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Abstract
We study cycle counts in permutations of 1, … , n drawn

at random according to the Mallows distribution. Under

this distribution, each permutation 𝜋 ∈ Sn is selected with

probability proportional to qinv(𝜋)
, where q > 0 is a param-

eter and inv(𝜋) denotes the number of inversions of 𝜋. For

𝓁 fixed, we study the vector (C1(Πn), … ,C𝓁(Πn)) where

Ci(𝜋) denotes the number of cycles of length i in 𝜋 and

Πn is sampled according to the Mallows distribution. When

q = 1 the Mallows distribution simply samples a permu-

tation of 1, … , n uniformly at random. A classical result

going back to Kolchin and Goncharoff states that in this

case, the vector of cycle counts tends in distribution to

a vector of independent Poisson random variables, with

means 1,
1

2
,

1

3
, … ,

1

𝓁
. Here we show that if 0 < q < 1

is fixed and n → ∞ then there are positive constants mi
such that each Ci(Πn) has mean (1 + o(1)) ⋅ mi ⋅ n and the

vector of cycle counts can be suitably rescaled to tend to a

joint Gaussian distribution. Our results also show that when

q > 1 there is a striking difference between the behav-

ior of the even and the odd cycles. The even cycle counts

still have linear means, and when properly rescaled tend

to a multivariate Gaussian distribution. For the odd cycle

counts on the other hand, the limiting behavior depends on

the parity of n when q > 1. Both (C1(Π2n),C3(Π2n), …)
and (C1(Π2n+1),C3(Π2n+1), …) have discrete limiting

distributions—they do not need to be renormalized—but

the two limiting distributions are distinct for all q > 1. We

describe these limiting distributions in terms of Gnedin and

Olshanski’s bi-infinite extension of the Mallows model. We

investigate these limiting distributions further, and study
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HE ET AL. 1055

the behavior of the constants involved in the Gaussian limit

laws. We for example show that as q ↓ 1 the expected num-

ber of 1-cycles tends to 1∕2—which, curiously, differs from

the value corresponding to q = 1. In addition we exhibit an

interesting “oscillating” behavior in the limiting probability

measures for q > 1 and n odd versus n even.

KEYWORDS

random permutations, mallows distribution, cycle counts

1 INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let Sn denote the set of permutations of [n] ∶= {1, … , n}. For a permutation 𝜋 ∈ Sn the ordered

pair (i, j) ∈ [n]2 is an inversion of 𝜋 if i < j and 𝜋(i) > 𝜋(j). We denote the number of inversions of

a permutation 𝜋 by inv(𝜋). For n ∈ N and q > 0, the Mallows distribution Mallows(n, q) samples a

random elementΠn of Sn in such a way that each 𝜋 ∈ Sn has probability proportional to qinv(𝜋)
. That is,

P(Πn = 𝜋) =
qinv(𝜋)

∑
𝜎∈Sn

qinv(𝜎) . (1)

This distribution on Sn was introduced in the late fifties by Mallows [27] in the context of statis-

tical ranking models. It has since been studied in connection with a diverse range of topics, including

mixing times of Markov chains [4, 11], finitely dependent colorings of the integers [22], stable match-

ings [2], random binary search trees [1], learning theory [8, 34], q-analogs of exchangeability [16, 17],

determinantal point processes [7], statistical physics [32, 33], and genomics [12].

Aspects of the Mallows distribution that have been studied include the longest increasing subse-

quence [3, 5, 28], longest common subsequences [24], pattern avoidance [9, 10, 29], the number of

descents [20], and the cycle structure [15].

In the special case when q = 1 the Mallows distribution coincides with the uniform distribution

on Sn. A classical result going back to Gontcharoff [18] and Kolchin [25] states that in this case, for

every fixed 𝓁:

(C1(Πn), … ,C𝓁(Πn))
d

−−→
n→∞

(X1, … ,X𝓁) ,

where Ci(𝜋) denotes the number of cycles of length i in the permutation 𝜋, and X1, … ,X𝓁 are indepen-

dent and Xi is Poisson distributed with mean 1∕i for each i = 1, … ,𝓁. In spite of the long history and

considerable attention received by the Mallows distribution, until very recently the problem of deter-

mining analogues of this result for the Mallows(n, q) distribution with q ≠ 1 seems to have escaped

attention. In a recent paper, Gladkich and Peled [15] studied the cycle structure of the Mallows distri-

bution when q = q(n) depends on n and approaches one as n → ∞. Here we will focus instead on the

limiting distribution of the cycle counts when q ≠ 1 is fixed and n tends to infinity.

Our first result shows that for 0 < q < 1 each Ci(Πn) has a mean that is linear in n, and that for

every fixed 𝓁, the vector (C1(Πn), … ,C𝓁(Πn)) can be suitably rescaled so that it tends to a jointly

normal limiting distribution.
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1056 HE ET AL.

Theorem 1.1. Fix 0 < q < 1 and let Πn ∼ Mallows(n, q). There exist positive constants
m1,m2, … and an infinite matrix P ∈ RN×N such that for all 𝓁 ≥ 1 we have

1
√

n
(C1(Πn) − m1n, … ,C𝓁(Πn) − m𝓁n)

𝑑

−−→
n→∞

𝓁(0,P𝓁),

where𝓁(⋅, ⋅) denotes the 𝓁-dimensional multivariate normal distribution and P𝓁 is the
submatrix of P on the indices [𝓁] × [𝓁].

As it happens, for q > 1, there is a major difference between the behavior of even cycles and odd

cycles. For even cycle counts we have a result analogous to the previous theorem.

Theorem 1.2. Fix q > 1 and let Πn ∼ Mallows(n, q). There exists positive constants
𝜇2, 𝜇4, … and an infinite matrix Q ∈ RN×N such that for all 𝓁 ≥ 1 we have

1
√

n
(C2(Πn) − 𝜇2n, … ,C2𝓁(Πn) − 𝜇2𝓁n)

𝑑

−−→
n→∞

𝓁(0,Q𝓁),

where𝓁(⋅, ⋅) denotes the 𝓁-dimensional multivariate normal distribution and Q𝓁 is the
submatrix of Q on the indices [𝓁] × [𝓁].

We will describe the limiting distributions for odd cycles in the case when q > 1 in terms of the

bi-infinite analogue of the Mallows distribution that was introduced by Gnedin and Olshanski [17].

This is a random bijectionΣ ∶ Z → Z, whose distribution we’ll denote by Mallows(Z, q). See Section 2

for more discussion and relevant facts.

Throughout the article r, 𝜌 denote the bijections of Z defined by r(i) ∶= −i and 𝜌(i) ∶= 1 − i.

Theorem 1.3. Let q > 1 and Πn ∼ Mallows(n, q) and Σ ∼ Mallows(Z, 1∕q). We have

(C1(Π2n+1),C3(Π2n+1), …)
𝑑

−−→
n→∞

(C1(r ◦Σ),C3(r ◦Σ), …),

and

(C1(Π2n),C3(Π2n), …)
𝑑

−−→
n→∞

(C1(𝜌 ◦Σ),C3(𝜌 ◦Σ), …).

Moreover, the two limiting distributions above are distinct for all q > 1. The permutations
r ◦Σ and 𝜌 ◦Σ almost surely have only finitely many odd cycles.

Next, we study the properties of the constants m1,m2, … occurring in Theorem 1.1. The first part

of the next result gives an interpretation of these constants in terms of the Mallows(Z, q) distribution.

Theorem 1.4. Let 0 < q < 1 and Σ ∼ Mallows(Z, q), and let m1,m2, … be as provided
by Theorem 1.1.

(i) For i = 1, 2, … we have

mi = (1∕i) ⋅ P(0 lies in an i-cycle of Σ).

In particular

m1 = P(Σ(0) = 0).
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HE ET AL. 1057

(ii)
∑∞

i=1
i ⋅ mi = 1.

(iii) We have

(m1,m2,m3, …) → (1, 0, 0, …) as q ↓ 0,

(m1,m2,m3, …) → (0, 0, 0, …) as q ↑ 1,

where the convergence can be taken with respect to the L1-norm. Moreover,

m1 = 1 − 2q + o(q) as q ↓ 0,

m1 =
1 − q

4
+ o(1 − q) as q ↑ 1.

Combining Part (i) of the above theorem with Theorem 5.1 of [17], we can write

m1 = 0 𝜙1(−; q; q, q3) ⋅ (1 − q) ⋅
∞∏

i=1

(1 − qi),

where r𝜙s denotes the q-hypergeometric function—see [14] for the definition and background. An

alternative expression, based on the work of Gladkich and Peled [15], for m1 is given in Lemma 6.1

below. Figure 1 shows a plot of m1 versus q together with the results of computer simulations.

The next result provides similar results for the constants appearing in Theorem 1.2.

Theorem 1.5. Let q > 1, let 𝜇2, 𝜇4, … be as provided by Theorem 1.2, and let
Σ,Σ′ ∼ Mallows(Z, 1∕q) be independent.

(i) For i = 1, 2, … we have

𝜇2i =
1

2i
⋅ P(0 is in an i-cycle of Σ′ ◦Σ),

and in particular

𝜇2 =
1

2
⋅
∑

i∈Z

P[Σ(0) = i]2.

FIGURE 1 A plot of m1 versus q. The crosses correspond to the average number of 1-cycles in 10 000 samples of the

Mallows(1000, q) distribution.
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1058 HE ET AL.

FIGURE 2 A plot of 𝜇2 versus q. The simulations were done sampling a Mallows(1000, q) distribution 10 000 times, and

taking the average number of 2-cycles.

(ii)
∑∞

i=1
2i ⋅ 𝜇2i = 1.

(iii) We have

(𝜇2, 𝜇4, 𝜇6, …) → (0, 0, 0, …) as q ↓ 1,

(𝜇2, 𝜇4, 𝜇6, …) → (1∕2, 0, 0, …) as q →∞,

where the convergence can be taken with respect to the L1-norm.

Again, combining Part (i) with Theorem 5.1 in [17] gives an expression for 𝜇2 as an explicit func-

tion of q. Figure 2 provides a plot of 𝜇2 versus q together with the results of computer simulations.

We mention that Pitman and Tang [30, Proposition 3.3] give a result for so-called regenerative random

permutations, that is closely related to parts (i) and (ii) of Theorems 1.4 and 1.5.

Next we provide some results on the asymptotic expected number of 1-cycles when q > 1. We

remind the reader that a “1-cycle” is the same as a fixed point. For notational convenience let us write

ce ∶= EC1(𝜌 ◦Σ), co ∶= EC1(r ◦Σ), (2)

where again Σ ∼ Mallows(Z, 1∕q) and r, 𝜌 are given by r(i) = −i, 𝜌(i) = 1 − i.

Theorem 1.6. Let q > 1 and ce, co as given by (2) and Σ ∼ Mallows(Z, 1∕q).

(i) We have

ce = P [Σ(0) odd] and co = P [Σ(0) even] .

(ii) We have

lim
q↓1

ce = lim
q↓1

co =
1

2
,

lim
q→∞

ce = 0,

lim
q→∞

co = 1.
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HE ET AL. 1059

FIGURE 3 The graph of co and ce for q > 1. Simulations were done for n = 1000 and n = 1001, each sampled 10 000 times.

Moreover, as q →∞ we have

co = 1 − 2∕q + o(1∕q) and ce = 2∕q + o(1∕q) as q → ∞.

We note that Part (i) of the above theorem gives that in particular

ce + co = 1,

for all q > 1. Again, Theorem 5.1 in [17] allows us to convert the probabilities given in Part (i) of

the above theorem into explicit functions of q. Plots of ce and co as a function of q, together with the

results of computer simulations are shown in Figure 3.

As mentioned previously, when q = 1 we retrieve the uniform distribution on Sn, for which the

expected number of 1-cycles equals one. So the fact that the limits for q ↓ 1 of ce, co equal 1∕2

is pretty curious. Of course there is no contradiction, since our results apply to the situation where

q > 1 is fixed and we send n to infinity. Our results however do suggest something interesting must

be going on in the “phase change” when q = q(n) is a function of n that approaches one from

above as n → ∞.

Our final (main) result highlights an interesting “oscillating” behavior in the probability measures

corresponding to the limit of C1(Π2n), respectively C1(Π2n+1), when q > 1. The probability that Πn
has at least m one cycles is a lot larger when the parities of m and n agree than when they do not (for

m large but fixed and n →∞).

Theorem 1.7. For 0 < q < 1 and Σ ∼ Mallows(Z, q) we have, as k →∞

P (C1(𝜌 ◦Σ) ≥ 2k)≪ P (C1(r ◦Σ) ≥ 2k) ,
P (C1(𝜌 ◦Σ) ≥ 2k + 1)≫ P (C1(r ◦Σ) ≥ 2k + 1) .

(The notation g(k)≪ f (k) means that the ratio g(k)∕f (k) tends to zero as k → ∞.)
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1060 HE ET AL.

Sketches of some ideas used in the proofs

The proofs of Theorems 1.1 and 1.2 are adaptations of a proof technique developed by Basu and

Bhatnagar [3] to prove a Gaussian limit law for the length of the longest monotone subsequence of a

Mallows permutation, and in fact Theorem 1.1 closely follows the original proof. The intuition behind

it is that if Πn ∼ Mallows(n, q) with 0 < q < 1 then given that Πn[{1, … , j}] = {1, … , j} the

remainder of the permutation behaves like a Mallows random permutation of length n − j. As it turns

out, there will typically be linearly many such j.
A very rough sketch of the argument giving Theorem 1.1 is as follows. If T1 < · · · < Tk = n are

such that Πn[{1, … ,Ti}] = {1, … ,Ti} then each cycle must lie completely in {Ti−1 + 1, … ,Ti}
for some i (setting T0 = 0). This allows us to show that the cycle counts behave approximately like

a stopped two-dimensional random walk. This refers to the situation where (X1,Y1), (X2,Y2), … are

i.i.d. and we are interested in
∑
𝜏

i=1
Yi where 𝜏 ∶= inf{k ∶ X1+· · ·+Xk > n}. Here the Xi correspond to

Ti−Ti−1 and Yi counts the number of cycles contained in the interval {Ti−1+1, … ,Ti}. A convenient

result of Gut and Janson [19] allows us to derive that the mentioned sum is approximately Gaussian

after suitable rescaling. The same argument applies to arbitrary linear combinations of the cycle counts,

so that we can employ the Cramer-Wold device to deduce that the—suitably rescaled—vector of cycle

counts is multivariate Gaussian.

