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Abstract: Over 90% of preterm neonates are, often empirically, exposed to antibiotics as a potentially
life-saving measure against sepsis. Long-term outcome in association with antibiotic exposure (NABE)
has insufficiently been studied after preterm birth. We investigated the association of NABE-duration
with early-childhood developmental and health outcomes in preterm-born children and additionally
assessed the impact of GA on outcomes. Preterm children (GA < 30 weeks) participating in a multi-
center cohort study were approached for follow-up. General expert-reviewed health questionnaires
on respiratory, atopic and gastrointestinal symptoms were sent to parents of children > 24 months’
corrected age (CA). Growth and developmental assessments (Bayley Scales of Infant and Toddler De-
velopment (BSID) III) were part of standard care assessment at 24 months’ CA. Uni- and multivariate
regressions were performed with NABE (per 5 days) and GA (per week) as independent variables.
Odds ratios (OR) for health outcomes were adjusted (aOR) for confounders, where appropriate.
Of 1079 infants whose parents were approached, 347 (32%) responded at a mean age of 4.6 years
(SD 0.9). In children with NABE (97%), NABE duration decreased by 1.6 days (p < 0.001) per week of
gestation. Below-average gross-motor development (BSID-III gross-motor score < 8) was associated
with duration of NABE (aOR = 1.28; p = 0.04). The aOR for constipation was 0.81 (p = 0.04) per
gestational week. Growth was inversely correlated with GA. Respiratory and atopic symptoms were
not associated with NABE, nor GA. We observed that prolonged NABE after preterm birth was
associated with below-average gross-motor development at 24 months’ CA, while a low GA was
associated with lower weight and stature Z-scores and higher odds for constipation.
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1. Introduction

Approximately 90% of very-low-birth-weight infants are, often empirically, exposed
to antibiotics within the first weeks of life [1–3]. Since their discovery by Sir. A. Fleming
(1881–1955), antibiotics have had major impact on health and increased life expectancy
significantly [4]. Indeed, antibiotics are indispensable in neonatal care [5]. However, the
success of and the reliance on antibiotics also has unwanted side effects, and inappro-
priate use of antibiotics has been related to adverse short-term outcomes and antibiotic
resistance [4,6–8].

There is an additional increasing concern because of putative long-term adverse
health effects correlated to antibiotics [9,10]. A longer duration of neonatal antibiotic
exposure (NABE) might have an effect on microbiota diversity, which has been proposed
to lead to impaired immune defense mechanisms with potential adverse effects in the long
term [6,9–12]. Currently, antibiotic stewardship guidelines for suspected sepsis discourage
antibiotic continuation upon negative blood culture results from 48 to 72 h to minimize
potential adverse effects of antibiotics [13,14]. To optimize these guidelines, continuous
research on potential effects of antibiotics is needed.

In preterm infants, however, the low sensitivity of blood cultures and fear of the
consequences of missed infection leads to prolongation of the antibiotics course [14,15]. Pro-
longed antibiotic exposure in the first days of life has been associated with life-threatening
diseases such as necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) in the first
weeks after preterm birth [8]. In the long term, antibiotics in term-born infants have been
associated with an increased risk of asthma, atopy, obesity and autism spectrum disorders
in childhood [16–18].

Based on in vivo observations in animals and humans, it is currently hypothesized
that pre- and postnatal exposure to antibiotics might interfere with organ and immune
system development through several mechanisms [19,20]. Antibiotics can alter intestinal
microbiota composition and delay or change early colonization, creating a less hospitable
environment for bacteria that produce beneficial short-chain fatty acids (SCFA), e.g., Bifi-
dobacteria and Bacteroides species [21–23]. This may impair priming of the immune system,
facilitating chronic inflammation and potentially interfering with normal growth and
respiratory, gastrointestinal and psychomotor development [24–26].

In preterm infants, the impact of early-life antibiotic exposure on health outcome
beyond the neonatal period is largely unclear, despite the high rates of prolonged NABE.
In the current study, we aimed to investigate the association of duration of NABE after
preterm birth (gestational age (GA) < 30 weeks) with growth and neurodevelopmental
impairments, wheezing, atopy and constipation. GA, a known risk factor for adverse
outcomes, was included as a secondary potential risk factor in the analysis of our cohort.

