitting Diode (LED) sensors, 2 Negative Temperature Coefficient (NTC)
thermistor sensors, a tri-axial accelerometer, and a gyroscope. Although the algorithms that
are used by the Oura ring to classify sleep and HRV based on the outputs of these sensors
are proprietary, the ring (generation 2) has been confirmed to provide valid measurements
of TST [48,49] and HRV [25,50,51] in independent research. Participants used a ring-size kit
to determine their correct ring size to optimize fit for both user comfort and measurement
accuracy and were allowed to choose a ring color of their preference. To preserve privacy,
anonymized Oura accounts were created by using e-mail addresses on a custom domain to
create accounts without the participants’ names. The Oura-reported TST was used, which
represents the total Duration of the Sleep Episode (DSE) minus the Sleep Onset Latency
(SOL) and Wake-time After Sleep Onset (WASO). Similarly, the Oura-reported HRV was
used, which represents the root Mean Square of the Successive Differences (rMSSD) in
the inter-beat-intervals. This metric was then logarithmically transformed (lnrMSSD) to
improve its distribution for statistical modeling, which is a common procedure in HRV
research [52]. Finally, the Moderate-to-Vigorous Physical Activity (MVPA) was used as a
control variable during analysis [53].
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Table 1. Participant characteristics.

Participant

Baseline Questionnaires 1 2 3 4 5 6 7 8

Extraversion (1–5) 2.8 3.3 3.3 2.5 3.8 4.4 3.8 4.1
Agreeableness (1–5) 3.3 3.9 3.8 3.6 3.4 3.8 3.9 3.8
Conscientiousness (1–5) 3.9 3.8 3.3 3.3 3.8 3.0 3.8 4.0
Neuroticism (1–5) 2.1 2.5 2.4 2.4 2.5 2.3 2.9 2.4
Openness (1–5) 4.1 2.8 3.7 3.6 3.4 3.8 2.5 3.4
Distress Low Moderate Low Low Low Low Moderate Low
Depression Low Low Low Low Low Low Low Low
Anxiety Low Low Low Low Low Low Low Low
Somatization Low Low Low Low Low Low Low Low
Exhaustion (1–4) 3.0 2.5 3.3 2.5 3.0 2.6 2.6 2.6
Disengagement (1–4) 2.4 2.6 3.3 2.9 2.9 2.3 2.4 3.8
Work engagement (1–7) 5.4 4.6 5.3 4.5 5.2 5.1 4.2 5.9

Daily Measurements

Total observations 147 125 386 150 285 143 147 140
% complete observations 81.6 94.4 88.3 80.7 96.8 93.0 95.9 80.7
TST (hours) 7.0 (1.5) 6.5 (0.8) 7.4 (1.5) 5.5 (1.3) 6.7 (1.3) 7.6 (1.5) 7.4 (1.3) 6.5 (1.2)
HRV (milliseconds) 51.3 (15.6) 43.8 (5.1) 54.8 (15.9) 72.8 (9.8) 47.4 (15.2) 29.6 (4.3) 39.6 (6.9) 26.8 (5.1)
Demands (0–10) 4.4 (3.0) 4.7 (2.0) 3.2 (1.6) 5.1 (2.7) 4.1 (1.2) 2.4 (1.9) 4.3 (2.7) 3.4 (2.2)
Stress (0–10) 3.9 (2.7) 3.5 (1.9) 2.6 (1.8) 3.3 (2.0) 1.5 (0.9) 1.6 (1.8) 1.3 (1.9) 2.8 (1.6)
Mental exhaustion (0–10) 2.8 (2.7) 4.8 (2.0) 3.7 (1.7) 4.2 (2.4) 2.1 (1.0) 1.4 (1.9) 2.6 (2.9) 3.3 (2.1)
Vigor (0–10) 5.3 (2.8) 5.6 (1.4) 5.8 (2.1) 5.0 (2.1) 4.9 (1.1) 6.0 (1.7) 5.5 (2.5) 7.4 (0.8)
MVPA (minutes) 54.2 (33.4) 49.3 (24.2) 45.4 (35.6) 28.0 (26.5) 49.7 (28.7) 33.4 (30.3) 25.7 (19.2) 18.5 (14.2)
Alcohol use (units) 0.4 (0.8) 0.5 (0.9) 0.4 (0.7) 0.1 (0.6) 0.5 (0.9) 0.1 (0.4) 0.9 (1.3) 0.1 (0.5)

Note. For the baseline questionnaires, the observed values are reported. For the daily measurements, mean and
standard deviation are reported. TST: Total Sleep Time; HRV: Heart Rate Variability; rMSSD: root Mean Square of
the Successive Differences; MVPA: Moderate-to-Vigorous Physical Activity.