The proof of Theorem 1.2 goes along the same lines. Now it turns out that there are linearly many

T1 < · · · < Tk such that Πn[{1, … ,Ti}] = {n + 1 − Ti, … , n} and Πn[{n + 1 − Ti, … , n}] =
{1, … ,Ti}. (Almost) every even cycle must then be contained in some set {Ti−1 + 1, … ,Ti} ∪ {n +
1 − Ti, … , n − Ti−1}, and we can adapt the proof strategy that gave Theorem 1.1 to work also here.

We mention that Theorem 1.2 can also be proved by starting from the center of the permutation, rather

than the sides, see [21].

In the proof of Theorem 1.3, we rely on results of Gnedin and Olshanski [17] that show that “lo-

cally,” for 0 < q < 1, the finite Mallows permutation resembles the bi-infinite Mallows permutation Σ
defined and analyzed in [17]. An elementary, but crucial, observation is thatΠn

𝑑

= Mallows(n, q) if and

only if rn ◦Πn
𝑑

= Mallows(n, 1∕q) where rn(i) ∶= n+ 1− i. (See the next section for the explanation.)

Note that if n is odd then rn leaves (n+ 1)∕2 invariant, but when n is even no element of {1. … , n} is

invariant (n∕2 and n∕2 + 1 are flipped). For q > 1, the relation with the Mallows(n, 1∕q) distribution

translates to Πn ∼ Mallows(n, q) being “approximated” by r ◦Σ with r(i) ∶= −i when n is odd; and

𝜌 ◦Σ with 𝜌(i) ∶= 1− i when n is even. In particular we for instance have that the number of 1-cycles

(fixed points) of Πn approximately behaves like the number of i ∈ Z such that Σ(i) = −i when n is

odd, and the number of i ∈ Z such that Σ(i) = 1 − i when n is even.

For the proof of Theorem 1.4 we again use that the Mallows(n, q) distribution locally looks like

the bi-infinite Mallows model. The main intuition is the elementary observation that the number of

i-cycles equals 1∕i times the number of points that are in i-cycles. That
∑

imi = 1 is then more or

less immediate from the observation that, almost surely, all cycles of Σ have finite length. (As can for

instance be seen from the regenerative nature of Mallows permutations for fixed q.) The statements

about the limits as q ↓ 0 and q ↑ 1 can be derived by using explicit expressions for the expected

number of 1-cycles that follow by combining our work with results of Gnedin and Olshanski [17] and

Gladkich and Peled [15].

The idea behind the proof of Theorem 1.5 is very similar, but more technical. When q > 1 then the

Mallows(n, q) model is approximated well locally by the composition of two independent bi-infinite

Mallows models.

The first part of Theorem 1.6 will follow from the aforementioned fact that, when q > 1, the

expected number of 1-cycles is well-approximated by the number of i ∈ Z such that Σ(i) = −i when
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HE ET AL. 1061

n is odd, and the number of i ∈ Z such that Σ(i) = 1 − i when n is even. The limit of 1∕2 for the

expected number of 1-cycles when q ↓ 1 will follow from the relatively elementary observation that

1∕q < P(Σ(0) = j+1)∕P(Σ(0) = j) < q for all j ∈ Z. For the other limits we again analyze the various

explicit expressions in q.

The proof of Theorem 1.7 is technically involved, but the intuition behind it is relatively easy to

explain. When k is large the “most likely” way in which r ◦Σ will have at least 2k + 1 fixed points is

if Σ(−k) = k, … ,Σ(k) = −k, or some minor perturbation of this configuration. For 𝜌 ◦Σ the “most

likely” way to have 2k+1 fixed points is something likeΣ(−k) = 1+k,Σ(−k+1) = k, … ,Σ(k) = 1−k,

or some minor perturbation of that situation. However, as shown by Gnedin and Olshanski [17], Σ is

almost surely balanced: the number of i < 0 with Σ(i) ≥ 0 is finite and equals the number of i ≥ 0

with Σ(i) < 0. This forces the existence of one more i ∈ Z with |Σ(i) − i| = Ω(k)—which makes the

probability exponentially smaller. (We remind the reader thatΩ(k) denotes a quantity that is at least as

large as a positive constant times k.) The intuition for 2k fixed points is similar.

Remark 1.8. Let us note that Theorems 1.1–1.3 all hold for a more general class of

permutation statistics.

Let w ∈ Sn, and suppose that w = w1w2 where w1 sends [1, i] to itself and [i + 1, n]
to itself. Say that a function f ∶ ∪nSn → R𝑑

is additive if f (w) = f (w1) + f (w2) for all

w = w1w2 decomposing in this way, where f (w) for w a permutation on an interval [i, j]
is defined by shifting down the permutation to [1, j − i + 1]. Then Theorem 1.1 holds for

any (non-trivial) additive function satisfying |f (w)| ≤ Cnk
for w ∈ Sn, where C and k are

constants. The proof is exactly the same, with the key being that f (w) decomposes into a

sum of independent pieces in the same way as the number of cycles. The other assumptions

are to ensure that the moments are finite, and that the variance is non-zero.

Let w ∈ Sn, and suppose that w = w1w2, where w1 sends [i, n − i] to itself and w2

sends [1, i] to [n − i + 1, n] and vice versa. Say that f ∶ ∪nSn → R𝑑

is anti-additive

if f (w) = f (w1) + f (w2) for all w = w1w2 decomposing in this way. Then Theorems

1.2 and 1.3 holds for any (non-trivial) anti-additive function satisfying |f (w)| ≤ Cnk
for

w ∈ Sn, where C and k are constants. Again, the proof is the same, writing f (w) as a sum

of independent pieces.

Here, non-trivial means that f , when restricted to permutations of size n for which no

non-trivial decomposition of the form w = w1w2 exists, is non-constant. This assumption

is needed to ensure that the variances 𝛽ii and 𝛽
′
ii are non-zero. Almost any reasonable

function satisfies this, but note in particular that f (w) = n the size of the permutation does

not satisfy this.

Note that if f (w) is either additive or anti-additive, then so is f (w−1). Thus, the theorems

also apply to joint statistics for a Mallows permutation and its inverse, giving another proof

of Theorem 1.2 of [20].

2 NOTATION AND PRELIMINARIES

Here we collect some notation, definitions, and results from the literature that we will use in our

proofs. Throughout the article, we use [n] ∶= {1, … , n} to denote the set consisting of the first n
natural numbers, and [a, b] ∶= {a, … , b} for a < b. If f (n), g(n) are two functions depending on the

parameter n, we will use f (n) = o (g(n)) to denote that f (n)∕g(n) → 0, we will use f (n) = O (g(n))
to denote that there exists a constant C > 0 such that f (n) ≤ C ⋅ g(n), we will use f (n) = Ω(g(n))
to denote that there exist a constant c > 0 such that f (n) > c ⋅ g(n), and f (n) = Θ (g(n)) to denote
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1062 HE ET AL.

that f (n) = O(g(n)) and f (n) = Ω(g(n)). We will use Bi(n, p) to denote the binomial distribution with

parameters n and p and we use Geo(p) to the note the geometric distribution with parameter p. So

X ∼ Geo(p) means that

P(X = k) = p(1 − p)k−1
,

for all k ∈ N. We use TruncGeo(n, p) to denote the truncated geometric distribution, truncated at n.

That is, if Y ∼ TruncGeo(p) and X ∼ Geo(p) then

P(Y = k) = P(X = k|X ≤ n) = p(1 − p)k−1

1 − (1 − p)n
(k = 1, … , n).

As is usual in the literature on the Mallows distribution, we denote by

Z(n, q) ∶=
∑

𝜎∈Sn

qinv(𝜎)
,

the denominator in (1). By a standard result in enumerative combinatorics (see Corollary 1.3.13 in [31])

we have

Z(n, q) =
n∏

i=1

1 − qi

1 − q
.

An elementary observation is that the indices i, j ∈ [n] form an inversion for 𝜋 ∈ Sn if and only if

𝜋(i), 𝜋(j) form an inversion for 𝜋
−1

. In particular

inv(𝜋−1) = inv(𝜋).

Similarly, letting rn ∈ Sn denote the “reversal map” given by rn(i) ∶= n+ 1− i, we have that i, j ∈ [n]
are an inversion in 𝜋 if and only if they are not an inversion in rn ◦𝜋. The same holds true for 𝜋 ◦ rn.

In other words

inv(rn ◦𝜋) = inv(𝜋 ◦ rn) =
(n

2

)
− inv(𝜋),

and hence also

inv(rn ◦𝜋 ◦ rn) = inv(𝜋).

As a direct consequence of these observations and the definition of the Mallows probability measure,

we have:

Corollary 2.1. Let q > 1 and Πn ∼ Mallows(n, q) and let rn be given by rn(i) = n+ 1− i.
The following hold.

(i) Π−1
n

𝑑

= Πn, and;

(ii) rn ◦Πn ◦ rn
𝑑

= Πn, and;

(iii) rn ◦Πn
𝑑

= Mallows(n, 1∕q), and;

(iv) Πn ◦ rn
𝑑

= Mallows(n, 1∕q).

(To see the third and fourth parts of the lemma, note that P(rn ◦Πn = 𝜋) = P(Πn = rn ◦𝜋) =

q
(

n
2

)
−inv(𝜋)∕Z(n, q) is proportional to (1∕q)inv(𝜋)

, and similarly for Πn ◦ rn.) The last two parts of the
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HE ET AL. 1063

corollary provide a way to express the Mallows distribution with q > 1 in terms of the Mallows

distribution with 0 < q < 1. We will rely on this a lot in our proofs of the results for q > 1.

For 0 < q < 1, there is an iterative procedure for generating Πn ∈ Mallows(n, q), going back to

the work of Mallows [27]. We let Z1, … ,Zn be independent with Zi ∼ TruncGeo(n + 1 − i, 1 − q).
We now set

Πn(1) = Z1,

Πn(i) = the Zi-th smallest number in the set [n] ⧵ {Π(1), … ,Π(i − 1)}, for 1 < i ≤ n.

Put differently, having determined Πn(1), … ,Πn(i − 1), we determine Πn(i) by writing [n] ⧵
{Πn(1), … ,Πn(s − 1)} in increasing order as {j1, j2, … , jn−s+1}, and setting set Πn(i) ∶= jZi . To see

that this procedure indeed generates a random element of Sn chosen according to the Mallows(n, q)
distribution, we can argue as follows. We first note that for each 𝜋 ∈ Sn there is exactly one choice of

(k1, … , kn) ∈ [n] × [n − 1] × · · · × [1] such that setting Z1 = k1, … ,Zn = kn results in Πn = 𝜋 (and

vice versa each choice of k1, … , kn determines a unique element of Sn). In particular

P(Πn = 𝜋) =
n∏

i=1

P(Zi = ki) ∝ q
∑n

i=1
(ki−1)

,

where the symbol ∝ denotes “proportional to,” and hides a multiplicative term not depending on

k1, … , kn. We now note that for each i ∈ N we must have

|{j ∶ i < j and 𝜋(i) > 𝜋(j)}| = ki − 1.

In other words, inv(𝜋) = k1 + · · · + kn − n, which shows that we’ve indeed sampled according to the

Mallows(n, q)-distribution.

There is a natural extension of the Mallows model to random functions Π ∶ N → N, called the

Mallows process by some authors. Similarly to the iterative procedure for generating Πn ∼
Mallows(n, q) described above, we let Z1,Z2, … be an infinite sequence of i.i.d. Geom(1− q) random

variables and we iteratively construct an infinite sequence Π of natural numbers by setting

Π(1) = Z1,

Π(i) = the Zi-th smallest number in the set N ⧵ {Π(1), … ,Π(i − 1)}, for i > 1.

We denote the probability distribution of Π generated in this manner by Mallows(N, q) (see also

Figure 4).

For a non-empty, finite A ⊆ R and a bijection 𝜋 ∶ A → A we define inv(𝜋) in exactly the same way

as for bijections from [n] to itself. The distribution of the random bijection ΠA ∶ A → A satisfying

P(ΠA = 𝜋) =
qinv(𝜋)

Z(n, q)
,

will be denoted by Mallows(A, q). For 𝜎 ∶ B → B a bijection with B ⊆ R and A ⊆ B finite (but B may

be infinite) we denote by 𝜎A the bijection we obtain by setting

𝜎A(a) ∶= a(i) if 𝜎(a) is the ith smallest element of 𝜎[A],

where a(i) is the ith smallest element of A.
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1064 HE ET AL.

FIGURE 4 Sample of Mallows(N, q). The red squares indicate the first time that an interval is sent to itself, and the lengths

and contents of the red squares are independent and identically distributed.

As shown by Basu and Bhatnagar [3, Lemma 2.1] and independently Crane and DeSalvo [9,

Lemma 5.2], if Π ∼ Mallows(N, q) with 0 < q < 1 and I = {a, … , a + n} ⊆ N is a finite “interval”

of consecutive integers then

ΠI
𝑑

= Mallows(I, q).

