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Abstract: Heterogeneity is the main challenge in the traditional classification of mental disorders,
including schizophrenia spectrum disorders (SSD). This can be partly attributed to the absence of
objective diagnostic criteria and the multidimensional nature of symptoms and their associated
factors. This article provides an overview of findings from the Genetic Risk and Outcome of Psy-
chosis (GROUP) cohort study on the deep clinical phenotyping of schizophrenia spectrum disorders
targeting positive and negative symptoms, cognitive impairments and psychosocial functioning.
Three to four latent subtypes of positive and negative symptoms were identified in patients, siblings
and controls, whereas four to six latent cognitive subtypes were identified. Five latent subtypes of
psychosocial function—multidimensional social inclusion and premorbid adjustment—were also
identified in patients. We discovered that the identified subtypes had mixed profiles and exhibited
stable, deteriorating, relapsing and ameliorating longitudinal courses over time. Baseline positive
and negative symptoms, premorbid adjustment, psychotic-like experiences, health-related quality of
life and PRSSCZ were found to be the strong predictors of the identified subtypes. Our findings are
comprehensive, novel and of clinical interest for precisely identifying high-risk population groups,
patients with good or poor disease prognosis and the selection of optimal intervention, ultimately
fostering precision psychiatry by tackling diagnostic and treatment selection challenges pertaining
to heterogeneity.

Keywords: schizophrenia spectrum disorder; psychosis; phenotype; deep phenotyping; cognitive
impairment; data-driven methods; precision psychiatry

1. Introduction

Schizophrenia is one of the most common and severe psychiatric disorders, with a
lifetime prevalence of approximately 1% [1]. Globally, schizophrenia cases almost doubled
from 13.1 million in 1990 to 20.9 million in 2016, and it has contributed to 13.4 million
years of life lived with disability, which brings a substantial burden on patients, families,
communities and healthcare systems [2].

The first episode of schizophrenia usually occurs in late adolescence or early adult-
hood [1]. The hallmark manifestations of schizophrenia include positive (i.e., delusions,
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hallucinations and disorganized behaviour) and negative (i.e., blunted affect and asocial-
ity) symptoms [3]. Positive symptoms are the main presenting complaints and reason
that patients seek treatment [4]. They are characterized by relapses and remission, which
are often managed through antipsychotic treatment [4]. Negative symptoms are more
stable, persistent and difficult to treat using pharmacological and non-pharmacological
interventions [5]. Negative symptoms are believed to often occur prior to the onset of
schizophrenia [5].

Cognitive deficits are also common symptoms observed in up to 90% of patients with
schizophrenia, although they are not yet included as a diagnostic criterion of schizophrenia
in DSM [6,7]. The most affected cognitive functions are episodic and working memory,
attention, verbal fluency, executive function, problem-solving, processing speed and social
cognition [8]. Cognitive deficits are stable and considered heritable (h2 = 50%) traits of
schizophrenia [9]. Similar to negative symptoms, cognitive symptoms could also occur
before the onset of schizophrenia [5] and barely respond to antipsychotic treatment [10].

Positive, negative and cognitive symptoms have pervasive impacts on the psychosocial
functioning, occupational and academic performance, and quality of life of a patient [5,7].
Furthermore, it is noteworthy to indicate that these phenotypes are also diversely present
in siblings due to shared genetic and non-genetic factors with their probands [6].