2.3.3. Ecological Momentary Assessment-Based Variables

Every day at 7 PM, participants received a notification that a new EMA questionnaire
was available on their smartphone app. Participants were instructed to complete the
EMA before they went to bed. Since participants regularly worked night shifts, the EMA
was available until 3 PM on the next day while participants received a reminder at noon
to fill in their previous-day questionnaire if they had not finished it already. The EMA
items were based on items used in a similar study [14,38]. The EMA measured: demands
(“How demanding was your day?”), stress (“How much stress did you perceive today?”), mental
exhaustion (“I felt mentally exhausted as a result of my activities”), vigor (“Do you feel like
undertaking activities?”), and alcohol intake (“I consumed . . . alcoholic beverages today”). The
demands, stress, and vigor items were scored on an 11-point Numeric Rating Scale (NRS),
ranging from 0 (“Not at all”) to 10 (“Extremely”). Mental exhaustion was scored on an
11-point NRS ranging from 0 (“Strongly disagree”) to 10 (“Strongly agree”). The item for
stress was based on a validated single-item scale [54], the item for mental exhaustion on an
item of the Need For Recovery Scale [55], the item for vigor on an item of the Utrecht Work
Engagement Scale [47], whereas the item for demands was self-composed in a similar style
as the item for stress. The number of alcoholic beverages participants consumed during
the passing day was included for use as a control variable during analysis and based on
the AUDIT-C questionnaire [56], since alcohol consumption is known to impact resting
HRV [57].

2.4. Data-Analysis

All analyses were performed in RStudio version 2022.7.1.554 [58] using R version
4.2.1 [59]. The ‘zoo’ package was used for linear interpolation of missing data [60], the
‘vars’ package was used for Vector Auto-Regression (VAR) modeling, Granger causation
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testing, and Impulse Response Function (IRF) calculation [61]. Finally, ‘ggplot2′ was used
to visualize the IRFs [62].

2.4.1. Data Preparation

First, descriptive statistics on the number of observations, the percentage of complete
observations, and the wearable- and EMA-variables were calculated based on the full set
of collected data. Since VAR analyses do not allow for missing data, missing data were
imputed via linear interpolation. Rows, where data were missing at the beginning or
end of the time series, were removed, as these could not be imputed. All values were
standardized (by first subtracting the within-subject mean from each daily value and then
dividing it by the within-subject standard deviation) to optimize the inter-comparability of
beta-coefficients and prevent multicollinearity. Finally, two versions of the vectors with
the four core EMA variables (demands, stress, mental exhaustion, and vigor), two core
wearable variables (TST and resting HRV), and two control variables (MVPA and alcohol
consumption) were constructed to answer both research questions. The vector for the
first analysis contained rows with values for the passing night’s TST and nocturnal HRV,
combined with the EMA items of the subsequent evening so that the lagged values of the
EMA items (the values on the previous row that represent the EMA of the previous day)
could be interpreted as predictors for TST and HRV (the values on the current row that
represent the values for the passing night). For analysis 2, the TST and HRV data were
shifted to the previous day, so that the lagged values of the TST and HRV (the values on
the previous row, representing the passing night) could be interpreted as predictors for the
EMA items (the values on the current row, representing the current day).

2.4.2. Vector Auto-Regressive Modeling

To assess the stationarity of the time series as a prerequisite to performing VAR
analysis, the Phillips-Perron (PP) unit root test was used on all variables [63]. All-time
series were stationary (PP p < 0.05). Next, the number of lags (i.e., number of preceding
days included as predictor values) to include in the VAR model was determined. This
was completed via the ‘VARselect’ function, which calculates models up to 7 lags (i.e.,
one full week’s worth of lags). The most optimal lag order is based on four information
criteria corresponding to the different models (i.e., Akaike Information Criterion (AIC),
Hannan-Quinn (HQ) criterion, Schwarz Criterion (SC), and Final Prediction Error (FPE)
criterion). The mode of these four information criteria was selected as the most optimal
lag order used in the VAR model. In the case of a tie, the most conservative estimate was
chosen. Assumptions were tested on the residuals of the VAR model. The residuals were
assessed for autocorrelation via an asymptotic multivariate Portmanteau Test (PT) [64], for
heterogeneity via an ARCH-LM test [65], and for normality via a Jarque-Bera (JB) test [66].

2.4.3. Granger Causation Testing

To increase confidence in the predictive value of core EMA variables that were found
to be statistically significant predictors of wearable variables (or vice versa) in the full VAR
models, Granger causation tests were applied [67]. Granger causation tests assess if the
inclusion of a predictor significantly improves a VAR. To isolate the direct relationships
between these associations of interest from interrelations with the other variables in the
vector, the Granger causation tests were applied to vectors with only the core predictor
and outcome variables. Therefore, significant Granger causation tests showed that the
predictor variable itself explains meaningful variance in the outcome variable and is not
just significant in the VAR due to interrelations with other variables in the vector.

2.4.4. Impulse Response Function Visualization

An IRF is the reaction of a dynamic system in response to an external change [68].
IRF visualizations of relevant predictors on the outcomes can illustrate how the outcome
varies on subsequent days after being faced with an increase in a predictor variable. The
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IRF of predictors that were both statistically significant in the full VAR model and in the
additional Granger causation test were visualized. The IRF visualizations consisted of an
overlay of participants where the respective association was observed. The IRFs with the
same predictor were grouped in a grid in order to cluster visualizations of the multi-day
impact of a predictor on all relevant outcomes (including bootstrapped 95% confidence
interval (CI) based on 1000 runs).