Moreover, as is easily seen from the definitions, if I = {a+ 1, … , a+ n} ⊆ Z is such an interval then

Σ ∼ Mallows(I, q) if and only if s(a) ◦Σ ◦ s(−a) 𝑑= Mallows(n, q).

Here and in the rest of the article s denotes the shift map given by i → i+ 1 and f (n) denotes the n-fold

composition of the function f with itself and f (−n)
denotes the n-fold composition of the inverse f −1

of f with itself. (So in particular s(k) is the map i → i + k and s(−k)
is the map i → i − k.)

We next discuss Gnedin and Olshanski’s bi-infinite Mallows model. For every 0 < q < 1, this is a

random bijection of Z, whose distribution we will denote by Mallows(Z, q). The work of Gnedin and

Olshanski provides several definitions, but all of them are rather involved. So we refer the reader to

the original paper [17] for the precise definition and mention only the properties and relevant facts we

will be using in what follows.

We will need the following notion of convergence. For a sequence 𝜎1 ∶ I1 → I1, 𝜎2 ∶ I2 → I2, …
of bijections of subsets of Z with the property that Z =

⋃
n In, we write 𝜎n → 𝜎 if for every i ∈ Z

there is an n = n(i) such that n′ ≥ n implies 𝜎n(i) = 𝜎(i).
As in [17], we call a permutation 𝜋 of Z balanced if

|{(i, 𝜋(i)) ∶ i < 1 ≤ 𝜋(i)}| = |{(i, 𝜋(i)) ∶ 𝜋(i) < 1 ≤ i}| < ∞.
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HE ET AL. 1065

As noted in [17], we may replace the 1 above by any fixed number in Z and obtain an equivalent

definition of balanced permutations. The random permutation Σ ∼ Mallows(Z, q) is almost surely

balanced.

The q-Pochhammer symbols (a; q)n and (a; q)∞ are defined as

(a; q)n =
n∏

i=1

(
1 − aqi−1

)
and (a; q)∞ =

∞∏

i=1

(
1 − aqi−1

)
,

Recall that, throughout the article, we will use s, r, 𝜌 to denote the maps given by

s(i) ∶= i + 1, r(i) ∶= −i, 𝜌(i) ∶= 1 − i.

The following lemma lists the facts on the Mallows(Z, q) distribution we will be relying on in our

proofs below.

Lemma 2.2. Let 0 < q < 1 and Σ ∼ Mallows(Z, q). We have

(i) If I ⊆ Z is a finite set of consecutive integers thenΣI
𝑑

= Mallows(I, q) [17, comments

below Theorem 6.1];

(ii) If I1 ⊆ I2 ⊆ … are finite sets of consecutive integers with
⋃

n In = Z, then ΣIn → Σ
almost surely [17, Proposition 7.6];

(iii) Σ−1
𝑑

= Mallows(Z, q) [17, Corollary 3.4];

(iv) s ◦Σ ◦ s−1
𝑑

= Mallows(Z, q) [17, Lemma 4.4];

(v) 𝜌 ◦Σ ◦ 𝜌
𝑑

= Mallows(Z, q) [17, Corollary 3.5];

(vi) P [|Σ(0)| > m] = Θ(qm) [17, Remark 5.2];

(vii) For each 𝑑 ∈ Z we have

P [Σ(0) = 𝑑] = (1 − q)(q; q)∞
∑

r,l≥0;
r−l=𝑑

qrl+r+l

(q; q)r(q; q)l
.

[17, Theorem 5.1].

We remark that it follows from Part (iv) that also

s(k) ◦Σ ◦ s(−k) 𝑑= Σ,

for all k ∈ Z. It now also follows that

Σ(i) − i
𝑑

= Σ(0),

for all i ∈ Z. Similarly, since 𝜌 = r ◦ s−1 = s ◦ r, we can combine (iv) and (v) to derive that

r ◦Σ ◦ r = s−1 ◦ 𝜌 ◦Σ ◦ 𝜌 ◦ s
𝑑

= s−1 ◦Σ ◦ s
𝑑

= Σ.

Finally, let us also remark that the Mallows(Z, q) process can be thought of as a stationary version

of the Mallows(N, q) process, as described in [30]. In particular, we will use the following result on

renewal processes, applied to the Mallows process [13, eq. 5.72].
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1066 HE ET AL.

Proposition 2.3. Let Xi be a sequence of independent and identically distributed random
variables taking values in N, with EXi = 𝜇 > 0, and let 𝜏(n) = inf{t ∶

∑t
i=1

Xi > n}. Then
X
𝜏(n) → X∗ in distributed, where X∗ has the size-bias distribution of the Xi, which means

P(X∗ = x) = xP(Xi = x)∕𝜇.

We will also use some of the tools developed in [15]. In particular we will use the arc chain {𝜅t}n
t=0

corresponding to Πn ∼ Mallows(n, q) with 0 < q < 1, defined by

𝜅t ∶= |{i ∈ [t] ∶ Πn(i) > t}|.

We speak of the (n, q) arc chain. We have the following.

Lemma 2.4 ([15], Proposition 3.3). Let Πn ∼ Mallows(n, q) with 0 < q < 1.

The arc chain (𝜅t)t=0,… ,n of Πn is a time-inhomogeneous Markov chain with transition
probabilities

P(𝜅t+1 = j|𝜅t = k) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(
1−qk

1−qn−t

)2

if j = k − 1,

qk−qn−t

1−qn−t ⋅
2−qk−qk+1

1−qn−t if j = k,

qk−qn−t

1−qn−t ⋅
qk+1−qn−t

1−qn−t if j = k + 1,

0 otherwise.

.

Lemma 2.5 ([15, Lemma 3.4]). Let Πn ∼ Mallows(n, q) and 𝜅 be its arc chain. Then

P[Πn(t + 1) = t + 1 |𝜅t = k] = (qk − qk+1)(qk − qn−t)
(1 − qn−t)2

, 0 ≤ t ≤ n.

(We mention that we have slightly adapted the statements from [15] in the above two lemmas.)

Analogously to the arc chain 𝜅t for Πn ∼ Mallows(N, q), we can define the arc-chain for

Π ∼ Mallows(N, q) with 0 < q < 1 setting

�̂� t ∶= |{i ∈ [t] ∶ Π(i) > t}|.

We speak of the (∞, q)-arc chain. It is straightforward to verify that (�̂� t)t≥0 forms a Markov chain

with the following transition probabilities.

P(�̂� t+1 = j|�̂� t = k) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(1 − qk)2 if j = k − 1,

2qk − q2k − q2k+1
if j = k,

q2k+1
if j = k + 1,

0 otherwise.

Alternatively, this can be seen by combining Lemma 2.4 with Lemma 3.2 below. As a side

remark, we mention that Gladkich and Peled [15] defined the (∞, q)-arc chain directly via the

transition probabilities given here, without explicitly mentioning the connection to the definition

we give here.
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HE ET AL. 1067

As explained in [15, Section 3.2], the Markov chain �̂� t has a unique stationary distribution 𝜈

given by

𝜈s ∶=

∏s
i=1

q2i−1

(1−qi)2
∑

t≥0

∏t
i=1

q2i−1

(1−qi)2

. (3)

Here, as usual, an empty product equals 1.

The following result provides a useful link between the (n, q) and the (∞, q) arc chains.

Proposition 2.6 ([15], Proposition 3.8). Set t = t(n). If both t → ∞ and n− t → ∞ then
the law of 𝜅t converges to the stationary distribution 𝜈s as n tends to infinity with q fixed.

Given two discrete probability distributions 𝜇1 and 𝜇2 on a countable set Ω, their total variation

distance is defined as

𝑑TV (𝜇1, 𝜇2) = max
A⊆Ω

|𝜇1(A) − 𝜇2(A)|.

A useful alternative expression is

𝑑TV (𝜇1, 𝜇2) =
1

2

∑

x∈Ω
|𝜇1(x) − 𝜇2(x)| =

∑

x∶𝜇
1
(x)>𝜇

2
(x)
𝜇1(x) − 𝜇2(x).

(For a proof, see for instance Proposition 4.2 in [26].) As is common, we will interchangeably use

the notation 𝑑TV(X,Y) ∶= 𝑑TV(𝜇, 𝜈) if X ∼ 𝜇1 and Y ∼ 𝜇2.

A coupling of two probability measures 𝜇, 𝜈 is a joint probability measure for a pair of random

variables (X,Y) satisfying X
𝑑

= 𝜇,Y
𝑑

= 𝜈. We will also speak of a coupling of X,Y as being a probability

space for (X′,Y ′)with X′
𝑑

= X,Y ′
𝑑

= Y . Another useful characterization of the total variational distance

is as follows.

Lemma 2.7. Let 𝜇 and 𝜈 be two probability distributions on the same countable set Ω.

Then

𝑑TV (𝜇, 𝜈) = inf{P [X ≠ Y] ∶ (X,Y) is a coupling of 𝜇 and 𝜈}.

There is a coupling that attains this infimum.

(For a proof, see for instance [26], Proposition 4.7 and Remark 4.8.)

For the proofs of the normal limiting laws in Theorems 1.1 and 1.2 we will make use of a result

on stopped two-dimensional random walks by Gut and Janson [19] that seems tailor made for our

purposes. Here we consider an i.i.d. sequence (X1,Y1), (X2,Y2), … and for t > 0 we define 𝜏(t) as the

first k such that X1 + · · · + Xk exceeds t:

𝜏(t) = inf{k ≥ 1 ∶ X1 + · · · + Xk > t}. (4)

The result of Gut and Janson we’ll use states that:

Theorem 2.8 ([19], Theorem 3). Let (X1,Y1), (X2,Y2), … be an i.i.d. sequence and
let 𝜏(n) be as given by (4). Suppose that EX1 > 0, that Var(X1),Var(Y1) < ∞ and
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1068 HE ET AL.

Var(Y1EX1 − X1EY1) > 0. Then

∑
𝜏(t)
i=1

Yi −
(

EY
1

EX
1

)
t

√
t

𝑑

−−→
t→∞



(

0,
Var(Y1EX1 − X1EY1)

(EX1)3

)

.

For the proofs of the normal limiting laws in Theorems 1.1 and 1.2 it will be convenient to use the

Cramer-Wold device. A proof can for instance be found in [6, Theorem 29.4].

Theorem 2.9 (Cramer-Wold device). For random vectors Xn = (Xn,1, … ,Xn,k)
and Y = (Y1, … ,Yk), a necessary and sufficient condition for Xn

𝑑

−−→Y is that
∑k

u=1
tuXn,u

𝑑

−−→
∑k

u=1
tuYu for each (t1, … , tk) ∈ Rk

.

Several times, we are going to rely on the following result of Basu and Bhatnagar [3].

Lemma 2.10 ([3, Lemma 5.5]). Let W1,W2, … be an i.i.d. sequence of random
variables with EW2

i <∞. Then

max1≤i≤n Wi√
n

→ 0

in probability.

We will also make use of the following fact. Even though it seems pretty standard we have not been

able to find a convenient reference. We therefore provide a short proof.

Lemma 2.11. Suppose that (Wt)t≥0 is a Markov chain with state space {0} ∪ N, started
in state W0 = 0, and whose transition probabilities satisfy pi,j = 0 if and only if |i− j| ≠ 1

and liminfi→∞pi,i−1 > 1∕2. Let

T ∶= inf{t ≥ 1 ∶ Wt = 0}.

Then ETk
< ∞ for all k ∈ N.

Proof. Let Ti denote the number of steps to reach i− 1, in the chain starting from W0 = i.
Let i0 ∈ N, p > 1∕2 be such that pi,i−1 > p for all i ≥ i0. We have

P(Ti > t) ≤ P(Bi(t, p) ≤ t∕2) = exp [−Ω(t)] ,

for each i ≥ i0, using the Chernoff inequality (see for instance [23], Corollary 2.3). This

implies

ETk
i ≤

∑

t
tk ⋅ P(Ti ≥ t) < ∞,

for all i ≥ i0 and k ∈ N.

Starting from W0 = 0, we of course move to state 1 with probability one in the first

step, giving

ETk = E(1 + T1)k =
k∑

j=0

(
n
j

)

ETj
1
,

for all k ∈ N. In particular, it suffices to show ETk
1
<∞ for all k ∈ N.
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HE ET AL. 1069

Similarly, by considering the first step of the chain we see for each i ≥ 1 and k ∈ N:

ETk
i = pi,i−1 + pi,i−1 ⋅ E

(
1 + T ′i + T ′i+1

)k

= pi,i−1 + pi,i+1 ⋅
∑

0≤k1 ,k2≤k,
k1+k2≤k

(
k

k1, k2, k − (k1 + k2)

)

ETk
1

i ETk
2

i+1
, (5)

where we take T ′i
𝑑

= Ti−1,T ′i+1

𝑑

= Ti+1 independent in the first line. (To see the first inequal-

ity, note that in the first step we move to i− 1 with probability pi,i−1. If, on the other hand,

we move to i+ 1 in the first step then we first have to wait until we reach state i again, and

then we have to wait until we reach i − 1 from i). Rewriting (5), we obtain

ETk
i =

1

1 − pi,i−1

⋅

⎛
⎜
⎜
⎜
⎜
⎝

pi,i−1 + pi,i+1 ⋅
∑

0≤k1 ,k2≤k,
k1+k2≤k,

k1≠k

(
k

k1, k2, k − (k1 + k2)

)

ETk
1

i ETk
2

i+1

⎞
⎟
⎟
⎟
⎟
⎠

.

We can thus apply induction on k to show that ETk
i
0
−1
< ∞ for all k ∈ N. Repeating

the argument, we also have ETk
i <∞ for i = i0 − 2, i0 − 3, … and so on until i = 1. ▪

3 THE PROOF OF THEOREM 1.1

We define a sequence of regeneration timesT0 < T1 < T2 < · · · as follows:

T0 ∶= 0,

Ti ∶= inf{j > Ti−1 s.t. Π([j]) = [j]} (i = 1, 2, … ).

