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Abstract

We define the notion of critical points at infinity for the charged N -body problem, following the
pproach of Albouy (1993). We give a characterisation of such points and show how they can be found
n the charged 3-body problem. The symmetry group of the N -body problem and accompanying integrals
lay a key role. In fact critical points at infinity are indispensible in understanding the bifurcations of
he integral map. Together with the critical points at infinity in the charged 3-body problem, we present
he bifurcation values.

2022 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Charged N -body problem; Integral map; Critical sequence; Cluster decomposition; Critical point at infinity;
ritical point; Relative equilibrium

1. Introduction

This is the second article in a series of three on the charged three body problem. We continue
ur study of the integral manifolds of the charged three body problem, started in [6]. In the
atter we in particular considered the critical points of the integral map. Here we extend this to
ritical points at infinity of the charged N -body problem. In the last section we return to the
harged three body problem. In the third article [5], we study the Hill regions of such systems.

We consider the charged N body problem as a Hamiltonian dynamical system, in particular
s a mechanical dynamical system (terminology of Arnol’d, see [4]). That is, the Hamiltonian
s the sum of ‘kinetic energy’ and ‘potential energy’. The N bodies reside in R3, therefore
he phase space M is the 6N -dimensional cotangent bundle M = T ∗R3N

≃ R3N
× R3N of

he 3N -dimensional configuration space R3N . The interaction of the bodies is governed by a
otential function V. Furthermore, the function V is assumed to be SE(3)-invariant. In fact we
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assume pairwise interaction and in particular that the potential energy of two bodies is inverse
proportional to the distance of the two bodies. For further details about the phase space and
the Hamiltonian function, see Section 2.

In this setting, the N -body problem admits ten integrals: the Hamiltonian function, together
with three components of momentum, angular momentum and the centre of mass. They define
the so-called integral map F : R6N

→ R10. In the end we wish to characterise the integral
anifolds defined as the fibres F−1(φ) of the map F for all values φ. Here we first consider

ritical values of F from critical points of F , for at these values we expect the integral
anifolds to change topology. Due to the nature of the potential, the integral manifolds are

ot necessarily compact for finite values of the integral map. Thus we may expect critical
oints at infinity.

Critical points at infinity cannot be found by standard means, but their presence can be
onjectured from topological changes in the fibres of F at seemingly regular values of F .
his has happened in the three body problem with gravitation, see for example [11]. The first
efinition of critical points at infinity for N -body problems that we are aware of is by Albouy,
ee [2]. Indeed, the critical values corresponding to critical points at infinity in the three body
roblem with gravitation are those referred to in Simo, see [11]. Needless to say that critical
oints and critical points at infinity are of equal importance in understanding the topology of
he integral manifolds.

Three properties of the N -body problem are essential for this study. First the presence of
he symmetry group SE(3). This provides us with the integral map and thus integral manifolds.
nother implication, together with the assumption of pairwise interaction, is that the potential
depends on inter body distances only. The second property is that the potential and its

erivatives go to zero for inter body distance going to infinity. This implies that there is no
nteraction between bodies going infinitely far apart. For instance in a three body problem
e have the possibility of one body at rest and infinitely far away two bodies forming a two
ody problem of bodies rotating around their centre of mass. This will be an example of critical
oints at infinity (in fact a critical orbit). The third property is the homogeneity of the potential
unction. This property implies a non-symplectic scaling symmetry of the Hamiltonian system.
he Hamiltonian is not invariant under this scaling, but with proper time scaling the equations
f motion are invariant. From this property we get families of orbits and so families of critical
oints. These three properties will be treated in more detail in Section 2.

In order to give a precise account of the results on critical points at infinity we would need
he notions of Section 3. Therefore we state these results here in an informal way, for a precise
tatement see Section 4. Suppose that the N -body problem is split into ki -body subsystems such
hat

∑
i ki = N . Furthermore suppose these ki -body subsystems are mutually infinitely far apart

in configuration space. Loosely speaking the critical points at infinity of the N -body problem
consist of the critical points of these subsystems. In general the number of critical points of
a k-body problem is unknown, see for example [3]. But in case of three body problems, the
subsystems consist of one or two bodies only. It turns out that in a three body problem with
Coulomb interaction, with positive and negative charges, we find two critical points at infinity.
Thus we find at most two critical values of the integral map related to critical points at infinity.
In the gravitational case we find three critical points at infinity with at most three critical values,
see [2].

We proceed as follows. In Section 2 we specify the charged N -body problem as a mechanical
ynamical system. Here we also detail several properties from general to more specific. All such

ystems will be symplectic and moreover SE(3)-invariant. The latter allows for a number of
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integrals. As soon as the potential is defined we see that for our choice the system also admits
a non-symplectic scaling symmetry.

We are very much indebted to the work of Albouy on the N -body problem with gravitation,
ee [2]. In fact we do not claim originality for the constructions we describe in Sections 3
nd 5. We adapted the constructions from [2] with slight extensions, generalisations and
earrangements to suit our needs.

In Section 3 a first step towards a definition of a critical point at infinity is by requiring a
agrange multiplier condition for the limit of a sequence in phase space. A sequence with this
roperty is called a critical sequence. This however is not enough to yield a critical point at
nfinity under all circumstances. So part of this section is devoted to filtering out the desired
oints by additional conditions. A particular choice of coordinates is very helpful in this respect
specially in combination with the notion of clusters. The latter are l-body subsystems of the

N -body problem, whose centres of mass are infinitly far apart, but where the distances of the
odies to the centre of mass remain finite within each cluster.

The main results on critical sequences are stated in Section 4. Section 5 is devoted to the
roofs of the results. Finally, Section 6 discusses the meaning of the results in Section 4 for the
harged 3-body problem: there are at most two critical points at infinity. For more discussion
e refer to the third article [5] in this series.

