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A Polarized Temporal Network Model to Study
the Spread of Recurrent Epidemic Diseases

in a Partially Vaccinated Population
Kathinka Frieswijk , Lorenzo Zino , Member, IEEE, and Ming Cao , Fellow, IEEE

Abstract—Motivated by massive outbreaks of COVID-19 that
occurred even in populations with high vaccine uptake, we propose
a novel multi-population temporal network model for the spread of
recurrent epidemic diseases. We study the effect of human behavior,
testing, and vaccination campaigns on infection prevalence and
local outbreak control. Our modeling framework decouples a vac-
cine’s effectiveness in protecting against transmission and severe
symptom development. Additionally, it captures the polarizing ef-
fect of vaccination decisions and homophily, i.e., people’s tendency
to interact with like-minded individuals. Through a mean-field
approach, we analytically derive the epidemic threshold and, under
further assumptions, we compute the endemic equilibrium. Our
results show that while vaccination campaigns are highly beneficial
in reducing pressure on hospitals, they may also facilitate resurgent
outbreaks, particularly in the absence of effective testing cam-
paigns. Subsequently, we employ numerical simulations to confirm
and extend our theoretical findings to more realistic scenarios.
Our analytical and numerical results demonstrate that vaccination
programs are crucial, but as a sole control measure, they are not
sufficient to achieve disease eradication without employing massive
testing campaigns or relying on the population’s responsibility.
Furthermore, we show that homophily impedes local outbreak
control, highlighting the peril of a polarized network structure.

Index Terms—Epidemics, homophily, network dynamics, temp-
oral network, vaccination.

I. INTRODUCTION

IN RESPONSE to the COVID-19 pandemic that emerged
in Wuhan, China, in December 2019, an unprecedented

effort has been made toward developing a vaccine in record
time [2]. Although current COVID-19 vaccines are highly ef-
fective against severe symptom development—thereby reducing
the number of deaths and pressure on hospitals—they provide
limited protection against transmission, especially concerning
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the new variants that became dominant in 2021–22 [3], [4].
As massive outbreaks have occurred in populations with high
vaccination coverage [4], it begs the following question: is it
possible to eradicate the pandemic by solely relying on vacci-
nation programs? If not, could testing campaigns and human
behavior be pivotal to achieving this goal?

To study the dynamics of the spread of a disease, it is
common practice to use mathematical modeling. In particular,
epidemic models on networks have emerged as a framework
to successfully incorporate the patterns of human-to-human
interactions that serve as a pathway for the conveyance of
diseases [5], [6], [7], [8], [9]. Among the reasons for their
success, network epidemic models allow for the development
of tractable and analytically rigorous mathematical frameworks
to study the spread of epidemic diseases [10], [11], [12] and
to construct policies to control them [13]. Moreover, they are
open to several extensions toward the inclusion of real-world
features, e.g., by adding a state of awareness in which individuals
adopt preventive behavior [14]. Previously, network epidemic
models were successfully employed to study the effect of vac-
cination campaigns [15], [16], [17]. Recently, they have been
applied to study the COVID-19 pandemic, to support govern-
ments in designing effective control strategies [18], [19], [20],
[21].

Motivated by the questions formulated above, we propose a
multi-population network model to investigate the roles of vacci-
nation programs, testing campaigns, and human behavior in the
spread of recurrent epidemic diseases, which include infections
caused by fast-mutating viruses (e.g., influenza viruses). Our
model extends the standard susceptible–infected–susceptible
(SIS) model by incorporating two distinct compartments for
mildly symptomatic and severely symptomatic infected individ-
uals, where the latter are in quarantine. The proposed framework,
referred to as the susceptible–infected–quarantined–susceptible
(SIQS) model, includes a responsibility level, reflecting the
extent to which mildly symptomatic individuals do not overlook
their symptoms and adhere to preventive measures to avoid
transmission. Within our modeling framework, we investigate
the co-evolution of the progression of the epidemic and the
network of human-to-human interactions, utilizing a network
formation process that is based on continuous-time activity-
driven networks [22], [23]. We evaluate two measures to control
the spreading of the infection. First, we consider vaccination
programs, where we assume that a fixed part of the population
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is vaccinated. The effect of vaccination is modeled through the
parsimonious addition of two distinct parameters to elegantly de-
couple effects on reducing contagion and protecting against se-
vere symptoms. Second, we consider testing campaigns, which
identify and isolate mildly symptomatic infected individuals.

Despite a consensus among the scientific community that vac-
cines approved by public health authorities are effective and safe,
the debate on whether to vaccinate is very polarizing. Indeed,
individuals with similar attitudes toward vaccination prefer to in-
teract with one another [24], [25], [26], [27]. Here, we investigate
the effect that this phenomenon of homophily has on the spread
of epidemic diseases by developing a mathematical model that
encapsulates it. Specifically, we expand our preliminary model,
presented in [1], by embedding it in a multi-population network
scenario that accounts for the polarizing effect of the vaccination
decision, capturing the tendency of individuals to establish more
interactions with like-minded people.

Employing a mean-field approach on a large population [28],
[29], we perform a theoretical analysis of our network model
and derive a closed-form expression for the epidemic threshold.
Such an analytical expression sheds light on the roles of network
polarization, population responsibility, and vaccination in con-
trolling local outbreaks. Next, we analyze the system behavior
above the epidemic threshold, characterizing the endemic equi-
librium (EE) under some additional assumptions. Finally, we
numerically investigate a generalization of our SIQS model that
encapsulates (temporary) natural immunity after recovery, with
parameters calibrated on the COVID-19 pandemic.

Our theoretical results suggest that, while vaccination is ben-
eficial in reducing the number of deaths, its role in controlling
local outbreaks is not straightforward and depends on individ-
uals’ responsibility levels and the characteristics of both the
vaccine and the infection. Hence, in some cases, relying only
on vaccination could act as a double-edged sword, hindering the
complete eradication of the disease. To compensate for this, the
simultaneous implementation of massive testing campaigns is
essential. Our simulations provide further insights into the role
of human behavior. Notably, they suggest that responsibility is
vital; for low responsibility levels, it is impossible to eradicate
the infection without employing massive testing campaigns.
Furthermore, both our theoretical and numerical results show
that a high degree of homophily facilitates the spreading of a
disease. Thus, our results underline the peril of polarization,
with clusters of individuals who disregard vaccines and the use
of protective measures.

The rest of the article has the following organization. Sec-
tion II introduces the notation and some mathematical prelim-
inaries. Section III illustrates our modeling framework. Next,
Section IV presents the model analysis and main theoretical re-
sults. Subsequently, Section V discusses our numerical findings,
and the article is concluded in Section VI.

II. NOTATION AND PRELIMINARIES

Here, we gather some notational conventions and present
classical properties of Poisson processes used in the rest of the
article (see [30], [31] for more details on stochastic processes).

Let R≥0 and R>0 denote the sets of non-negative and strictly
positive real numbers, respectively. Let Z≥0 denote the set of
non-negative integers. Given a function x(t) with t ∈ R≥0, we
define x(t+) = lims↘t x(s), and x(t−) = lims↗t x(s). Given
an event E, we denote by P [E] the probability that E occurs.
Given a random variable X , we denote its expected value by
E[X].