In Section 4 of [3], Basu and Bhatnagar show that T1 has finite second moment.

Lemma 3.1. ET2

1
< ∞.

(We combine Lemmas 4.1 and 4.5 of [3].) We also define the interarrival times

Xi = Ti − Ti−1,

and

𝜏(n) = inf{t ∶ Tt > n}.

Looking at the description of Π in Section 2, it is not difficult to see that conditional on the event

T1 = t, the bijection i → Π(i + t) − t is distributed like Π. It follows that the interarrival times

X1,X2, … are i.i.d. Moreover, writing i ∶= {Ti−1 + 1, … ,Ti} we see that Π maps i bijectively

onto i, and in fact the permutations Σ1 ∶ [X1] → [X1],Σ2 ∶ [X2] → [X2], … given by

Σi(j) ∶= Π(Ti−1 + j) − Ti−1 for j = 1, … ,Xi,

are i.i.d. as well.

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21169 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [17/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1070 HE ET AL.

With this regenerative structure, the following lemma follows.

Lemma 3.2. For 0 < q < 1 and n ∈ N, let Πn ∼ Mallows(n, q) and Π ∼ Mallows(N, q).
There exists a coupling of Πn and Π satisfying

P(Πn(i) = Π(i) for all 1 ≤ i ≤ n − log
2n) = 1 − o(1),

and in fact, log
2n can be replaced with any function going to ∞ with n.

Proof. Let Π ∼ Mallows(N, q), and recall that Π[n] ∼ Mallows(n, q). We claim that this

coupling works. Indeed, it’s clear thatΠ(i) = Π[n](i) up until T
𝜏(n)−1. But n−T

𝜏(n)−1 ≤ X
𝜏(n),

and X
𝜏(n) converges to a limiting distribution by Proposition 2.3. In particular, the

probability that it is larger than log
2n (or any function going to ∞) goes to 0. ▪

By this last lemma, with probability 1−o(1), the number of i-cycles inΠn differs by at most 2log
2n

from the number of i-cycles of Π that are completely contained in [n] (for each i = 1, … ,𝓁).

Fix an 𝓁 ∈ N, and let a1, … , a𝓁 be a sequence of real numbers, not all zero. For 𝜋 a permutation,

we define 𝜑(𝜋) ∶=
∑𝓁

j=1
ajCj(𝜋) and let Yi = 𝜑(Σi).

We plan to apply Theorem 2.8 to the i.i.d. sequence (X1,Y1), (X2,Y2), … . For this we first need to

establish the conditions of that theorem are met.

Lemma 3.3. We have EX1 > 0 and Var(X1),Var(Y1) <∞.

Proof. Since X1 ≥ 1 by definition, we trivially have EX1 > 0. As |𝜑(Σ1)| ≤ maxi |ai| ⋅
X1, it suffices to show that Var(X1) < ∞. But this has already been established by

Lemma 3.1. ▪

Lemma 3.4. Var(Y1EX1 − X1EY1) > 0.

Proof. We first note that, for each i ∈ N, there is a positive probability that Σ1 consists of

a single i-cycle. (This happens for instance when Z1 = i,Z2 = 1, … Zi = i − 1.)

Aiming for a contradiction, assume that Y1EX1 − X1EY1 is almost surely constant.

Whenever Σ1 consists of a single > 𝓁 cycle, we have Y1 = 0. In particular Y1EX1−X1EY1

can equal both (𝓁+1)EY1 and (𝓁+2)EY1 with positive probability. The quantity Y1EX1−
X1EY1 being an almost sure constant now implies EY1 = 0.

Let 1 ≤ i ≤ 𝓁 be such that ai ≠ 0. There is a positive probability that Y1EX1 = 0

and a positive probability that Y1EX1 = aiEX1. But that implies ai = 0, contradicting the

choice of i.
It follows that Y1EX1 − X1EY1 is not almost surely constant. In other words,

Var(Y1EX1 − X1EY1) > 0. ▪

Having established Lemmas 3.3 and 3.4, we can apply Theorem 2.8 to conclude that

∑
𝜏(n)
i=1

Yi −
(

EY
1

EX
1

)
n

√
n

𝑑

−−→
n→∞

 (0, (EX1)−3
Var(Y1EX1 − X1EY1)).

By Lemma 3.2 and the definition of 𝜏(n) we have

|
|
|
|
|
|

𝜑(Πn) −
𝜏(n)∑

j=1

Yj

|
|
|
|
|
|

≤ max
i=1,… ,𝓁

|ai| ⋅
(
X
𝜏(n) + log

2(n)
)
, (6)
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HE ET AL. 1071

with probability 1−o(1), under the coupling provided by Lemma 3.2. Moreover, applying Lemmas 2.10

and 3.1 we have that, with probability 1 − o(1), the RHS of (6) is o(
√

n). We can conclude:

𝜑(Πn) −
(

EY
1

EX
1

)
n

√
n

𝑑

−−→
n→∞



(

0,
Var(Y1EX1 − X1EY1)

(EX1)3

)

.

Recalling that Y1 =
∑𝓁

i=1
aiCi(Σ1) and setting mi ∶= ECi(Σ1

)
EX

1

, we can write

𝜑(Πn) −
(

EY
1

EX
1

)
n

√
n

= a1

C1(Πn) − m1n
√

n
+ · · · + a𝓁

C𝓁(Πn) − m𝓁n
√

n
.

Setting

Ui ∶=
Ci(Σ1)EX1 − X1ECi(Σ1)

(EX1)3∕2
,

we see that

Y1EX1 − X1EY1

(EX1)3∕2
= a1U1 + · · · + a𝓁U𝓁 .

Therefore, if we set Pij ∶= Cov(Ui,Uj) then

Var(Y1EX1 − X1EY1)
(EX1)3

=
𝓁∑

i=1

𝓁∑

j=1

aiajPij.

This shows that if (N1, … ,N𝓁) ∼𝓁(0,P𝓁) then

a1N1 + · · · + a𝓁N𝓁
𝑑

=
(

0,
Var(Y1EX1 − X1EY1)

(EX1)3

)

.

We’ve thus shown that

a1

C1(Πn) − m1n
√

n
+ · · · + a𝓁

C𝓁(Πn) − m𝓁n
√

n
d

−−→
n→∞

a1N1 + · · · + a𝓁N𝓁 ,

for all a1, … , a𝓁 . An application of Theorem 2.9 now allows us to conclude

(
C1(Πn) − m1n

√
n

, … ,

c𝓁(Πn) − m𝓁n
√

n

)
𝑑

−−→
n→∞

(N1, … ,N𝓁),

completing the proof of Theorem 1.1.

4 THE PROOF OF THEOREM 1.2

The proof is very similar to the proof of Theorem 1.1. We first introduce a two-sided sampling pro-

cedure in the case 0 < q < 1 for a Mallows(n, q) distributed permutation Πn taking

⌊
n
2

⌋
iterations.
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1072 HE ET AL.

During iteration i ≥ 1 we determine the images of i and n−i+1. Again we take Z1, … ,Zn independent

with Zi ∼ TruncGeo(n + 1 − i, q). In the first iteration we set

Πn(1) = Z1,

Πn(n) = the Z2-th largest number in the set [n] ⧵ {Π(1)}.

In the i-th iteration we set

Πn(i) = the Z2i−1-th smallest element of [n] ⧵ {Πn(j) ∶ j < i or j > n + 1 − i},
Πn(n + 1 − i) = the Z2i-th largest element of [n] ⧵ {Πn(j) ∶ j ≤ i or j > n + 1 − i}.

(If n is odd then after

⌊
n
2

⌋
iterations, the image of ⌈ n

2
⌉ has formally speaking not yet been determined,

but of course there will be only one possible element of [n] left.)

That this adapted procedure indeed produces a random permutation sampled according to the

Mallows(n, q) measure follows analogously the the corresponding argument for the original sampling

procedure: For every 𝜋 ∈ Sn there is a choice of (k1, … , kn) ∈ [n] × [n − 1] × · · · × [1] such that

{Πn = 𝜋} = {Z1 = k1, … ,Zn = kn}. Again P(Z1 = k1, … ,Zn = kn) ∝ qk
1
+···+kn−n

. We also again

have inv(𝜋) = k1 + · · · + kn − n, because when we are determining Πn(i) with i ≤ n∕2 then the number

of i < j < n+1− i such that i, j form an inversion is precisely Z2i−1−1, and similarly for Πn(n+1− i).
Recall that we use rn to denote the map i → n + 1 − i. Analogously to Lemma 3.2, we have

Lemma 4.1. Let 0 < q < 1 and Πn ∼ Mallows(n, q) and let Π,Π′ ∼ Mallows(N, q) be
independent. There is a coupling for Πn,Π,Π′ such that

P

(
Πn(i) = Π(i) for all 1 ≤ i ≤ n∕2 − log

2n, and

Πn(i) = (rn ◦Π′ ◦ rn)(i) for all n∕2 + log
2n ≤ i ≤ n

)

= 1 − o(1).

Moreover, the log
2n can be replaced with any function going to ∞ with n.

Proof. The proof is similar to the proof of Lemma 3.2. By Lemma 3.2 applied to Π and

Π′, we can couple Π,Π′ with independent Mallows(n∕2, q) permutations, Πn∕2,Π′n∕2
(for

simplicity, we write n∕2 even if n is odd, where it should be rounded either up or down

as needed), such that P(Πn∕2(i) = Π(i),Π′n∕2
(i) = Π′(i) for all 1 ≤ i ≤ n∕2 − log

2n) =
1 − o(1). We now claim that we can couple Πn with Πn∕2,Π′n∕2

such that

P

(
Πn(i) = Πn∕2(i) for all 1 ≤ i ≤ n∕2 − log

2n, and

Πn(i) = (rn ◦Π′n∕2
◦ rn)(i) for all n∕2 + log

2n ≤ i ≤ n

)

= 1 − o(1),

and this would immediately finish the proof, since any coupling with these bivariate

marginals would satisfy the lemma.

To see the claim, note that (Πn)[n∕2] and (Πn)[n∕2+1,n] are independent Mallows(n∕2, q)
(see e.g., Lemma 2.3 of [20]), and so can be coupled to perfectly agree with Πn∕2 and

rn ◦Π′n∕2
◦ rn on the intervals [n∕2] and [n∕2, n]. Now if Πn([k]) = [k] for k ≤ n∕2, then

Πn and Πn∕2 agree on that interval, since then Πn(i) = (Πn)[1,n∕2](i) = Πn∕2(i) for i ∈
[k], and similarly for rn ◦Π′n∕2

◦ rn and intervals of the form [k, n]. Thus, the number of i
with disagreements is bounded by the length of the smallest interval [a, b] with a ≤ n∕2,

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21169 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [17/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HE ET AL. 1073

b ≥ n∕2, and Πn([a]) = [a] and Πn([b, n]) = [b, n]. However, this random variable is

stochastically dominated by X
𝜏(n∕2), since if we couple Πn with a Mallows(N, q) process,

then the length of the interval is b− a = X
𝜏(n∕2) unless X

𝜏(n∕2) > n, in which case X
𝜏(n∕2) is

strictly larger. But now we are done, since X
𝜏(n∕2) converges to a limiting distribution by

Proposition 2.3, and so the probability that Πn disagrees with either Πn∕2 or rn ◦Π′n∕2
◦ rn

for a growing number of locations goes to 0. ▪

Recall that rn ◦Πn
𝑑

= Mallows(n, 1∕q) if Πn ∼ Mallows(n, q). We have the following corollary.

Corollary 4.2. Let q > 1, Πn ∼ Mallows(n, q) and Π,Π′ ∼ Mallows(N, 1∕q) be inde-
pendent. Let m =

⌊
n
2
− (log n)2

⌋
. There exists a coupling between Πn and Π,Π′ such that

that

P
[
(rn ◦Πn,Πn ◦ rn) and (Π,Π′) agree on 1, … ,m

]
= 1 − o(1).

Proof. We let Π∗n ∶= rn ◦Πn. Then Π∗n
𝑑

= Mallows(n, 1∕q) and we can couple Π∗n with

Π,Π′ ∼ Mallows(N, 1∕q) independent as in the previous lemma. With probability 1−o(1),
we have

(rn ◦Πn)(i) = Π∗n(i) = Π(i),

and

(rn ◦Πn ◦ rn)(i) = Π∗n(rn(i)) = (rn ◦Π′ ◦ rn)(rn(i)) = (rn ◦Π′)(i),

for all i ≤ m. Now notice that (rn ◦Πn ◦ rn)(i) = (rn ◦Π′)(i) if and only if (Πn ◦ rn)(i) =
Π′(i). ▪

For q > 1, we letΠn ∼ Mallows(n, q) andΠ,Π′ ∼ Mallows(N, 1∕q) be coupled as in Corollary 4.2.

We define

T0 = 0,

Ti = inf{j > Ti−1 ∶ Π([j]) = Π′([j]) = [j]} (i = 1, 2, … ),

We next show the analogue of Lemma 3.1.

Lemma 4.3. ET2

1
< ∞.

Proof. Let �̂�, �̂�
′

denote the arc-chains for Π, respectively Π′, as defined in Section 2.

Note that Π([j]) = [j] if and only if �̂� j = 0 and Π′([j]) = [j] if and only if �̂�
′
j = 0.