2. Methods
2.1. Design and Subjects

This follow-up study was embedded in an ongoing longitudinal multicenter cohort
study including preterm neonates since 2014, with the primary aim to identify fecal biomark-
ers for neonatal NEC and late-onset sepsis (LOS) [27]. In 2020, follow-up of this cohort was
initiated to investigate the association between neonatal microbiota and microbiota-altering
factors and health outcomes beyond the neonatal period. During the neonatal period (the
first 28 days of life), clinical variables were collected prospectively from birth to the age of
28 days or until discharge, whichever came first.

Follow-up was conducted cross-sectionally between June 2020 and May 2022 in sur-
viving participants. For this purpose, a questionnaire for parents was designed based



Antibiotics 2023, 12, 967 3 of 13

on current literature (Supplementary Tables S1 and S2) and evaluated by local experts
in the field of pediatric pneumology, allergology, gastroenterology and neonatology to
assess childhood health outcome. Questionnaires were designed in Dutch and translated
to French and English.

As depicted in Figure 1, the study consisted of a one-time parent’s reported, written
questionnaire-based health assessment beyond 24 months’ corrected age (CA) of children
born between October 2014 and July 2019. Additionally, retrospective data on weight and
height, as well as Bayley Scale of Infant and Toddler Development, 3rd edition (BSID-III)
scores, were collected [28].
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Figure 1. Workflow of the preterm cohort study. During the neonatal period (first 28 days of life),
daily clinical variables were registered in neonates born before 30 weeks’ gestation. Follow-up
consisted of anthropometry and BSID-III developmental scores at 24 months’ corrected age (CA) and
parents’ reported, questionnaire-based health assessment beyond 24 months’ CA. BSID-III, Bayley’s
Scale of Infant and Toddler Development—3rd version; ISAAC, International Study of Asthma and
Allergies in Childhood; NICU, neonatal intensive care unit; Rome-IV, Rome IV Diagnostic Criteria for
Functional Constipation. Created with biorender.com.

The study was conducted in eight neonatal intensive care centers: Amsterdam Uni-
versity Medical Centers (two locations), Maxima Medical Center, Isala Zwolle, University
Hospital Leuven, University Medical Center Groningen, University Medical Center Utrecht
and Radboud University Medical Center.

If parents did not respond to contact by telephone, they were approached by pa-
per mail. Exclusion criteria at initial time of enrollment were congenital gastrointestinal
anomalies, including intestinal atresia and Hirschprung’s disease, and Down syndrome.
Additional exclusion criteria for the follow-up period were insufficient verbal and/or writ-
ten language knowledge of Dutch, English and French. In cases of non-response, parents
were reminded telephonically.

Each participant of the neonatal cohort was appointed a study-ID to ensure de-
identification. Data provided by the parents were stored on an encrypted data capture tool
(Castor® Electronic Data Case 22, Amsterdam, The Netherlands). Ethical approval was
granted by the local Medical Ethical Committee (registration number: A2020.219).

2.2. Data Collection

Perinatal and neonatal data, as well as BSID-III scores and weight and height at
24 months’ CA, were collected from the electronic patient record (EPR). BSID-III, as well as
GA-normalized weight and stature Z-scores, were administrated during the regular visit
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for follow-up of preterm-born infants at 24 months’ CA. BSID-III was assessed by a team of
developmental psychologist and physiotherapists at every participating center as part of a
national neonatal follow-up program.

Duration of NABE (with precision of 1 day) was calculated from the pre-existing
database created during the subjects’ neonatal period. Other perinatal characteristics
included gestational age, mode of delivery, mother’s parity, multiple births, gender, Apgar
scores, birth weight, birth weight Z-score, neonatal enteral nutrition type and development
of NEC (defined as stage ≥ IIA according to the modified Bell’s stage criteria by Kliegman
and Walsch), culture-proven LOS and culture-proven meningitis.

Childhood outcomes, other than BSID-III and weight and height, were derived from the
questionnaire completed by the parents after 24 months’ CA. Questionnaire items on symp-
toms of bronchial constriction, rhinitis and atopic dermatitis were based on adapted questions
from the International Study of Asthma and Allergies in Childhood (ISAAC) and from a large
Dutch cohort study on respiratory health (Supplementary Table S1) [29,30]. Survey items for
constipation were based on the Rome IV criteria for functional constipation, as described
in Supplementary Table S2 [31]. Based on previous literature, we expected 95% of the
pediatric constipation to be functional and therefore applied the ROME IV criteria, without
formally investigating organic causes of pediatric constipation [32]. Hirschprung’s disease
was the only potential organic cause of constipation that was a formal exclusion criterion.