Definition 1: A Poisson clock with (possibly time-varying)
rate γ(t) is a continuous-time stochastic process, represented by
its counting process N(t) ∈ Z≥0. Specifically, N(t) is a non-
decreasing function that satisfies

P [N(t+Δt)−N(t) = 1] =

∫ t+Δt

t

γ(t) dt+ o(Δt) , (1)

for Δt ∈ R>0, where the Landau little-o notation o(Δt) is
associated with the limit Δt ↘ 0; hence, limΔt↘0 P [N(t+
Δt)−N(t) = 1]/Δt = γ(t). If N(t) has an increment at time
t ∈ R≥0, we say that the clock ticks at time t.

Proposition 1 (Flow aggregation): Let E be an event trig-
gered by the first tick of a set of independent Poisson clocks
with rates γ1(t), . . . , γ�(t). Then, event E can be equivalently
described as triggered by a Poisson clock with a rate of γE(t) :=∑�

h=1 γh(t).
Proposition 2 (Flow splitting): Let E be an event that occurs

with probability p ∈ [0, 1] if a Poisson clock with a rate of γ(t)
ticks, where p is independent of the Poisson clock. Then, E
occurs if triggered by a Poisson clock with a rate of γE := pγ.

Definition 2: A continuous-time stochastic processX(t)with
the state space A is a Markov process if for any states h, k ∈ A,
the transition from h to k is triggered by an independent Poisson
clock with a rate of qhk(t). The transition rates are gathered in
the transition rate matrix Q(t) ∈ R|A|×|A|.

III. MODEL

We extend the traditional network SIS model [9] by separating
infected individuals into two distinct compartments: i) infec-
tious individuals, who are untested and mildly symptomatic,
and ii) quarantined individuals, who are in isolation due to a
positive test result or because they are severely symptomatic.
In the rest of this section, we will present all the details of our
multi-population SIQS model.

A. Multi-Population Model

We consider a population of n individuals V = {1, . . . , n},
where the individuals are connected through a time-varying
undirected network G(t) := (V, E(t)), which evolves in con-
tinuous time t ∈ R≥0. Each j ∈ V has a health state
Xj(t) ∈ {S, I,Q}, where S, I, and Q denote a susceptible,
infectious, and quarantined infected health state, respectively.

According to their vaccination status, individuals are parti-
tioned into two subpopulations: i) a fully vaccinated subpop-
ulation of size nv ∈ {1, . . . , n− 1}, and ii) a non-vaccinated
subpopulation of size n− nv. Without any loss of generality,
we assume that individualsVv := {1, . . . , nv} belong to the first
subpopulation, while individualsVn := {nv + 1, . . . , n}belong
to the second one. Let v := nv

n ∈ (0, 1) be the vaccination
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coverage of the population. Thus, (V, v) fully characterizes the
multi-population model.

Transmission of the disease transpires via pairwise interac-
tions at close distances, which occur at a timescale compara-
ble with the epidemic spreading. Such interactions henceforth
named contact moments are modeled via a time-varying network
G(t) = (V, E(t)), whereE(t)denotes close interactions between
individuals at time t. Specifically, {j, k} ∈ E(t) if and only if
individuals j and k interact in close proximity (that is, they have
contact) at time t. As is the case for many infectious diseases, the
network formation process and the disease transmission process
not only evolve at comparable timescales, but they are also
deeply intertwined, as we detail in the following.

B. Network Formation

To reflect an individual’s tendency to interact with like-
minded individuals from their subpopulation, we introduce a
parameter θ ∈ [0, 1). Interactions take place stochastically, in-
spired by activity-driven networks in continuous time [32]. Each
individual has a unit rate Poisson clock that ticks independently.
If the clock associated with j ∈ V ticks at time t ∈ R≥0, then j
activates and interacts with another individual k that is chosen
according to a probabilistic rule: with probability θ, k is selected
uniformly at random from j’s subpopulation, while with prob-
ability 1− θ, k is chosen uniformly at random from the entire
population. Hence, positive values of θ capture the presence of
homophily in the population, similar to [33].

Whether the individuals have close contact depends on the
health state and responsibility levels of the individuals involved.
In particular, we assume that any quarantined individual j
(Xj(t) = Q) does not interact with others at a close distance.
Infectious individuals with mild symptoms (j : Xj(t) = I) can
be near others, however. Whether they have contact with others
depends on the individuals’ level of responsibility. Specifically,
let σj ∈ [0, 1] denote the responsibility of individual j ∈ V . If
an infected individual j is mildly symptomatic (Xj(t) = I), they
refrain from having contact with probability σj ; with probability
1− σj , they disregard their symptoms and do not maintain
physical distance while interacting. We assume that the decision
to maintain physical distance or not is made independently of
the past and other individuals.

To be precise, if a susceptible individual j (Xj(t
−) = S)

activates and selects a mildly symptomatic infectious individual
k (Xk(t

−) = I) at time t− ∈ R≥0, then they are in contact at time
t with a probability of 1− σk; if k is susceptible (Xk(t

−) = S),
then they always have contact at time t. If a mildly symptomatic
infectious individual j (Xj(t

−) = I) activates and interacts with
a susceptible individual k (Xk(t

−) = S) at time t− ∈ R≥0, then
they have contact at time t with probability 1− σj ; if k is mildly
symptomatic too (Xk(t

−) = I), then they have contact at time t
with probability (1− σj)(1− σk) (i.e., if they both ignore the
symptoms). Finally, we recall our assumption that quarantined
individuals (j : Xj(t

−) = Q) always maintain distance, and
thus, they do not establish any contact. If individuals j and k are
in contact at time t, then the ephemeral edge {j, k} is included
in the set E(t), and subsequently, instantaneously removed from
the edge set E(t+).

TABLE I
MODEL AND CONTROL PARAMETERS

C. Disease Transmission and Control

The evolution of the health state of each individual j ∈ V is
governed by the following two natural mechanisms (contagion
and recovery) and free testing campaigns, where we interpret
the latter’s intensity as a control input.

Contagion: Transmission of the infection occurs through
close contact. Here, we assume that a positive vaccination status
reduces i) the risk of becoming infected and ii) the risk of
developing severe illness if infected. To model these effects, we
introduce two parameters: γt ∈ [0, 1] and γq ∈ [0, 1], respec-
tively. Specifically, the contagion process acts as follows. If a
susceptible individual j (Xj(t

−) = S) has contact with a mildly
symptomatic infectious individual k (Xk(t

−) = I) at time t,
so {j, k} ∈ E(t), then j becomes infected with per-contact
infection probability λ ∈ (0, 1] if j is not vaccinated. If j is
vaccinated, such a probability is reduced to λ(1− γt) ∈ [0, 1].