Thus T1 is the first return to the origin of the two-dimensional random walk (�̂� t, �̂�
′
t),

started at (�̂�0, �̂�
′
0) = (0, 0). For convenience, let us write 𝜆t ∶= max(�̂� t, �̂�

′
t). We observe

that

P(𝜆t+1 = i − 1|𝜆t = i, 𝜆t−1 = it−1, … , 𝜆1 = i1) ≥ P(�̂� t+1 = i − 1|�̂� t = i)2 =
(
1 − (1∕q)i

)4

,

for all i ≥ 1 and i1, … , it−1 ∈ {0}∪N and all t. So, while (𝜆t)t≥0 is itself not necessarily a

Markov chain, it is stochastically dominated by the chain (Wt)t≥0 on {0} ∪N with starting
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1074 HE ET AL.

state W0 = 0, and transition probabilities

P(Wt+1 = j|Wt = i) =
⎧
⎪
⎨
⎪
⎩

(
1 − (1∕q)i

)4

if j = 1 − 1 and i ≥ 1,

1 −
(
1 − (1∕q)i

)4

if j = 1 + 1 and i ≥ 0,

0 otherwise.

The result now immediately follows from Lemma 2.11. ▪

We also define Xi ∶= Ti − Ti−1 and 𝜏(t) = inf{j ∶ Tj > t} for all t > 0. Again it can be easily seen

from the iterative procedure generating Π and Π′ than X1,X2, … are i.i.d. Moreover, if we define the

maps Σ1,Σ′1 ∶ [X1] → [X1],Σ2,Σ′2 ∶ [X2]→ [X2], … by setting

Σi(j) ∶= Π(Ti−1 + j) − Ti−1, Σ′i(j) ∶= Π′(Ti−1 + j) − Ti−1,

then (Σ1,Σ′1), (Σ2,Σ′2), … are i.i.d. as well.

We write i ∶= {Ti−1 + 1, … ,Ti}. Observe that, with probability 1 − o(1), for each i such that

Ti < n∕2 − log
2n we have

Πn [i] = rn [Π [i]] = rn [i] ,

Πn [rn [i]] = Π′ [i] = i,

by Corollary 4.2. In other words, writing i ∶= i ∪ rn [i], we have

Πn [i] = i,

for each i such that Ti < n∕2− log
2n. In particular, every cycle of Πn is either completely contained in

one of1, … ,
𝜏(n∕2)−1 or it contains some number between min(n∕2−log

2n,T
𝜏(n∕2)−1) and max(n∕2+

log
2n, n + 1 − T

𝜏(n∕2)). We observe that the number of cycles of Πn length 2i contained in i equals

the number of cycles of Πn ◦Πn of length i contained in i. Now note that on i we have Πn ◦Πn =
(Πn ◦ rn) ◦ (rn ◦Πn) = Π′ ◦Π. In particular, the number cycles of Πn ◦Πn of length i contained in i
equals the number of cycles of Σ′i ◦Σi of length i.

We fix a1, … , a𝓁 ∈ R, not all zero, and set

𝜑(𝜋) ∶=
𝓁∑

i=1

aiC2i(𝜋), 𝜓(𝜋) ∶=
𝓁∑

i=1

aiCi(𝜋),

Yi ∶= 𝜓(Σ′i ◦Σi).

By the observations in the previous paragraph

|
|
|
|
|
|

𝜑(Πn) −
𝜏(n∕2)∑

i=1

Yi

|
|
|
|
|
|

≤ 2max
i

|ai| ⋅
(
X
𝜏(n∕2) + log

2n
)
= o

(√
n
)
, (7)

with probability 1 − o(1) (where the last equality holds because X
𝜏(n∕2) = o(

√
n) with probability

1 − o(1) by Lemmas 2.10 and 4.3). Completely analogously to Lemmas 3.3 and 3.4 we have
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HE ET AL. 1075

Lemma 4.4. EX1 > 0 and VarX1,VarY1 < ∞.

Lemma 4.5. Var(Y1EX1 − X1EY1) > 0.

We can thus conclude from Theorem 2.8 that

∑
𝜏(n∕2)
i=1

Yi −
(

EY
1

EX
1

)
⋅ (n∕2)

√
n∕2

d

−−→
n→∞



(

0,
Var(Y1EX1 − X1EY1)

(EX1)3

)

.

Setting 𝜇2i ∶=
ECi(Σ′1 ◦Σ1

)
2EX

1

and using (7) this gives

a1 ⋅
C2(Πn) − 𝜇2n

√
n

+ · · · + a𝓁 ⋅
C2𝓁(Πn) − 𝜇2𝓁n

√
n

d

−−→
n→∞

a1N1 + · · · + a𝓁N𝓁 ,

where (N1, … ,N𝓁)
𝑑

= (0,P) with

Pij ∶= Cov

(
Ci(Σ′1 ◦Σ1)EX1 − X1ECi(Σ′1 ◦Σ1)

√
2 ⋅ (EX1)3∕2

,

Cj(Σ′1 ◦Σ1)EX1 − X1ECj(Σ′1 ◦Σ1)
√

2 ⋅ (EX1)3∕2

)

.

Again the result follows by an application of the Cramer-Wold device.

5 THE PROOF OF THEOREM 1.3

Part (ii) of Lemma 2.2 says that, almost surely, ΣIn → Σ for In ∶= {−n, … , n}. It however leaves

open how fast the convergence is. The following lemma shows that in fact, with high probability,

for the vast majority of elements of In, the values of Σ and ΣIn agree. This will be very helpful

for us.

Lemma 5.1. Let 0 < q < 1 and Σ ∼ Mallows(Z, q) and In ∶= {−n, … , n}, Jn ∶=
{−n+ 1, … , n}. Almost surely there exists a (random) N ∈ N such that ΣIn(i) = ΣJn (i) =
Σ(i) for all n ≥ N and i with |i| ≤ n − log

2n.

Proof. We define the event Bn by

Bn ∶=

{
|Σ(i) − i| < 5 log

1∕q n for all i ∈ In, and

|Σ(j) − j| ≤ 5 log
1∕q n + |j| − n for all j ∉ In

}

.

By Lemma 2.2, Part (vi) we have

P
[
Bc

n
]
= O

(

(2n + 1)q5 log
1∕q n + 2

∑

j>n
q5 log

1∕q n+j−n

)

= O(n−4).

We will show that Bn implies the conclusion of the lemma. Let a ≥ 0 and consider the

intervals In+a. Let i be such that |i| < n − 10 log
1∕q n. If Bn holds, then for all j < −n we
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1076 HE ET AL.

have Σ(j) < −n + 5 log
1∕q n ≤ Σ(i). Similarly j > n implies Σ(j) > n − 5 log

1∕q n ≥ Σ(i).
Thus Bn implies

|{j ∈ In+a ∶ Σ(j) < Σ(i)}| = a + |{j ∈ In ∶ Σ(j) < Σ(i)}|.

As

ΣIn+a(i) = −n − a + |{j ∈ In+a ∶ Σ(j) < Σ(i)}|,

the sequence ΣIn+a(i) is constant for all a ≥ 0. By Lemma 2.2, Part (ii), with probability one

there is some n′ such that for all n′′ ≥ n′ we have ΣIn′′ (i) = Σ(i). There is some a ≥ 0 such

that n′ ≤ n + a, so that in particular we must have ΣIn (i) = Σ(i). Similarly, ΣJn (i) = Σ(i).
By the Borel–Cantelli lemma Bn holds for all but finitely many n. ▪

We also require the following Markov chain representation for the times Ti. LetΠ ∼ Mallows(N, q).
Consider the process

Mn = max
1≤i≤n

Π(i) − n

on N. This is a positive recurrent Markov process—see [3]. The Markov process can be described in

terms of the geometric random variables defining the Mallows process. Specifically, the walk can be

described as moving from Mn to Mn+1 = max(Mn,Zn) − 1 where the Zn are independent geometric

random variables. Let Ri denote the hitting time of i and let R+i denote the return time at i. Then if

the chain is started from 0, R+
0

is distributed as the size of an excursion in the Mallows process. This

Markov chain was introduced in [3] to study the moments of the Ti. We are now ready for the proof of

Theorem 1.3.

We start by considering Π2n+1. We let Σ ∼ Mallows(Z, 1∕q), and let S0 be the smallest integer (we

will show that this exists) such that Σ([−S0, S0]) = [−S0, S0], and then let Si be defined inductively

as the smallest number larger than Si−1 such that Σ preserves [−Si, Si]. To see that all these values are

finite almost surely, we note that the times Ti for i ∈ Z for which Σ([Ti+1,Ti+1]) = [Ti+1,Ti], with the

convention that T0 contains 0, forms a stationary renewal process, with the Ti for i ≠ 0 the same as for

the Mallows(N, 1∕q) process, and T0 having its size-bias distribution (see Theorem 3.2 of [30]). Then

T0 is finite almost surely, and given T0, the two sides are independent and behave like Mallows(N, 1∕q)
processes. Then the Si correspond to a simultaneous renewal on both sides of this process, with S0

being the first time this occurs, which are the return times in a product of two independent copies of

the positive recurrent Markov chain Mi defined above, which is thus also positive recurrent. Thus, all

Si are finite almost surely. By definition, Σ ◦ r preserves [−S0, S0] and exchanges [Si−1 + 1, Si] and

[−Si,−Si−1 − 1].
We then immediately see that there are no infinite cycles in Σ ◦ r, and the odd cycles must be

contained in the interval [−S0, S0]. Thus, the C2i+1(Π[−n,n]) → C2i+1(Π[−S
0
,S

0
]) almost surely. The result

for Π2n+1 follows by noting that C2i+1(Π2n+1)
𝑑

= C2i+1(Π[−n,n]) by Lemma 2.2 and the observations that

precede it.

The proof of the result forΠ2n follows in exactly the same manner, except centered at
1

2
rather than 0,

and using 𝜌 instead of r.

Technically speaking, the proof of Theorem 1.3 is not yet complete, as we have not yet shown

the random vectors (C1(r ◦Σ),C3(r ◦Σ), … ) and (C1(𝜌 ◦Σ),C3(𝜌 ◦Σ), … ) have distinct probability

distributions. This will however follow immediately from Theorem 1.7, which we will prove in a little

while.
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HE ET AL. 1077

We also note the following consequence which will be useful later.

Lemma 5.2. Let Σ ∼ Mallows(Z, q) for 0 < q < 1. Almost surely, Σ has no cycles of
infinite length.

Proof. Any cycle must be contained in an interval [−S0, S0], [Si−1 + 1, Si], or

[−Si,−Si−1 − 1], all of which are finite almost surely. ▪

6 THE PROOF OF THEOREM 1.4

6.1 The proof of Part (i) of Theorem 1.4

Let 0 < q < 1, let Πn ∼ Mallows(n, q) and Σ ∼ Mallows(Z, q) and let i ∈ N be fixed. Using that

0 ≤ Ci(Πn)∕n ≤ 1, it follows from Theorem 1.1 that

lim
n→∞

ECi(Πn)
n

= mi. (8)

Setting In ∶= {−n, … , n}, by Part (i) of Lemma 2.2, we have Ci(Π2n+1)
𝑑

= Ci(ΣIn ). We define the

events

E ∶= {ΣIn(j) = Σ(j) for all − n + log
2n ≤ j ≤ n − log

2n},
F ∶= {|Σ(j) − j| ≤ log

2n for all j ∈ In}.

Then P(E) = 1− o(1) by Lemma 5.1. By Part (vii) of Lemma 2.2 and the remarks that follow that

lemma P (Fc) = O
(

n ⋅ qlog
2n
)
= o(1).

It follows that for all j with |j| < n − i ⋅ log
2n we have

|
|P(j in an i-cycle of ΣIn ) − P(j in an i-cycle of Σ)|| ≤ P(Ec) + P(Fc) = o(1).

The number of elements of In in an i-cycle of ΣIn equals i ⋅ Ci(ΣIn). We see that

i ⋅ ECi(Π2n+1) =
∑

−n≤j≤n
P(j in ani-cycle of ΣIn )

=
∑

−n≤j≤n
P(j in an i-cycle of Σ) + o(n)

= (2n + 1) ⋅ P(0 in an i-cycle of Σ) + o(n), (9)

where we use Part (iv) of Lemma 2.2 (together with the remarks following the lemma) for the last line.

Dividing the LHS and RHS of (9) by 2n + 1 and sending n → ∞, and recalling (8), proves the result.

6.2 The proof of Part (ii) of Theorem 1.4

By Lemma 5.2, Σ ∼ Mallows(Z, q) for 0 < q < 1 almost surely has no infinite cycles. By Part (i) of

Theorem 1.4 we have

∞∑

i=1

imi =
∞∑

i=1

P
[
0 in an i-cycle of Σ

]
= P

[
0 lies in a finite cycle of Σ

]
= 1,

the last equality due to Lemma 5.2.
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1078 HE ET AL.

6.3 The proof of Part (iii) of Theorem 1.4

We start by giving an alternative expression for m1 by employing the tools developed by Gladkich and

Peled [15].

Lemma 6.1.

m1 =
∑

s≥0

𝜈sq2s(1 − q), (10)

with 𝜈 as given in (3).

Proof. Let Π2n+1 ∼ Mallows(2n + 1, q). By Lemma 5.1 we have that

P [Π2n+1(n + 1) = n + 1] → P [Σ(0) = 0] , as n →∞,

where Σ ∼ Mallows(Z, q). Now,

lim
n→∞

P [Π2n+1(n + 1) = n + 1]

=

lim
n→∞

∑

s≥0

P [𝜅n+1 = s] ⋅ P [Π2n+1(n + 1) = n + 1 | 𝜅n+1 = s] . (11)

By Lemma 2.5 and Proposition 2.6 we have for all s ≥ 0 that

lim
n→∞

P [Σ2n+1(n + 1) = n + 1 | 𝜅n+1 = s] = q2s(1 − q),

lim
n→∞

P [𝜅n+1 = s] = 𝜈s.