The Diagnostic and Statistical Manual of Mental Disorders (DSM) is the most widespread
nosographic manual used by international scientific and clinical communities to diag-
nose mental disorders [3,11]. Clinicians subjectively interview patients and diagnose
based on the set of criteria listed in the DSM [11]. However, the DSM has been criticized
for the inability of diagnostic categories to map cleanly onto either biology or outcome,
due to its overreliance on positive symptoms and negligence of affective, negative and
cognitive symptoms [12]. For example, this leads to up to a 50% misdiagnosis rate in
schizophrenia [13]. The high rate of misdiagnosis and the consequent misclassifications
add a considerable burden due to ineffective interventions, poor disease progression, re-
source wastage and inconsistency in research reports [13]. Moreover, attempts to identify
objective diagnostic biomarkers, such as genetic, proteomic and immunological markers,
for schizophrenia have not yet been successful because of methodological shortcomings,
professional indecision and conceptual contradictions [14]. Lastly, both psychiatric and
non-psychiatric comorbidities complicate the treatment and prediction of schizophrenia
outcomes [15]. Therefore, the diagnostic methods require reconsideration for a better
translation of evidence into accurate and consistent clinical practice.

Several solutions have been proposed for tackling the aforementioned issues. First,
DSM-5 has attempted to shift away from categorical diagnostics and adopted a dimensional
approach that emphasizes the underlying specific symptoms or symptom clusters and their
relationship with each other [3]. DSM-5 introduced the concept of schizophrenia spectrum
disorders (SSD), encompassing various diagnoses, including schizophrenia, although in
practice, diagnoses remain exclusive rather than to be seen as spectrum of disorders [3].
Another thriving solution is the use of variable and patient-centred data-driven approaches
that classify psychiatric disorders to find more homogeneous subgroups of individuals in
the exploitation of multidimensional symptom profiles [16].

Up till now, the narratives have shown the inherent phenotypic heterogeneity of SSD,
which consequently and urgently calls for deep clinical phenotyping using large-scale stud-
ies with the possibility of in-depth exploration of disease subtypes and characterization.
Previous epidemiological studies on SSD were hampered by limited sample size, limited
use of omics data, and short duration of follow-up [2]. Of interest, no study comprehen-
sively examined phenotypes of SSD and underlying factors in patients, unaffected siblings
and controls.

Detecting phenotypic subgroups of patients suffering from complex diseases is an
important element of precision medicine and could provide support for the early detection
of deteriorating patients, prediction of individualised and customised treatment, and pre-
vention strategies for different phenotypic groups, which ultimately results in enhanced
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treatment outcome [17,18]. The in-depth analysis of phenotype plays a key role in clinical
practice and medical research [18]. This article provides an overview of findings from
eight Genetic Risk and Outcome of Psychosis (GROUP) cohort studies on the deep clinical
phenotyping of schizophrenia spectrum disorders targeting positive and negative symp-
toms [19,20], cognitive impairments [21–23] and psychosocial functioning [24–26]. Briefly,
we present identified latent subtypes (i.e., subphenotypes), their longitudinal course or
profiles of subtypes and important predictors. Finally, we present future research directions
to extend this line of research.

2. Methods and Materials
2.1. Study Population

Patients, siblings and controls participated in the Genetic Risk and Outcome of Psy-
chosis (GROUP) cohort study. GROUP is a six-year, longitudinal cohort study in the
Netherlands [27]. Patients were included if they were diagnosed with a schizophrenia
spectrum disorder (53.8% schizophrenia), were aged between 16 and 50 years old, had
a good command of the Dutch language and were willing and capable of giving written
informed consent. Siblings and controls were included if they met the above criteria and
had no known lifetime psychotic disorder. At baseline, 1119 patients, 1059 first-degree
siblings and 586 healthy controls were recruited. Details on the GROUP project structure,
recruitment of participants, sample size estimation, data collection and ethical approval
have been published elsewhere [27].

