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Propositions

accompanying the dissertation
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by

Alexander Kugele

1. The ANN-to-SNN conversion approach generalizes to temporally changing
event camera data, such that the SNN after conversion is still more energy-
and parameter-e�cient than the ANN (Chapter 4).

2. The streaming rollout translates to a synaptic delay when using it on con-
verted or trained SNNs, which makes execution more e�cient (Chapter 4
and 5).

3. Hybrid SNN-ANNs process event camera data more e�ciently than com-
parable ANNs and SNNs while achieving a similar performance on the ben-
chmark task (Chapter 5).

4. A memory mechanism is needed to remember past information when pro-
cessing event camera data, even in the absence of occlusions (Chapter 6).

5. Excluding objects with a low event count when training a neural network
on event camera data improves performance on test data, even if the test
data contains objects with low event count (Chapter 6).

6. The amount of publications in deep learning hinders proper reviewing and
reproduction.

7. The time for a project is always underestimated.
8. It is important to know when to stop a project, but it is equally important

to not give up too early.
9. Communication is key when working together on a project.

These propositions are regarded as defendable, and have been approved as such
by the promotor Prof. Dr. E. Chicca.