If the infection is transmitted, individual j will either move
to health state I or to Q. Specifically, the individual will be-
come severely symptomatic (Xj(t

+) = Q) with probability
pq ∈ [0, 1] if j is not vaccinated, while this probability is reduced
to pq(1− γq) ∈ [0, 1] if j is vaccinated. Otherwise, the individ-
ual becomes infectious with mild symptoms (Xj(t

+) = I).
Recovery: An infected individual j ∈ V with Xj(t

−) ∈
{I,Q} spontaneously recovers when a Poisson clock with a rate
of β ∈ R>0 ticks, thereby returning to a susceptible health state
(Xj(t

+) = S).
Testing: Free testing campaigns induce mildly symptomatic

infectious individuals to get tested. To model the effect of
free testing, we employ a Poisson clock with a rate of τ ∈
R≥0, representing the testing rate. Hence, an infectious in-
dividual j with mild symptoms (Xj(t

−) = I) receives a di-
agnosis when a Poisson clock with a rate of τ ticks. Af-
ter being diagnosed, j goes in quarantine (Xj(t

+) = Q) and
maintains physical distance from other individuals until re-
covery takes place. Here, we assume perfect testing, but fur-
ther testing features such as false negatives could readily be
incorporated by adding extra probabilistic mechanisms (e.g.,
see [34]).

Table I presents a summary of all the parameters of our
mathematical model. Note that all parameters with a domain
in [0, 1] or [0, 1) are interpreted as probabilities.
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Before presenting the analysis of the dynamics and our main
theoretical results, we would like to comment that our modeling
framework is adaptable to several extensions and generalizations
toward even more realistic settings.

Remark 1: Our model fits the implementation of non-
pharmaceutical interventions by introducing a parameter η ∈
[0, 1] that captures their effectiveness in reducing the per-contact
infection probability, similar to [1], [18]. By replacing all the
occurrences of λ with (1− η)λ, we effortlessly extend all our
analytical findings to this scenario.

Remark 2: Without changing the fabric of our modeling
framework, we can capture further features of epidemic dis-
eases by incorporating additional health states and transitions.
For instance, we may capture temporary or permanent natural
immunity after recovery by adding a health state and extending
our SIQS model to a SIQR(S) model, which has been proven
effective in modeling the COVID-19 spread [19], [20], [35].
Furthermore, one can introduce heterogeneity in the recovery
rate to represent, e.g., the effect of a vaccine in reducing the
illness duration.

Remark 3: Although we assumed it to be constant here, the
responsibility level of any individual j ∈ V , σj , may be time-
varying in general, influenced by co-evolving opinion formation
processes and the epidemic spreading. To model such a temporal
evolution, one could directly incorporate opinion dynamics [36],
[37] or game-theoretic update mechanisms [38], [39], [40], [41]
within the modeling framework.

While the extension in Remark 1 is straightforward, the others
may complicate or hinder the analytical tractability of the sys-
tem. For this reason, we will perform the theoretical analysis of
the original implementation of the SIQS model in the following
sections, which one could interpret as a worst-case scenario for
a model with natural immunity (such as a SIQR(S) model).
Subsequently, we will embark on a case study in Section V,
employing numerical simulations to investigate the generaliza-
tion discussed in Remark 2.

D. Dynamics

All the mechanisms described in Section III-C are induced by
independent Poisson clocks, which implies that the evolution of
the n-dimensional state

X(t) := [X1(t), X2(t), . . . , Xn(t)] ∈ {S, I,Q}n

is governed by a continuous-time Markov process [31].
Each individual can experience five distinct state transitions

(illustrated in the diagram in Fig. 1), triggered by the processes
of contagion, recovery, and testing. The two transitions triggered
by recovery (from I and Q to S) and the one triggered by testing
(from I to Q) solely involve spontaneous mechanisms. Hence,
these three transition rates simply amount to the rates of the
corresponding Poisson processes that trigger them. On the con-
trary, the two transitions induced by contagion (from S to I and
Q) are related to the individual’s vaccination status, interactions
between individuals, and the health states of the others. Hence,
they have a more intricate time-varying expression, as is shown

Fig. 1. State transitions of the epidemic model for an individual j ∈ Vα with
a vaccination status α ∈ {n,v}.

in Proposition 3. For the sake of readability, we omit to stress
that the rates and the health states of individuals are functions
of time.

Proposition 3: A non-vaccinated individual j withXj(t
−) =

S becomes infectious (Xj(t
+) = I) according to a Poisson clock

with a rate of

κn,j := 2λ (1− pq)

·
[

θ
n(1−v)−1

∑
k∈Vn:Xk=I

(1− σk) +
1−θ
n−1

∑
k∈V:Xk=I

(1− σk)

]
, (2)

while they become quarantined (Xj(t
+) = Q) with a rate of

νn,j := 2λpq

·
[

θ
n(1−v)−1

∑
k∈Vn:Xk=I

(1− σk) +
1−θ
n−1

∑
k∈V:Xk=I

(1− σk)

]
, (3)

A susceptible vaccinated individual j (Xj(t
−) = S) becomes

infectious (Xj(t
+) = I) according to a Poisson clock with a

rate of

κv,j := 2λ(1− γt) (1− pq(1− γq))

·
[

1−θ
n−1

∑
k∈V:Xk=I

(1− σk) +
θ

nv−1

∑
k∈Vv:Xk=I

(1− σk)

]
, (4)

while they become quarantined (Xj(t
+) = Q) with a rate of

νv,j := 2λ(1− γt)pq(1− γq)

·
[

1−θ
n−1

∑
k∈V:Xk=I

(1− σk) +
θ

nv−1

∑
k∈Vv:Xk=I

(1− σk)

]
. (5)

Proof: Let us focus on the transition rates of a susceptible,
non-vaccinated individual j. These transitions occur due to
moments of contact between j and an infectious individual,
which take place if one of the following mutually exclusive
events happens: i) j activates, decides to interact only within its
subpopulation, selects an infected individual inVn, and the latter
decides to have contact (i.e., to disregard physical distance); ii)
an infected individual in Vn activates, interacts only within its
subpopulation, selects j, and the former decides to have contact;
iii) j activates, interacts disregarding the subpopulation structure
with an infected individual in V , who decides to have contact;
iv) an infected individual in V activates, interacts disregarding
the subpopulation structure with j, and the former decides to
have contact.
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We observe that i) takes place if three independent events
occur: E1, the activation of j, which is triggered by a
unit rate Poisson clock; E2, the decision to interact only
in the community, which occurs with probability P [E2] =
θ; and E3, the selection of an infected individual k ∈
Vn who decides to have close contact, which occurs with
probability

P [E3] =
1

n(1− v)− 1

∑
k∈Vn:Xk=I

(1− σk). (6)

The flow splitting property in Proposition 2 allows us to compute
the total rate associated with event i) as the product between the
rate of event E1 and the splitting probabilities P [E2] and P [E3].
Similarly, we compute the rates associated with ii), iii), and iv).
Next, we apply the flow aggregation property in Proposition 1 to
find the rate related to the occurrence of contact between j and an
infected individual; that is, by summing the rates corresponding
to the four mutually exclusive events i)–iv), we obtain the
rate

χ := 2θ
n(1−v)−1

∑
k∈V:Xk=I

(1− σk) + 2 1−θ
n−1

∑
k∈Vv:Xk=I

(1− σk). (7)

Finally, note that a non-vaccinated individual j becomes infec-
tious (I) after contact with an infected individual with probability
λ(1− pq), while j becomes quarantined (Q) with probability
λpq. By the flow splitting property in Proposition 2, we obtain
(2) and (3). Likewise, we derive (4) and (5) for a susceptible
vaccinated individual. �

For a generic individual j ∈ V , the transition rate matrix of
the Markov process Xj(t) is given by

Qα,j =

⎡
⎣−κα,j − να,j κα,j να,j

β −β − τ τ
β 0 −β

⎤
⎦ , (8)

where α ∈ {n, v} is the vaccination status of j, and the rows
(columns) correspond to states S, I, and Q, respectively.