2.2. Measurements

Data were collected at baseline and after three years and six years of follow-up.
DSM-4 [28] was used to diagnose schizophrenia spectrum disorder. Positive and negative
symptoms in patients were assessed at baseline and after three years and six years using
the Positive and Negative Syndrome Scale (PANSS) [19,20]. Similarly, positive and negative
schizotypy (i.e., subclinical symptoms) in siblings and healthy controls were assessed with
the Structured Interview for Schizotypy-revised (SIS-R) [19,20]. Positive and negative
subscales’ mean or sum score was used to quantify the severity of symptoms. Cognitive
function was assessed in patients, siblings and controls at baseline and after three years
and six years using the Measurement and Treatment Research to Improve Cognition in
Schizophrenia (MATRICS) consensus cognitive battery test [21–23]. Specifically, we used
the Word Learning Task (WLT) (i.e., to measure memory), Continuous Performance Test-
HQ (CPT-HQ) (i.e., to measure executive function) and Wechsler Adult Intelligence Scale
(WAIS-III) (i.e., to measure IQ). Subdomain and global cognitive function were evaluated
by creating a composite score using the Z-score [22,23] or principal component analysis
methods [21]. Social function was measured after three years and six years by using
the Social Functioning Scale (SFS), whereas quality of life was measured at baseline and
after three years and six years with the brief version of the World Health Organization
Quality of Life assessment (WHOQOL-BREF) [24]. A multidimensional social inclusion
composite score was created from three years measurement of the SFS and WHOQOL-
BREF using the Z-score method [24]. Premorbid adjustment was retrospectively measured
using the premorbid adjustment sale (PAS) in three life periods: childhood (<12 years),
early adolescence (12–16 years) and late adolescence (16–19 years) [25,26]. All information
was gathered from parents or siblings and a mean score was created to quantify overall
premorbid functioning [25,26]. Sociodemographic, genetic and clinical data were also
collected. DNA was extracted from peripheral blood lymphocytes in a 20 mL stored
blood sample. Genotyping, quality control and imputation were carried out following
the standard procedure [19,21]. The polygenic risk score for schizophrenia (PRSSCZ) was
calculated using Psychiatric Genomics Consortium (PGC) schizophrenia genome-wide
association study (GWAS) summary statistics, where a higher PRSSCZ indicates a higher
genetic vulnerability to developing schizophrenia [21].
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2.3. Data Analyses

Identification of latent subtypes: Person-centred latent class models were used to identify
subgroups of individuals with similar phenotypes, which we call latent subtypes through-
out this article. In five studies [19–22,26], we applied group-based trajectory modelling
(GBTM) to identify latent subtypes and evaluate their longitudinal course throughout the
six-year follow-up, whereas we applied K-means clustering in three studies [23–25] to
identify latent subtypes at one time point (e.g., baseline data, or three-year follow-up). The
analyses were carried out using SAS and R software.

Predictors of latent subtypes: In three studies [19,21,22], mixed-effects regression models
were applied to investigate predictors of latent subtypes. The other studies [20,23–25] used
analysis of variance (ANOVA) or the Kruskal–Wallis test and chi-square test to investigate
continuous and categorical variables that distinguished latent subtypes, respectively. The
analyses were carried out using SAS and R software.

3. Results
3.1. Latent Subtypes

Positive and negative symptoms: In patients, we identified three latent subtypes of
positive and negative symptoms [19] (Figure 1A). Additionally, using social amotivation
and expressive deficit subphenotypes of negative symptoms, we identified four latent
subtypes in patients [20]. In siblings, we consistently distinguished four latent subtypes of
positive and negative schizotypy (Figure 1B), while three positive and negative schizotypy
latent subtypes were identified in controls (Figure 1C) [19].
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Cognitive functions: We identified five and four cognitive subtypes in patients and their
siblings, respectively (Figure 1A,B) [21,22]. In another study using cross-sectional data, we
identified three cognitive subtypes in siblings [23]. In controls, we identified four cognitive
subtypes (Figure 1C) [21]. After combing all samples together, we unravelled six latent
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cognitive subtypes (Figure 2) [21]. Furthermore, we examined the latent subtypes of three
cognitive subdomains—verbal learning and memory, sustained attention and vigilance,
and global cognitive function (IQ) [29]. In patients, we identified five latent subtypes of
global cognitive function (IQ), and three subtypes of verbal learning and memory, and
sustained attention and vigilance. In siblings and controls, five, four and three subtypes of
global cognitive function (IQ), verbal learning and memory, and sustained attention and
vigilance were identified, respectively. In all combined samples (Figure 2), we identified
five subtypes of verbal learning and memory, and global cognitive function (IQ) domains,
whereas four subtypes of sustained attention and vigilance were identified.
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Psychosocial functions: In patients, we identified five latent subtypes of multidimen-
sional social inclusion [24]. In addition, we revealed six latent subtypes of premorbid
adjustment in patients [25,26].