. Setting of the problem

We study the N -body problem as a symplectic dynamical system. Since each body resides
n R3, the configuration space is R3N and the phase space M is the cotangent bundle of the
onfiguration space: M = T ∗R3N

≃ R3N
× R3N . On M we take the standard symplectic

orm ω =
∑

i dpi ∧ dqi expressed in coordinates q = (q1, . . . , qN ) and p = (p1, . . . , pn)
ith qi , pi ∈ R3. The Hamiltonian of this system has a special form: H(q, p) = T(p) + V(q),
here the physical interpretation of T and V is kinetic energy and potential energy, respectively.
inetic energy is given by

T(p) =
1
2

∑
i

p2
i

mi
(1)

here pi is momentum of body i and mi denotes its mass. Potential energy will be given
hortly, it is determined by the interaction of the bodies. Although we will not explicitly study
ynamics in this article, knowing the equations of motion is still useful. They take the familiar
orm (ω in standard form)

q̇i =
∂H
∂pi

and ṗi = −
∂H
∂qi

. (2)

From physics we also know that the interaction between bodies is in many cases (at least
for gravity and Coulomb interaction) independent of position and orientation of the system
in space. Such a system admits SE(3)-symmetry. Here we just restrict to systems with this
symmetry. This group acts by translations and rotations on phase space as

τa(qi , pi ) = (qi + a, pi )
ρg(qi , pi ) = (gqi , gpi )

(3)

or i ∈ {1, . . . , N }, a ∈ R3 and g ∈ SO(3).
Two consequences of the fact that the system is SE(3)-symmetric are relevant for us. The

rst is the existence of integrals, see for example [1,4] or [8] for more details on the relation
91
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between symmetry groups and integrals. The second is the existence of (generators of) group
invariants, see [12] for the particular case of SE(3). As a third consequence we could say
that the functions T and V are SE(3)-invariant, but this fact is implicit in the definition of the
N -body problem admitting SE(3) as a symmetry group.

The integrals related to the translation group are the three components of total momentum
(q, p) =

∑
i pi . The component functions of P have no critical points on phase space,

o without loss of generality we may fix P at any value. From now on we assume that
= 0, this leaves us with three more integrals. Indeed, from the equations of motion,

together with T(p) =
1
2

∑
i

p2
i

mi
, we immediately see that the components of centre of mass

(q, p) =
1
M

∑
mi qi where M =

∑
mi , are also integrals on the zero level set of P. Just

ike P, the component functions of Q have no critical points on phase space and we may fix
Q at any value. Integrals related to rotation symmetry are the components of total angular
momentum L(q, p) =

∑
i qi × pi . These functions do have critical points on phase space and

the critical value equals zero. However, we will not consider this value of angular momentum
in the sequel. From now on we do assume that the value of P is zero, so that we have the
integral map

F : R3N
× R3N

→ R10
: (q, p) ↦→

(
H(q, p), L(q, p), P(q, p), Q(q, p)

)
, (4)

which we will consider on the zero level set of P and Q.
SE(3)-symmetry, by a theorem of Poénaru, see [9], yields that the potential function V is a

function of generators of SE(3)-invariants, see [12]. In this case these are invariants of the action
of SE(3) on configuration space. Now we consider pairwise interaction of the bodies such that
potential energy is additive over pairs. In fact we take a potential that can be expressed using
a single function f : R → R, namely

V(q) =

∑
i< j

αi j f
(
∥qi − q j∥

)
(5)

here the αi j are coefficients determined by properties of the bodies. We will always assume
hat f and f ′ tend to zero at infinity. In case of gravitation, αi j = −mi m j and in case of
lectrostatic interaction, αi j = ci c j where ci is the electric charge of body i . In both cases
f (x) =

1
x . The latter suggests that we may wish to exclude the collision set

∆ = {(q1, . . . , qN ) ∈ R3N
| qi = q j for i ̸= j}

from the configuration space. Furthermore we assume that the Hamiltonian system is smooth
on the cotangent bundle of the configuration space without the collision set.

In the setting of the SE(3)-symmetric N -body problem with pairwise interaction, the
potential function V is limited to the form in Eq. (5), but still with the possibility to choose
the function f . In the main examples (gravitation and electrostatic interaction) the function f
is singular at zero. But even if f is non-singular it is still interesting to ask whether there may
be collisions of bodies. Therefore the notion of collision set is not just a technical detail.

In case of gravitation or electrostatic interaction, the function f and thus potential V, is
omogeneous of degree −1. Generalising this to f being homogeneous of degree µ we see
hat the system admits a non-symplectic dilation symmetry acting as

δs(qi , pi ) = (e2sqi , eµs pi ) (6)

or i ∈ {1, . . . , N } and s ∈ R. Although this group does not act symplectically, orbits of
he N -body problem are taken to orbits, since with a proper scaling of time the equations of
92
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motion (2) are invariant. Indeed, if (q, p, t) ↦→
(
e2sq, eµs p, e(2−µ)s t

)
, the equations of motion

re invariant. The Hamiltonian, however, is not invariant: H(δs(qi , pi )) = e2µsH(qi , pi ).
From the considerations above we see that the charged N -body problem admits a large

ymmetry group. Therefore the system can be simplified by applying reduction. However
xplicit reduction with respect to rotation or dilation symmetry is not going to present much
nsight at the moment. Reduction with respect to translation symmetry is rather straightforward.
n the next section we will introduce coordinates on the translation reduced space, we will call
hese Albouy coordinates. In fact the translation reduced phase space can be identified with
he zero level set of P and Q giving the reduced space R6N−6 and the reduced integral map

Fr : R6N−6
→ R4

: (q, p) ↦→
(
H(q, p), L(q, p)

)
(7)

hich will be used in the next sections. The remaining dilation-rotation symmetry generates
quivalence classes of critical points of the reduced integral map. These, in turn, generate
quivalent critical values of Fr . Let us look at the induced action on the image of Fr . If
h, l) is a value of Fr at (q, p), then Fr (ρR(q, p)) = (h, Rl) and Fr (δs(q, p)) = (e−2sh, esl).
hus we see that h∥l∥2 is constant on equivalent values of Fr . In fact it is the only generator

of the invariants of the induced action. Therefore the scalar −h∥l∥2 is sometimes called the
ifurcation parameter of the reduced integral map, see for example [7].

. Sequences, coordinates and clusters

In this section we use sequences satisfying a Lagrange multiplier equation in the limit,
o define critical points at infinity. Furthermore we define Albouy coordinates on a translation
educed space. With help of these coordinates we define so called clusters of subsystems which
e encounter when studying critical points at infinity. We closely follow Albouy, see [2], with
few adaptations to our setting.

.1. Sequences

A sequence of states is simply a sequence zk of points in phase space M = R6N . In the
equel we will need a notion of convergence. To define this we use the norm ∥z∥ of z ∈ M.
e do allow a sequence to converge to infinity and to avoid descriptions like ‘finite limit’ and

infinite limit’ we introduce the following language.

efinition 3.1 (Convergence). We say that a sequence zk converges if either of the two holds:
(i) zk converges to a point z if limk→∞ ∥zk − z∥ = 0

(ii) zk converges to infinity if limk→∞ ∥zk∥ = ∞.
Both in the usual sense as real numbers. Similarly, if F is a real valued function on phase
space, we say that the sequence F(zk) converges if it converges to a real value or to infinity
like in the above.