3. Results
3.1. Participant Characteristics

The eight participants, who were 29.4 to 51.1 years old (median = 36.8) and pre-
dominantly male (75%), collected 125 to 386 observations per person (median = 147) of
which 80.7 to 96.8% (median = 90.7%) contained complete data on the EMA outcomes, as
well as daytime and nighttime wearable outcomes. The average TST ranged from 5.5 to
7.6 h (median = 6.8), during which they had an average resting HRV (rMSSD) of 26.8 to
72.8 milliseconds (median = 45.6). The participants were moderate-to-vigorously physically
active for 18.5 to 54.4 min per day (median = 39.4). The median reported daily scores on the
stress-related outcomes was in the lower half of the scale (0–10) for demands (median = 4.2,
range = 2.4–5.1), stress (median = 2.7, range = 1.3–3.9) and mental exhaustion (median = 3.0,
range = 1.4–4.8). The mean reported daily scores on vigor were in the upper half of the
scale (median = 5.6, range = 4.9–7.4). On average, the participants consumed between
0.1 and 0.9 (median = 0.4) alcoholic beverages per day. An overview of all participant
characteristics is presented in Table 1.

3.2. Analysis 1: Predicting TST and HRV by EMA

All analyzed time series were found to be stationary (PP unit root test p < 0.05). The
AIC, HQ, SC, and FPE information criteria that were used to determine the lag order for
the VAR models unanimously suggested an optimal lag order of 1 in all participants, with
exception of participant 7, where 2 out of 4 information criteria suggested a lag order of
2. Since the conservative option was chosen in case of a tie (§2.4.2), VAR models with
1 lag were created for all participants. No heterogeneity (ARCH-LM test p > 0.05) was
found in the residuals of any model. The residuals also contained no autocorrelation (PT
p > 0.05) in most participants, except for participant 5. This autocorrelation could not be
resolved (e.g., by adding additional lags to the model), and suggests that an unobserved
but relevant factor was not included in the model, which therefore may be useful but not
complete. Finally, none of the residuals of any model were found to be normally distributed
(JB-test p < 0.05). This was likely attributable to the distribution of some of the EMA items,
which were occasionally skewed or even bimodal. Since simulation studies showed that
non-normally distributed residuals are not problematic in analyses with a sample of at
least 100 observations [69], this was not considered to be a problem for the interpretation of
these results.

The results of the VAR models on TST are presented in Table 2. Demands was a
statistically significant (p < 0.05) negative predictor of TST for three participants (4, 5, 7).
For participant 5 this finding was confirmed by a statistically significant Granger causation
test. Mental exhaustion was a significant positive predictor of TST in participant 4, but this
was not confirmed in Granger causation testing and therefore interpreted as a potentially
spurious relationship. Stress and vigor were not statistically significant predictors of TST
in any model. The explained variance in the TST of the participant (5) in which demands
was a significant predictor that was confirmed by a significant Granger causation test
was 9%.
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Table 2. Vector autoregression models for Total Sleep Time (TST) per participant (1–8).

TST

1 2 3 4 5 6 7 8
Independent Variable β β β β β β β β

Constant 0.00 0.03 −0.01 −0.00 0.01 −0.02 0.02 0.00
TST (lag 1) 0.08 0.06 −0.02 0.21 ** 0.04 −0.10 −0.08 −0.05
HRV (lag 1) 0.07 0.01 −0.07 0.10 −0.10 0.04 −0.12 −0.08
MVPA (lag 1) 0.02 −0.09 0.05 0.18 * 0.04 −0.02 0.07 0.07
Alcohol intake (lag 1) 0.17 0.08 0.09 0.02 0.08 0.04 0.08 0.01
Demands (lag 1) 0.24 −0.02 0.05 −0.40 ** −0.39 *** 0.01 −0.21 * 0.02
Stress (lag 1) −0.16 −0.13 −0.12 0.03 0.08 −0.07 −0.00 −0.12
Mental exhaustion (lag 1) 0.24 0.14 0.02 0.32 * 0.01 −0.14 0.10 −0.07
Vigor (lag 1) −0.01 −0.06 −0.10 −0.10 0.10 0.16 −0.07 0.02

N 142 123 385 148 283 141 146 138
Adjusted R2 0.03 −0.04 0.02 0.11 0.09 0.03 0.01 −0.03
F-statistic 1.49 0.48 1.76 3.26 ** 4.53 *** 1.47 1.19 0.54

Note. *** p < 0.001, ** p < 0.01, * p < 0.05. p < 0.1; Underlined: both the beta-coefficient and Granger causation test
p < 0.05. TST: Total Sleep Time; HRV: Heart Rate Variability; MVPA: Moderate-to-Vigorous Physical Activity.