BSID-III Cognitive and Motor scores were classified as below-average below 90,
as described in the Dutch BSID-III scoring manual and recently supported by Måns-
son et al. [28,33]. The cut-off for below-average gross and fine motor scores was 8, in
accordance with the aforementioned manual [28]. When development according to BSID-III
assessment was reported as developmental age, rather than a numeric score, the conclu-
sion of the assessment, also based on the scoring manual, was used for determination of
below-average vs. (above-)average scores.

2.3. Statistical Analysis

Statistical analyses were conducted using the Statistical Package for Social Sciences
(SPSS) version 26.0 (IBM, Armonk, NY, USA). First, baseline perinatal and neonatal charac-
teristics were compared between a representative sample of children included in the original
neonatal cohort study and those participating in the current follow-up study. Secondly,
baseline clinical and demographic characteristics were depicted as number and percentage
for discrete variables and as mean/median and standard deviation (SD)/interquartile
range (IQR) for continuous variables.

The association of the duration of NABE (continuous variable) with the main out-
comes was assessed by uni- and multivariate linear and logistic regression. All regression
analyses were first performed uncorrected and then corrected for relevant confounding.
Confounders were defined as variables significantly associated with both the independent
and dependent variables (Pearson correlation p-value < 0.05). Variables that were tested as
confounders are depicted in a direct acyclic graph (Supplementary Figure S1); gestational
age [34], birth weight percentile [35], parental education [36], invasive neonatal respiratory
failure [37], sex, mode of delivery, length of hospital stay at the neonatal intensive care
unit, neonatal NEC/sepsis/meningitis, age at questionnaire and formula feeding during
infancy [38] were tested for each outcome variable. Only univariate analysis was performed,
in case no variables were correlated to both independent and dependent variables.

Results from the linear regression analyses were reported as regression coefficient with
the respective 95% confidence interval (95% CI). Results from the logistic regression were
reported as odds ratios (OR) and adjusted OR (aOR), along with the respective 95% CI. As
a secondary objective, GA (per 7 days) was analyzed as a risk factor for poor childhood
health outcome analogically to NABE.
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3. Results

Of 1190 infants (GA at birth < 30 weeks), born between October 2014 and July 2019
in the eight participating centers, parents of 1079 children were approached. Completed
questionnaires and informed consent forms were received from parents of 347 (32%) chil-
dren; the children had a median CA of 53 months (Figure 2), were more often singleton
and had less sepsis and NEC. Moreover, GA (+1 day) and birth weight (+42 g) were higher
compared to non-responders (Table 1).
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Figure 2. Flowchart of inclusion. Between June 2020 and May 2022, parents of children born in eight
neonatal intensive care units that participated in the follow-up study were approached. In total,
347 children were included in the follow-up study.

Table 1. Comparison of baseline characteristics of initial neonatal cohort and follow-up cohort.

Initial Cohort (n = 1190) Follow-Up Cohort (n = 347) p-Value

Gestational age, weeks + days, mean (SD) 27 + 4 (1 + 4) 27 + 5 (1 + 4)) 0.03 *
Gender, female, % 47% 45% 0.67

Delivery mode, cesarean, % 52% 48% 0.23
APGAR score 1 min, median [IQR]) 6 [4,5,6,7] 6 [3,4,5,6,7] 0.93
APGAR score 5 min, median [IQR]) 8 [6,7,8,9] 8 [6,7,8,9] 0.50

Multiplicity (twin or triplet), % 32% 27% 0.02 *
Birth weight, gram, mean (SD) 1025 (271) 1067 (268) 0.01 *

Birthweight, Z-score, mean (SD) 0.04 (1.01) 0.13 (0.99) 0.16
Late-onset sepsis in first 28 days of life, % 34% 27% 0.02 *

Necrotizing enterocolitis, % 8% 4% 0.01 *

* p-value < 0.05; IQR, interquartile range; SD, standard deviation.