The first row of (8) depends on the states of the other pop-
ulation members, making it impossible to decouple the indi-
vidual dynamics. For a large-scale population, this impedes the
analysis, as the dimension of the state space X(t) increases
exponentially with n. Hence, as is standard practice [28], we
employ a mean-field approach, which will be key to deriving
analytical results. Rather than studying how the health state
of an individual j ∈ V evolves, we study the evolution of the
probability that j is in a particular health state. Specifically,
for any vaccination status α ∈ {n, v} and individual j ∈ V ,
we define the probability that j is susceptible, infectious, or
quarantined as

sα,j(t) := P [Xj(t) = S, j ∈ Vα] ,
iα,j(t) := P [Xj(t) = I, j ∈ Vα] ,
qα,j(t) := P [Xj(t) = Q, j ∈ Vα] ,

(9)

respectively, where sv,j(t) = iv,j(t) = qv,j(t) = 0 if j ∈ Vn,
and sn,j(t) = in,j(t) = qn,j(t) = 0 if j ∈ Vv.

IV. ANALYSIS AND MAIN RESULTS

In this section, we present our main theoretical results. To
reduce the number of parameters, we assume a homogeneous
responsibility level within each subpopulation, as summarized
in Assumption 1.

Assumption 1: Let σi = σv ∈ [0, 1] for all i ∈ Vv, and σj =
σn ∈ [0, 1] for all j ∈ Vn, which denote the responsibility level
of vaccinated and non-vaccinated individuals, respectively.

A. Mean-Field Dynamics

By taking a mean-field approach, we study the evolution of
the probabilities in (9). Their evolution is approximated by their
expected dynamics [28], [29], i.e.,

(ṡv,j i̇v,j q̇v,j) = (sv,j iv,j qv,j)E[Qv,j ],

(ṡn,j i̇n,j q̇n,j) = (sn,j in,j qn,j)E[Qn,j ], (10)

which yields the following dynamical system.
Proposition 4: Let Assumption 1 hold. In the mean-field

approximation, (9) follows

ṡn,j = −λᾱn,jsn,j + βin,j + βqn,j ,

i̇n,j = (1− pq)λᾱn,jsn,j − (β + τ)in,j ,

q̇n,j = pqλᾱn,jsn,j + τin,j − βqn,j ,

ṡv,j = −λ (1− γt) ᾱv,jsv,j + βiv,j + βqv,j ,

i̇v,j = [1− pq (1− γq)] λ (1− γt) ᾱv,jsv,j − (β + τ)iv,j ,

q̇v,j = pq (1− γq) λ (1− γt) ᾱv,jsv,j + τiv,j − βqv,j , (11)

for all j ∈ V , where

ᾱn,j := 2(1− σn)
[

θ
n(1−v)−1 + 1−θ

n−1

] ∑
k∈V\{j}

in,k

+ 2(1− σv)
1−θ
n−1

∑
k∈V\{j}

iv,k, (12)

ᾱv,j := 2(1− σn)
1−θ
n−1

∑
k∈V\{j}

in,k

+ 2(1− σv)
[

θ
nv−1 + 1−θ

n−1

] ∑
k∈V\{j}

iv,k. (13)

Proof: First, we observe that the transition rates in Proposi-
tion 3 simplify under Assumption 1, as we can collect all the
similar terms in the summations and obtain, e.g.,

κn,j = 2λ (1− pq)

[
(1− σv)

1−θ
n−1

∑
k∈Vv:Xk=I

1

+ (1− σn)
(

θ
n(1−v)−1 + 1−θ

n−1

)∑
k∈Vn:Xk=I

1

]
. (14)

The same holds for the rates in (3)–(5). Next, when computing
the entries E[κα,j ] and E[να,j ] of E[Qα,j ], note that for any
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susceptible individual j ∈ V (Xj(t) = S) it holds that

E

[ ∑
k∈Vα:Xk=I

1

]
=

∑
k∈V\{j}

iα,k, (15)

for a vaccination status α ∈ {n, v}. Substituting (15) into the
expected dynamics yields the rest of the proof. �

From Proposition 4, we observe that the mean-field dynamics
are nontrivial. In particular, the system in (11) has two nonlinear
terms accounting for the contagion probability if j is susceptible:
i) λᾱn,j if j if non-vaccinated and ii) λ(1− γt)ᾱv,j if j is
vaccinated. These two nonlinear terms couple the evolution of
individual j with all other individuals through the expressions
in (12)–(13).

We will now show that the system in (11) is well-defined by
showing that (sn,j in,j qn,j sv,j iv,j qv,j) is a probability vector
for all t ∈ R≥0 and j ∈ V . For this purpose, let us define the
following sets. For any j ∈ Vn, we have

Sn,j :=

⎧⎪⎨
⎪⎩
(sn,j in,j qn,j sv,j iv,j qv,j)

∣∣∣∣∣∣∣

sn,j , in,j , qn,j ≥ 0,

sv,j = iv,j = qv,j = 0,

sn,j + in,j + qn,j = 1

⎫⎪⎬
⎪⎭
,

while for any j ∈ Vv, we have

Sv,j :=

⎧⎪⎨
⎪⎩
(sn,j in,j qn,j sv,j iv,j qv,j)

∣∣∣∣∣∣∣

sn,j = in,j = qn,j = 0,

sv,j , iv,j , qv,j ≥ 0,

sv,j + iv,j + qv,j = 1

⎫⎪⎬
⎪⎭
.

Lemma 1: For all j ∈ Vn, the set Sn,j is positive invariant
under (11). Likewise, Sv,j is positive invariant for all j ∈ Vv.

Proof: Let us consider Sn,j for any j ∈ Vn. First, note that
if one of the probabilities governed by (11) equals zero, then
its respective time-derivative is non-negative. Next, observe that
sv,j = iv,j = qv,j = 0 implies that the time-derivatives of sv,j ,
iv,j , and qv,j are zero. Now note that for all j ∈ Vn, ṡn,j +
i̇n,j + q̇n,j = 0, so sn,j + in,j + qn,j = 1 for all t ∈ R≥0. The
proof works analogously for Sv,j . �

To commence the mean-field analysis of the system, we
respectively denote the average probability for a randomly se-
lected individual to have vaccination status α ∈ {n, v} and be
susceptible, infectious, or quarantined as

yα,s :=
1

n

∑
j∈V

sα,j , yα,i :=
1

n

∑
j∈V

iα,j , yα,q :=
1

n

∑
j∈V

qα,j .