The results of the VAR models on HRV are presented in Table 3. Demands was
a significant negative predictor of HRV in participant 3, which was also confirmed via
Granger causation testing. Mental exhaustion was a significant positive predictor of
HRV in participant 4, but it was in Granger causation testing and therefore interpreted
as a potentially spurious relationship. Stress and vigor were not statistically significant
predictors of HRV in any model. The explained variance in the HRV of the participant (3)
in which demands was a significant predictor that was confirmed by a significant Granger
causation test was 22%.

Table 3. Vector autoregression models for Heart Rate Variability (HRV) per participant (1–8).

HRV

1 2 3 4 5 6 7 8
Independent Variable β β β β β β β β

Constant −0.01 0.02 −0.01 0.03 −0.01 −0.01 0.00 0.03
TST (lag 1) 0.04 0.00 −0.02 −0.03 −0.04 0.01 0.11 0.10
HRV (lag 1) 0.74 *** 0.06 0.40 *** 0.25 ** 0.59 *** 0.30 *** 0.32 *** 0.36 ***
MVPA (lag 1) 0.03 0.03 −0.18 *** 0.10 −0.11 * 0.04 −0.14 −0.12
Alcohol intake (lag 1) −0.12 * 0.06 −0.19 *** −0.11 −0.18 *** −0.10 −0.07 0.03
Demands (lag 1) −0.01 0.01 −0.16 * −0.20 0.01 0.16 −0.01 −0.08
Stress (lag 1) 0.05 0.03 −0.01 −0.22 −0.04 −0.23 0.04 −0.05
Mental exhaustion (lag 1) 0.05 −0.08 0.04 0.33 * 0.07 0.09 −0.07 −0.07
Vigor (lag 1) 0.05 −0.12 −0.02 0.15 −0.04 0.02 −0.06 0.06

N 142 123 385 148 283 141 146 138
Adjusted R2 0.59 −0.05 0.22 0.12 0.40 0.07 0.12 0.17
F-statistic 26.61 *** 0.34 14.20 *** 3.46 ** 24.15 *** 2.41 * 3.40 ** 4.51 ***

Note. *** p < 0.001, ** p < 0.01, * p < 0.05. p < 0.1; Underlined: both the beta-coefficient and Granger causation test
p < 0.05. TST: Total Sleep Time; HRV: Heart Rate Variability; MVPA: Moderate-to-Vigorous Physical Activity.

To support the interpretation of the temporal associations where both the beta-coefficient
and Granger causation tests were significant, IRF visualizations for the impact of an increase
in demands on (A) TST and (B) HRV are displayed in Figure 1. In both outcomes, an increase
in demands results in a sudden drop in the outcome variable, which then gradually recovers
in subsequent days. However, the recovery of HRV takes longer (0 enters the 95% CI on
the sixth day) than that of TST (0 enters the 95% CI on the third day). This difference
can be attributed to the highly significant autoregression component in HRV (p < 0.001),
which is not observed in TST. This means that resting HRV values are relatively likely to
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be similar to the previous day (e.g., if yesterday’s resting HRV value was relatively low,
today’s value is likely to be relatively low again), whereas TST values have little to no
association to the value of the previous day. The impact of demands, therefore, appears to
be more long-lasting on HRV than on TST—at least in these participants.

Figure 1. Visualization of the Impulse Response Function (IRF) of the impact of an increase
in demands on the Total Sleep Time (TST) and resting Heart Rate Variability (HRV) during the
subsequent week.

3.3. Analysis 2 Predicting EMA by TST and HRV

The outcomes of the pre- and post-model diagnostic tests of analysis 2 were similar
to those of analysis 1. The only difference in the pre- and post-model diagnostic tests
of analysis 1 is that in analysis 2, participant 7 had just 1 out of 4 information criteria
suggesting an optimal lag order of 2 instead of 2 out of 4. Therefore, VAR models with 1 lag
were again created for all participants.

The results of the VAR models on demands are presented in Table 4. TST was a
statistically significant negative predictor of demands in two participants (1, 2), which was
confirmed with the Granger causation test in both cases. HRV was a significant negative
predictor of demands in two participants (7, 8), also confirmed via Granger causation tests.
The explained variance in the demands of these participants was 16% and 23%, respectively.

Table 4. Vector autoregression models for demands per participant (1–8).