3.2. Longitudinal Courses and Profiles of Subtypes

Positive and negative symptoms: Positive and negative symptoms had stable, deteriorat-
ing, relapsing and ameliorating courses over time in patients, siblings and controls [19,20].

Cognitive functions: Cognitive subtypes had stable course during the six-year period in
patients, siblings, controls and combined samples [21,22]. Additionally, cluster analyses
showed “normal”, “mixed” and “impaired” cognitive profiles in siblings [23].

Psychosocial functions: Premorbid adjustment had “normal, slow decrease”, “nor-
mal, rapid decrease”, “mild, rapid decrease”, “mild, slow decrease”, “moderate, slow
decrease” and “severe, slow decrease” longitudinal courses over the six-year period [26].
Another study showed “normal”, “social intermediate”, “academic decline”, “overall de-
cline”, “overall intermediate” and “overall impaired” premorbid adjustment profiles in pa-
tients [25]. Multidimensional social inclusion had “very low (social functioning)/very low
(quality of life)”, “low/low”, “high/low”, “medium/high” and “high/high”
profiles [24].
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3.3. Predictors of Latent Subtypes

Positive and negative symptoms: In patients, baseline positive symptom severity pre-
dicted latent subtypes of positive symptoms, while baseline negative symptom severity and
quality of life predicted latent subtypes of negative symptoms [19]. In siblings, psychotic-
like experiences (i.e., depressive symptoms) and quality of life predicted positive schizotypy
subtypes, whereas premorbid adjustment, psychotic-like experiences (i.e., positive symp-
toms) and quality of life predicted negative schizotypy subtypes [19]. In controls, quality
of life predicted positive schizotypy subtypes, while premorbid adjustment and quality of
life predicted negative schizotypy subtypes.

Cognitive functions: Premorbid IQ, age and premorbid adjustment predicted cognitive
latent subtypes in patients [21]. Age and poor functional outcomes predicted cognitive
subtypes in siblings [21,23]. Interestingly, the cognitive symptoms of siblings were predicted
by the cognitive subtypes of patients [21]. Age, premorbid IQ, premorbid adjustment and
positive schizotypy predicted cognitive subtypes in controls [21]. PRSSCZ, age, gender,
ethnicity, educational status, premorbid IQ and premorbid adjustment predicted cognitive
subtypes in combined samples [22].

Psychosocial functions: PRSSCZ, positive, negative and depressive symptoms, premorbid
social functioning, number of met needs and satisfaction predicted multidimensional social
inclusion subtypes [24].

4. Discussion

Through deep clinical phenotyping of SSD using the Genetic Risk and Outcome of
Psychosis (GROUP) cohort dataset, we identified three to four latent subtypes of posi-
tive and negative symptoms [19,20] and four to six latent cognitive subtypes [21–23] in
patients, siblings and controls. In our previous systematic review of worldwide longi-
tudinal and cross-sectional data-driven studies, we observed two to five latent subtypes
of positive, negative and cognitive symptoms in patients and controls [30]. In line with
previous studies [31–33], we also identified five latent subtypes of psychosocial function—
multidimensional social inclusion and premorbid adjustment—in patients [24–26]. Our
findings support the DSM-5 dimensional approach for characterizing disorders based on
a collection of symptoms [3]. Taken together, these findings demonstrate the inherent
heterogeneity of SSD. Data-driven approaches have been shown to have the ability to ex-
plore heterogeneity and biological drivers of SSD and other psychotic disorders in the last
decade [5]. Furthermore, data-driven approaches could contribute to the precise identifica-
tion of high-risk population groups, optimal selection of interventions targeting subgroups
of patients with similar phenotypes and evaluation of patients’ prognosis [34]. Conse-
quently, they could help foster precision psychiatry by tackling diagnostic and treatment
selection challenges pertaining to heterogeneity.