Baseline characteristics of the group of responders are depicted in Table 2. Mean (SD)
duration of NABE was 9 days (SD = 7). One-hundred thirty-two (38%) of the included
preterm infants were exposed to neonatal antibiotics for at least two weeks, of whom 81
had neonatal sepsis, meningitis and/or NEC. For every extra week of gestation, NABE
decreased with a mean of 1.6 days (p < 0.001).
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Table 2. Baseline demographic and clinical characteristics of all subjects.

Mean (SD) or n (%) Missing Data (N)

Infancy

Duration of neonatal antibiotic exposure (NABE) in the center
of birth, days, mean (SD) 9 (7) 0

• No NABE, n (%)
• NABE for max. 4 days, n (%)
• NABE 5–13 days, n (%)
• NABE ≥ 14 days (of which with confirmed disease), n (%)

10 (3)
102 (29)
103 (30)
38 (23)

First gravidity, n (%) 186 (54) 0
First parity, n (%) 228 (66) 0
Invasive ventilation first 28 d of life, n (%) 172 (50) 0
Intraventricular hemorrhage/periventricular leukomalacia
grade III-IV, n (%) 21 (6) 1

>20% formula milk in first 28 d, n (%) 61 (21) 55
Neonatal necrotizing enterocolitis, sepsis or meningitis, n (%)

• Of which non-CoNS sepsis b, NEC, meningitis, n (%)
96 (28)
35 (10)

0

Exposure to mother’s milk ≥ 6 months 18 (5) 8
Moderate to severe bronchopulmonary dysplasia, n (%) 81 (24) 7
Palivizumab administration, n (%) 261 (88) 49

Childhood

Age at questionnaire, years, mean (SD) 4.6 (0.9) 0
Weight at ca. 24 months’ CA, mean (SD) 11.9 (1.6) 45
Stature at ca. 24 months’ CA, mean (SD) 86.7 (4.6) 50
Ever received medical feeding at home (oral or tube), n (%) 18 (5) 8
Weekly fastfood or ready-made food, n (%) 47 (14) 18

Family history

Maternal education, university level, n (%) 182 (55) 18
Ethnicity mother, non-Dutch/Belgian, n (%) 62 (19) 16
Ethnicity father, non-Dutch/Belgian, n (%) 51 (15) 14
Both parents’ mother tongue other than Dutch, n (%) 34 (10) 13
At least monthly exposure to nicotine smoke, n (%) 12 (5) 96
Atopic disease parents or siblings, n (%) 150 (44) 7

b sepsis caused by other pathogens than coagulase negative Staphylococci. CA corrected age; N, total number of
missing subjects per specific variable; n (%), number and percentage of subtotal number of participants per item;
NABE, neonatal antibiotic exposure; SD, standard deviation.

3.1. Growth and Neurodevelopment at 24 Months’ Corrected Age

Mean weight and stature at 24 months’ CA were 12 kg and 87 cm, respectively (Table 2).
Weight and stature Z-scores at 24 months’ CA, according to GA-normalized growth charts,
were not associated with NABE (Table 3). In contrast, every extra 7 days of GA at birth
was associated with a 0.10 higher Z-score for weight and 0.08 higher corrected Z-score for
stature at 24 months’ CA.

Median BSID-III cognitive and motor scores were within normal range (101 and
102, respectively) [28]. BSID cognitive, composite motor and fine motor scores were not
associated with NABE. The association of a below-average gross motor developmental score
(<8) with NABE remained significant after correction for gestational age; OR for every five
days of additional NABE was 1.28 [1.06–1.54] (p = 0.04) (Table 3). An increased incidence of
below-average motor scores (p = 0.03) was seen with decreasing gestational age at birth,
but not after correction for confounding (p > 0.10), as depicted in Supplementary Table S3.
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Table 3. Regression coefficient (continuous variables) and odds ratio (categorical variables) for health
per 5 days of neonatal antibiotic exposure, including confounding factors that were used in the
multivariate regression analysis.