So the summands on the right hand side of (11) converge pointwise to 𝜈sq2s(1 − q) as

n → ∞. Moreover, by Lemma 2.5, we have the bound

P [𝜅n+1 = s] ⋅ P [Π2n+1(n + 1) = n + 1 | 𝜅n+1 = s] ≤ (q
s − qs+1)(qs − qn+1)
(1 − qn+1)2

,

≤ q2s(1 − q) 1

(1 − q)2
.

Let g(s) = q2s∕(1−q), we observe that
∑

s≥0
g(s) < ∞. We conclude that the summands

in (11) are bounded by the integrable function g(s), so by the dominated convergence

theorem we have

m1 = P [Σ(0) = 0] =
∑

s≥0

𝜈sq2s(1 − q).

▪

Next, we will show that m1 = 1 − 2q + O(q2) as q ↓ 0 be analyzing (10). Let Kq denote the

denominator in the expression for 𝜈 given in (3). Define ts =
∏s

i=1
q2i−1∕(1 − qi)2. The ts satisfy for

s ≥ 1 the recursion relation

ts+1 = ts ⋅
q2

(1 − qs+1)2
≤

q2ts
(1 − q)2

≤ t1
(

q2

(1 − q)2

)s−1

= q
(1 − q)2

(
q2

(1 − q)2

)s−1

.
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HE ET AL. 1079

Thus

Kq = 1 +
∑

s≥1

ts ≤ 1 + q
(1 − q)2

∑

s≥1

(
q2

(1 − q)2

)s−1

.

If q < 1∕2 then q2∕(1 − q)2 < 1, in which case the above equals

1 + q
(1 − q)2

⋅
1

1 − q2

(1−q)2

= 1 + q
(1 − q)2 − q2

= 1 − q
1 − 2q

.

Then

𝜈0 =
1

Kq
≥

1 − 2q
1 − q

,

so that by m1 ≥ 𝜈0(1 − q) we obtain

m1 ≥ 𝜈0(1 − q) ≥ 1 − 2q. (12)

We also have the simple bound

Kq ≥ 1 + t1 = 1 + q
(1 − q)2

,

by which

m1 ≤
1 − q

1 + q
(1−q)2

+
∑

s≥1

q2s(1 − q) = (1 − q)3
1 − q + q2

+ O(q2). (13)

The function (1 − q)3∕(1− q+ q2) is infinitely differentiable at q = 0, where its first derivative equals

−2. Thus

(1 − q)3
1 − q + q2

= 1 − 2q + O(q2).

Together with (12) and (13) this completes the the proof that m1 = 1 − 2q + O(q2).
We now proceed to show that m1 = (1−q)∕4+o(1−q) as q ↑ 1. Fix some 0 < 𝜀 <

1

2
, let 0 < q < 1

be so close to 1 that
1

q
≤ (1 + 𝜀) and let S = {s ∈ N≥0 ∶ |qs − 1

2
| < 𝜀}. If qs

<

1

2
− 𝜀, then by (3) we

have the recursion

𝜈s+1 = 𝜈s
1

q

(
qs

1 − qs

)2

≤ 𝜈s𝛿 where 𝛿 ≤ (1 + 𝜀)

(
1

2
− 𝜀

1

2
+ 𝜀

)2

< 1.

Then

∑

s>max(S)
𝜈s ≤ 𝜈max(S)

∑

s>max(S)
𝛿

s−max(S) = 𝜈max(S)
𝛿

1 − 𝛿
.

We now claim that 𝜈max(S) = o(1) as q ↑ 1. Let s∗ =
⌈

logq(
1

2
(1 − 𝜀))

⌉
, then for k ≥ 0 we have

𝜈s∗+k+1 ≤ 𝜈s∗
1

q

(
qs∗+k+1

1 − qs∗+k+1

)

≤ 𝜈s∗ (1 + 𝜀)
(

1 − 𝜀
1 + 𝜀

)2

< 𝜈s∗ .
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1080 HE ET AL.

So

1 ≥

max(S)∑

s=s∗
𝜈s ≥ (max(S) − s∗)𝜈max(S).

By

max(S) − s∗ =
⌊

logq

(
1

2
+ 𝜀

)⌋
−

⌈
logq

(
1

2
+ 𝜀

2

)⌉
→ ∞ as q ↑ 1,

we indeed have 𝜈max(S) = o(1) as q ↑ 1.

Similarly, if qs
>

1

2
+ 𝜀, then 𝜈s+1 ≥ 𝜈s ̃𝛿, where ̃𝛿 ≥

1

2
+𝜀

1

2
−𝜀
> 1. Then

∑

0≤s<min(S)
𝜈s ≤ 𝜈min(S)

∑

0≤s<min(S)

̃
𝛿

min(S)−s
≤ 𝜈min(S)

̃
𝛿

1 − ̃
𝛿

.

By the same reasoning as before, 𝜈min(S) is also o(1) as q ↑ 1. We conclude by Lemma 6.1 that

m1 =
∑

s∈S
(1 − q)q2s

𝜈s +
∑

s∉S
𝜈sq2s(1 − q) =

∑

s∈S
(1 − q)q2s

𝜈s + o(1 − q), as q ↑ 1.

By the definition of S we also have

(1 − 𝜀)(1 − q)1
4

∑

s∈S
𝜈s ≤

∑

s∈S
(1 − q)q2s

𝜈s ≤ (1 + 𝜀)(1 − q)1
4

∑

s∈S
𝜈s.

Now
∑

s∈S 𝜈s = 1 − o(1) as q ↑ 1, the result follows.

We now show the limits

(m1,m2, …) → (0, 0, …) as q ↑ 1,

(m1,m2, …) → (1, 0, …) as q ↓ 0.

By Part (ii) of Theorem 1.4 and the previous we have for q ↓ 0 the expansion

∞∑

i=2

mi ≤

∞∑

i=2

imi = 1 − m1 = 2q + O(q2).

So necessarily all the mi converge to 0 for i ≥ 2 as q ↓ 0.

Let Πn ∼ Mallows(n, q). For the limit as q ↑ 1 we count the number of times during the sampling

algorithm that i is the maximum element of an r-cycle for r ≥ 1. So suppose that during iteration i of

the algorithm there is an element i′ ≤ i such that having Πn(i) = i′ would create an r-cycle. Then there

is some k ≥ 0 such that the probability that Πn(i) = i′ is

(1 − q)qk−1

1 − qn−s+1
≤

1 − q
1 − qn−s+1

.

For i ≤ n −
√

n the above is not more than 2(1 − q) for n large enough. So the expected number of

elements in Πn that are the maximum element of an r-cycle is not more than O(
√

n) + 2(1− q)n. Thus

mr = limn→∞ E[Cr(Πn)∕n] ≤ 2(1 − q) so that limq↑1 mr = 0.

 10982418, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21169 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [17/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HE ET AL. 1081

This shows the pointwise convergence of the two sequences in Part (iii) of Theorem 1.4. That the

pointwise convergence implies convergence wrt. the L1 norm follows from the fact that
∑

j≥i mj ≤
1

i
for all i by Part (ii) of Theorem 1.4. So, for every 𝜀 > 0 we can take i > 2∕𝜀 and find a 𝛿 > 0 so that

m1, … ,mi < 𝜀∕(2i) whenever 1− 𝛿 < q < 1. If then follows |(m1,m2, … )− (0, 0, … )|1 ≤ 𝜀 for all

0 < q < 𝛿. The case when q ↓ 0 can be dealt with analogously.

7 THE PROOF OF THEOREM 1.5

7.1 The proof of Part (i) of Theorem 1.5

We start by proving the existence of a coupling in the same spirit as the couplings used in previous

proofs.

Lemma 7.1. Let 0 < q < 1 and Π ∼ Mallows(N, q) and Σ ∼ Mallows(Z, q). There exists
a coupling between Π and Σ such that

P
[
Π(i) = Σ(i) for all i ≥ log

2n
]
= 1 − o(1).

Moreover, the log
2n can be replaced with any function going to ∞ with n.

Proof. We can run both Π and Σ until both processes regenerate simultaneously, in the

sense that Π(i) ≥ k for all i ≥ k and Σ(i) ≥ k for all i ≥ k. After this time, both processes

will have the same distribution, and so can be coupled to be equal. The first time that both

processes regenerate is equal in distribution to the hitting time of (0, 0) for the Markov

chain defined by taking two independent copies of Mi, where we start by first running

both chains until Σ regenerates (so the Markov chain starts from a random state (0,X),
where X is the state of the second copy of the Markov chain stopped at the first time that

Σ regenerates). Since the product chain is still positive recurrent, this hitting time is finite

almost surely, and the result follows. ▪

Let q > 1 and Πn ∼ Mallows(n, q). Since 0 ≤ C2i(Πn)∕n ≤ 1, Theorem 1.2 implies

𝜇2i = lim
n→∞

EC2i(Πn)
n

.

Let Π,Π′ ∼ Mallows(N, 1∕q) be independent and coupled with Πn by the coupling provided by

Corollary 4.2. We set

U2i,n ∶= |
|
|

{
i-cycles of Π′ ◦Π completely contained in

[
⌊n∕2⌋

]}|
|
|
.

By (7) in the proof of Theorem 1.2 (setting 𝓁 = i, ai = 1, a1 = · · · = ai−1 = 0) we have that

|C2i(Πn) − U2i,n| = o(n),

with probability 1 − o(1). Since also 0 ≤ U2i,n∕n ≤ 1, it follows that

lim
n→∞

EU2i,n

n
= 𝜇2i. (14)
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1082 HE ET AL.

Using Lemma 7.1, we can couple Π,Π′ to Σ,Σ′ ∼ Mallows(Z, 1∕q) in such a way that Σ,Σ′ are

independent and P(E) = 1 − o(1), where

E ∶= {Σ(j) = Π(j),Σ′(j) = Π′(j) for all log
2n ≤ j ≤ n − log

2n}.

We also have P(F) = 1 − o(1), where

F ∶= {|Σ(j) − j|, |Σ′(j) − j| ≤ log
2n for all 1 ≤ j ≤ n),

by an application of Part (vii) of Lemma 2.2 and the union bound. Hence, if Aj denotes the event that

j is in an i-cycle of Π′ ◦Π that is completely contained in
[
⌊n∕2⌋

]
, and Bj denotes the event that j is in

an i-cycle of Σ′ ◦Σ then

|
|P(Aj) − P(Bj)|| ≤ P(Ec) + P(Fc) = o(1),

for all 2i ⋅ log
2n ≤ j ≤ n∕2 − 2ilog

2n. It follows that

EU2i,n =
1

i
∑

1≤j≤n∕2

P(Aj)

= 1

i
∑

1≤j≤n∕2

P(Bj) + o(n)

= 1

i
⋅ ⌊n∕2⌋ ⋅ P

(
0 in an i-cycle of Σ′ ◦Σ

)
+ o(n),

using Part (iv) of Lemma 2.2 and the remarks following that lemma for the last identity (applied to

both Σ and Σ′). Dividing LHS and RHS by n and sending n → ∞ (and recalling (14)) gives 𝜇2i =
P

(
0 in an i-cycle of Σ′ ◦Σ

)
.

Finally, we briefly clarify how the expression 𝜇2i =
∑

i∈Z
P(Σ(0) = i)2 is obtained. We have

P
(
0 in a 1-cycle of Σ′ ◦Σ

)
=

∑

i∈Z

P(Σ(0) = i,Σ′(i) = 0)

=
∑

i∈Z

P(Σ(0) = i)P(Σ(0) = −i)

=
∑

i∈Z

P(Σ(0) = i)2,

using that Σ,Σ′ are i.i.d. and Part (iv) of Lemma 2.2, and the remarks following that lemma, for the

second identity; and in the last identity that

−Σ(0) = (r ◦Σ ◦ r)(0)
𝑑

= Σ(0),

also by the remarks following Lemma 2.2.

7.2 The proof of Part (ii) of Theorem 1.5

Let 𝓁 ≥ 1 and define

ai = 2i, for i = 1, … ,𝓁.
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HE ET AL. 1083

Define 𝜑(Πn) =
∑𝓁

i=1
aiC2i(Πn) and X1,Y1 as in the proof of Theorem 1.2. We have 0 ≤ 𝜑(Πn)∕n ≤ 1,

so that Theorem 1.2 in fact implies

E

[
𝜑(Πn)

n

]
→

𝓁∑

i=1

ai𝜇2i =
𝓁∑

i=1

2i𝜇2i,

while (7) implies

E

[
𝜑(Πn)

n

]
→

EY1

2EX1

.

The function Y1 counts the number of elements in [X1] ∪ {n − X1 + 1, … , n} that are contained

in even cycles of length at most 2𝓁. If X1 ≤ 𝓁 then we have Y1 = 2X1, as all elements are in cycles of

length ≤ 2𝓁. If X1 > 𝓁 then certainly Y1 ≤ 2X1. Let

a ∶= E[X11{X
1
≤𝓁}] and b ∶= E[X11{X

1
>𝓁}].

We have EX1 = a + b. We also have the bounds 2a ≤ EX1 ≤ 2a + 2b. As EX1 < ∞, for any 𝜀 > 0

we can choose 𝓁0 = 𝓁0(𝜀) large enough so that for every 𝓁 > 𝓁0 we have b < 𝜀. As 1 ≤ EX1, having

chosen 𝓁0 sufficiently large, we can also ensure a ≥ 1 − 𝜀 for all 𝓁 > 𝓁0. In this case

1 ≥
EY1

2EX1

≥
a

a + 𝜀
= 1 − 𝜀

a + 𝜀
≥ 1 − 𝜀.

So

∞∑

i=1

2i 𝜇2i = lim
𝓁→∞

(
EY1

2EX1

)

= 1.

7.3 The proof of Part (iii) of Theorem 1.5

As in the proof of Part (iii) of Theorem 1.4, it suffices to prove pointwise convergence (convergence

for each 𝜇2i separately), and the convergence in L1 will follow using that
∑

i 2i𝜇2i = 1.

