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Abstract— In power system modelling the unit commitment 

problem is used to simulate the wholesale electricity market. A 

solution to the unit commitment problem is a least-cost schedule 

that contains information regarding the capacity factors of each 

generator, the total CO2 emissions, and unserved energy per hour. 

However, since there might be a large variety of (sub)-optimal 

solutions, these characteristics might be arbitrary and conclusions 

about them may be presumptuous.  

In this article, we illustrate this by running multiple experiments 

on a future European power system. Each scenario was run 

multiple times by adding additional terms to the objective function 

such as the minimization and maximization of generator capacity 

factors, carbon emissions, and loss of load hours. The results 

showed that schedules can be equivalent in terms of cost, but that 

relative capacity factors, emissions, and loss of load hours could 

differ by large factors. 

Index Terms--Power System Modelling, Unit Commitment 

Problem, Modelling Metrics 

I. INTRODUCTION  

The unit commitment and economic dispatch (UC) problem 
is commonly used by academic researchers, Transmission and 
Distribution System Operators, energy companies, and policy 
makers to evaluate the resource adequacy of current and future 
electricity generation portfolios, and to support investment and 
operational decision-making ([6]-[11]). As a result of the energy 
transition and increasing reliance on variable renewable energy 
sources, the need for robust power system modelling is 
becoming increasingly important. 

A UC model finds the least-cost schedule for a generation 
portfolio under a set of hard and soft constraints. Outputs 
provide specific information regarding the schedule such as 
capacity factors of each generator, CO2 emissions, and unserved 
energy per hour. However, conclusions about these 
characteristics are often presumptuous. This is caused by the 

fact that they are not explicitly included in the objective 
function, which implies that they can take an arbitrary value so 
long as they do not violate any hard constraints, or negatively 
influence the objective function.  

For example, many countries use the Loss of Load 
Expectation (LOLE) metric, i.e., the average number of hours 
unserved energy occurred in a year based on a Monte Carlo 
simulation over many years to assess the system adequacy. The 
LOLE is one of the two key reliability indicators which must be 
calculated in the European Union (EU) as part of the European 
Resource Adequacy Assessment (ERAA) [12]. A second 
indicator is expected Energy Not Served (ENS), which 
represents the energy which is not supplied over a given period 
due to insufficient capacity resources to meet the demand. 
LOLE is an important adequacy indicator as any EU member 
state wishing to implement a capacity mechanism to safeguard 
security of supply can only do so if the ERAA shows that the 
national LOLE is above a specified reliability standard [14,15], 
calculated according to a strict methodology and typically in the 
range of 3 – 8 h /year [12].   

When a UC problem is solved to simulate the operation of 
the current European power system, the resulting power 
generation schedule has minimal generation cost and minimal 
amount of unserved energy. If a schedule has unserved energy, 
then there are specific hours in which loss of load occurs. These 
specific hours, however, might be arbitrary. For example, one 
schedule with all unserved energy in a single time step may cost 
as much as another schedule with the unserved energy 
distributed over several time steps [13]. However, these two 
schedules will have a different impact on the LOLE metric 
which in turn could imply divergent policy decisions. 

Which (sub)-optimal solution you get out of an optimization 
can depend on random choices a solver or algorithm makes, the 
fact that an algorithm produces a heuristic solution, the 
stopping criteria of sub optimality, how solvers are configured, 
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how the input data is structured, and much more. Two real-
world examples we experienced of this are as follows: 

• When adding valid inequalities to our Mixed Integer 
Linear Programming UC model to guide the solver by 
improving the relaxation bound, the optimal solution 
produced by the solver gave back very different 
capacity factors [4]. However, these valid inequalities 
were not expected to change the solution as they do 
not reduce the search space of the solution. 

• The standard method of solving a LP in Gurobi is by 
concurrently running multiple algorithms such as 
Simplex, Dual Simplex, and the Barrier Method. 
When one of these methods finds a solution, the 
process is stopped, and the solution found by that 
method is returned. However, the other algorithms 
would have also resulted in an optimal solution. Thus, 
multiple runs of the same scenario on the same 
computer with the same program may randomly result 
in different solutions ([5] p. 748) with, for example, 
different LOLEs depending on the fastest algorithm in 
each run.  