The motivation to consider sequences is that we wish to define critical points at infinity.
Critical points of the integral map F are points such that the rank of the Jacobi matrix of F
is not maximal. Or, put differently, the gradient of the Hamiltonian and the gradients of the
integrals Fi are linearly dependent. Using this we are able to find finite critical points. To define
critical points at infinity we first define sequences of states asymptotically having the property
of linear dependence of the gradients. It turns out that this condition is not sufficient. That is, we

also find critical points, but possibly collisions as well. To define critical points at infinity we
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have to filter out these possibilities. So, first we define sequences having properties that make
them converge to (critical) points. Then we define further properties to be able to distinguish
sequences converging to (critical) points as opposed to sequences converging to (critical) points
at infinity. Finally we define a criterion to filter out sequences converging to collisions. Suppose
the system at hand has n +1 independent integrals so that F = (H, F1, . . . , Fn). The following

efinition aims to catch both critical points and critical points at infinity by requiring that linear
ependence holds in a limit in the sense defined above.

efinition 3.2 (Compatible Sequence of Multipliers Of H). Let zk be a sequence of states. Then
k = (λ1,k, . . . , λn,k) is called a compatible sequence of multipliers for H if:

lim
k→∞

L(zk, λk) = 0,

here

L(z, λ) = grad H(z) −

n∑
i=1

λi grad Fi (z).

Clearly not every sequence of states will have an accompanying sequence of compatible
ultipliers, but if it has we possibly approach a critical point (finite or infinite).

efinition 3.3 (Critical Sequence). If a sequence of states zk has an accompanying sequence
f compatible multipliers for H we call it a critical sequence of H.

In the above we implicitly defined a critical point of the integral map F as a critical point
f H restricted to the levels of F1, . . . , Fn , which are assumed to be regular. If H has such
critical point then there are (uncountable) many critical sequences converging to that point.
mong these there are still uncountable many for which Fi (zk), . . . , Fn(zk) remain constant.

f on the other hand we are given a critical sequence zk of H, then it may converge or not.
f it converges to a point we conjecture that it either converges to a collision or to a critical
oint. These possibilities can be distinguished by the limit value of the potential V. Here we
ssume that the function f , see Section 2, has the property | f (x)| → ∞ when x → 0. If Vk
onverges to −∞ the limit of zk is a collision otherwise it is a critical point. The latter is in fact
consequence of Corollary 5.4 (see Section 5.2), which says that a (subsequence of) a critical

equence never approaches a collision of repelling bodies. If the critical sequence converges to
nfinity we consider the limit as a critical point at infinity if the values of the integrals remain
nite. Let these arguments suffice to justify the following definition.

efinition 3.4 (Horizontal Critical Sequence). A critical sequence zk is called horizontal if it
as the properties:

(i) F1(zk), . . . , Fn(zk) are finite and constant, that is independent of k
(ii) H(zk) converges to a finite value for k → ∞

With the previous definitions we may also find the finite critical points. Here we are
xplicitly looking for critical points at infinity. So we exclude the former and finally define
ritical points at infinity.

efinition 3.5 (Critical Point at Infinity). If the projection onto configuration space of a
orizontal critical sequence zk does not have a subsequence converging to a finite point we

ay that zk converges to a critical point at infinity.
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Remark 3.6. In the remaining part of the article we will often consider functions like kinetic
energy, potential energy, moment of inertia and angular momentum on sequences. If confusion
is not likely we write Fk instead of F(zk) to indicate a sequence of values of the function F on
he sequence zk .

.2. Coordinates

Following Albouy [2], we define coordinates on a translation reduced space. Since the
amiltonian is invariant under the action of the translation group, by Noether’s theorem,

otal momentum is a conserved function on phase space. Then the centre of mass is also a
onserved function on phase space, provided that total momentum equals zero, see Section 2.
he expression for centre of mass motivates the following definition.

efinition 3.7 (Albouy Coordinates). Let m1, . . . , m N be the masses of the bodies in a N -
ody problem, then we define the linear subspace of RN , DN = {(ξ1, . . . , ξN ) |

∑
i miξi = 0}.

Furthermore let (·, ·) be the standard inner product on RN . Define a new inner product ⟨·, ·⟩

on RN as ⟨X, Y ⟩ = (X, MY ) for all X, Y ∈ RN and M = diag(m1, . . . , m N ). The associated
norm is ∥X∥

2
= ⟨X, X⟩ and DN inherits this inner product.

Using this definition we are going to define reduced coordinates on configuration space.
Now we switch to velocities instead of momenta and we define the state of a system of N
bodies in R3 as the six-tuple S = (X, Y, Z , P, Q, R) for X, . . . , R ∈ DN . Here X contains the
first components of the positions of the bodies and similarly Y and Z contain the second and
third components. The P , Q and R in a similar way contain the components of the velocities
of the bodies. In the phase space D6

N we again have a collision set and sometimes we may
wish to exclude these states for obvious reasons.

Definition 3.8 (Collision Set). Let X = (ξ1, . . . , ξN ) ∈ DN , Y = (η1, . . . , ηN ) ∈ DN and
Z = (ζ1, . . . , ζN ) ∈ DN . Then the set ∆ = {(X, Y, Z , P, Q, R) ∈ D6

N | ξi = ξ j , ηi = η j , ζi =

ζ j for i ̸= j} is called the collision set. The projection of ∆ onto configuration space will also
be called collision set.

In the sequel we call coordinates S, Albouy coordinates on the translation reduced space.
The advantages of these coordinates are:

(i) reduced coordinates without the need to make choices: all bodies of the N -body problem
are treated equally,

(ii) kinetic energy, angular momentum and moment of inertia can be concisely expressed,
in particular in combination with the notion of clusters, see below.

The space D6
N can be considered as the translation reduced phase space. On this space

frequently used functions like potential energy V, kinetic energy T, total energy H, angular
momentum L and moment of inertia I have simple expressions.

Lemma 3.9. The functions K, H, L and I take a simple form in Albouy coordinates:
(i) Kinetic energy is given by 1

2 K(S) where K(S) = ∥P∥
2
+ ∥Q∥

2
+ ∥R∥

2.
(ii) The total energy of the system is H(S) =

1
2 K(S) + V(S).

(iii) The three components of angular momentum are
L(S) =

(
⟨Y, R⟩ − ⟨Z , Q⟩, ⟨Z , P⟩ − ⟨X, R⟩, ⟨X, Q⟩ − ⟨Y, P⟩

)
.