(16)
By taking a sufficiently large population sizen, the fraction of

individuals in a state can be arbitrarily closely approximated by
the average probability that a generic individual is in that state,
for any finite time-horizon [32], [42]—that is, for anα ∈ {n, v},

Sα(t) :=
1
n |{j ∈ Vα : Xj(t) = S}| ≈ yα,s,

Iα(t) :=
1
n |{j ∈ Vα : Xj(t) = I}| ≈ yα,i,

Qα(t) :=
1
n |{j ∈ Vα : Xj(t) = Q}| ≈ yα,q, (17)

as illustrated in Fig. 2. Since the average probabilities in (16)
adequately reflect the state of a sufficiently large population, we

Fig. 2. Comparison of the quantities in (17) via a simulation of the Markov
process (solid) and its deterministic approximation from Proposition 5 (dashed).
Parameters aren = 20000, v = 0.8, λ = 0.2, σv = 0.7, σn = 0.2, pq = 0.2,
β = 0.02, γt = 0.5, γq = 0.9, τ = 0.05, and θ = 0.5. (a) α = v. (b) α = n.

now focus on the dynamics of the macroscopic variables in (16),
presented in the following proposition.

Proposition 5: Consider the system in (11). In the thermo-
dynamic limit of large-scale systems n → ∞, the dynamics of
(16) are given by

ẏn,s = − 2λ
(

θ
1−v + 1− θ

)
(1− σn)yn,syn,i

− 2λ(1− θ)(1− σv)yn,syv,i + βyn,i + βyn,q ,

ẏn,i = 2λ(1− pq)
(

θ
1−v + 1− θ

)
(1− σn)yn,syn,i

+ 2λ(1− pq)(1− θ)(1− σv)yn,syv,i − (β + τ)yn,i ,

ẏn,q = 2λpq
(

θ
1−v + 1− θ

)
(1− σn)yn,syn,i

+ 2λpq(1− θ)(1− σv)yn,syv,i + τyn,i − βyn,q ,

ẏv,s = − 2λ(1− γt)(1− θ)(1− σn)yv,syn,i + βyv,i

− 2λ(1− γt)
(
θ
v + 1− θ

)
(1− σv)yv,syv,i + βyv,q ,

ẏv,i = 2λ(1− γt)[1− pq(1− γq)](1− θ)(1− σn)yv,syn,i

+ 2λ(1− γt)[1− pq(1− γq)]

· ( θ
v + 1− θ

)
(1− σv)yv,syv,i − (β + τ)yv,i ,

ẏv,q = 2λ(1− γt)pq(1− γq)(1− θ)(1− σn)yv,syn,i

+ 2λ(1− γt)pq(1− γq)
(
θ
v + 1− θ

)
(1− σv)yv,syv,i

+ τyv,i − βyv,q . (18)

Proof: Computing the temporal derivatives of the expressions
in (16) while using Proposition 4 gives the system in (18). �

Remark 4: Only 4 of the 6 equations in (18) are linearly inde-
pendent since yv,s + yv,i + yv,q = v and yn,s + yn,i + yn,q =
1− v.

B. Epidemic Threshold

Here, we study whether a local infection outbreak leads to
endemicity in the population. Theorem 1 presents the conditions
for the epidemic threshold, which is formulated as the testing
rate τ̄ above which the disease-free equilibrium (DFE) of (18)
(with yn,i = yn,q = yv,i = yv,q = 0) is locally asymptotically
stable. If the testing rate τ exceeds the threshold τ̄ , then the local
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outbreak will be eradicated. If not, it will lead to endemicity. The
proof is reported in Appendix A.

Theorem 1: Consider the system in (18). The epidemic
threshold is equal to

τ̄ := λξ − β + λ
√

ξ2−4θ(1−γt)(1−pq)[1−pq(1−γq)](1−σn)(1−σv),
(19)

where

ξ := (1− pq)(1− σn)[θ + (1− θ)(1− v)]

+ (1− γt)[1− pq(1− γq)](1− σv)[θ + (1− θ)v]. (20)

If τ > τ̄ , the DFE is locally asymptotically stable.
Remark 5: Observe from (19) that if the recovery rate satisfies

β > λξ + λ
√

ξ2−4θ(1−γt)(1−pq)[1−pq(1−γq)](1−σn)(1−σv), (21)

then no control is needed, since the DFE is always locally
asymptotically stable.

Corollary 1: In the absence of homophily—i.e., if θ = 0 and
the multi-population structure does not influence individuals’
interactions—the epidemic threshold in (19) reduces to

τ ∗ := 2λ(1− σn)(1− v)(1− pq)

+ 2λv(1− σv)(1− γt)[1− pq(1− γq)]− β. (22)

Although the expression of the epidemic threshold in Theo-
rem 1 is generally intricate, we can immediately observe the
monotonicity properties in the following proposition. These
properties are derived directly from the stability analysis of the
DFE, as reported in Appendix B.

Proposition 6: An increase in the infection probability λ or
the effectiveness of the vaccine against severe illness γq leads
to an increase in the epidemic threshold τ̄ in (19). Contrarily, τ̄
decreases with increases in the recovery rate β, the effectiveness
of the vaccine against transmissionγt, the responsibilitiesσv and
σn, and the probability of developing severe illness pq.

Proposition 6 states that while an increase in a vaccine’s
effectiveness against transmission generally facilitates the erad-
ication of an epidemic outbreak, its effectiveness against severe
illness raises the threshold, hindering the controllability of the
disease. This phenomenon may arise as infected individuals with
non-severe symptoms go undetected, thereby fueling disease
transmission, which may help explain the epidemic outbreaks
that transpired after the COVID-19 vaccination campaign.

The impact of the remaining parameters (the vaccination
coverage v and the homophily θ) is less intuitive, however.
Of particular interest is understanding the role of vaccination
coverage in facilitating or deterring epidemic outbreaks. To shed
light on this matter, we perform a sensitivity analysis of the
threshold in (19), summarized in the following proposition.

Proposition 7: An increase in the vaccination coverage v
decreases the epidemic threshold τ̄ in (19) if and only if

(1− γt)(1− pq(1− γq))(1− σv)− (1− pq)(1− σn) < 0.
(23)

Proof: The condition in (23) is obtained by computing the
partial derivative of τ̄ with respect to v, which is equal to the
left-hand side of (23) multiplied by a positive quantity. �

From Proposition 7, we observe that the level of vaccination
coverage has an ambiguous effect on the epidemic threshold.

Fig. 3. The epidemic threshold τ̄ (color-coded) computed using (19) for
different values of the model parameters. Common parameters are λ = 0.2,
σv = 0.5, pq = 0.2, β = 0.02, γt = 0.5, γq = 0.9, and τ = 0.05.

In particular, whether an increase in vaccination coverage fa-
cilitates the prevention of an epidemic outbreak depends on the
characteristics of the vaccine (i.e., its effectiveness against trans-
mission and severe illness), the probability of developing severe
illness, and the responsibility of vaccinated and non-vaccinated
individuals. This is consistent with the observations made on a
simpler model in [1].