These are just a few examples of when the modelling metrics 
of a solution can be arbitrarily changed, and potentially lead 
analysts to draw non-robust conclusions from the results. 

In this article, we illustrate this arbitrary effect by running 
multiple experiments on three scenarios of the European power 
system in the years 2030 and 2040 [3]. For these scenarios we 
ran the UC problem to find least-cost schedules that meet the 
electricity demand with unserved energy rated at a value of loss 
of load of 10,000 Euro/MWh. Each scenario was run multiple 
times by adding additional objectives such as the minimization 
and maximization of capacity factors of generators, emissions 
and loss of load hours, while keeping the total dispatch costs 
equivalent. In this way, we demonstrate the maximum and 
minimum values of these indicators which could technically 
arise from the UC model, and hence the possible range of 
arbitrariness in the indicator results. 

II. METHODS 

We want to test how arbitrary important metrics of power 
system modelling are. The metrics we investigate are Loss of 
Load Hours (LOLH), capacity factors (CF) of generators and 
total CO2 emissions. First, we will give a definition for every 
metric. Then, we will describe the power system instances on 
which we run the UC. Finally, we will describe how we 
maximize the model metric differences between solutions of 
equivalent cost to analyse the different possible solutions.  

A. Metrics 

Loss of load occurs when generation capacity is insufficient in 
a given hour to meet the demand. This can be a result of 
insufficient generation on the supply side (e.g. due to power 
plant outage, or a shortage in renewable generation), or 
insufficient flexibility on the demand side. The metric of Loss 
of Load Hours (LOLH) is relevant to determine the system 
adequacy of a certain power system. The relationship with 
LOLE is that LOLE is the expected LOLH in a year which is 
the result of a Monte Carlo simulation over many years. Let’s 

define a loss of load hours, ������ , as a binary variable that is 
1 when the Energy Not Served, �����, is above zero: 

������ = 
1 ����� > 0
0 ��ℎ������ 

where EN��� is the demand of node n and time t that cannot be 
provided.  

Every generator has a capacity factor that indicates how much 
a generator is used. The capacity factor is 100%, if the generator 
is always producing at maximum capacity and it is lower 
otherwise. This metric is relevant for studies looking at the 
economic viability of power plants, which depends on the 
number of hours they run. The capacity factor of generator g is 
defined as: 

��� = ∑ ����∈�
| |!�

 

where ��� is the power production of generator " at time �. |T| 

is the number of timesteps and !� is the maximum generation 
of generator ". 

Many conventional thermal generators produce CO2 when 
burning fossil fuels to generate power. Due to the negative 
greenhouse effect of CO2, it is often of interest to investigate 
how much CO2 is likely to result from electricity generation. 
The total CO2 produced by a UC schedule is defined as:
  

 ��#$ ��& = ' ��!�(��
�∈),�∈�

+ ,�!���� 

where pgt is the power production of generator g at time t and 
FCPg is the fixed and VCPg is the variable ��& production of 
generator g. 

B. Unit Commitment Instances 

 
Figure 1, The bidding zones regions modelled in the TYNDP2020 

scenarios 
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 Capacity (GW)  

Scenario Thermal Storage RES 
DSR 

(GW) 

Demand 

(TWh) 

GA2030 576 125 794 38 4038 

GA2040 544 148 1089 44 4296 

DE2030 567 130 944 38 4214 

DE2040 535 221 1480 44 5075 

NT2030 587 121 818 26 3968 

NT2040 554 170 1093 31 4402 

 
Table 1, Summary of the capacity resources scenarios from TYNDP 

[3] 