Neonatal Antibiotic Exposure (per 5
Days)

Mean (SD) or
n (%)

Odds Ratio or
Regression

Coefficient [95%CI]
p-Value

Confounders in the
Multivariate

Regression Analysis

Missing Data
(N)

Growth and development

Weight Z-score at ca. 24 months’ CA,
mean (SD) −0.47 (1.06)

−0.11 [−0.20–−0.02]
Adj: 0.08

[−0.17–0.02]

0.01 *
0.10 Gestational age 69

Stature Z-score at ca. 24 months’ CA,
mean (SD) 0.14 (1.01) 0.003 [−0.08–0.09]

Adj: NA
0.22
NA / 71

BSID-III Cognitive or Motor score < 90 78 (28) 1.23 [1.02–1.48]
Adj: 1.88 [1.05–3.35]

0.03 *
0.23

Invasive ventilation
(<28 days’ age) 67

BSID-III cognitive score, mean (SD) 101 (13) −0.40 [−1.61–0.80]
Adj:NA

0.51
NA / 84

BSID-III cognitive score < 90, n (%) 52 (17) 1.00 [0.80–1.24]
Adj: 0.90 [0.71–1.15]

0.99
0.40 / 42

BSID-III overall motor score, mean (SD) 102 (14)
−1.31 [−2.68–0.07]

Adj: 0.28
[−0.04–0.60]

0.06
0.09

Time until discharge
from neonatal

intensive care unit
134

BSID-III overall motor score < 90, n (%) 63 (22) 1.32 [1.09–1.61]
Adj: 1.22 [0.98–1.52]

0.005 *
0.08

Gestational age,
invasive ventilation

(<28 days’ age)
58

BSID-III fine motor score < 8, n (%) 37 (12) 1.16 [0.91–1.47]
Adj: 1.09 [0.84–1.41]

0.24
0.52 Gestational age 47

BSID-III gross motor score < 8, n (%) 82 (31) 1.28 [1.06–1.54]
Adj: 1.21 [1.00–1.46]

0.01 *
0.04 * Gestational age 71

Gastrointestinal symptoms

Pediatric constipation, n (%) 47 (14) 1.08 [0.87–1.33]
Adj: 1.06 [0.84–1.34]

0.48
0.61

Invasive ventilation
(<28 days’ age) 18

Use of antacid medication, n (%) 13 (4) 1.14 [0.78–1.67]
Adj: NA

0.50
NA / 7

Respiratory symptoms

Sought medical attention due to LRT a,
n (%) 114 (34) 1.12 [0.96–1.32]

Adj: 0.94 [0.78–1.13]
0.15
0.52

Gestational age,
invasive ventilation

(<28 days’ age)
8

Hospitalization due to acute LRT a

diseasec, n (%) 64 (19) 1.01 [0.83–1.23]
Adj: NA

0.92
NA / 7

Ear-nose-throat surgery, n (%) 65 (19) 1.11 [0.91–1.34]
Adj: NA

0.30
NA / 7

Wheezing episode in the past 12
months, n (%) 88 (26) 1.08 [0.91–1.29]

Adj: 0.93 [0.76–1.13]
0.38
0.46

Invasive ventilation
(<28 days’ age) 10

Bronchodilation past month, n (%) 73 (22) 1.13 [0.94–1.36]
1.00 [0.81–1.23]

0.21
0.99

Invasive ventilation
(<28 days’ age) 10

Bronchodilatation (weekly), n (%) 36 (11) 1.17 [0.92–1.48]
Adj: 1.02 [0.78–1.34]

0.20
0.88

Invasive ventilation
(<28 days’ age) 15

Atopic symptoms

Suspected food allergies, n (%) 55 (17) 1.18 [0.96–1.44]
Adj: NA

0.12
NA / 10

Medically confirmed food allergies,
n (%) 9 (3) 0.69 [0.36–1.31]

Adj: NA
0.25
NA / 11

Atopic dermatitis (ever), n (%) 35 (10) 0.87 [0.66–1.16]
Adj: NA

0.35
NA / 7

Allergic rhinitis or conjunctivitis (past
12 months), n (%) 43 (14) 1.03 [0.81–1.30]

Adj: NA
0.82
NA / 29

Anti-allergic treatment (current), n (%) 6 (2) 1.60 [0.98–2.63]
Adj: NA

0.06
NA / 7

* p-value < 0.05 (bold = adjusted p-value < 0.05); a LRT, Lower respiratory tract disease: bronchiolitis, bronchitis,
pneumonia, and asthma-like attack; Adj, adjusted regression result based on confounding as defined in the
method section; BSID-III, Bayley Scales of Infant and Toddler Development-III-Dutch version; CA, corrected age;
CI, confidence interval; n (%), number and percentage of total number; N number of subjects with missing data
for each particular variable; NA, not applicable; SD, standard deviation.
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3.2. Gastrointestinal Symptoms at Time of Survey

Forty-seven (14%) children were reported to meet at least two ROME IV criteria
for functional constipation or being treated for constipation. There was no association
between NABE and pediatric constipation. Odds for constipation decreased with increasing
gestational age (OR 0.81 per week of gestation, p = 0.04), independent from confounding
(Supplementary Table S3).