(iv) Let I(S) = ∥X∥
2
+ ∥Y∥

2
+ ∥Z∥

2. Then the moment of inertia is I(S).
95
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We still have the action of the rotation group SO(3). However, elements of SO(3) do not act
n a nice way on coordinates S. This can be improved by using the bijection φ : R6N

→ R3×2N

aking (X, Y, Z , P, Q, R) to⎛⎝X P
Y Q
Z R

⎞⎠
nd restrict φ to D6

N . Then φ is a bijection D6
N → φ(D6

N ). Since the action of g ∈ SO(3) on
3×2N can be written concisely as gφ(S) we define

g(S) = φ−1(gφ(S)
)

(8)

t is almost immediate from the definition that if S ∈ D6
N also g(S) ∈ D6

N .

emark 3.10. If x and y are different coordinates on phase space indicating the same point,
e write F(x) and F(y) for the value of the function F in that point although functional
ependence may be different. Even if S is a coordinate on a set of equivalence classes like
he ‘Albouy coordinates’ we still write F(S).

.3. Clusters

In Section 3.2 we considered sequences of states converging to a critical point or a critical
oint at infinity. In case of the latter we have in fact a critical orbit in mind in a three body
roblem, consisting for example of a single body and at a large distance two bodies rotating
round a common centre of mass. Thus we have two clusters, one of a single body and
nother of two bodies. We formalise this idea in the following definition of the DN -cluster
ecomposition.

efinition 3.11 (Cluster Decomposition). Let X = (ξ1, . . . , ξN ) ∈ DN and define the DN -
luster decomposition, into two clusters of l and N − l bodies, as X = Xα + Xβ + Xα,β with

Xα, Xβ, Xα,β ∈ DN , where

Xα = (α1, . . . , αl , 0, . . . , 0)

Xβ = (0, . . . , 0, β1, . . . , βN−l)

Xα,β = (α0, . . . , α0, β0, . . . , β0)

nd the entries of Xα and Xβ are αi = ξi − α0 for i = 1, . . . , l and β j = ξl+ j − β0

or j = 1, . . . , N − l. Furthermore α0 = M−1
α

∑l
i=1 miξi with Mα =

∑l
i=1 mi and β0 =

M−1
β

∑N
i=l+1 miξi with Mβ =

∑N
i=l+1 mi .

We say that X is split into the two clusters Xα , Xβ and the centres of mass Xα,β . The
rojections X ↦→ Xα and X ↦→ Xβ are called the projections onto the clusters and X ↦→ Xα,β

s called the projection onto the centres of mass.

We use this definition of DN -cluster decomposition to define a decomposition into clusters
f a state S.

efinition 3.12. The decomposition into clusters of the state S = (X, Y, Z , P, Q, R) is

btained by applying the DN -cluster decomposition to each component of S.
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Since the decomposition is in DN , the construction can be iterated to a decomposition into
clusters as long as m ≤ N . A nice property in the next lemma is that the decomposition is

rthogonal, which follows from a direct computation using Definition 3.11.

emma 3.13. The decomposition X = Xα + Xβ + Xα,β is orthogonal with respect to the
nner product on DN , that is ⟨Xα, Xβ⟩ = 0, ⟨Xβ, Xα,β⟩ = 0 and ⟨Xα,β, Xα⟩ = 0.

Lemma 3.13 together with Lemma 3.9 shows that the functions K, I and L are additive over
lusters. This is useful in order to view each cluster as an independent l-body system. However,
he latter is only useful when the distances between the centres of mass of the different clusters
o to infinity in which case the potential V also becomes asymptotically additive. For a precise
tatement, see Lemma 5.1 in Section 5.2. In view of these arguments we define the cluster
eparation property. Let Π be the projection from phase space onto configuration space. The
ollowing definition relates to Albouy coordinates.

efinition 3.14 (Cluster Separation Property). Let N ≥ 1 and let l be an integer with
≤ l ≤ N . A sequence Sk ∈ D6

N has the cluster separation property if l clusters of Sk

xist such that for k → ∞:
(i) each cluster in Π (Sk) converges to a point,

(ii) for each pair in the cluster decomposition of Π (Sk), the distance between the centres of
mass converges to infinity.

It is not hard to prove that such sequences actually exist. Or more precisely that every
equence Sk contains a subsequence having this property. Using the notion of (asymptotic)
dditivity of the functions K, I, L and V, it makes sense to talk about clusters as smaller l-
ody problems in an N -body problem, of course when l < N . We will come back to this in
ection 5.2.

emma 3.15. Every sequence Sk has a subsequence with the cluster separation property.

roof. We provide a construction in several steps. (1) A cluster containing a single body
as the property that, restricted to this cluster, Π (Sk) converges to a point. (2) Now suppose,
ossibly after renumbering the bodies, the cluster of the first m bodies again has the property
hat, restricted to this cluster, Π (Sk) converges to a point. For each of the remaining N − m
odies, take the liminf of the distance this body to the centre of mass of the first cluster. If
he liminf is finite add the body to the first cluster. If the liminf is infinite, add the body to the
remaining bodies’. (3) We are left with at most N − m remaining bodies. Now start again at
tep (1) with these N − m bodies.

The following remarks conclude the proof. One has to take a refined subsequence of Sk at
ach step a body is added to a cluster. Since at each cycle through the steps above m is at least
ne, the procedure is finite. By construction, condition (ii) in Definition 3.14 is satisfied. There
re two extremes: all bodies in one cluster and every body in a separate cluster. □

In the sequel we will often encounter sequences decomposed into clusters. Unless stated
therwise we will always assume that such a decomposition of a sequence Sk is independent
f the sequence index k.

We end this section with rather obvious properties of sequences and clusters, but it is useful

nough to warrant explicit mention. Roughly speaking if a critical sequence has a cluster
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decomposition which is constant over the sequence elements then each sequence of clusters
is critical and vice versa. The next lemma provides a more precise formulation. The proof of
the lemma follows almost immediately from the definition 3.3 of a critical sequence.

Lemma 3.16. Let Sk be a sequence of states with a decomposition into l clusters.
(i) Suppose Sk is a critical sequence with a compatible sequence of multipliers λk . Then

the projection of Sk onto each of the l sequences of clusters is a critical sequence.
(ii) Suppose that each of the l sequences of clusters is critical. Then Sk is a critical sequence

if a common compatible sequence of multipliers exists, for which each sequence of
clusters is critical.

Furthermore the cluster decomposition commutes with the action of the rotation group
defined in Eq. (8). Again, this is almost immediately clear from the definition.

4. Main results

The main theorem lists all possibilities for critical sequences.

Theorem 4.1 (Main Theorem on Critical Sequences). Let Sk be a critical sequence of H.
(i) Critical point at infinity. Let Sk be a horizontal critical sequence. Suppose at least two

clusters exist in the sense of the cluster separation property. Then a subsequence exists
such that the projection of this subsequence onto each cluster converges to a (point on
a) relative equilibrium.

