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We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval
from 1.00 to 41.9 GV based on 2.0 × 108 electrons collected with the Alpha Magnetic Spectrometer (AMS)
aboard the International Space Station. The electron fluxes exhibit variations on multiple timescales.
Recurrent electron flux variations with periods of 27 days, 13.5 days, and 9 days are observed. We find that
the electron fluxes show distinctly different time variations from the proton fluxes. Remarkably, a
hysteresis between the electron flux and the proton flux is observed with a significance of greater than 6σ at
rigidities below 8.5 GV. Furthermore, significant structures in the electron-proton hysteresis are observed
corresponding to sharp structures in both fluxes. This continuous daily electron data provide unique input
to the understanding of the charge sign dependence of cosmic rays over an 11-year solar cycle.

DOI: 10.1103/PhysRevLett.130.161001

Introduction.—Cosmic rays are dominated by positively
charged particles and nuclei: protons, helium, etc. Electrons

are the most abundant negatively charged particles, but
cosmic electrons are rare. The precision study of cosmic
electrons requires a magnetic spectrometer in space to
separate electrons from positrons and the overwhelming
number of positively charged protons and nuclei.
Since installation on the International Space Station on

May 20, 2011, AMS has continuously collected and
analyzed electron events daily. Most of these events
(around 99%) are in the low rigidity range below

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 130, 161001 (2023)

161001-2

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.161001&domain=pdf&date_stamp=2023-04-17
https://doi.org/10.1103/PhysRevLett.130.161001
https://doi.org/10.1103/PhysRevLett.130.161001
https://doi.org/10.1103/PhysRevLett.130.161001
https://doi.org/10.1103/PhysRevLett.130.161001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


41.9 GV. The high rigidity 1% of the spectrum up to 2 TeV
provides unexpected results, which will be presented in a
future publication.
The fluxes of charged cosmic rays outside the helio-

sphere are thought to be stable on the timescale of decades
[1–4]. Time-dependent variations in the fluxes of galactic
cosmic rays measured inside the heliosphere are only
expected from the solar modulation [5]. Solar modulation
involves convective, diffusive, particle drift, and adiabatic
energy loss processes [6]. Only particle drift induces a
dependence of solar modulation on the particle charge sign
[7]. The systematic measurement of the electron flux and
the proton flux offers a unique way to study charge-sign-
dependent solar modulation effects.
Cosmic electrons are primary cosmic rays [8]. Their time

structure is of particular importance as electrons have been
widely used to search for new phenomena in primary
cosmic rays, such as the existence of nearby pulsars [9],
supernovae remnants [10], or dark matter annihilation
[11,12]. Models describing these phenomena can only
be compared to data when time-dependent effects in the
heliosphere are well understood [13–16]. A comprehensive
model of the time-dependent solar modulation will have
far-reaching consequences for the understanding of the
newly observed unexpected features in cosmic-ray fluxes,
such as the complex energy dependence of the positron
spectrum [17] and of the electron spectrum [18], as well as
for other domains of astrophysics, such as the modeling of
galactic cosmic-ray propagation [19], the estimate of the
galactic cosmic-ray pressure, an important ingredient for
models of galaxy formation [20], the interpretation of
possible anisotropies in the cosmic-ray arrival directions
at the Earth [21], and the understanding of cosmic-ray
spectra outside the solar system [22].
Previous experiments measured the time variation of the

combined (electronþ positron) flux [23–26], the electron
flux variation averaged over six- and three-month periods
[27], or averaged over two days for a total of two months
[28]. AMS has reported the time dependence of the electron
fluxes and the positron fluxes per Bartels rotations (BR:
27 days) over six years [29]. In addition, AMS has
observed short-term structures in the cosmic-ray proton
flux [30] and helium flux [31].
In this Letter, we present the daily electron fluxes based

on 2.0 × 108 events spanning 11 years over a rigidity
range from 1.00 to 41.9 GV. These data cover the major
portion of solar cycle 24, which includes the polarity
reversal of the solar magnetic field in the year 2013
[32], and the beginning of solar cycle 25. Therefore, the
charge-sign-dependent effects are studied at different solar
conditions by comparing the daily electron and daily proton
[30] fluxes measured simultaneously over an 11-year
period. These data provide unique and accurate input to
modeling of the transport processes of charged cosmic rays
inside the heliosphere.