The UC instances we performed the experiments on are based 
on future European power system scenarios of the 
“TYNDP2020” created by the European Network of 
Transmission System Operators for Electricity (ENTSO-E) [3]. 
These scenarios consist of 55 ‘nodes’ corresponding roughly to 
the current bidding zone configuration of Europe. In practice, 
most bidding zones correspond to a single country (Figure 1) 
but some countries such as Sweden and Italy are divided into 
multiple bidding zones. Table 1 gives an overview of the total 
generation capacity for each scenario. For our study we used six 
scenarios of the TYNDP2020 study, namely the three different 
pathways of National Trends (NT), Global Ambition (GA) and 
Distributed Energy (DE) for target years 2030 and 2040.  
These scenarios created by ENTSO provide insights into the 
possible energy system of the future and the effects of changes 
in supply and demand on the energy system [3]. 
In our experiments we used the climate years from 1950 till 
2019 to simulate the variation in renewable energy generation. 
We used historic renewable energy availability factors for PV, 
onshore and offshore wind based on the ERA5 data set [16]. 
For the hydro inflow data, we used the scaled inflow data from 
another European power system study [1] which were obtained 
from the RESTORE 2050 project [2]. 
For our study we used a time horizon of 72 hours sliced from 
the yearly demand and renewable patterns of the scenarios. The 
start of these 72 hours periods where at the start of hour 0, 2400, 
4800 and 7200 of the climate years 1950 to 2019 and from 
one of the 6 TYNDP scenarios. In total we used 4 ∗  60 ∗
 6 = 1440 UC instances of 72 timesteps.  
For the other experiments with CF and CO2 we used a smaller 
subset. Here we only looked at the years 1950, 1960, …, 2010 
and in total we used 4 ∗  7 ∗  6 = 168 UC instances of 72 
timesteps.  
The difference in the number of instances is because we expect 
not every UC instance to have ENS, leading to trivial results, 
but we do except that every instance has some CFs and CO2 
emissions. 

C. Procedure 

We want to maximise the difference of a specific model metric 
between two solutions with equivalent costs. In order to 
calculate the maximal difference, we first find the optimal 
solution of the UC problem. This solution has a certain 
objective value (e.g., a total cost of $1 · 108) and a metric value 
(e.g., 2 hours LOLH). From this original solution, we want to 
find other solutions with the same objective function value, but 

with different values for a particular metric, e.g., a solution with 
a total cost of $1· 108 but with 10 LOLH. In order to see the 
range of potential solutions which give rise to an equivalent 
objective function value but different metric values, we find a 
minimum and maximum metric using optimization. 
UC can be formulated compactly as follows (The full and 
precise formulation of the UC is in the appendix (9) - (28)): 

2�3 4 567 

86 =  9 

where x is the UC solution that contain all the relevant 
information that satisfies all the constraints, Ax = b. The 
objective f(x) includes the generation cost, CO2 emission 
certificate cost, start-up cost and system wide costs such as value 
of lost load multiplied by the ENS. 

Suppose that the optimal solution of the optimization 
problem is 6∗. Let g be our metric function that we want to 
minimize and maximize in order to find the largest difference. 
The following program gives an equivalent solution in terms of 
cost but minimizes the modeling metric g: 

2�3 " 567 

86 =  9 

4567 ≤ α456∗7 

if α is set to 1 then the solution to this problem has optimal 
cost. If α = 1.001 then the solution is within 0.1% of optimality. 

In this article we want to focus on the three metrics LOLH, 
CF and CO2. For each of the three metrics we performed various 
experiments.   For the LOLH experiments we kept α at 1, i.e. we 
only looked at optimal solutions, but at three levels of detail of 
the UC problem. The first level is a simplified ENS-Model, 
where the original objective is minimizing the total ENS and not 
the production cost of generators. Here we do not include 
flexibility constraints such as minimum up and down time and 
ramping limits. The second level is the Cost-Model in which 
production cost are minimized, but still without flexibility 
constraints. In the third level, the Full-Model, we take all the 
cost and flexibility constraints into account. Here, we also 
included a wheeling charge on the transmission lines, which 
implies that exporting and importing power between bidding 
zones has a small cost. 

For the CF experiments we set α ∈ {1.001,1.005,1.01} and 
minimized and maximized the capacity factor of Gas, Coal and 
Nuclear-powered electrical generators. 

For the CO2 experiments we set α ∈ {1.001,1.005,1.01 } 
and minimized and maximized the total CO2 produced by the 
power system. Table 5 in the appendix presents the precise setup 
of the experiments, the definition of the original objective 
function f and the model metric function g we want to minimize 
or maximize. 
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III.  RESULTS 

 

Table 2, Summary of the LOLH metric for the ENS-, Cost- and Full-

Model 

A. Loss of Load Hours 

The results of our experiments with minimising and 
maximising the LOLH are presented in Table 2, Figure 2 and 
Figure 4, and additional figures in the appendix. 