Demands

1 2 3 4 5 6 7 8
Independent Variable β β β β β β β β

Constant −0.00 0.01 −0.01 0.03 0.00 −0.01 0.02 0.02
Demands (lag 1) 0.03 0.17 0.21 ** 0.49 *** 0.34 *** −0.09 0.21 * 0.31 **
Stress (lag 1) 0.25 * −0.05 −0.06 −0.02 −0.17 * 0.17 −0.10 −0.06
Mental exhaustion (lag 1) 0.03 −0.03 0.08 0.06 0.08 0.18 0.05 0.13
Vigor (lag 1) 0.06 0.04 0.02 −0.06 0.15 * 0.03 −0.05 −0.04
MVPA (lag 1) 0.09 −0.06 0.08 0.00 0.12 * 0.06 0.01 0.19 *
Alcohol intake (lag 1) −0.13 −0.07 −0.04 −0.10 −0.04 0.00 −0.24 ** −0.12
TST (lag 1) −0.37 *** −0.42 *** −0.09 −0.06 0.00 −0.12 −0.11 0.08
HRV (lag 1) 0.06 0.14 −0.02 0.03 −0.07 0.11 −0.21 ** −0.18 *

N 142 123 385 148 283 141 146 138
Adjusted R2 0.24 0.15 0.04 0.28 0.14 0.05 0.16 0.23
F-statistic 6.50 *** 3.63 ** 3.23 ** 8.18 *** 6.72 *** 1.94 4.41 *** 6.01 ***

Note. *** p < 0.001, ** p < 0.01, * p < 0.05. p < 0.1; Underlined: both the beta-coefficient and Granger causation test
p < 0.05. MVPA: Moderate-to-Vigorous Physical Activity; HRV: Heart Rate Variability; TST: Total Sleep Time.

Table 5 contains the results of the VAR models on stress. TST was a significant negative
predictor of stress in three participants (1, 2, 7), all confirmed via the Granger causation test.
HRV was a significant negative predictor of stress in one participant (8), again confirmed
via Granger causation tests. The explained variance in the stress of these participants
ranged from 2% to 23%.
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Table 5. Vector autoregression models for stress per participant (1–8).

Stress

1 2 3 4 5 6 7 8
Independent Variable β β β β β β β β

Constant −0.00 −0.00 −0.01 0.03 −0.00 0.01 −0.01 0.03
Demands (lag 1) −0.03 0.01 −0.06 0.04 −0.02 −0.04 0.01 −0.10
Stress (lag 1) 0.32 * 0.06 0.22 ** 0.49 *** 0.19 * 0.13 0.18 0.30 **
Mental exhaustion (lag 1) 0.02 0.06 0.05 0.01 0.07 0.14 −0.01 −0.10
Vigor (lag 1) 0.11 −0.03 −0.05 −0.00 0.11 0.06 0.01 0.00
MVPA (lag 1) 0.04 0.03 0.07 −0.07 0.09 0.01 −0.02 0.15
Alcohol intake (lag 1) −0.18 * −0.13 −0.08 −0.09 −0.02 −0.00 −0.01 −0.04
TST (lag 1) −0.19 * −0.49 *** −0.04 0.01 −0.01 −0.05 −0.19 * 0.05
HRV (lag 1) −0.12 0.08 0.03 −0.00 −0.02 0.08 0.06 −0.29 **

N 142 123 385 148 283 141 146 138
Adjusted R2 0.18 0.23 0.04 0.23 0.05 0.01 0.02 0.12
F-statistic 4.88 *** 5.44 *** 3.17 ** 6.56 *** 2.80 ** 1.09 1.39 3.32 **

Note. *** p < 0.001, ** p < 0.01, * p < 0.05. p < 0.1; Underlined: both the beta-coefficient and Granger causation test
p < 0.05. MVPA: Moderate-to-Vigorous Physical Activity; HRV: Heart Rate Variability; TST: Total Sleep Time.

The results of the VAR models on mental exhaustion are presented in Table 6. TST
was a significant negative predictor of mental exhaustion in five participants (1, 2, 3, 5,
7), all confirmed via Granger causation tests. HRV was a significant negative predictor of
mental exhaustion in one participant (8), again confirmed via Granger causation testing.
The explained variance in the mental exhaustion of these participants ranged from 3%
to 36%.

Table 6. Vector autoregression models for mental exhaustion per participant (1–8).

Mental Exhaustion

1 2 3 4 5 6 7 8
Independent Variable β β β β β β β β

Constant −0.00 0.01 −0.01 0.02 −0.00 0.00 0.01 0.03
Demands (lag 1) 0.08 0.05 0.13 0.25 * −0.03 −0.14 0.05 0.17
Stress (lag 1) −0.07 −0.18 −0.17 * 0.17 0.02 0.22 0.08 0.02
Mental exhaustion (lag 1) 0.23 0.27 * 0.13 0.17 0.30 *** 0.04 0.16 0.01
Vigor (lag 1) 0.03 −0.07 −0.04 −0.14 0.00 −0.11 0.05 −0.05
MVPA (lag 1) 0.04 −0.06 0.01 −0.07 −0.05 0.08 −0.07 0.11
Alcohol intake (lag 1) −0.17 −0.10 −0.02 −0.05 0.11 −0.05 −0.14 −0.09
TST (lag 1) −0.17 * −0.41 *** −0.12 * −0.05 −0.25 *** −0.11 −0.17 * 0.02
HRV (lag 1) 0.10 0.16 −0.06 0.02 −0.00 0.04 −0.12 −0.22 *

N 142 123 385 148 283 141 146 138
Adjusted R2 0.07 0.17 0.03 0.36 0.15 0.02 0.08 0.08
F-statistic 2.37 * 4.05 *** 2.68 ** 11.15 *** 7.04 *** 1.44 2.61 * 2.47 *

Note. *** p < 0.001, ** p < 0.01, * p < 0.05. p < 0.1; Underlined: both the beta-coefficient and Granger causation test
p < 0.05. MVPA: Moderate-to-Vigorous Physical Activity; HRV: Heart Rate Variability; TST: Total Sleep Time.