Detector.—The layout and description of the AMS
detector are presented in Refs. [8,33] and shown in Fig. S1
of the Supplemental Material (SM) [34]. The key elements
used in thismeasurement are the permanentmagnet [35], the
silicon tracker [36–38], the transition radiation detector
(TRD) [39], the four planes of time-of-flight (TOF) scintil-
lation counters [40], and the electromagnetic calorimeter
(ECAL) [41]. Further information on the AMS layout,
performance, trigger, and the Monte Carlo (MC) simulation
[42,43] is detailed in the SM [34].
Event selection.—AMS has collected 1.9 × 1011 cosmic-

ray events. In the rigidity range from 1.00 to 41.9 GV,
we select electron samples using the combined informa-
tion of the TRD, TOF, and inner tracker. The details of
the event selection and backgrounds are contained in
Refs. [17,18,44–46] and in the SM [34]. After selection,
we obtained 2.0 × 108 electrons.
Data analysis.—The daily isotropic flux in the ith

absolute rigidity bin (Ri; Ri þ ΔRi) and jth day is given by

Φj
i ¼

Nj
i

Aj
ið1þ δjiÞϵjiTj

iΔRi

; ð1Þ

where Nj
i is the number of events corrected for background

and bin-to-bin migration; Aj
i is the effective acceptance

calculated from the Monte Carlo simulation, including
geometric acceptance, event selection efficiencies, and
interactions of electrons in the AMS materials; δji is the
small correction to the acceptance due to the difference in
the event selection efficiencies between data and
Monte Carlo simulation; ϵji is the trigger efficiency; and
Tj
i is the daily collection time. See the SM [34], Figs. S2

and S3, for more details. In this Letter, the electron flux is
measured in ten rigidity bins from 1.00 to 41.9 GV.
The background contribution from antiprotons and light

mesons in the data sample is estimated using a template fit
to the distribution of TRD estimator ΛTRD [8]. The back-
ground contribution from charge confusion positrons is
estimated to be negligible [8].
Bin-to-bin migration of events is corrected using the

unfolding procedures described in Ref. [47].
The small corrections δji are estimated by comparing the

efficiencies in data and Monte Carlo simulation of every
selection cut using information from the detectors unrelated
to that cut. The δji are found to have a small rigidity
dependence: from −5% at 1 GV, decreasing to −2.4% at
10 GV, and becoming constant at −2.8% above 30 GV.
There are extensive studies of the systematic errors.

These errors include the uncertainties in the templates
definition, the trigger efficiency, the geomagnetic cutoff,
the acceptance calculation, the rigidity resolution function,
the unfolding, and the absolute rigidity scale.
The uncertainty associated with the ΛTRD templates

definition includes two parts: the event selection and the
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statistical fluctuations [18]. These two errors are added in
quadrature. The time-dependent systematic error due to the
templates definition amounts to less than 0.5% of the flux
below 41.9 GV.
The time-dependent systematic error on the electron

fluxes associated with the trigger efficiency measurement is
less than 1% over the entire rigidity range and for all days.
Thegeomagnetic cutoff is calculated as described in theSM

[34], and the resulting systematic error on the fluxes is less
than 2% at 1 GVand negligible (less than 0.4%) above 2 GV.
The correction δji is stable with time within its error, and

the associated time-dependent systematic error on the fluxes
is less than 1.5% over the entire rigidity range for all days.
The time-independent rigidity resolution function for

electrons has a pronounced Gaussian core and non-
Gaussian tails. The systematic error on the fluxes due to
the rigidity resolution function is obtained by repeating the
unfolding procedure while independently varying the width
of the Gaussian core by 5% and the amplitude of the non-
Gaussian tails by 10% [47]. The resulting systematic error
on the fluxes is 2% at 1 GV and less than 1% above 2 GV.
The daily variation of the spectral shape leads to an

additional uncertainty in the unfolding procedure. The
resulting time-dependent systematic error is less than 1%
at 1 GV and is negligible (less than 0.2%) above 5 GV for
all days.
There are two contributions to the systematic uncertainty

on the rigidity scale [47]. The first is due to residual tracker
misalignment. This error is estimated by comparing the
E=p ratio for electrons and positrons, where E is the energy
measured with the electromagnetic calorimeter and p is the
momentum measured with the tracker. It is found to be
1=30 TV [48]. The error is negligible (less than 0.2%)
below 41.9 GV. The second systematic error on the rigidity
scale arises from the magnetic field map measurement and
its temperature corrections. The total time-independent
error on the fluxes due to uncertainty on the rigidity scale
has been calculated to be less than 0.5% over the rigidity
range below 41.9 GV.
The contributions to the systematic error from the

trigger efficiency, the reconstruction efficiencies, and the
unfolding are evaluated independently each day and are
added in quadrature to derive a time-dependent systematic
error, which is less than 2% at 1 GV and about 1% above
3 GV for all days.
The daily total systematic error is obtained by adding

in quadrature the individual contributions of the time-
independent systematic errors discussed above and the
time-dependent systematic errors. At 1 GV, it is less than
3%, and above 3 GV, it is about 1.5% for all days.
Most importantly, several independent analyses were

performed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results.—The daily electron fluxes (Φe−) including

statistical errors, time-dependent systematic errors, and

total systematic errors are tabulated in Tables S1–S3300
of the SM [34,49] as functions of the rigidity at the top of
the AMS detector. These daily data are in agreement with
our earlier 27-day results [29] in the overlapping time
period but with improved accuracy. The daily proton flux
(Φp) data from May 2011 to November 2019 are taken
from Ref. [30]. The newΦp data up to November 2021 will
be published separately.
Figure 1 shows Φe− and Φp for four rigidity bins from