Table 2 presents the average LOLH of the three different 
models. The second column is the LOLH from the initial 
solution when we minimize the objective f. The first and third 
column are the minimized and maximised LOLH. Note that the 
original LOLH falls somewhere between the minimized and 
maximized variant. For some UC instances there was no ENS in 
any region or at any timestep. We removed those instances from 
our figures and tables. 

 For the ENS-Model the total difference of the average 
LOLH is a factor of 45.3/16 B 2.8, for the Cost-Model it is 
B2.3 and for the Full-Model this is a factor of B1.5. The 
difference with single UC instances is much higher. If we look 
at individual instances, we can see that the average factor 
between the minimized and maximized LOLH is 5.1 for the 
ENS-Model and 2.3 for the Full-Model. Furthermore, some 
specific runs have even more extreme differences such as one 
case with the ENS-Model where the maximum LOLH was 38 
times higher than the minimum one. 

 

Figure 2, The LOLH for all instances, ordered by the LOLH, for the 

ENS-Model. (See Figure 3 for clarification) 

         

The difference of the LOLH in the different models of 
individual runs becomes more apparent in Figure 2. It shows the 
individual model runs (black dots) that had ENS sorted on the 
original LOLH. The black bar around the dot shows the 
minimized and maximised LOLH. This black bar can be 
interpreted as the possible LOLH that could come out of the 
model given the same ENS (Figure 3). 

The experiments with the Cost-Model and the Full-Model 
show a similar pattern as Figure 2 (Figure 7 in the appendix). 
However, the black bar representing the possible range of 
LOLH given the same ENS and the same cost is a little smaller 
for the Cost-Model and even smaller for the Full-Model. This 
makes sense, as with more detail the model has less leeway for 
a solution to change while the objective function stays the same. 
It is to be expected that if we added even more detail to the Full-
Model that this range would become even smaller. 

Figure 4 shows the cause of such a discrepancy of LOLH 
between UC solutions. All the solutions have exactly the same 
ENS between the minimization and maximization run and the 
same primary objective function f. However, the total LOLH is 
different. When the LOLH is minimized the ENS is 
concentrated in a single node but when the LOLH is maximized 
it is spread out as evenly as possible between nodes and 
timesteps. 

 Minimizing Original Maximizing Factor difference 

 Avg D Avg D Avg D Avg D max 

ENS-Model 16.0 11.4 27.1 14.8 45.3 13.4 5.1 5.4 38.0 

Cost-Model 17.7 13.5 27.1 14.4 40.2 16.4 3.4 2.6 19.5 

Full-Model 28.7 20.2 34.8 17.0 43.3 17.2 2.3 1.7 11.1 

Figure 3, 

Explanation of the 

range graphs, the 

middle circle is the 

LOLH of the 

original 

optimization. The 

upper and lower 

value are the 

minimized and 

maximized LOLH. 

The whole range 

are the possible 

values of LOLH an 

equivalent solution 

can take on.  

Figure 4, The difference in solutions where we maximize 

(upper figures) and minimize (lower figures) LOLH with 

the ENS-, Cost- and Full-Model 
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For the UC instance used in Figure 4, we can see that the 
amount of leeway in the solution space is almost the same for 
the ENS-Model and the Cost-Model but that the Full-Model has 
significantly less ability to spread out the ENS.  

 

Table 3, Summary of the experiments with capacity factor 

 

B. Capacity Factor 

The results of our experiments with maximizing the 
difference in capacity factors are summarized in Table 3, Figure 
5, and figures in the appendix. 

Table 3 shows that equivalent solutions for within a margin 
of 1% of the optimum on average can have a Coal CF that is 
either 4.3% or 23.0%, a factor 5.3 different. In some cases, the 
CF of coal became 0% when minimizing this metric (Figure 5). 

For Gas the difference is still high but slightly lower than the 
coal generators. It seems that nuclear in these instances is the 
least flexible and on average could be a factor of 1.2 higher. If 
we reduce α to be closer to optimality, we can see that the 
difference reduces for all generator types. However, for gas and 
coal this difference at 0.1% removed from optimum is still 
relatively high. Figure 8 in the appendix shows the differences 
for all instances and all generator types. The figure shows that 
on average the difference is high but that also a lot of outliers 
exist where the difference is even higher. Even at 0.1% removed 
from optimum this difference sometimes is between zero 
production and some production for the coal-fired generators. 