3.3. Respiratory Symptoms in Early Childhood

Parents of 114 children (35%) reported to have ever sought medical attention (gen-
eral practitioner or emergency room) for their child due to acute lower respiratory tract
symptoms. Sixty-five children (19%) were reported to have ever been hospitalized due
to lower respiratory tract disease (Table 3). Thirty-six (11%) children were affected by
moderate-to-severe lower respiratory symptoms at the time of survey, needing at least
weekly inhalation therapy over the past month. About one in five subjects had undergone
surgery for recurrent upper respiratory infections (tympanostomy tubes, nasal polypec-
tomy and/or tonsillectomy). None of the respiratory outcomes were associated with NABE,
nor GA (Table 3 and Supplementary Table S3, respectively).

3.4. Atopic Symptoms in Early Childhood

Fifty-five (17%) children were suspected of food allergies by their parents, of which
nine (3%) were reported to be confirmed by a health care professional. Forty-three (14%)
children were reported to have had symptoms of allergic rhinoconjunctivitis over the
past year, and thirty-five (10%) were reported to have ever had atopic dermatitis. None
of the respiratory and skin symptoms were correlated with NABE, nor GA (Table 3,
Supplementary Table S3).

4. Discussion

In this multicenter cohort study in infants born preterm (<30 weeks GA), we aimed
at investigating the association of NABE with developmental and health outcomes after
24 months of corrected age. Almost all infants (97%) were exposed to antibiotics, with
38% being exposed for at least 14 days within the first 28 days of life. The duration of
NABE was found to be associated with below-average BSID-III gross motor scores (<8) at
24 months’ CA. In line with our results, motor skills are shown to be impaired in adult mice
after administration of antibiotics [39,40]. It is hypothesized that the gut microbiota, which
is affected by antibiotics, plays a role in cognitive and neuromotor functions. The proposed
mechanism of the negative effect of NABE on development is by impairing cell signaling
of the microbiota via neural (vagus nerve), humoral (cytokines, SCFA and long-chain
fatty acids), endocrine and immune modulators [23,41,42]. In mice, the decreased motor
performance after antibiotic exposure could be alleviated by restoring the gut microbial
composition with probiotics administration [40].

NABE has, furthermore, been suggested to affect adult cognitive development in
term-born mice [43]. In contrast to our results, this has been supported by previous
observations, showing worse school performance in children with a history of NABE [44].
The authors of that study, however, do not mention early-life infection as a potential
confounding factor [44]. The contribution of infection in school performance should be
taken into account as it has previously been associated with poor neurodevelopmental
outcome [45]. Furthermore, a small study in 24 very-low-birth-weight preterm infants
showed differences in microbiota composition in the first weeks of life in children with
early childhood cognitive impairment [46].

Pediatric constipation, respiratory and atopic symptoms were not associated with
NABE. In contrast, in term-born children, chronic lower respiratory symptoms due to
asthma and other atopic conditions have been correlated to early-life antibiotic
exposure [17,47]. This discrepancy with the current preterm cohort might be due to a
potentially different mechanism of atopy development after preterm birth, partly illus-
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trated by differences in the atopic march [48]. Similarly, gestational age was not associated
with wheezing, nor atopic conditions, as opposed to previous data on wheezing being
inversely correlated and atopic conditions being positively correlated with GA [44,46,47].
These studies, however, compare preterm- with term-born children and thus include more
heterogeneous groups of children [44,46,47]. In the current, rather homogenous group of
children born between 24 and 30 weeks of gestation, the effect of GA might be smaller and
more challenging to detect.