1.00 to 11.0 GV; see also Fig. S6 of the SM [34] for Φe− in
circular format. In this and subsequent figures, the error
bars on the fluxes are the quadratic sum of the statistical and
time-dependent systematic errors. As seen, Φe− exhibits
both short-term variations on the scale of days to months
and long-term variations on the scale of years, and the
relative magnitude of these variations decreases with
increasing rigidity. The time-dependent behavior of the
Φe− and Φp is distinctly different, and the differences
decrease with increasing rigidity. From 2011 to 2014, Φe−

decreases faster with time than Φp. From 2015 to mid-
2017,Φe− increase more slowly thanΦp below about 4 GV
[Figs. 1(a) and 1(b)]. From mid-2020 to 2021, Φe−

decreases faster than Φp.
Short-term flux variations can be either recurrent or

nonrecurrent. The nonrecurrent variations are mainly
caused by transient disturbances in the interplanetary
magnetic field [26,28,30,31,50,51]. The comparison of
the nonrecurrent variation of daily Φe− and Φp for three
short time intervals is shown in Fig. S7 of the SM [34]. As
seen, during lower solar activity (left and right columns of
Fig. S7), a difference between the short-term evolution of
electrons and protons is observed, while during the solar
maximum (middle column of Fig. S7), the difference
vanishes. For instance, in Figs. S7(b) and S7(j), the slope
of the recovery after the dip is different between electrons
and protons. These observations indicate a charge-sign
dependence in nonrecurrent solar modulation.
Recurrent variations with a period of 27 days and its

harmonics are related to solar rotation [52–60]. To study the
recurrent variations in Φe− , a wavelet time-frequency
technique [61] was used to locate the time intervals where
the periodic structures emerge. The details on the wavelet
analysis are described in the SM [34]. All the power spectra
in the subsequent figures are drawn with normalized power
defined in the SM [34]. The Φe− for four rigidity intervals
from 1.00 to 11.0 GV in each year (2011–2021 defined in
Table SA of the SM [34]), together with their time-averaged
power spectra and 95% confidence levels, are shown in
Figs. S8–S18 of the SM [34].
The peak values of the normalized power around 27 days,

13.5 days, and 9 days as a function of rigidity for each year
are shown in Figs. S19–S21 of the SM [34], respectively.
As indicated by the shaded areas of Fig. S19, the 27-day
periodicity is most prominent in the second half of 2011,
the second half of 2015, the first half of 2016, and the first
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half of 2017. As seen in Fig. S20, the 13.5-day periodicity
is most prominent in the second half of 2011, the second
half of 2015, and the second half of 2016. As seen in
Fig. S21, the 9-day periodicity is most prominent in the
second half of 2015, the first half of 2016, and the second
half of 2016.
The rigidity dependence of the strength of all three

periodicities varies in different time intervals, but it does
not always decrease with increasing rigidity. These obser-
vations do not support the paradigm that, over the AMS
rigidity range, the strength of the 27-day (and 13.5- and
9-day) periodicities steadily decreases with increasing
rigidity of cosmic rays [62].
Figure 2 shows the normalized power as a function of

rigidity and period for Φe− and Φp during two time
intervals when the 27-day periodicity is most prominent
(second half of 2011 and first half of 2017). As seen, the
rigidity dependence behavior of the normalized power of
electrons and protons is different in these two time
intervals. In particular, in the second half of 2011
[Figs. 2(a) and 2(b)], the strength of the 27-day period

of electrons is greater than that of protons, while in the first
half of 2017 [Figs. 2(c) and 2(d)], the strength of the 27-day
period of electrons is less than that of protons. Figures S22–
S24 show the comparison of the peak values of the
normalized power including the 95% C.L. between Φe−

and Φp around 27, 13.5, and 9 days, respectively. As seen,
the rigidity dependence of the electron periodicities is
different from that of protons [30].
The long-term variations on the scale of years are related