(ii) Critical point or collision. If the projection of Sk onto configuration space converges to
a point. Then a subsequence exists converging to a collision or a (point on a) relative
equilibrium.

The theorem says that by constructing critical sequences we not only get critical points at
infinity but also ‘ordinary’ critical points and collisions. To prove the theorem above we again
follow the approach of Albouy [2] adapted to our case.

The main theorem summarises a number of results that we now prove in a series of
propositions each addressing one of the possibilities. Proposition 4.2 deals with the case of
critical points outside the collision set. The critical sequences satisfying the conditions of
Proposition 4.3 converge to critical points of the Hamiltonian restricted to the level set of
angular momentum, in fact the ‘ordinary’ critical points for which we do not need sequences
at all. Proposition 4.4 considers horizontal critical sequences.

Proposition 4.2. Let Sk be a critical sequence such that the projection onto configuration
space converges to a point outside the collision set. Then a subsequence exists that converges
to a (point on a) relative equilibrium.

If we drop the condition on convergence to a point outside the collision set then the limit is
either a relative equilibrium or a collision. Loosely speaking, we see that apart from collisions,
the definition of critical sequences yields only finite critical points and critical points at infinity.

Proposition 4.3. Let Sk be a critical sequence such that the projection onto configuration
space converges to a point. Then a subsequence exists converging either to a collision or to a
(point on a) relative equilibrium.
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Finally only the horizontal critical sequences yield critical points at infinity. The condition
hat angular momentum is constant on a horizontal critical sequence ensures that the only
ossible limit points of the sequence are relative equilibria, possibly in more than one cluster.
f there are two or more clusters they move infinitely far apart along the sequence.

roposition 4.4. Let Sk be a horizontal critical sequence. Suppose at least two clusters exist
n the sense of the cluster separation property. Then the projection of the subsequence onto
ach cluster converges to a (point on a) relative equilibrium.

. Proving the main results

In the proofs of Propositions 4.2, 4.3 and 4.4 we use a number of rather technical results
hich we provide in Section 5.2.
There are a few notions and notations that we need in the proofs of the propositions. We

eview them here, more details are given in Section 5.2. For a certain choice of coordinates, see
emma 5.5, the expression L(S, λ) = grad H−

∑
i λi grad Li reduces to grad H−∥λ∥ grad Lz ,

these are called multiplier coordinates. Using these coordinates we define Kz = ∥P∥
2
+∥Q∥

2.
small sequence is a critical sequence such that Ik → 0, see Definition 5.7.

.1. Proofs of propositions

Boundedness is the key ingredient in the proof of Proposition 4.2, but also the fact that the
oment of inertia is bounded away from zero. Roughly speaking, this finiteness allows us to

onclude that the limit is a (point on a) relative equilibrium.

roof of Proposition 4.2. Ik is bounded, because the projection of the sequence Sk onto
onfiguration space converges to a point. Moreover, since this point is not a collision, Vk is
ounded and Ik is bounded away from zero. From Lemma 5.2 we see that also Kk is bounded,
hus we conclude that ∥Sk∥

2
= ∥Ik∥+∥Kk∥ is bounded. Therefore the sequence Sk is bounded.

hus Sk has a limit point and hence a convergent subsequence. From now on we restrict to the
atter. Again using Lemma 5.2 we know that ∥Kk∥ and ∥Vk∥ have the same limit and if we use
ultiplier coordinates, Kz,k and ∥Vk∥ have the same limit. Now suppose that V is non-zero.
hen Kz,k is bounded and bounded away from zero. From Lemma 5.6 (iii) we see that Lz,k

s also bounded away from zero. Thus the limit satisfies the equation for a critical point of H
estricted to a non-zero level of L, and the subsequence converges to a (point on a) relative
quilibrium. It remains to prove that Vk is non-zero, or directly that Kk is bounded away from
ero. In the case of gravitation V can only be zero if the bodies go infinitly far apart, which
hey do not by the assumptions of the proposition. In the Coulomb case however, V can be
ero for bodies at finite distances. We now use the fact that we do not consider the level zero
f angular momentum. Then K must be non-zero. □

The key ingredient in the next proof is the compatibility of the multipliers: a sequence
onverging to a collision has multipliers not compatible with a sequence converging to a relative
quilibrium and vice versa.

roof of Proposition 4.3. Suppose the critical sequence is such that the projection onto
onfiguration space converges to a collision point (non-collision is the case of Proposition 4.2).

et us decompose the sequence into clusters of bodies having the same limit when projected
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on configuration space. Then on each cluster the projection of I converges to zero and using
Lemma 5.8 the sequence of compatible multipliers converges to infinity. However the projection
onto the centres of mass is not a collision and thus a subsequence converging to a relative
equilibrium exists and the accompanying subsequence of compatible multipliers has a finite
limit. This contradicts Lemma 3.16 and thus a critical sequence either: (1) converges to a
collision; or (2) a subsequence converging to a (point on a) relative equilibrium exists. □

The proof of the last proposition hinges on the fact that for a sequence with the cluster
decomposition property, the sequences of projections onto the clusters are independent with
respect to kinetic and potential energy.

Proof of Proposition 4.4. According to Lemma 3.15, we may decompose the sequence
(or a subsequence) into clusters. For each cluster we get a sequence by projecting the
original sequence on the current component of the cluster decomposition. Now according to
Proposition 4.3, each of these sequences either is a small sequence or has a subsequence
converging to a (point on a) relative equilibrium. The possibility of a small sequence can
be ruled out because then we would have H → −∞. This follows from the fact that a
small sequence is a critical sequence and from Lemma 5.2 we have K + V → 0, but on a
small sequence V → −∞ and therefore H =

1
2 K + V =

1
2 (K + V) +

1
2 V →

1
2 V → −∞,

also see Corollary 5.4. Thus we arrive at a contradiction. We are left with sequences like in
Proposition 4.2, converging to a (point on a) relative equilibrium in a subsystem. The sequence
of multipliers has a finite (non-zero) limit. The projection on the centres of mass is again a
critical sequence with the same sequence of multipliers. Since the centres go infinitely far apart,
the potential approaches zero and therefore this sequence is a critical sequence of K. Now from
Lemmas 5.10 and 5.11 we infer that the contribution of the system of centres of mass to K
and Iz converges to zero. Indeed, on the horizontal sequence we started with, both angular
momentum and the norm of multipliers have fixed, finite values. □

5.2. Some technical results

Here we collect a number of technical results used in the proofs of the previous section.
Given a state or a sequence of states, we will at various instances use a partition into clusters.