Anthropometric parameters were only associated with GA and not NABE. Lower
gestational age was associated with lower GA-normalized Z-scores for weight at 2 years’
CA, in line with a recent report comparing preterm- vs. term-born children [49,50]. Inter-
estingly, constipation after 24 months’ CA was additionally associated with GA. Based on
previous literature, we expected the vast majority (95%) of the children with constipation to
be functional [32]. The potential underlying mechanism of the association between GA and
functional constipation is to be explored. In adults, severe dysmotility is associated with
underlying vagus nerve dysfunction due to autonomic dysfunction [46]. Whether auto-
nomic dysfunction, as seen in preterm newborns, can contribute to functional constipation
in childhood remains to be elucidated [47].

Future studies integrating clinical and early-life microbiota data are warranted to
validate our results and test the hypothesized mechanisms of action of NABE and GA on
health. Large observational studies might identify potential microbial signatures associated
with disease. This could lead to new basic research opportunities and the design of
preventative and therapeutic strategies.

Strengths and Limitations

This study has several strengths. It contributes to mapping health problems after
preterm birth in relation to early antibiotic exposure and GA, assessing relatively large
numbers of preterm born infants. We followed preterm children longitudinally, and detailed
information on daily base was collected on antibiotic use and indication of antibiotic
administration in the first month of life. Growth and developmental scores were assessed
by trained professionals. The survey was based on existing validated questionnaires,
including the ISCAAC questionnaires [29]. In addition, every section of the questionnaire
provided free text space, enabling additional coding. Additionally, statistical analysis was
performed systematically and was designed to avoid overfitting.

There are, however, several limitations to this study. First, inherent to the observational
methodology, no causal role of NABE and GA on health could be tested. Secondly, the age
at which the questionnaire was completed varied between two and seven years, which
could be a confounding factor for airway problems and atopy. The influence of age at
which the questionnaire was completed was, however, estimated to be minimal as it did
not fulfil the criteria of a confounding factor described in the method section; i.e., it was
not correlated with both NABE and health outcomes. A second factor potentially creating
bias is the lack of information on prenatal antibiotic exposure and maternal health, which
might influence the risk of motor impairment and atopic disease [20,51]. Additionally, as
we were not able to assess the type of antibiotics administered, we could not assess whether
certain antibiotics groups are associated with different outcomes. Additionally, inherently
to the retrospective character of the developmental data collection (BSID-III scores), we
were limited by dichotomized reports of the BSID-III scores in some children. Therefore,
the number of children analyzed with continuous composite cognitive and motor scores is
markedly lower. It remains to be elucidated whether increasing the samples size would
reveal an association of developmental scores with NABE.

Another limitation is the relatively low response rate of 32%. This might be because at
the time of inclusion at neonatal age, parents were not informed about the follow-up of
this study. As it was decided upon follow-up of children after 5 years of inclusions, this
part of the study could not be integrated in the standardized visits at the ambulatory and
was performed outside the hospital setting [52]. The low response rate might compromise
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the generalizability of the results, as the participants of the follow-up had lower rates of
LOS (27 vs. 32%) and NEC (4% vs. 8%) during the neonatal period, compared to the initial
neonatal cohort. They were potentially different in (non-analyzed) demographics, such as
neonatal disease severity scores (e.g., Score for Neonatal Acute Physiology with Perinatal
Extension-II) and parents’ knowledge about adverse effects of antibiotics [53]. Finally, the
definition of the investigated diseases can be subject to bias. Although the survey was
based on validated questionnaires, wheezing and allergy questions are based on subjective
experiences of parents and are an overestimation of clinical diseases.

5. Conclusions

Our results suggest that duration of NABE and GA might be associated with health
complaints in early childhood after preterm birth (GA < 30 weeks). In the investigated
cohort, NABE was associated with impaired gross motor development in toddlers, while a
low GA was associated with poor weight gain and pediatric constipation. Further research
is needed to evaluate the complex interplay between antibiotics, microbiota colonization
and health outcome beyond the neonatal age.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12060967/s1. Table S1: Definition of bronchial obstruc-
tive disease, allergic rhinitis, atopic dermatitis, food allergy and recurrent respiratory tract infections;
Table S2: Definition of constipation and gastroesophageal reflux [54,55]; Table S3: Linear and logistic
regression analysis for health per 7 days of gestational age, including confounding factors that were
used in the multivariate regression analyses; Figure S1: Direct acyclic graph depicting assumed
relations between neonatal antibiotic exposure and childhood outcomes.
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