The identified latent subtypes in the GROUP studies [19–26] exhibited stable, deteri-
orating, improving and relapsing clinical courses over time with mixed phenotypes. We
observed similar patterns of phenotypes in studies (particularly in patients and controls)
included in our previous systematic review [30]. This implies the relevance of considering
dynamic phenotypical changes over time, and therapies need to be seen as a process of
change [35–37]. Interestingly, cognitive subtypes showed a stable course during the six-year
follow-up [21,22]. This finding supports that cognitive deficits continue to be a valuable
endophenotype of interest in the search for specific genetic factors related to schizophre-
nia [38,39]. The different symptom subtypes and their developmental courses appearing
in both subclinical and clinical phases may elucidate the disease mechanisms before the
disease onset and may be helpful for predicting transition to psychosis in unaffected indi-
viduals, which provides ample opportunities for early recognition, delaying onset and the
treatment of subtle psychotic symptoms [40].

Even though up to 58 factors have been suggested to predict subtypes, only limited
factors predicted latent subtypes in our studies [30]. This is possibly because we used
multivariable models, whereas most of the other studies used univariable models or only
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pair-wise comparison was carried out [30]. Interestingly, we observed an overlap of factors
that predict positive, negative and cognitive symptoms and psychosocial function subtypes.
This suggests that these phenotypes have shared pathophysiology and similar clinical
courses. Similarly, recently emerging evidence [41–43] showed a temporal association
between positive, negative and cognitive symptoms and identified common predictive
factors [44].

PRSSCZ showed better association with cognitive subtypes than positive and negative
symptom subtypes [21]. This suggests that cognition may have higher genetic susceptibility
than positive and negative symptoms. Cognitive subtypes can be a suitable endophenotype
of SSD [45] given the stable longitudinal course and its association with PRSSCZ. Endophe-
notype has been suggested to have a simpler genetic architecture than clinical syndromes
and it can provide better signal-to-noise ratios and greater statistical power in research,
which can be detectable in smaller sample sizes [45]. Furthermore, the strong predictive
power of PRSSCZ in the combined sample demonstrates the relevance of a large sample size
and partly demonstrates the possibility of translating the constructed PRSSCZ in research
settings into actual practices to disentangle clinically relevant patient subtypes [46,47].
Broadly, the use of PRS is promising for early detection, the initiation of prevention strate-
gies and the prediction of treatment outcomes, although studies that investigated the role
of PRSSCZ to predict latent subtypes are limited [30] and challenges exist in translational
psychiatry research.

Heterogeneity in the traditional classification of mental disorders, including schizophre-
nia spectrum disorders (SSD), is the main challenge in research and clinical practice [48,49].
As such, key scientific values embodied in this article are highlighted as follows. Firstly,
we combined data-driven, polygenic scoring and subphenotyping approaches to evaluate
the profiles and longitudinal courses of SSD phenotypes by incorporating not only clinical
but also psychosocial outcomes in patients and siblings. This is a unique aspect that has
not been extensively explored in previous clinical studies. To best of our knowledge, there
is no cohort study that comprehensively investigated positive and negative symptoms,
cognitive impairments and social outcomes and compared findings across patients, sib-
lings and controls. Most previous studies focused on positive and negative symptoms in
patients, followed by cognitive impairment [30]. Studies that consistently examined the
role of polygenic risk score to predict latent subtypes in positive and negative symptoms
are very limited, let alone in social outcomes. Secondly, we depicted the presence of high
heterogeneity and tried to show the full picture of SSD phenotypes, which is not addressed
in the previous literature. Thirdly, we conducted comprehensive data analysis using vari-
ous complementary statistical modelling techniques to obtain insight into the prominent
predictors of latent subtypes. The combination of using data-driven approaches and the
inclusion of PRS and exposomes enhances our understanding of SSD and its trajectory
over time. Lastly, the novel findings presented in this article—particularly in the sibling
population and psychosocial functioning phenotypes—can substantially contribute to the
existing body of scientific knowledge and open new avenues for future investigations and
potential clinical applications.