Many functions we need are additive over these clusters, namely the moment of inertia I, twice
the kinetic energy K and angular momentum L. One exception being the potential. However on
a sequence with the cluster separation property, taking the limit the potential is additive over
the clusters. This is made more precise in the following lemma.

Lemma 5.1. Let Sk be a sequence of states with the cluster separation property. Suppose Sk

is decomposed into l clusters denoted by Sk, j with j ∈ {1, . . . , l}. Let F be one of the functions
K, I, L, V or the (components of the) vector valued function grad V. Then the following holds

lim
k→∞

F(Sk) =

l∑
j=1

lim
k→∞

F(Sk, j ). (9)

Proof. For the functions K, I and L we may drop the limits and still have equality. Namely,
let ⟨·, ·⟩ be an inner product and ∥ · ∥ be the associated norm. If x and y are orthogonal with

2 2 2
respect to ⟨·, ·⟩, then ∥x + y∥ = ∥x∥ + ∥y∥ . The DN -decomposition is orthogonal, see
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Lemma 3.13, with respect to the inner product from Definition 3.7. The potential function V
s not defined using the inner product and equality without the limits does not hold indeed.
owever, the contribution to the potential function arising from interaction between bodies

rom different clusters converges to zero for k → ∞. The reason is that the distance between
ifferent clusters converges to infinity and the potential approaches zero when distances go to
nfinity. Therefore in the limit k → ∞ the only non-zero contribution to the potential comes
rom within the clusters. The same holds for the gradient of the potential, see Section 2. □

Note that we have not excluded the possibility that the potential converges to infinity along
(sub)sequence, that is the lemma holds even in the case that one of the clusters converges

o a collision. The next lemma relates kinetic and potential energy in the limit along a critical
equence.

emma 5.2. Let Sk be a critical sequence of H and let V be a function homogeneous of
egree −1. Then

lim
k→∞

(Kk + Vk)2

Ik + Kk
= 0.

roof. From the definition of a critical sequence, see Definitions 3.2 and 3.3, we know that
compatible sequence of multipliers exists such that ek = L(Sk, λk) converges to zero as
→ ∞. Let f be a vector field of unit length. Then also limk→∞⟨ek, f ⟩ = 0. This holds

in particular when f is tangent to the levels of L. Let us take such a vector field, namely
f = (X, Y, Z , −P, −Q, −R)/

√
I + K. Then we have (suppressing the subscript k)

⟨e, f ⟩
2

= ⟨grad H, f ⟩
2

=

(
X

∂V
∂ X

+ Y
∂V
∂Y

+ Z
∂V
∂ Z

−
1
2

(
P

∂K
∂ P

+ Q
∂K
∂ Q

+ R
∂K
∂ R

))2/(
I + K

)
= (V + K)2/(I + K).

n the above we used H =
1
2 K + V and the fact that V is homogeneous of degree −1. Since

limk→∞⟨ek, f ⟩ = 0 we also have limk→∞(K + V)2/(I + K) = 0. It is easily checked that (1)
f is a unit vector field since ∥(X, Y, Z , −P, −Q, −R)∥ =

√
I + K and (2) f is tangent to the

evels of L. □

emark 5.3. Let us make a few remarks on this lemma.
(i) The lemma is formulated for a homogeneous potential V of degree −1. It can easily be

generalised for a potential homogeneous of degree −µ, with µ > 0. Then the result is
limk→∞

(Kk+µVk )2

Ik+Kk
= 0.

(ii) At first sight it might seem strange that the value of the potential matters: adding an
arbitrary constant to the potential V does not affect the equations of motion. However,
we made essential use of the fact that V is a homogeneous function, a property that is
lost if we add a constant to V. Another reason not to add a constant to V is that we
want the interaction to vanish when bodies go infinitely far apart. Thus it seems natural
to require that in that case the potential energy approaches zero as well.

(iii) We conjecture that homogeneity of the potential is not essential. But the potential and
its gradient vanishing when bodies go infinitely apart does seem essential. It is less
clear how important the behaviour of the potential near collisions really is, apart from
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a convenient way to distinguish a collision by the values of the potential. The proof of
Lemma 5.2 rests on a particular choice of the vector field f , other choices may also
give useful estimates. An example of a potential for which we would like to obtain
similar results is the Lennard-Jones potential, see [10] which is repelling for bodies at
a short distance, but attracting for bodies far apart. This potential can be regarded as
being ‘asymptotically homogeneous’.

Since kinetic energy 1
2 K is always non-negative, Lemma 5.2 implies the following property

of critical sequences.

Corollary 5.4. For a homogeneous potential of degree −µ < 0, a critical sequence, or a
ubsequence thereof, never approaches a collision of repelling bodies.

In the sequel we will frequently use multiplier coordinates such that the equation for a
ritical sequence takes a simpler form, namely L(Sk, λk) = grad Hk − ∥λk∥ grad Lz,k . For
uture reference we write the two terms in components:

grad H =
( ∂V
∂ X

,
∂V
∂Y

,
∂V
∂ Z

, P, Q, R
)

grad Lz =
(
Q, −P, 0, −Y, X, 0

) (10)

he above is based on the next lemma.

emma 5.5. Let Sk be a critical sequence with compatible multipliers λk like in Definition 3.2.
For each k, there is a g ∈ SO(3) such that in rotated coordinates, called multiplier coordinates,
L(Sk, λk) = grad Hk − ∥λk∥ grad Lz,k .

Proof. To simplify notation we suppress the index k. Upon changing coordinates S ↦→ g(S),
see Eq. (8), the function H is invariant, but L ↦→ gL. Now we write L(S, λ) = grad H −

i λi grad Li as grad H − grad ⟨λ, L⟩. Now ⟨λ, gL⟩ = ⟨gtλ, L⟩ and by a suitable choice of
g we get gtλ = (0, 0, ∥λ∥). We should note that the gradient is not invariant upon changing
oordinates, but since we are only interested in the value zero we can safely ignore this. □

Another application of Lemma 5.5 is that we are able to obtain simple expressions for
estimates on R, K, I and L which are independent of the potential in the system. Their main

se will be in obtaining estimates for the ‘centres of mass’ system.

emma 5.6. Consider a critical sequence Sk together with its compatible sequence of
ultipliers λk . In a coordinate system of Lemma 5.5 we define Iz = ∥X∥

2
+ ∥Y∥

2 and
Kz = ∥P∥

2
+ ∥Q∥

2. Then we have the following estimates for k → ∞ (for sake of readability
we suppressed the index k):

(i) ∥R∥ = o(1)
(ii)