Finally, the results of the VAR models on vigor are presented in Table 7. TST was a
significant positive predictor of vigor in five participants (1, 3, 4, 5, 7), all confirmed via
Granger causation tests. HRV did not predict vigor in any participant. The explained
variance in the vigor of these participants ranged from 8% to 34%.
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Table 7. Vector autoregression models for vigor per participant (1–8).

Vigor

1 2 3 4 5 6 7 8
Independent Variable β β β β β β β β

Constant 0.06 −0.00 −0.01 0.00 −0.00 −0.00 −0.01 0.02
Demands (lag 1) −0.24 * −0.10 −0.04 −0.16 −0.05 0.02 −0.09 0.07
Stress (lag 1) 0.32 ** −0.12 0.14 * −0.03 0.09 0.04 −0.07 0.11
Mental exhaustion (lag 1) −0.06 −0.16 0.04 0.01 −0.03 −0.14 0.02 −0.13
Vigor (lag 1) 0.37 *** 0.19 * 0.31 *** 0.48 *** 0.18 ** 0.19 * 0.22 ** 0.22 *
MVPA (lag 1) −0.02 −0.04 0.02 0.05 0.06 0.05 0.10 0.13
Alcohol intake (lag 1) 0.11 −0.06 0.02 0.10 −0.04 0.12 0.10 −0.04
TST (lag 1) 0.27 *** 0.11 0.12 * 0.17 * 0.41 *** 0.13 0.49 *** −0.17
HRV (lag 1) 0.06 −0.01 −0.01 −0.07 0.10 0.11 0.04 0.06

N 142 123 385 148 283 141 146 138
Adjusted R2 0.27 0.11 0.08 0.34 0.20 0.08 0.34 0.05
F-statistic 7.45 *** 2.93 ** 5.23 *** 10.60 *** 9.62 *** 2.44 10.39 *** 1.81

Note. *** p < 0.001, ** p < 0.01, * p < 0.05. p < 0.1; Underlined: both the beta-coefficient and Granger causation test
p < 0.05. MVPA: Moderate-to-Vigorous Physical Activity; HRV: Heart Rate Variability; TST: Total Sleep Time.

IRF visualizations for the impact of an increase in TST on each of the four EMA
outcomes (A–D) are displayed in Figure 2. In all outcomes, an increase in TST resulted in a
sudden decline (or incline in the case of vigor) that recovered (0 enters the 95% CI) in the
subsequent 1 or 2 days. The IRF visualizations for the impact of an increase in HRV on the
four EMA outcomes (Figure 3A–C) is similar for demands (1–2 days), although recovery
from the impact on stress (2–3 days) and mental exhaustion (2–3 days) appears to take
a bit longer. It appears that in these participants, the impact of changes in HRV is more
long-lasting than for changes in TST.

Figure 2. Visualization of the Impulse Response Function (IRF) of the impact of an increase in Total
Sleep Time (TST) on the subsequent week’s demands, stress, mental exhaustion, and vigor.
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Figure 3. Visualization of the Impulse Response Function (IRF) of the impact of an increase in resting
Heart Rate Variability (HRV) on the subsequent week’s demands, stress, and mental exhaustion.

4. Discussion

This study aimed to explore to what degree wearable-measured sleep and resting HRV
in police officers (1) can be predicted by stress-related EMA outcomes in the preceding days,
and (2) predict stress-related EMA outcomes in the subsequent days. After performing
a time series analysis on eight participants, the results showed that associations in both
directions of modest strength were observed and that TST and resting HRV were more
consistent predictors for the next day’s perceived demands, stress, mental exhaustion,
and vigor than the other way around. Demands was a negative predictor of TST of one
participant, and for resting HRV in another. Mental exhaustion predicted both resting HRV
and TST in the same participant. Especially, TST seemed a strong predictor of stress-related
EMA outcomes. TST negatively predicted demands in two participants, stress in three
participants, mental exhaustion in five participants, and positively predicted vigor in five
participants. Resting HRV negatively predicted demands in two participants, and both
stress and mental exhaustion in one participant.

This study led to three key findings that will first be reflected upon, followed by a
discussion of the strengths and limitations of the study, and finally a summary of the main
conclusions and recommendations for future research.

4.1. Associations between TST, HRV and EMA Outcomes Are Not Consistently Observed

Although TST was a negative predictor of mental exhaustion and a positive predictor
of vigor in the majority (62.5%) of the participants, no association between a wearable-
and an EMA-based item was consistently observed in all participants. No convincing
explanations for the prevalence of these associations were identified after inspection of
differences in the participant characteristics (Table 1).