 

Figure 5, The CFs for all instances, ordered by the original total CF, 

for the solutions within 1% of the optimum. 

C. CO2 Emissions 

Table 4 Summary of the experiments with ��& 

 The results of our experiments with maximizing the difference 
in CO2 emissions are summarized in Table 4 and Figure 6. 
 Table 4 shows that equivalent solutions within a margin of 1% 
of the optimum on average are a factor of 1.4 different and this 
factor can be as high as 2.5. 
Figure 9 in the appendix shows the different percentages 
removed from optimum. The difference of total CO2 is almost 

negligible when the solution is 0.1% removed from optimum. 
When LOLH, CF and CO2 are compared, we can see that the 
difference in the CO2 metric are much lower than those of the 
LOLH and CF metric. This difference might be attributed to the 
fact that the CO2 is a part of the objective function as there is a 
tax on CO2 emissions. 

 
Figure 6, The total CO2 emissions for all instances, ordered by the 

original total CO2 emissions, for the solutions within 1% of the 

optimum. 

IV. DICUSSSION 

In the previous section we showed the difference in the 
modeling metrics, LOLH, CF and CO2 for equivalent solutions 
that are close or equal to the optimal solution. The way we 
maximised those differences with optimization is not 
something you would normally do in power system modelling 
analysis, but it does show the maximal error these solutions 
might have. The next question that might come up is what the 
chance is, when running the model, one might get one solution 
or the other. The answer is that this is arbitrary. Or to be more 
specific: since the solutions have equivalent objective function 
values, it is equally valid for any solver or algorithm to produce 
either solution. Moreover, it would be an unintended 
consequence if they would prefer one solution over the other. 
If it was intended, then it should be explicitly modeled.  
 In this paper we showed that we could minimize the spread of 
LOLH in a more detailed model. The takeaway, however, from 
this article is that more detail should not be added to avoid 
arbitrariness in these metrics but to be conscious and careful 
when using any metric that is not explicitly optimized. These 

  Minimizing Original Maximizing Factor difference 

 E Avg D Avg D Avg D Avg D max 

FGH 

0.001 1.99 1.06 2.08 1.11 2.18 1.16 1.1 0.1 1.5 

0.005 1.88 1.02 2.08 1.11 2.35 1.26 1.3 0.2 2.1 

0.01 1.79 0.98 2.08 1.11 2.47 1.34 1.4 0.2 2.5 
  Minimizing Original Maximizing Factor difference 

 E Avg D Avg D Avg D Avg D max 

Gas 

0.001 8.3 6.0 9.6 6.8 10.8 7.5 1.7 1.8 21.0 

0.005 6.2 4.8 9.6 6.8 12.3 8.1 4.6 9.4 83.5 

0.01 4.9 4.0 9.6 6.8 13.6 8.7 - - - 

Coal 

0.001 8.5 5.6 11.1 6.9 14.2 8.7 - - - 

0.005 5.9 4.9 11.1 6.9 19.5 11.6 - - - 

0.01 4.3 4.1 11.1 6.9 23.0 13.7 - - - 

Nuc 

0.001 64.1 19.2 64.9 19.3 65.8 19.3 1 0 1.2 

0.005 62.6 19.1 64.9 19.3 68.0 19.4 1.1 0.1 1.9 

0.01 61.2 19.1 64.9 19.3 70.5 19.7 1.2 0.2 2.7 
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metrics are secondary characteristics of the solution, and they 
are not the goal and therefore should not be used as the main 
subject of analysis of these solutions. The analysis might be 
better on the objective itself. For example, the total ENS as a 
metric for adequacy is more robust than LOLE. ENS is 
explicitly modeled in the objective with a high coefficient, the 
value of lost load, and therefore (sub)optimal solutions have the 
same or similar ENS. 