Finally, Fig. 3 reports some observations concerning the role
of the homophily level θ. Our numerical simulations show
that high levels of homophily facilitate the spread of epidemic
diseases, particularly when combined with lower levels of re-
sponsibility for non-vaccinated individuals. This suggests that
neglecting the polarization that can emerge during a pandemic—
with clusters of individuals who disregard the use of protective
measures and refuse to be vaccinated—may lead to a dangerous
underestimation of the risk of a local outbreak.

C. Endemic Equilibrium

To conclude this section, we observe that while vaccination
may exhibit a complex and unexpected effect on epidemic
outbreak control, calling for an increased testing effort, its
impact on mitigating endemic prevalence is more predictable.
In fact, the simulations reported in Fig. 4 suggest that in-
creasing the vaccination coverage of a population is always
beneficial—the number of infections decreases if the vaccination
coverage v increases—excluding the specific scenario in which
non-vaccinated individuals are significantly more responsible
than their vaccinated peers. In this scenario, increasing the
vaccination coverage may be harmful, as illustrated in Fig. 4(d).

Further insights can be gained by analyzing the behavior of
(18) above the epidemic threshold (i.e., when the DFE is not
locally asymptotically stable), but the high number of nonlinear
terms in (18) hinders the system analysis above the threshold.
Therefore, we will now focus on a specific scenario for which
analytical results can be established.

Assumption 2: Let σv = 1 and σn < 1.
Under Assumption 2, non-vaccinated individuals are less

responsible than their vaccinated peers, who always act respon-
sibly. From Theorem 1, we note the following.

Corollary 2: Under Assumption 2, the epidemic threshold in
(19) reduces to

τ̂ := 2λ(1− σn)(1− pq)[θ + (1− θ)(1− v)]− β . (24)
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Fig. 4. Total fraction of infected individuals Iv(t) + In(t) +Qv(t) +Qn(t) at t = 200 (color-coded) for different levels of the vaccination coverage v, with on
the y-axis varying levels of: (a) the vaccine effectiveness against transmission γt and (b) severe symptoms γq; (c) the level of homophily θ; and (d) the responsibility
of non-vaccinated individuals σn. Common parameter values are n = 10000, λ = 0.2, β = 0.02, σv = 0.5, pq = 0.2, and τ = 0.05. Each data-point is obtained
by averaging 10 independent runs of the Markov process.

Next, we present the main result of this section that charac-
terizes all the equilibria of the system and their local stability
properties. The proof can be found in Appendix C.

Theorem 2: Under Assumption 2, the system in (18) has at
most two equilibria:

1) the DFE (1− v, 0, 0, v, 0, 0), which is locally asymptot-
ically stable if τ ≥ τ̂ (with exponential stability if strict
inequality holds), and a saddle point if τ < τ̂ ; and

2) the EE (y∗n,s, y
∗
n,i, y

∗
n,q, y

∗
v,s, y

∗
v,i, y

∗
v,q), which exists if

and only if τ < τ̂ , where

y∗n,s :=
(β+τ)(1−v)

2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)
,

y∗n,i := βκ ,

y∗n,q := 1− v − (β+τ)(1−v)
2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)

− βκ ,

y∗v,s :=
v

1+2λκ(1−σn)(1−γt)(1−θ) ,

y∗v,i :=
2λκvβ(1−σn)(1−γt)(1−θ)[1−pq(1−γq)]

(β+τ)[1+2λκ(1−σn)(1−γt)(1−θ)] ,

y∗v,q :=
2λκv(1−σn)(1−γt)(1−θ)[τ+pq(1−γq)β]

(β+τ)[1+2λκ(1−σn)(1−γt)(1−θ)] , (25)

with

κ := (1− v)
(

1−pq

β+τ − 1
2λ(1−σn)[θ+(1−θ)(1−v)]

)
. (26)

If it exists, the EE is locally asymptotically stable.
Despite the cumbersome expression of the EE in Theorem 2,

we observe by computing the derivatives of y∗n,s/(1− v) and
y∗v,s/v that an increase in the fraction of vaccinated individ-
uals results in a decrease in the relative epidemic prevalence
within both sub-populations. Such analytical insight confirms
the numerical intuition from Fig. 4 that vaccination is always
beneficial in reducing the epidemic prevalence, especially in
the presence of a cluster of individuals with low responsibility,
such as epidemic deniers [33]. Finally, one can use similar
arguments to compute the EE for the opposite scenario with
σn = 1 and σv < 1. Nonetheless, we omit to report such a
result due to space constraints and its minor interest in the
context of epidemic deniers, who typically refuse vaccination
and responsible behaviors [43].

V. NUMERICAL RESULTS

Earlier, in Remarks 1–3, we discussed how our modeling
framework is open to several generalizations. For some of them,

Fig. 5. State transitions of the SIQRS model for an individual j ∈ Vα with a
vaccination status α ∈ {n,v}.

TABLE II
PARAMETERS OF THE COVID-19-INSPIRED CASE STUDY

our analytical findings can be readily extended. For instance,
as suggested in Remark 1, Theorem 1 can be expanded to
incorporate non-pharmaceutical interventions by substituting λ

with (1− η)λ in (19), where η ∈ [0, 1] is the effectiveness of
non-pharmaceutical interventions. Other extensions, however,
increase the complexity of the dynamics, thereby hindering the
analytical treatment and preventing a direct extension of the
mean-field approach used to derive our theoretical findings.
Nevertheless, the implementation of our model, grounded in the
activity-driven network formalism, enables a numerical treat-
ment via fast Monte Carlo simulation campaigns.

In this section, we will employ numerical simulations and
follow Remark 2. We expand our modeling framework by in-
cluding an additional health state—denoted by R—to account
for temporary immunity after recovery. We define this SIQRS
model as an extension of our SIQS model, in which infected
individuals (either in I or Q) transition to R when they recover
and are (temporarily) immune to contagion. Loss of natural
immunity is modeled through a Poisson process with a rate
of μ ∈ R≥0, where μ = 0 represents the scenario in which
immunity is permanent, and the limit μ → ∞ coincides with
the SIQS model studied analytically in the above. A schematic
of the SIQRS model is shown in Fig. 5.

We consider a case study inspired by the ongoing COVID-19
pandemic and global vaccination campaign. Specifically, we uti-
lize model parameters calibrated to reflect some characteristics
of COVID-19 and the situation in the Netherlands as of early
November 2021, estimated in our previous work [1] from clinical
and epidemiological data [44], [45] and reported in Table II.
Considering the high level of uncertainty on the duration of
natural immunity for COVID-19, which may strongly depend
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Fig. 6. Numerical estimation for the SIQRS model (averaged over 100 in-
dependent runs) of (a) the eradication probability and (b) the steady-state
fraction of infected individuals Iv(t) + In(t) +Qv(t) +Qn(t) at t = 200,
for increasing values of the control parameter τ and different duration of natural
immunity μ. The gray curves and the gray vertical dashed line are, respectively,
the numerical estimations and analytical computation of the threshold (using
Theorem 1) for the SIQS model (which is equivalent to the SIQRS model in the
limit μ → ∞). Common parameter values are σn = θ = 0.5 and σv = 0.7; the
rest of the parameter values are given in Table II.

on the appearance of new variants [46], we will test different
hypotheses on μ.