The number of participants in this study (n = 8) was too low to meaningfully assess
to what extent between-subject differences in participant characteristics could predict the
prevalence of these associations. Future studies with a larger sample size are recommended
to explore if the occurrence or strength of these associations may be explained by participant
characteristics, for instance via multilevel VAR [70]. If these differences can be explained
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in future studies, they may be used to further personalize wearable-based models for
stress-resilience.

It is also possible that the strength of these associations does not (only) depend on
differences between individuals, but (also) on differences within individuals or in their
environment. However, it may be difficult to determine beforehand what these influencing
factors may be. It is possible to first explore if the strength of these relationships changes
over time, for example via time-varying VAR models [71]. Detecting such changes over
time is particularly feasible in datasets with a larger number of observations and/or more
granular data. If these associations do change over time, it is possible that they may be
actually relevant for all participants, but only under certain circumstances. Depending on
the outcomes of such studies, it could provide new insights into the internal or external
factors that determine when these associations are observed.

4.2. The Impact of Changes in HRV Appears to Be More Abiding than That of Changes in TST

The IRF visualizations in Figure 1 demonstrated that a demand-induced decline of
resting HRV appears to have a longer recovery time (5–6 days) than a demand-induced
decline of TST (2–3 days). Similarly, the impact of a change in resting HRV on stress-related
EMA outcomes (Figure 3) appears to also be more long-lasting (1–3 days) than that of a
change in TST (1 day) (Figure 2). This was attributed to the significant autoregression
component that was observed in resting HRV, but not in TST. The strong autoregression
component in the resting HRV model means that resting HRV values are relatively likely to
be similar to those of the previous day(s). Therefore, a demand-induced decline in resting
HRV (analysis 1) may take several days to recover from. Similarly, the impact of a decline
in resting HRV on demands, stress, mental exhaustion, and vigor is likely to spill over into
subsequent days, as it means that resting HRV is likely to remain suppressed for another
few days.

This observation may be explained by the fundamentally different nature of the
concepts resting HRV and TST. Resting HRV is a quantification of a physiological state that
is continuously striving to maintain stability (homeostasis) despite disruptive challenges
(allostasis) [13]. The recovery from a stressor that has a physiological impact (allostatic
load) could take longer depending on the intensity and frequency of the stressor, as well
as the quality and quantity of the subsequent recovery [36,37]. As such, a large decline in
resting HRV can logically be expected to take some time as well. TST, on the other hand,
is a quantification of the recovery process itself. Stress can negatively influence TST on
the following night [18–21] and can therefore also impact TST on subsequent nights in
the case of a recurring or sustained stressor. However, when this is not the case, it is also
possible that the individual compensates for the previous sleep loss via recovery sleep [72],
which would mean that TST on a subsequent night is no longer suppressed but actually
increased. From this perspective, TST values can be expected to be more volatile than
changes in resting HRV and thus have a weaker autoregression component. However, it
is possible that changes in TST do have a longer-lasting impact on relevant underlying
(psycho)physiological states such as vigor, which was observed to consistently have a
significant autoregression component (Table 4).

The seemingly more abiding impact of a change in resting HRV on the resting HRV of
the subsequent days may also be influenced by the development of a negative feedback loop.
A previous study showed that evening mental exhaustion negatively impacted subsequent
resting HRV and that resting HRV itself buffered against the positive association between
demands and stress, as well as between stress and mental exhaustion [38]. This aligns
with the Conservation of Resources Theory, which describes that an initial loss of resources
could lead to a negative feedback loop. This means that fewer resources are available to
handle upcoming challenges, which leads to lower resilience [35]. However, in the current
study, no bidirectional association between a stress-related EMA item and resting HRV was
observed within a single participant. Future studies with a larger sample are needed to
increase insight into the multi-day impact of stress-related changes in resting HRV.
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4.3. TST and HRV Are More Consistent Predictors of Stress-Related Outcomes than Vice Versa

These findings indicate that wearable-measured TST and HRV seemed better predic-
tors of stress-related EMA outcomes than the other way around. EMA-based predictions of
TST and resting HRV were only observed in two participants, who had relatively large sam-
ples of observations (N = 385 and N = 283) compared to the median (N = 144). Additionally,
these relationships were not consistently observed in both participants. These differences
cannot merely be explained by statistical power. Nevertheless, these models explained a
modest amount of variance in TST (9%) and resting HRV (22%) in some participants. It is
possible that these relationships are relatively small in nature and can only be observed in
larger samples.

The finding that TST is a more consistent predictor of stress-related outcomes than that
it can be predicted by stress-related outcomes aligns with prior research [22]. For instance,
a lower TST has consistently been shown to predict increased stress [19–21,73]. Conversely,
in the same studies, the opposite is regularly associated with smaller effect sizes [19,21],
but in another study, TST was not associated with stress-related outcomes [73].