√
Kz = ∥λ∥

√
Iz + o(1)

(iii)
√

Kz = Lz/
√

Iz + o(1)

roof. Using multiplier coordinates we have ek = L(Sk, λk) = grad Hk − ∥λk∥ grad Lz,k
converging to zero as k → ∞, since Sk is a critical sequence. We write ek in components.
However we will only use the last three and since the first three would need some explanation
we skip them:

e = (∗, ∗, ∗, P + ∥λ∥Y, Q − ∥λ∥X, R).
k

102



I. Hoveijn, H. Waalkens and M. Zaman Indagationes Mathematicae 34 (2023) 89–106

∥

T

o

w

c
w

D

L
b

P
b
S
c

C
c
a

m
K
(

L
T

P
h
L
y

ad (i) Project ek on the sixth direction, ‘R-space’. Because ∥ek∥ → 0 when k → ∞ we have
R∥ = o(1).

ad (ii) Consider the projection of ek onto the fourth and fifth directions, ‘(P, Q)-space’.
hen we have (P + ∥λ∥Y, Q − ∥λ∥X ) = o(1). Using the triangle inequality we have

o(1) = ∥(P, Q) − ∥λ∥(−Y, X )∥ ≥|

√
Kz − ∥λ∥

√
Iz |

r
√

Kz = ∥λ∥
√

Iz + o(1).
ad (iii) Starting again with (P + ∥λ∥Y, Q − ∥λ∥X ) = o(1), note that also the inner product

ith the unit vector (Y, −X )/
√

Iz is o(1). Computing this inner product we get⟨
(P, Q) − ∥λ∥(Y, −X ), (−Y, X )

⟩
/
√

Iz =

(
⟨−P, Y ⟩ + ⟨Q, X⟩

)
/
√

Iz + ∥λ∥

√
Iz

= Lz/
√

Iz + ∥λ∥

√
Iz .

Therefore Lz/
√

Iz + ∥λ∥
√

Iz = o(1) and using (ii) we arrive at
√

Kz = Lz/
√

Iz + o(1). □

The following lemma will be useful to distinguish critical sequences converging to a
ollision. But first we define the notion of a small sequence which we will need later on as
ell.

efinition 5.7. A small sequence is a critical sequence such that Ik → 0 when k → ∞.

emma 5.8. Suppose Sk is a small sequence. Then both Hk and the norm of the multiplier
ecome unbounded.

roof. From Lemma 5.2 we know that Kk + Vk → 0 for k → ∞. Furthermore Vk

ecomes unbounded when Ik converges to zero and therefore also Kk becomes unbounded.
ince Hk =

1
2 Kk + Vk =

1
2 (Kk + Vk) +

1
2 Vk →

1
2 Vk , Hk becomes unbounded. Using multiplier

oordinates we see from Lemma 5.6 (ii) that ∥λ∥ too becomes unbounded. □

In view of Corollary 5.4 we have the following corollary of Lemma 5.8

orollary 5.9. Since a critical sequence or a subsequence thereof will never approach a
ollision of repelling bodies, also in the case of the Coulomb potential we have Hk → −∞

long a small sequence.

On a horizontal critical sequence Sk (see Definition 3.4) the kinetic energy of the ‘centres of
ass’ system converges to zero. This follows from the following lemma on critical sequences of
. Indeed, the projection of Sk on the centres of mass in the sense of the cluster decomposition

see 3.11) eventually yields a system of free bodies.

emma 5.10. Consider a critical sequence of K such that Kz is bounded away from zero.
hen ∥L∥ converges to infinity.

roof. Again we use multiplier coordinates. From the multiplier equations, see Eq. (10), we
ave: ∥λ∥

√
Kz = o(1). On the other hand from the estimates that do not depend on the potential,

emma 5.6 (ii), we have
√

Kz = ∥λ∥
√

Iz + o(1). Then we have two expressions for
√

Kz ,
ielding Kz = o(

√
Kz) + o(

√
Iz), implying Iz becoming unbounded. Combining the latter with

estimate 5.6 (iii) namely
√

K = L /I + o(1), yields that L becomes unbounded. □
z z z z
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Lemma 5.11. Consider a critical sequence of K such that ∥λ∥ is bounded away from zero.
Then K and Iz converge to zero.

Proof. Like in the proof of the previous lemma, we use multiplier coordinates. From the
estimates Lemma 5.6 (i) R = o(1) and ∥λ∥

√
Kz = o(1) in the proof of the previous lemma, we

ee that K converges to zero. Combining the estimates in Lemma 5.6 (ii)
√

Kz = ∥λ∥
√

Iz +o(1)
nd ∥λ∥

√
Kz = o(1) we get two expressions for ∥λ∥

√
Kz , yielding ∥λ∥

2
√

Iz = o(1) + o(∥λ∥).
From the latter we infer that Iz converges to zero. □

6. Critical points at infinity in the charged three body problem

Now that we know that the critical points at infinity can be found from the so called
horizontal critical sequences, we wish to construct these for the charged three body problem.
In particular we need to construct a horizontal critical sequence with the cluster separation
property. There are only three possibilities to form clusters, namely (1) three clusters each
containing only one body; (2) two clusters of one and two bodies respectively, and (3) one
cluster containing all three bodies. We can immediately rule out the last case because a
sequence with only a single cluster in the sense of the cluster separation property, cannot
converge to a critical point at infinity. We will not consider the first case because then angular
momentum L would have to converge to zero, but we start with a horizontal critical sequence
on a non-zero level of L. Thus we are left with the case of a horizontal critical sequence with
two clusters. As it turns out there is only a limited number of possibilities, for each we compute
the value of the bifurcation parameter ν = −h∥l∥2, where h is the value of H, the energy, and

is the value of angular momentum L. The result is summarised in the next theorem.

Theorem 6.1. In the charged three body problem with differently signed charges, we find two
critical points at infinity for two critical values of ν. There are no critical points at infinity
when the charges have equal signs.