The findings presented in this article also have clinical relevances and will contribute
to a broader understanding of the clinical heterogeneity and disease course in SSD in two
ways. First, data-driven methods can identify subgroups of SSD patients based on their
phenotypes, which may ultimately help refine psychiatric nosology [49]. Additionally, this
helps to reduce the heterogeneity for a more targeted assessment of clinical and biological
predictors of these phenotypes in SSD. The large number of subtypes observed in studies
also alerts clinicians to not use generic approaches to treat patients and consider siblings
or family members during treatment. Second, the identification of specific biomarkers
and clinical factors that are associated with specific latent subtypes will allow for the
tailoring of treatments to alleviate positive and negative symptoms and improve cognitive
performance and psychosocial functioning in SSD. We identified the predictors that can
be used as a marker for clinicians for precisely identifying high-risk groups or patients
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with similar phenotypes. This could minimize the misdiagnosis that commonly seen in
schizophrenia [13]. Overall, these findings may have the potential to impact patient care
and early preventive and treatment strategies, leading to improved patient outcomes in the
long term.

5. Strengths and Limitations

This article presented evidence on in-depth phenotyping of SSD targeting for multiple
phenotypes in patients, siblings and controls. We identified latent subtypes using cross-
sectional and longitudinal data. The longitudinal data also helped us to examine the
long-term clinical course of phenotypes [13]. We also investigated various factors that
predict latent subtypes and could be helpful for understanding disease progression. On the
other hand, we presented findings based on a single cohort sample, which may limit the
generalizability of our findings. However, our findings are comparable to results from a
review of previous data-driven studies [30].

6. Future Research Directions

Data complexity, ambiguous subtyping results and nomenclature, and the complex
relationship between phenotypes are still bottlenecks to fully harnessing the advantages of
data-driven methods [12,48,50]. In the attempts to carry out in-depth phenotyping of SSD
and the realization of precision psychiatric care, future collaborative research is warranted.

First, the identified latent subtypes and their clinical courses need to be validated in in-
dependent cohorts to ensure the generalizability of results. Additionally, more longitudinal
studies are needed to evaluate the long-term course of cognitive and functional outcomes
in patients and siblings.

Second, subphenotyping targeting specific cognitive functions (e.g., memory, at-
tention), positive symptoms (e.g., hallucination, delusion, disorganized thought), neg-
ative symptoms (e.g., asociality, avolition, affective flattening) and psychosocial functions
(e.g., social engagement, housing, employment) in patients, siblings and controls using
data-driven approaches may provide additional insights for deeper characterization of SSD.
Endophenotype studies should also continue from interdisciplinary domains to address
knowledge gaps and to deliver clinically applicable insights [45]. Additionally, more stud-
ies on siblings of patients with SSD are needed, as they are frequently affected due to shared
genetic and non-genetic risk factors. For example, only 3 out of 53 worldwide data-driven
studies were conducted on siblings [30]. Further data-driven studies on psychosocial
function in patients and siblings are warranted.

Third, the use of growth mixture models or a dynamic mixture of expert models [51,52]
may provide robust results, as these models allow the incorporation of both time-varying
predictors and baseline predictors in the clustering of phenotypes and capture the dynamics
better over time.