We first show that (𝜇2, 𝜇4, …) → (0, 0, …) as q ↓ 1. Let r ≥ 1 and Πn ∼ Mallows(n, q) where

q > 1. By Part (i) of Theorem 1.5, we have

𝜇2r = lim
n→∞

EC2r(Πn)
n

. (15)

If i1, i2, … , i2r form a 2r-cycle in Πn ∼ Mallows(n, q) with q > 1, and Π∗n ∶= rn ◦Πn then

Π∗n
𝑑

= Mallows(n, 1∕q) and we must have

Π∗n(i1) = rn(i2), … ,Π∗n(i2r−1) = rn(i2r),Π∗n(i2r) = rn(i1).

Let us define

Aj ∶= {j is the largest element of a 2r-cycle of Πn}.

(To clarify j being the largest element, we of course just mean j = max(i1, … , i2r) if i1, … , i2r
is a 2r-cycle as above.) We consider the iterative procedure for generating Π∗n. When we generate the
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1084 HE ET AL.

image of Π∗n(j), having already determined Π∗n(1), … ,Π∗n(j − 1) it may not be possible that j is the

largest element of some 2r-cycle. If it is still possible, then we need Π∗n(j) to be some specific value

among the still available ones. (To be precise, (rn ◦Π∗n)(−2r−1)(j).) Since, we sample according to a

truncated geometric distributions, the probability is thus at most

P(Aj) ≤
1 − (1∕q)

1 − (1∕q)n+1−j ≤ 2 ⋅ (1 − 1∕q),

where the last inequality holds for all j ≤ n − log
2n. To follows that

EC2r(Πn) =
n∑

j=1

P(Aj) ≤ 2n(1 − 1∕q) + o(n),

dividing by n, sending n → ∞ and recalling (15), shows 𝜇2r ≤ 2(1−1∕q). In particular limq↓1 𝜇2r = 0.

We now proceed to show that (𝜇2, 𝜇4, 𝜇6 …) → (1∕2, 0, 0, …) as q → ∞. By Part (ii) of

Theorem 1.5 it is enough to show that 𝜇2 → 1∕2 as q →∞. Let Σ ∼ Mallows(Z, 1∕q). We have

2𝜇2 = P[Σ(0) = 0]2 + 2

∞∑

i=1

P[Σ(0) = i]2 = P[Σ(0) = 0]2 + O

(
∑

i≥1

q−2i

)

.

The last equality is due to Part (vi) of Lemma 2.2. By Theorem 1.4 the above is

(1 − 2∕q + O(1∕q2))2 + O(1∕q2) = 1 − 4∕q + O(1∕q2), as q → ∞.

8 THE PROOF OF THEOREM 1.6

8.1 The proof Part (i) of Theorem 1.6

Let Σ ∼ Mallows(Z, 1∕q) with 0 < 1∕q < 1. By definition of ce we have

ce ∶=
∑

i∈Z

P [(r ◦Σ)(i) = i] =
∞∑

i=−∞
P [Σ(i) = −i] .

By the remarks following Lemma 2.2, Σ(i) − i
𝑑

= Σ(0). Thus

ce =
∞∑

i=−∞
P [Σ(0) = −2i] = P [Σ(0) even] .

Similarly

co =
∑

i∈Z

P [(𝜌 ◦Σ)(i) = i] =
∑

i∈Z

P [Σ(i) = 1 − i] =
∑

i∈Z

P [Σ(0) = 1 − 2i] = P [Σ(0) odd] .

8.2 The proof of Part (ii) of Theorem 1.6

We will make use of the following relatively elementary observation.
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HE ET AL. 1085

Lemma 8.1. Let 0 < q < 1 and Σ ∼ Mallows(Z, q). Then

q P
[
Σ(0) = j

]
≤ P

[
Σ(0) = j + 1

]
≤

1

q
P

[
Σ(0) = j

]
. (16)

Proof. Fix some j ∈ Z, let n > j, In = {−n, … , n} and Σ2n+1 ∼ Mallows(In, q).
Let A be the set of all permutations 𝜎 of In such that 𝜎(0) = j, and B be the set of all

such permutation 𝜎 with 𝜎(0) = j + 1. Let 𝜎j,j+1 = (j j + 1) be the permutation of In
swapping j and j + 1. Then the map 𝜙(𝜎) = 𝜎j,j+1 ◦ 𝜎 is a bijection from A to B. To

see this, note that 𝜙(𝜙(𝜎)) = 𝜎 as 𝜎j,j+1 is its own inverse. Moreover, if 𝜎(0) = j, then

𝜙(𝜎(0)) = 𝜎j,j+1(j) = j+1. We claim that |inv(𝜎)− inv(𝜙(𝜎))| = 1: Let k = 𝜎−1(j+1) ≠ 0.

All inversions (a, b)with {a, b}∩{0, k} = ∅ are still inversions in 𝜙(𝜎) as their images are

unchanged in 𝜙(𝜎). Inversions (a, b) of 𝜎 with |{a, b} ∩ {0, k}| = 1 are also unchanged,

as for all s ∉ {0, k} we have Σ2n+1(s) < j if and only if Σ2n+1(s) < j + 1. So the only

ordered pair that can be an inversion of exactly one of 𝜎 and 𝜙(𝜎) is either (0, k) or (k, 0),
depending on whether or not 0 < k. Thus we have

P
[
Σ2n+1(0) = j + 1

]
=

∑

𝜎∈A
P [𝜙(𝜎)] ≤ 1

q
∑

𝜎∈A
P [𝜎] = 1

q
P

[
Σ2n+1(0) = j

]
.

The bound P
[
Σ2n+1(0) = j + 1

]
≥ q P

[
Σ2n+1(0) = j

]
follows in the same manner. As

ΣIn → Σ with probability 1 by Lemma 2.2, Part (ii), the inequality in (16) holds. ▪

The last lemma allows us to give short proof of the following explicit bounds on ce, co, that will

immediately imply the value of the q ↓ 1 limits equals 1∕2.

Lemma 8.2. For all q > 1 we have
1

1 + q
≤ ce, co ≤

q
1 + q

.

Proof. The second equality will follow from the first as ce + co = 1. Let q > 1 and

Σ ∼ Mallows(Z, 1∕q). By Lemma 8.1 we have
1

q
P

[
Σ(0) = j

]
≤ P

[
Σ(0) = j + 1

]
≤

q P
[
Σ(0) = j

]
. Thus

1

q
P [Σ(0) odd] ≤ P [Σ(0) even] ≤ q P [Σ(0) odd] .

Adding P [Σ(0) odd] and rearranging gives the two inequalities

P [Σ(0) odd] ≥ 1

1 + q
P [Σ(0) odd or even] = 1

1 + q
,

P [Σ(0) odd] ≤ q
1 + q

P [Σ(0) odd or even] = q
1 + q

.

The same bounds hold for P [Σ(0) even] as P [Σ(0) even] = 1 − P [Σ(0) odd]. ▪

As mentioned, from Lemma 8.2 it follows immediately that

lim
q↓1

ce = lim
q↓1

co =
1

2
.

It remains to prove the following asymptotic expressions for ce, co.
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1086 HE ET AL.

Lemma 8.3. co = 1 − 2∕q + O(1∕q2) and ce = 2∕q + O(1∕q2) as q → ∞.

Proof. The second statement again follows from the first by ce + co = 1. Let q > 1 and

Σ ∼ Mallows(Z, 1∕q). We have

co = P [Σ(0) even] = P [Σ(0) = 0] +
∞∑

i=1

P [|Σ(0)| = 2i] .

The quantity m1 = m1(1∕q) is equal to P [Σ(0) = 0] by Theorem 1.4. By Part (iii) of

Theorem 1.4 it has asymptotic expansion 1 − 2∕q + O(1∕q2) as q → ∞. By Part (vi)

of Lemma 2.2, the sum on the right hand side above is O(1∕q2) as q → ∞. Thus co =
1 − 2∕q + O(1∕q2). ▪

9 THE PROOF OF THEOREM 1.7

We will prove the following more detailed result that implies Theorem 1.7.

Proposition 9.1. For 0 < q < 1 we have, as k → ∞

(i) P (C1(𝜌 ◦Σ) ≥ 2k) = Ω
(

q
(

2k
2

)

⋅ (1 − q)2k
)

,

(ii) P (C1(r ◦Σ) ≥ 2k) = o
(

q
(

2k
2

)

⋅ (1 − q)2k
)

.

(iii) P (C1(r ◦Σ) ≥ 2k + 1) = Ω
(

q
(

2k+1

2

)

⋅ (1 − q)2k+1

)

,

(iv) P (C1(𝜌 ◦Σ) ≥ 2k + 1) = o
(

q
(

2k+1

2

)

⋅ (1 − q)2k+1

)

.

Proof of Proposition 9.1, Parts (i) and (iii). The proofs of (i) and (iii) are very similar.

We start with (i). Consider Πn ∼ Mallows(In, q) with In ∶= {−n, … , n}. By Part (ii) of

2.2, it suffices to show that liminfn→∞P((𝜌 ◦Πn)(i) = i for i = −k + 1, … , k) is lower

bounded by const ⋅ q
(

2k
2

)

⋅ (1 − q)k.

For J ⊆ Z let SJ denote the set of all permutations of J. Consider the set of all permuta-

tions 𝜋 ∈ SIn constructed as follows. We pick arbitrary permutations 𝜎 ∈ S{−n,… ,−k}, 𝜎
′ ∈

S{k+1,… ,n} and set

𝜋(i) ∶=
⎧
⎪
⎨
⎪
⎩

1 − i if − k + 1 ≤ i ≤ k,
𝜎(i) if − n ≤ i ≤ −k,
𝜎

′(i) if k + 1 ≤ i ≤ n.

Notice such a permutation satisfies

C1(𝜌 ◦𝜋) = 2k, and inv(𝜋) = inv(𝜎) + inv(𝜎′) +
(

2k
2

)
.

We have

P(C1(𝜌 ◦Πn) ≥ 2k) ≥ P(Πn(i) = 1 − i for all − k + 1 ≤ i ≤ k)
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HE ET AL. 1087

≥
1

Z(2n + 1, q)
⋅
⎛
⎜
⎜
⎝

∑

𝜎∈S{−n,… ,−k}

∑

𝜎′∈S{k+1,… ,n}

qinv(𝜎)+inv(𝜎′)+
(

2k
2

)⎞
⎟
⎟
⎠

= Z(n − k + 1, q) ⋅ Z(n − k, q)
Z(2n + 1, q)

⋅ q
(

2k
2

)

.

Now we recall that

Z(m, q) =
m∏

i=1

1 − qi

1 − q
= Θ

(
1

(1 − q)m

)

,

as m → ∞. Here we use that 1 >
∏m

i=1
(1 − qi) >

∏∞
i=1
(1 − qi) > 0. (This last inequality

can be easily seen using the Taylor expansion log(1 − x) = x + O(x2).) So

Z(n − k + 1, q) ⋅ Z(n − k, q)
Z(2n + 1, q)

= Θ
(
(1 − q)2k)

,

and Part (i) follows.

The proof of (iii) is essentially the same as the proof of (i). Now we put the elements

of {−k, … , k} in reverse order, and put arbitrary permutations on {−n, … ,−k − 1} and

{k + 1, … , n} and the proof carries through with only minor adaptations in notation. ▪

We next turn attention to Part (ii) of Proposition 9.1. This proof is a bit more involved, and we

break it down into several steps. The first step is the following observation.

Lemma 9.2. For 0 < q < 1 we have

P
(
sign (Σ(i)) ≠ sign(i) for some i with |i| ≥ k3

)
= o

(

q
(

2k
2

)

⋅ (1 − q)2k
)

,

as k →∞.

Proof. This immediately follows by the result on displacements P(|Σ(i)−i| > m) = Θ(qm)
as in Lemma 2.2 part (vi) and the union bound. ▪

By this last lemma, when determining the probability P (C1(r ◦Σ) ≥ 2k), we can restrict atten-

tion to the event that there are 2k points x1, … , x2k in the interval (−k3
, k3) such that Σ(x1) =

−x1, … ,Σ(x2k) = −x2k.

For 0 < i1 < i2 < · · · < i𝓁 and 0 < j1 < j2 < · · · < jr let us write

pi,j ∶= P (Σ(−i1) = i1, … ,Σ(−i𝓁) = i𝓁 ,Σ(j1) = −j1, … ,Σ(jr) = −jr) .

We point out that, as Σ−1
and Σ follow the same distribution, we have

pj,i = pi,j. (17)

Lemma 9.3. There is a constant c such that we have

pi,j ≤ (1 − q)𝓁+r ⋅ qΨ(i,j),
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1088 HE ET AL.

where

Ψ(i, j) ∶=
(
𝓁
2

)

+
( r

2

)
+ 2

𝓁∑

a=1

ia +
1

2

∑

c≤a≤r−c
min(a, r − a) ⋅ (ja − ja−1 − 1).

Proof. We are again going to consider Πn ∼ Mallows(In, q) with In = {−n, … , n} and n
large. For notational convenience we set

An ∶= {Πn(j1) = −j1, … ,Πn(jr) = −jr},

Bn ∶= {Πn(−i1) = i1,Πn(−i2) = i2, … ,Πn(−i𝓁) = i𝓁}.

By Mallows’ iterative procedure for generating Πn we have

P(Πn(i) = j|Πn(−n) = x−n, … ,Πn(i − 1) = xi−1) =
⎧
⎪
⎨
⎪
⎩

(
1−q

1−qn−i+1

)
⋅ qj−i+k

if j ∉ {x−n, … , xi−1},

0 otherwise.

,

where

k = k(x−n, … , xi−1) ∶= |{a ∶ xa > j}|.