Below we consider a horizontal critical sequence with two clusters using multiplier coor-
dinates. We use multiplier coordinates which implies L = (0, 0, Lz), as in Lemmas 5.5 and

.6. The fact that Iz tends to zero on a horizontal sequence (see Lemma 5.11), implies that the
wo clusters go infinitely apart in the z direction. This in turn implies that there are no critical

points at infinity in planar three body problems with gravitational or Coulomb potentials.
A horizontal critical sequence We will in particular consider a horizontal critical sequence

Sk consisting of two clusters having the cluster decomposition property. Like in Definition 3.11
we call the components of the clusters Xα and Xβ and similarly for the other components. In
the cluster called α we put two bodies with masses m1 and m2 and in the cluster called β

e put one body with mass m3. Since we have only two clusters, the centres of mass lie on
line which we take to be the z-axis. Thus we have Xα,β = (0, 0, 0), Yα,β = (0, 0, 0) and

Zα,β = ( m3
m1+m2

zk,
m3

m1+m2
zk, −zk), where limk→∞ zk = ∞. The single body in the cluster β just

remains at its centre of mass. So we have Xβ = Yβ = Zβ = (0, 0, 0). The two bodies in cluster
α form a two body problem which for a SO(3)-invariant potential is planar and in view of the
remarks preceding this paragraph, we take this plane to be the ‘(x, y)-plane’. Therefore we take
Xα = (ξ1, ξ2, 0), Yα = (η1, η2, 0) and Zα = (0, 0, 0) such that m1ξ1 + m2ξ2 = 0 and similarly
for η. So far we only have clusters. Projecting the sequence Sk on the β component we get a
body at rest at infinity when taking the limit k → ∞. But projecting on the α component the
limit should be a relative equilibrium of the two body problem.
104



I. Hoveijn, H. Waalkens and M. Zaman Indagationes Mathematicae 34 (2023) 89–106

V
o
m

γ

f
I
c
c

L

t
o

H
t

g
i
s
c
g
p
(
l

P
w

w

The planar two body problem We consider the planar two body problem with potential
on the ‘(x, y)-plane’ of the previous paragraph. That is, we consider a Hamiltonian system

n T ∗(R4) with standard symplectic form and coordinates xi = (ξi , ηi ) and corresponding
omenta yi with Hamiltonian

H(x, y) =
1
2

(
∥y1∥

2

m1
+

∥y2∥
2

m2

)
+ V(x1, x2)

where the potential V depends on relative distance only V(x1, x2) = γ f (∥x1 − x2∥) where
depends only on properties of the bodies (like mass and charge) and f is a function. The

unction f will eventually be defined as f (x) =
1
x . But for the moment we leave it unspecified.

t is easily seen that this Hamiltonian system is translation and rotation invariant. To fulfil the
ondition of the cluster, namely that the centre of mass remains at zero, we apply a (symplectic)
hange of coordinates to a centre of mass frame.

emma 6.2. By the symplectic change of coordinates

(x1, x2, y1, y2) ↦→ (q1, p1, q2, p2) = (x1 − x2,
m2 y1 − m1 y2

m1 + m2
,

m1x1 + m2x2

m1 + m2
, y1 + y2)

he new Hamiltonian system is separated on T ∗(R2) × T ∗(R2) with standard symplectic form
n each component we get

H(q, p) =
1
2

(( 1
m1

+
1

m2

)
∥p1∥

2
+

1
m1 + m2

∥p2∥
2
)

+ γ f (∥q1∥)

=
1

2µ
∥p1∥

2
+ γ f (∥q1∥) +

1
2m

∥p2∥
2

= H1(q1, p1) + H2(q2, p2).

ere µ =
m1m2

m1+m2
is the reduced mass and m = m1 +m2. The second Hamiltonian H2 describes

he motion of the centre of mass. By setting q2 = p2 = 0 the centre of mass remains at rest.

The proof of the lemma is a straightforward calculation. We now concentrate on the
first Hamiltonian system on R4 with coordinates (q1, p1), dropping the no longer necessary
subscript.

The system with Hamiltonian H1(q, p) =
1

2µ
∥p∥

2
+ γ f (∥q∥) is still rotation invariant: an-

ular momentum is a conserved function. Recall that we are looking for a relative equilibrium,
n other words a critical point of H1 restricted to a level of angular momentum. One way to
olve this is to use the Lagrange multiplier method and recognise a problem of finding central
onfigurations for this problem, see [6]. Another way is to reduce with respect to the symmetry
roup and find stationary points for the reduced system. We will adopt the last approach. To
roceed we introduce polar coordinates in the (q1, q2)-plane: q1 = r cos φ and q2 = r sin φ.
Note that q1, q2 ∈ R refer to the components of q, not to be confused with q1 and q2 in the
emma.) The result is the following, see [4] or [1].

roposition 6.3. The reduction of the two body problem is a Hamiltonian system on T ∗(R>0)
ith standard symplectic form and Hamiltonian

H(r, pr ) =
1

2µ
p2

r + U(r ),

here U(r ) =
ℓ2

+ γ f (r ) and ℓ is the value of angular momentum.

2µr2
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The reduced system has a critical point at (r, pr ) = (r∗, 0) where r∗ is a solution of
′(r ) = 0. Taking f (x) =

1
x we find a single solution r∗

= −
ℓ2

µγ
, provided that γ < 0. If

> 0 then the reduced system does not have a critical point. Thus the two body problem with
f (x) =

1
x has a relative equilibrium if γ < 0.

Critical values related to critical points at infinity Now that we have a horizontal critical
equence with the cluster separation property we are able to compute the values of the
ifurcation parameter ν = −hℓ2 where h is the value of H and ℓ is the value of L. From
roposition 4.4 and Lemmas 5.10, 5.11 we know that the contribution of the projection onto

he centres of mass to the energy H is zero for k → ∞. Furthermore the projection onto the
cluster containing one single body converges to an equilibrium, so the contribution to kinetic
energy is zero in the limit. Therefore the only contribution to H is from the projection onto the
luster containing two bodies. To proceed we have to make a distinction between the gravitation
otential and the Coulomb potential.

In case of the gravitation potential the constant γ equals −m1m2 which is always negative.
herefore there is always a unique critical point of the reduced Hamiltonian and thus a unique

elative equilibrium in the two body problem. The value of the energy is h = H(r∗, 0) =

(− ℓ2

µγ
, 0) = −

µγ 2

2ℓ2 and thus ν = −hℓ2
=

1
2µγ 2

=
(m1m2)3

2(m1+m2) . Since there are three
ombinations of two masses out of three, there are three critical values related to critical points
t infinity:

ν3 =
(m1m2)3

2(m1 + m2)
, ν1 =

(m2m3)3

2(m2 + m3)
, ν2 =

(m1m3)3

2(m1 + m3)
.

The Coulomb force is only attracting if the charges have different sign. The constant γ

n this case equals ci c j where ci is the electrical charge of body i . Given three bodies with
differently signed charges, two signs are always equal. Let us assume the charges of bodies 1
and 2 have equal signs. Then only two combinations form a cluster converging to a relative
equilibrium at infinity. Thus there are two critical values related to critical points at infinity:

ν1 =
m1m3(c1c3)2

2(m1 + m3)
, ν2 =

m2m3(c2c2)2

2(m2 + m3)
.
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