V. CONCLUSION 

In this article we investigated the arbitrariness of important 
modelling metrics such as LOLH, CF and CO2 in power 
system modelling. These metrics are used to analyse current 
and future power systems. However, often when simulating 
these power systems with optimization, these metrics are not 
explicitly optimized for. Therefore, conclusions from these 
modeling metrics should not be drawn and if they are drawn 
people should at least be conscious of the arbitrariness of these 
metrics. 
Experimentally we showed the arbitrariness of the previously 
mentioned metrics. We used the 6 future European power 
systems with multiple climate years and simulated short term 
electricity market simulations by solving multiple 72-hour long 
UC instances. With these instances we re-optimized these 
different modeling metrics given equivalent objective 
functions. 
We found that the difference in the LOLH metric could be as 
high as a factor 38 for individual instances and the total 
difference, depending on the model, varied from a factor of 1.5 
to 2.8. For the capacity factor of coal, gas- and nuclear-powered 
generators these differences depend on how close they are to 
the optimal solution.  For individual instances the CF could be 
0% when minimizing but more than 20% when maximizing, 
while both are within 1% of optimality. And in total the CF over 
all experiments for coal was a factor of 5.3 different. For gas 
and nuclear this was 2.8 and 1.2 respectively. For the CO2 the 
difference was less pronounced, on average single instances 
had a factor difference of 1.1 to 1.4. 
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VI. APPENDIX 

Our UC description contains generators, RES, storage and 
transmission lines. The entire UC formulation is presented in 
(9) - (28).  

 

(9) is the objective function of the UC it includes the generation 

cost (including a price, 80 
$

�J� , for emissions produced) and 

start cost. (10) is the system wide cost for energy that is not 
served, ����� at node n and time t is multiplied by the value of 

lost load (VOLL) which is set at 10.000 
$

KLM. (11) is an 

additional wheel charge (WC) of 1  
$

KLM on the power flow 

between countries. Constraint (12) and (13) ensures the 
minimum and maximum production of a generator. Constraint 
(14) and (15) ensures the minimum up and downtime of the 
generators. Constraint (16) and (17) ensures the ramping limits 
of generators between timesteps. Constraint (18) ensures that 
the RES production is lower that the availability at that hour. 
(19), (20) and (22) ensure the charge, discharge and energy 
storage limits for storage units. Equation (21) is the sum of 
charge and discharge i.e., the net storage production. Equation 
(23) describes the relation between the charge, discharge and 
net power production of a storage unit. Equation (27) describes 
the logic between the binary commitment, start and stop 
variables of the generators. Equation (24) describes the relation 
between the flow on transmission lines and the power injection 
at nodes. Constraint (25) ensures flow limits on transmission 
lines. Equation (26) ensures that the total generation meets the 
total demand at every node and timestep. At last, the 
commitment variables are binary while the production are real 
numbers (28). 
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 LOLH CF FGH 

Variant ENS Cost Full Gas Coal Nuclear  

Cost of unserved 

energy 
X X X X X 

Variable 

generation cost 
 X X X X 

Wheeling charge   X   

Flex constraints 

included 
  X X X 

Function N (10) (9), (10) (9), (10), (11) (9), (10) (9), (10) 

Constraints 
(12), (13), 

(18)-(28) 

(12), (13), (18)-

(28) 
(12)- (28) (12)- (28) (12)- (28) 

O 1 {1.001,1.005,1.01} {1.001,1.005,1.01} 

Function PQRS 2�3 ' �����&

�∈�,�∈)
 2#6 ' ���

�∈�,�∈)
 2#6 ' ��!�(��

�∈�,�∈)
+ ,�!���� 

Function PQTU 2�3 ' ������
�∈�,�∈V

 2#6 ' ���
�∈�,�∈)

 2�3 ' ��!�(��
�∈�,�∈)

+ ,�!���� 

Extra constraints ����� ∈ {0,1}, ENSXY  ≤ DXY LOLHXY   

 

Table 5, The explicit details of all the experiments. 
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Figure 7, LOLH for all instances, ordered by the LOLH, for the Cost-Model, ENS-Model and Full-Model 
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Figure 8, CF for all instances, ordered by the CF, for the Coal, Gas and Nuclear for different values of _. 
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Figure 9, CO2 for all instances, ordered by the CO2, for different values of _ 

Authorized licensed use limited to: University of Groningen. Downloaded on November 20,2023 at 08:19:18 UTC from IEEE Xplore.  Restrictions apply. 