First, we perform a set of Monte Carlo simulations to show
that the threshold behavior, proved analytically in Section IV-B
in the absence of natural immunity, is an inherent property of
the epidemic model. To this aim, we numerically estimate the
probability of disease eradication and the steady-state fraction
of infected for different values of the testing rate τ and for
four different natural immunity durations—spanning from an
average of 1 week (which may represent the pessimistic scenario
in which a new variant appears) to an average of 4 months.

Our simulations, reported in Fig. 6, confirm our analytical
findings for the SIQS model in Section IV-B (compare the
gray curve and the gray dashed line in Fig. 6(a)). Furthermore,
the simulations suggest that the threshold behavior is also an
intrinsic property of the SIQRS model, although the duration of
natural immunity affects the value of the epidemic threshold, as
illustrated in Fig. 6(a). Predictably, the longer immunity lasts,
the easier it is to control an epidemic outbreak. Moreover, when
the testing rate τ is insufficient to reach disease eradication,
the duration of natural immunity has a strong impact. In this
scenario, an increase in the immunity duration leads to a decrease
in the steady-state fraction of infected individuals, as reported
in Fig. 6(b).

In light of these observations, we conduct a series of sim-
ulations to increase understanding of the impact of the model
parameters on the progression of the epidemic. Here, we set
μ = 1/30. In Fig. 7, we report the epidemic threshold and the
long-term fraction of infected individuals for different values
of homophily θ and responsibility of non-vaccinated individ-
uals σn. The threshold is estimated via a Monte Carlo-based
approach detailed in Appendix D. Our simulation results in
Fig. 7 suggest the following. First, individual responsibility is
crucial: for low levels of responsibility, it is impossible to eradi-
cate the disease without resorting to massive testing campaigns
(Fig. 7(c)). Second, the role of homophily, already highlighted in
our analytical results for the SIQS model, remains critical in the
presence of natural immunity, in particular when vaccinated in-
dividuals have a higher responsibility level than non-vaccinated
ones (Fig. 7(b) and (d)). This can, e.g., reflect the situation

Fig. 7. (a), (b) The epidemic threshold τ̄ (color-coded) estimated numerically
for the COVID-inspired case study with a backbone network; and (c,d) the total
fraction of infected individuals Iv(t) + In(t) +Qv(t) +Qn(t) at t = 200
(color-coded), for different values of the model parameters. Common model
parameter values are μ = 1/30, τ = 0.02, and those summarized in Table II.

in which non-vaccinated individuals belong to a minority of
conspiracy theorists, as COVID-19-related conspiracy belief has
a negative correlation with the willingness to vaccinate and dis-
play infection-preventive behavior [43]. Third, the responsibility
level of vaccinated individuals strongly impacts the epidemic
threshold, but only if non-vaccinated people display some degree
of responsible behavior and homophily is moderate, as can be
observed by comparing the top-right of Fig. 7(a) and (b). When
above the threshold, we can observe by comparing Fig. 7(c)
and (d) that the responsibility level of vaccinated individuals
also plays a major role in reducing the fraction of infected
individuals.

VI. CONCLUSION

We proposed a polarized temporal multi-population network
model to study the spread of recurrent epidemics and investi-
gated the effect of vaccination campaigns, human behavior, and
homophily on infection prevalence and local outbreak control.
Via a mean-field approach, we analytically derived the epidemic
threshold and, under certain assumptions, we characterized the
endemic equilibrium. Additionally, we conducted numerical
simulations on a generalization of our mathematical model that
incorporates temporary natural immunity following recovery,
utilizing parameters calibrated on the COVID-19 pandemic. Our
results suggest that vaccination is a powerful measure to mitigate
the number of deaths and the pressure on hospitals. However,
the effectiveness of vaccination campaigns in controlling local
outbreaks is contingent upon the characteristics of both the
virus and the vaccine in question. In certain scenarios, relying
solely on vaccination campaigns may have both beneficial and
detrimental effects: while they alleviate the burden on healthcare
systems, they may also impede the control of local outbreaks.
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Analytical and numerical findings suggest that, in these sce-
narios, complete disease eradication requires either reliance
on population responsibility or widespread testing campaigns.
Furthermore, our simulations showed that a polarized network
structure with a high degree of homophily hinders local outbreak
control.

Despite the generality of our modeling framework, some
limitations should be noted. In particular, we assumed that
individuals’ decisions to vaccinate are fixed and made a priori.
This assumption may be appropriate for certain infections, such
as influenza viruses, but it does not take into account situations
in which vaccination decisions dynamically change. Moreover,
our model operates under the assumption that individuals who
support vaccination have already received the vaccine. To extend
the model, one could consider incorporating changes in attitudes
towards vaccination over time, as suggested in [47], [48], [49],
and introducing vaccine administration during an epidemic out-
break, as in [18], [50].

In addition to incorporating these features in the model, there
are several other directions for future research. Our numer-
ical results for the SIQRS model suggest that the threshold
phenomenon—proved analytically for the SIQS model—is an
inherent feature of our epidemic framework. Future efforts
should aim to extend our analytical results to models with extra
compartments. Additionally, it would be useful to provide a
more general analytical treatment of the system above the epi-
demic threshold. An expansion on Theorem 2 for more general
conditions would be crucial for the development of optimal
intervention policies, which could be achieved by incorporating
a cost associated with the implementation of testing campaigns.
Furthermore, for the sake of analytical tractability, we assumed
that individuals’ decisions on maintaining physical distance
follow a memoryless mechanism. More realistic scenarios may
include a game-theoretic decision-making process that accounts
for individuals’ past behaviors, societal pressure, the spread
of the epidemic, and other external factors [38], [40], [41].
Finally, validating our framework against real-world data will
be a priority in future research.

APPENDIX A
PROOF OF THEOREM 1

Observe that the disease-free equilibrium of (18) is the state

(yn,s, yn,i, yn,q, yv,s, yv,i, yv,q) = (1− v, 0, 0, v, 0, 0),

which is an equilibrium since the right-hand side of (18) is equal
to zero in this state. To study the local stability of the DFE, we
recall that only four of the six equations of system (18) are
linearly independent (Remark 4). In our analysis, we reduce the
system to a 4-dimensional system by choosing the macroscopic
variables yn,i, yn,q, yv,i, and yv,q. Subsequently, we linearize
(18) around the DFE of the original system (which coincides
with the origin of the reduced 4-dimensional one), yielding

ẏn,i = 2λ(1− pq)[θ + (1− θ)(1− v)](1− σn)yn,i

+ 2λ(1− pq)(1− θ)(1− v)(1− σv)yv,i

− (β + τ)yn,i,

ẏv,i = 2λ(1− γt)[1− pq(1− γq)]v(1− θ)(1− σn)yn,i

+ 2λ(1− γt)[1− pq(1− γq)]