Fourth, as efforts have been devoted to unravelling the pathophysiology of SSD, it can
also be beneficial to further examine the interrelatedness and distinctiveness of positive and
negative symptoms, cognitive impairments and psychosocial functions [42] using causal
discovery models [53,54].

Fifth, investigating the association of PRSSCZ with phenotypes, endophenotypes,
biological substrates and metabolites in large multinational consortia could help the identi-
fication of symptoms that have a stronger genetic liability and understanding of underlying
causal models specific to clinical subgroups or symptom dimensions [55,56]. Performing
GWAS of the trajectory of SSD phenotypes [57] and using the PRS of these phenotypes
could be better than PRSSCZ to deeply characterize latent subtypes [58,59]. Furthermore,
calculating a polyomic risk score by integrating phenomics, genomics, epigenomics, pro-
teomics, transcriptomics and pharmacogenomics may increase the performance of risk
prediction, patients’ stratification for interventions and the efficacy of treatments [60,61].

Sixth, future studies may focus on enriching data-driven models based on clearly
defined research questions and developing supplementary techniques for interpreting
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results and successfully translating findings into clinical practice [12,48]. It is also important
to develop a pipeline composed of data collection, pre-processing and data modelling
to identify subtypes with different profiles or disease progressions and risks of disease
complications [18].

Seventh, future studies can be benefited by including inflammatory biomarkers, car-
diometabolic data and lifestyle factors in patients and siblings, which could be critical for
understanding the pathophysiology of somatic comorbidities that occur before or concomi-
tantly with SSD [41]. In our previous study, we observed increased HbA1c levels in patients
with SSD [62]. Using insulin sensitivity measures (euglycemic clamp), energy measure-
ments and body composition could be also helpful for a more in-depth understanding of
cardiometabolic co-morbidities that occur before and with SSD. Furthermore, extensive
investigation of the role of antipsychotics and adherence to treatment could be helpful for
precisely determining the clinical course of latent subtypes.

Eighth, applying Bayesian statistical models could provide strong evidence when the
sample size is small, usability of omics data is limited, and follow-up duration is short
compared to conventional statistical models. Bayesian inference is known to have an
advantage given that the results are not dependent on the assumption of a large sample
size, and it creates an opportunity to incorporate expert knowledge into the data-driven
approach [63]. Therefore, the investigation of latent subtypes and their predictors using
Bayesian latent class models can be an additional future research area [64,65].

Finally, recent advances in the theory and applicability of machine learning methods
constitute an important area of future research due to the complexity of the data structure.
Thus, hybrid methods that combine both supervised and unsupervised methods can
identify subpopulations, contribute to comparing identified subpopulations and may
provide superior results for the robust selection of predictors, which may ultimately help
refine psychiatric nosology [49,66].

7. Conclusions

SSD phenotypes are highly heterogenous and show mixed profiles and longitudinal
course among patients, siblings and controls. Three to four latent subtypes of positive and
negative symptoms and four to six latent cognitive subtypes were identified in patients,
siblings and controls. Five latent subtypes of psychosocial function—multidimensional
social inclusion and premorbid adjustment—were identified in patients. We depicted
that the identified subtypes had mixed profiles and stable, deteriorating, relapsing and
ameliorating courses during the six-year follow-up period. Baseline positive and negative
symptoms, premorbid adjustment, psychotic-like experiences, health-related quality of life
and PRSSCZ were found to be the strong predictors of the identified subtypes.

In the current era with limited objective criteria to diagnose SSD, the application
of data-driven approaches could be relevant for clinicians and researchers for in-depth
phenotyping of SSD by compiling all symptoms’ domains across patients and healthy
individuals. The identification of latent subtypes and their clinical courses may help to
design randomized control trials and implement targeted evidence-based interventions
with maximized treatment efficacy and minimized costs and side effects.
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