to the 11- and 22-year cycles of the solar magnetic field [5].
To further investigate the difference in the modulation of
Φe− and Φp, Fig. 3 shows Φe− as a function of Φp for four
rigidity intervals from 1.00 to 11.0 GV. For Figs. 3(a)–3(d),
the data points are the daily AMSmeasurements ofΦe− and
Φp. For Figs. 3(e)–3(h), both Φe− and Φp are calculated
with a moving average of 14 BRs with a step of 1 day.
Different colors indicate different years from 2011 to 2021.
As seen, a hysteresis between Φe− and Φp is observed; that
is, from 2011 to 2018 at a given electron flux, the proton
flux shows two distinct branches with time, one before
2014–2015 and one after. Both electron and proton fluxes
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FIG. 1. Eleven-year daily AMS electron fluxes Φe− and daily proton fluxes Φp in units of [m−2 sr−1 s−1 GV−1] for four rigidity bins
from 1.00 to 11.0 GV from May 20, 2011 to November 2, 2021. Days with solar energetic particle events are removed from Φp for the
lowest rigidity bins shown. The gaps in the fluxes are due to detector studies and upgrades. Note that Φp is multiplied by different scale
factors as indicated. The scale factor of Φp is chosen such that Φe− and Φp for each rigidity bin are at the same magnitude, on average,
during 2014 and 2015. The vertical dashed lines indicate the three time intervals studied in Fig. S7 of the SM [34]. As seen,Φe− exhibits
large variations with time, and the relative magnitude of these variations [(a)–(d)] decreases with increasing rigidity. The time-dependent
behavior of theΦe− andΦp are distinctly different. From 2011 to 2014,Φe− decreases faster with time thanΦp. From 2015 to mid-2017,
Φe− increases more slowly than Φp below about 4 GV (a),(b). From mid-2020 to 2021, Φe− decreases faster than Φp.
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peak in 2020, after which the hysteresis curve starts to trace
the earlier behavior (2018–2020) backwards. This is con-
sistent with the differences in electron and proton modu-
lation being symmetric with respect to the minimum solar
modulation. To assess the significance of this hysteresis, as
detailed in the SM [34] (see also Figs. S25 and S26), we
study, at different solar conditions, the values of Φp at the
same Φe− . As seen, the hysteresis is observed with a
significance of 47σ at [1.00–1.71] GV, greater than 6σ
below 8.48 GV, and 4.1σ at [8.48–11.0] GV. Different
methods have been used by several independent analysis
groups to quantify the significance of the hysteresis, and
they show similar results [63].
To probe structures in the hysteresis, the moving averages

of the Φe− and Φp are calculated with a finer time window.

The results for the rigidity interval of [1.00–1.71] GV are
shown in Fig. 4. Figure 4(a) shows the dailyΦe− andΦp as a
function of time for the 11-year period. The arrows I, II, and
III indicate the location of sharp dips in the proton and
electron fluxes, and the colored bands IVandVmark the time
intervals around the dips in 2015 and 2017. The moving
average ofΦe− andΦp with the timewindow of 2 BRs and a
step of 1 day for this rigidity interval is shown in Fig. 4(b).
The detailed behavior around the dips IVand V is shown in
Fig. S27. To assess the significance of these structures in
hysteresis, we study the difference ofΦe− at the sameΦp; see
SM [34] for details. The significance of the hysteresis
structure at [1.00–1.71] GV corresponding to the large dip
in 2015 is 15.9σ (IV) and to the large dip in 2017 is 7.0σ (V).
The analysis at [1.71–2.97] GVis presented in Fig. S28. The
significance of the hysteresis structure corresponding to the
large dip in 2015 is 14.6σ and to the large dip in 2017 is 5.3σ.
The structures in the hysteresis in 2015 and 2017 are

likely caused by a series of interplanetary coronal mass
ejections [64]. The clear deviation from the long-term trend
implies a charge-sign-dependent modulation during those
solar transients on the timescale of several Bartels rotations.
In conclusion, we presented the precision measurements

of 11 years of daily cosmic electron fluxes in the rigidity
interval from 1.00 to 41.9 GV based on 2.0 × 108 electrons.
The electron fluxes exhibit variations on multiple time-
scales. In the 11-year period, the electron fluxes show
distinctly different time variations from the proton fluxes.
Recurrent electron flux variations with periods of 27 days,
13.5 days, and 9 days are observed. The strength of all three
periods of electron fluxes shows different rigidity and time
dependence compared to protons. Remarkably, a hysteresis
between the electron flux and the proton flux is observed
with a significance greater than 6σ at rigidities below
8.5 GV. Furthermore, significant structures in the electron-
proton hysteresis are observed, corresponding to sharp
variations in the fluxes. These continuous daily electron
data provide unique input to the understanding of the
charge sign dependence of cosmic rays over an 11-year
solar cycle.
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