· [θ + v(1− θ)](1− σv)yv,i − (β + τ)yv,i,

ẏn,q = 2λpq[θ + (1− θ)(1− v)](1− σn)yn,i

+ 2λpq(1− θ)(1− v)(1− σv)yv,i + τyn,i − βyn,q,

ẏv,q = 2λ(1− γt)pq(1− γq)v(1− θ)(1− σn)yn,i

+ 2λ(1− γt)pq(1− γq)[θ + v(1− θ)](1− σv)yv,i

+ τyv,i − βyv,q. (27)

According to standard system-theoretic methods [51], the (local)
stability of the DFE is fully determined by the eigenvalues of the
Jacobian matrix of (27) evaluated at the origin. After re-sorting
the equations in the order (yn,q, yv,q, yn,i, yv,i), we observe that
the Jacobian of (27) has the following block-triangular structure:

yn,q yv,q yn,i yv,i

yn,q
yv,q
yn,i
yv,i

⎡
⎢⎢⎣
∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎤
⎥⎥⎦ , (28)

where an asterisk (∗) denotes a nonzero entry.
The block (yn,q, yv,q) is diagonal and has eigenvalue Λ1,2 =

−β < 0, with multiplicity 2. Through a direct computation, we
establish that the eigenvalues of the block (yn,i, yv,i) are equal
to

Λ3,4 = λξ − β − τ

± λ
√

ξ2−4θ(1−γt)(1−pq)[1−pq(1−γq)](1−σn)(1−σv),

with ξ defined as in (20). Observe that the argument of the square
root verifies the following equality:

ξ2 − 4θ(1− γt)(1− pq)[1− pq(1− γq)](1− σn)(1− σv)

= θ2 [vρ+ (1− v)φ]2 + 2θ
[
v(1− v)(φ− ρ)2 − φρ

]
+ [(1− v)ρ+ vφ]2 , (29)

where the right-hand side is a polynomial in θ, with

φ := (1− γt)[1− pq(1− γq)](1− σv),

ρ := (1− pq)(1− σn).

Through explicit computation, we verify that the roots of the
right-hand side of (29) are complex. Since the leading coefficient
of the polynomial is positive, it follows that (29) is strictly
positive for all θ. Thus, the two eigenvaluesΛ3,4 are real, and the
DFE is locally asymptotically stable if and only if the maximum
eigenvalue (i.e., the one with the positive sign) is negative, which
is the case if τ > τ̄ . On the contrary, if τ < τ̄ , then the maximum
eigenvalue is positive and the DFE is unstable. �

APPENDIX B
PROOF OF PROPOSITION 6

All the statements are derived from observing the monotonic-
ity properties of (27) with respect to the considered parameters.
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For pq and γt, monotonicity holds only for the equations ẏn,i
and ẏv,i, which are the two that determine the stability of the
DFE due to the structure of (28). �

APPENDIX C
PROOF OF THEOREM 2

Let Assumption 2 hold, i.e., σv = 1 and σn < 1. Consider the
system in (18). Solving the equilibrium condition ẏn,s = 0 gives

yn,s =
β(1−v)

2λ(1−σn)(
θ

1−v+1−θ)yn,i+β
.

Subsequently solving ẏn,i = 0 gives yn,i = 0 (which trivially
leads to the DFE (1− v, 0, 0, v, 0, 0)) or

yn,i = β(1− v)
(

1−pq

β+τ − 1
2λ(1−σn)[θ+(1−θ)(1−v)]

)
,

which gives the EE in (25) by solving ẏv,s = 0 and ẏv,i = 0,
while noting that yn,q = 1− v − yn,s − yn,i and yv,q = v −
yv,s − yv,i. Note that for the EE to exist, we need that yn,i > 0,
which is equivalent to the condition τ < τ̂ . Concerning the
stability, local stability for the DFE immediately follows from
Theorem 1. Now consider the EE in (25), where we assume that
τ < τ̂ . Linearizing around the EE, we obtain a Jacobian matrix
with eigenvalues

Υ1 = −(β + τ) < 0,

Υ2 = −β[1 + 2λκ(1− σn)(1− γt)(1− θ)] < 0,

and

Υ3,4 = 1
2

(
1− 2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)

β+τ

)

± 1
2

√ (
1− 2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)

β+τ

)2

−4[2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)−(β+τ)]

.

Note that τ < τ̂ implies that Re(Υ3,4) < 0, so the EE is locally
asymptotically stable. �

APPENDIX D
DETAILS ON NUMERICAL SIMULATIONS

The epidemic threshold is estimated as follows. We set a
range of values for the parameter τ . For each value of τ , we
initialize the epidemics with 10 infected individuals, and we
estimate the probability that the disease is extinguished within a
fixed time horizon (we set it to t = 200) through 10 independent
Monte Carlo simulations. Following [52], [53], we estimate
the threshold by the value of τ that maximizes the standard
deviation of the eradication probability. Because the output of
each simulation is a binary variable (‘0’ for eradication, ‘1’ for
endemicity), the value of τ that maximizes the standard deviation
coincides with the value that has an estimated eradication prob-
ability close to 0.5. To optimize the process, we adopt a two-step
procedure. First, we consider a wide range of values of τ with
a large step size Δτ . We estimate the eradication probability by
starting at a high value of τ and decreasing it until we reach a
value τ̃ with an estimated eradication probability of less than
0.5. Second, we use the proposed algorithm to approximate
the threshold value in the range τ ∈ [τ̃ −Δτ, τ̃ +Δτ ] with

a smaller step size. The code used for all our simulations is
available at https://github.com/lzino90/vaccine_siq.

REFERENCES

[1] K. Frieswijk, L. Zino, and M. Cao, “Modelling the effect of vaccination
and human behaviour on the spread of epidemic diseases on temporal
networks,” in Proc. IEEE Eur. Control Conf., 2022, pp. 2291–2296.

[2] World Health Organization, “Draft landscape and tracker of COVID-
19 candidate vaccines,” 2022. [Online]. Available: https://www.who.int/
publications/m/item/draft-landscape-of-covid-19-candidate-vaccines

[3] J. Tang et al., “Respiratory mucosal immunity against SARS-
CoV-2 following mRNA vaccination,” Sci. Immunol., vol. 7, 2022,
Art. no. eadd4853.

[4] K. J. Siddle et al., “Transmission from vaccinated individuals in a large
SARS-CoV-2 delta variant outbreak,” Cell, vol. 185, no. 3, pp. 485–492,
2022.

[5] R. Pastor-Satorras, C. Castellano, P. V. Mieghem, and A. Vespignani,
“Epidemic processes in complex networks,” Rev. Modern Phys., vol. 87,
pp. 925–979, Aug. 2015.

[6] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control of
epidemics: A survey of spreading processes on complex networks,” IEEE
Control Syst. Mag., vol. 36, no. 1, pp. 26–46, Feb. 2016.

[7] W. Mei, S. Mohagheghi, S. Zampieri, and F. Bullo, “On the dynamics of
deterministic epidemic propagation over networks,” Annu. Rev. Control,
vol. 44, pp. 116–128, 2017.
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