Similar scientific findings on the combination of both the predictive power and pre-
dictability of resting HRV in the context of stress-related outcomes are limited. However,
the current findings do align with prior research, which has shown that stress-related
outcomes negatively affect resting HRV [27,28,38] and that a relatively lower resting HRV
than an individual’s normal resting HRV can negatively impact stress-related outcomes on
the following day [38,74].

One of the implications of this finding is that a decrease in wearable-measured TST or
resting HRV does not necessarily point toward the occurrence of stress-related outcomes.
Although the observed decrease in TST or resting HRV might have been caused by subse-
quent high demands or stress, this outcome may have been confounded by other factors. In
situations where sudden extreme demands or stress occur, this might in some cases directly
cause a decreased TST or resting HRV. However, in these circumstances, the wearable-user
is likely already aware of the impact of such events. In such instances, the wearable-user
less likely needs objective feedback to confirm this short-term effect.

Based on these findings, wearable-measured TST and resting HRV are not necessarily
usable as a direct indication of the negative impact of stress but hold more promise to
function as potential predictors to estimate one’s resilience. For instance, these insights
could be implemented in resilience interventions in the form of a readiness score that
gives the user feedback on his or her expected readiness to handle mental and physical
challenges that day [75]. Ideally, these factors will be expanded upon in future research
(e.g., by also assessing behavioral outcomes such as smartphone usage, geolocation, or
patterns in communication) that also explore different modeling approaches (e.g., machine
learning) in order to improve the performance of these models.

4.4. Strengths and Limitations of the Current Study

This study applied a novel research design and recruited a motivated number of
participants that resulted in a series (n = 8) of sizable datasets (N = 125–386) with mostly
(80.7–96.8%) complete observations. By utilizing a consumer-available wearable that is
validated for both TST and resting HRV measurements to collect observational data in a
real-life environment, the generalizability of the findings to practical settings is relatively
good. However, three limitations of the current study should also be considered during the
interpretation of the presented results.

First, the multiple n-of-1 study design with a small number of participants (n) but
a large number of observations per participant (N) was optimized as a first exploration
of the potential existence of the hypothesized multi-day associations at a within-subject
level based on high-quality data but limits the generalizability of the current findings to a
broader target population. Therefore, future research with a larger number of participants
is needed to increase confidence that the found associations are indeed relevant for larger
groups of people. Future research is also needed to better understand why the identified
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relationships are prevalent in some cases, but not in others. For instance, it is possible that
studies with a larger number of observations per participant can unveil to what extent
associations with a smaller strength can be observed in other participants, and to what
extent the strength of these associations may change over time (e.g., via time-varying VAR).

Second, the included healthy participants and data collection during the COVID-19
lockdown might have affected the participants’ perceptions of demanding and stressful
situations. Their daily practice may not have been very demanding, which may have
resulted in relatively low variance in the data. This aligns with the findings of a study on
2567 European police officers, which reported decreased strain during the pandemic [76].
The analyzed participants all scored relatively well on the mental well-being questionnaires
(Table 1). Another article that was based on data from this same study population showed
that some participants reported moderately elevated stress and somatization throughout the
study period, but that there were no clinically relevant signs of anxiety and depression [41].
Future studies with a more mentally challenged sample need to verify the current findings
for more challenging conditions.

Finally, some of the statistical assumptions of the created VAR models were technically
violated. Most notably, none of the VAR models had normally distributed residuals, which
was likely the result of sometimes skewed or bimodally distributed EMA items. Since
simulation studies have shown that this assumption is particularly relevant when relatively
small samples are assessed but not problematic when a sample of at least 100 observations
is analyzed [70], this was not considered to be a problem for the interpretation of the results.
The VAR model of participant 5 was also found to have autocorrelated residuals, which
could not be resolved (e.g., by adding additional lags). Although this does not necessarily
limit the interpretability of the model and related findings, it does show that the model
is incomplete, and at least one unobserved but relevant factor was not included in the
present study.

5. Conclusions

This multiple n-of-1 study showed that in relatively healthy police officers, demands
were occasionally observed to be a negative predictor of wearable-measured TST and
resting HRV. TST and resting HRV were more regularly observed to be negative predictors
of demands, stress, or mental exhaustion, whereas TST also positively predicted vigor in
several participants. The presented results illustrate that caution is needed when inter-
preting changes in TST and resting HRV to be potentially stress-related and that TST and
resting HRV are more likely to be useful as predictors of stress-resilience (e.g., expressed as
a readiness score).

However, since the identified associations were not consistently observed amongst
participants, further research is necessary to better understand the underlying mechanism.
For instance, future studies with a larger sample of participants, which is also needed
to improve the generalizability of the current findings, could consider assessing if these
between-subject differences could be explained by participant characteristics (e.g., via
multilevel VAR). Another direction could be to explore if the strength of these associations’
changes over time in samples with a larger number or more granular data (e.g., via time-
varying VAR). Finally, future studies should explore if predictive models with a higher
explained variance can be achieved by including additional data sources (e.g., smartphone
usage, geolocation, or patterns in communication) or utilizing more inductive methods
(e.g., machine learning approaches).
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