It follows that

P(Πn(−i𝓁) = i𝓁) ≤
(

1 − q
1 − qn+i𝓁+1

)

q2i𝓁
,

P(Πn(−i𝓁−1) = i𝓁−1|Πn(−i𝓁) = i𝓁) ≤
(

1 − q
1 − qn+i𝓁−1

+1

)

q2i𝓁−1
+1
,

P(Πn(−i𝓁−2) = i𝓁−2|Πn(−i𝓁) = i𝓁 ,Πn(−i𝓁−1) = i𝓁−1) ≤
(

1 − q
1 − qn+i𝓁−1

+1

)

q2i𝓁−2
+2
,

⋮

P(Πn(−i1) = i1|Πn(−i𝓁) = i𝓁 , … ,Πn(−i2) = i2) ≤
(

1 − q
1 − qn+i

1
+1

)

q2i
1
+𝓁−1

.

In other words,

P(Bn) ≤ (1 − q)𝓁 ⋅ q2
∑𝓁

a=1
ia+

(
𝓁
2

)

⋅
𝓁∏

a=1

(
1

1 − qn+ia+1

)

.

Note that for An to hold, it must be the case that

Πn[{−n, … , j1 − 1}] ∩ {−j1, … ,−jr} = ∅,
Πn[{−n, … , j2 − 1}] ∩ {−j2, … ,−jr} = ∅,

⋮

Πn[{−n, … , jr − 1}] ∩ {−jr} = ∅.
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HE ET AL. 1089

In particular, when choosing the image of j1 we must “skip” at least the first r − 1

available numbers, when choosing the image of j2 we must “skip” at least r − 2 available

numbers, and so on.

We let c be a large constant to be specified later on. Suppose that, for some c ≤ a ≤
r − c, there exists a ja < j < ja+1. If both An and Πn(j) > −ja are to hold then when

determining Πn(j) we must skip over the (still available) numbers −jr, … ,−ja+1. That is,

we skip over at least the first r − a of the available numbers. If on the other hand, An and

Πn(j) < −ja are to hold then when determining each of j1, … , ja must have skipped an

additional available number.

It follows that

P(An|Bn) ≤
(

1 − q
1 − qn−j

1
+1

)

qr−1 ⋅
(

1 − q
1 − qn−j

2
+1

)

qr−2 …
(

1 − q
1 − qn−jr+1

)

q0

⋅
r−c∏

a=c

∏

ja−1
<j<ja

(
qr−a + qa

1 − qn−j+1

)

≤ (1 − q)rq
(

r
2

)
+ 1

2

∑r−c
a=c min(a,r−a)⋅(ja−ja−1

−1)
⋅

ir∏

a=1

(
1

1 − qn−a+1

)

,

where in the last line we assume without loss of generality that c has been chosen large

enough so that qc∕2
< 1∕2. (Which implies that

qr−a + qa ≤ 2qmin(a,r−a) ≤ q
1

2
min(a,r−a)

,

for all c ≤ a ≤ r − c.)

Combining the bounds on P(An|Bn) and P(Bn) gives

P(An ∩ Bn) ≤ (1 − q)𝓁+r ⋅ qΨ(i,j) ⋅
jr∏

a=−i𝓁

(
1

1 − qn−a+1

)

.

Since

P(Σ(−i1) = i1, … ,Σ(−i𝓁) = i𝓁 ,Σ(j1) = −j1, … ,Σ(jr) = −jr) ≤ lim sup
n→∞

P(An ∩ Bn),

the inequality in the lemma follows. ▪

We make an additional definition:

px→y
i,j ∶= P (Σ(x) = y,Σ(−i1) = i1, … ,Σ(−i𝓁) = i𝓁 ,Σ(j1) = −j1, … ,Σ(jr) = −jr) .

We observe that, analogously to (17), we have

py→x
j,i = px→y

i,j .

Since r ◦Σ ◦ r (the map i → −Σ(−i)) also has the same distribution as Σ, we have in addition that

p−x→−y
j,i = px→y

i,j . (18)
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1090 HE ET AL.

Lemma 9.4. We have

(i) If x < 0 and y > 0 are such that |x|, y ∉ {i1, … , i𝓁} then

px→y
i,j ≤ (1 − q)𝓁+rqΨ(i,j)+|x|+y

.

(ii) If x > 0 and y < 0 are such that x, |y| ∉ {j1, … , jr} and x, |y| > j⌈r∕2⌉ then

px→y
i,j ≤ (1 − q)𝓁+rqΨ(i,j)+r∕4

.

Proof. We start with the proof of (i). The proof is nearly identical to the proof of the

previous lemma, and we only mention the changes that need to be made. Now, we define

Cn ∶= {Πn(x) = y} ∩ Bn,

and let m ≥ 0 be such that ia > x for all a > m.

We have

P(Πn(−x) = y|Πn(−ia) = ia for all a > m) ≤
(

1 − q
1 − qn+x

)

⋅ qx+y
,

while for a ≤ m

P(Πn(−ia) = ia|Πn(−i𝓁) = i𝓁 , … ,Πn(−ia−1) = ia−1,Πn(−x) = y) ≤
(

1 − q
1 − qn+ia

)

⋅ q2ia+𝓁−a
.

We can conclude that

P(Cn) ≤ (1 − q)𝓁+1 ⋅ q2
∑𝓁

a=1
ia+

(
𝓁
2

)
+x+y

⋅
𝓁∏

a=1

(
1

1 − qn+ia

)

⋅
(

1

1 − qn+x

)

.

The same reasoning as before shows

P(An|Cn) ≤ (1 − q)rq
(

r
2

)
+ 1

2

∑r−c
a=c min(a,r−a)⋅(ja−ja−1

−1)
⋅

ir∏

a=1

(
1

1 − qn−a

)

.

Hence

px→y
i,j ≤ lim sup

n→∞
P(An ∩ Cn) ≤ (1 − q)𝓁+r+1qΨ(i,j)+x+y

,

as claimed in (i).

For the proof of (ii), we again proceed similarly. This time we define

Dn ∶= {Πn(j1) = −j1, … ,Πn(jr) = −jr,Πn(x) = y}.

Let m ≥ 0.8r be such that j1, … , jm < x < jm+1 (where the upper bound is void

if m = r). We can compute P(Dn|Bn) in a manner analogous to the way we determined

P(An|Bn) in the proof of Lemma 9.3. When computing P(An|Bn) in the term for the mth
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HE ET AL. 1091

gap, the choice ofΠn(x) contributed a factor

(
q

1

2
min(m,r−m)

1−qn−x

)

in case m ≤ r−c and contributed

a factor one otherwise. If we know that Πn(x) ≤ j⌊r∕2⌋ then we can replace this by qr∕2
as

all of j1, … , j⌈r∕2⌉ must have skipped over the additional available number y. This gives

P(Dn|Bn) ≤ P(An|Bn) ⋅ q0.8r− 1

2
min(m,r−m)

≥ qr∕4
.

Hence also

px→y
i,j ≤ lim sup

n→∞
P(Dn ∩ An) ≤ qr∕2 ⋅ lim sup

n→∞
P(An ∩ Bn),

and the result follows. ▪

For notational convenience, we introduce a notation for the gaps between consecutive entries of i
and j:

g1 ∶= i1 − 1, ga ∶= ia − (ia−1 + 1) (a = 2, … ,𝓁),

and

h1 ∶= j1 − 1, ha ∶= ja − (ja−1 + 1) (a = 2, … , r).

Notice that ia = g1 + · · · + ga + a so that

2

𝓁∑

a=1

ia = 2 ⋅ ((g1 + 1) + (g1 + g2 + 2) + (g1 + g2 + g3 + 3) + · · · + (g1 + · · · + g𝓁 + 𝓁))

= 𝓁(𝓁 + 1) + 2

𝓁∑

a=1

(𝓁 + 1 − a) ⋅ ga.

This gives the following alternative expression for the upper bound on pi,j:

Ψ(i, j) = 𝓁(𝓁 + 1) +
(
𝓁
2

)

+
( r

2

)
+ 2

𝓁∑

a=1

(𝓁 + 1 − a) ⋅ ga +
1

2

∑

c≤a≤r−c
min(a, r − a) ⋅ ha

=
(
𝓁 + r

2

)

+ 𝓁(𝓁 + 1 − r) + 2

𝓁∑

a=1

(𝓁 + 1 − a) ⋅ ga +
1

2

∑

c≤a≤r−c
min(a, r − a) ⋅ ha.

Next, we establish that the probability that C1(r ◦Σ) ≥ 2k and Σ(0) ≠ 0 is small compared to the

target expression (1 − q)2k ⋅ q
(

2k
2

)

.

Lemma 9.5. We have

∑

𝓁+r=2k

∑

0<i1<···<i𝓁<k3
,

0<j1<···<jr<k3

pi,j = o
(

(1 − q)2k ⋅ q
(

2k
2

))

,

as k →∞.
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1092 HE ET AL.

Proof. By (17), the sought sum is at most 2S where

S ∶=
∑

𝓁+r=2k,
𝓁≥r

∑

0<i1<···<i𝓁<k3
,

0<j1<···<jr<k3

pi,j.

We have

S ≤
∑

𝓁+r=2k,
𝓁≥r

∑

0≤g1 ,… ,g𝓁<k3
,

0≤h1 ,… ,hr<k3

(1 − q)2k ⋅ q
(

2k
2

)
+𝓁(𝓁+1−r)+2

∑𝓁
a=1
(𝓁+1−a)⋅ga+

1

2

∑

c≤a≤r−c
min(a,r−a)⋅ha

= (1 − q)2k ⋅ q
(

2k
2

)

⋅
⎛
⎜
⎜
⎝

∑

𝓁+r=2k,
𝓁≥r

q𝓁(𝓁+1−r) ⋅
𝓁∏

a=1

(
∑

0≤ga<k3

q(𝓁+1−a)ga

)

⋅
c−1∏

a=1

(
∑

0≤ha<k3

1

)

⋅
∏

c≤a<r∕2

(
∑

0≤ha<k3

q
1

2
aha

)

⋅
∏

r∕2≤a≤r−c

(
∑

0≤ha<k3

q
1

2
(r−a)ha

)

⋅
r∏

a=r−c+1

(
∑

0≤ha<k3

1

))

.

Now, we remark that

𝓁∏

a=1

(
∑

0≤ga<k3

q(𝓁+1−a)ga

)

≤

𝓁∏

a=1

(
1

1 − q𝓁+1−a

)

≤

∞∏

b=1

(
1

1 − qb

)

< ∞,

and analogously

∏

c≤a<r∕2

(
∑

0≤ha<k3

q
1

2
aha

)

,

∏

r∕2≤a≤r−c

(
∑

0≤ha<k3

q
1

2
(r−a)ha

)

≤

∞∏

b=1

⎛
⎜
⎜
⎜
⎝

1

1 −
(√

q
)b

⎞
⎟
⎟
⎟
⎠

< ∞.

Of course we also have
∑

0≤ha<k3 1 = k3
.

This gives

S = O
⎛
⎜
⎜
⎝

(1 − q)2k ⋅ q
(

2k
2

)

⋅ k6c ⋅
⎛
⎜
⎜
⎝

∑

𝓁+r=2k,
𝓁≥r

q𝓁(𝓁+1−r)
⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

.

As 𝓁 + r = 2k,𝓁 ≥ r implies that 𝓁(𝓁 + 1 − r) ≥ k we have

∑

𝓁+r=2k,
𝓁≥r

q𝓁(𝓁+1−r) ≤ (2k + 1)qk
.

We find that

S = O
(

(2k + 1) ⋅ k6c ⋅ (1 − q)2k ⋅ q
(

2k
2

)
+k

)

= o
(

(1 − q)2k ⋅ q
(

2k
2

)
+k

)

,

as required. ▪
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HE ET AL. 1093

We proceed by showing that the the probability that (a) C1(r ◦Σ) ≥ 2k, and; (b) Σ(0) = 0, and;

(c) the number of fixed points of r ◦Σ below zero differs by more than one from the number of fixed

points of r ◦Σ above zero, is small compared to the target expression (1 − q)2k ⋅ q
(

2k
2

)

.

Lemma 9.6. We have

∑

𝓁+r=2k−1,

|𝓁−r|>1

∑

0<i1<···<i𝓁<k3
,

0<j1<···<jr<k3

pi,j = o
(

(1 − q)2k ⋅ q
(

2k
2

))

,

as k →∞.

Proof. Arguing as in the previous lemma, the sought sum is at most

kO(1) ⋅ (1 − q)2k−1 ⋅ q
(

2k−1

2

)

⋅
∑

𝓁+r=2k−1,

𝓁≥k+1

q𝓁(𝓁+1−r)
.

We remark that when 𝓁 + r = 2k − 1,𝓁 ≥ k + 1, r ≤ k − 2 we have

(
2k − 1

2

)
+ 𝓁(𝓁 + 1 − r) ≥

(
2k − 1

2

)
+ 3k + 3 =

(
2k
2

)
+ k + 4.

In particular the sought sum is at most

kO(1) ⋅ (1 − q)2kq
(

2k
2

)
+k = o

(

(1 − q)2kq
(

2k
2

))

.

(The number of choices of 𝓁, r with 𝓁 + r = 2k,𝓁 > r + 1 is O(k) and is absorbed in the

polynomial term kO(1)
.) ▪

By the results so far, we can restrict attention to the situation where Σ(0) = 0 and 𝓁 = k, r = k− 1.

Next, we establish that the contribution from the situation in which Σ(−i) ≠ i for some 1 ≤ i ≤ 0.9k is

negligible.

Lemma 9.7. We have

∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

ia≠a for some 1≤a≤0.9k

pi,j = o
(

(1 − q)2k ⋅ q
(

2k
2

))

,

as k →∞.

Proof. If ia ≠ a for some 1 ≤ a ≤ 0.9k then there is also a 1 ≤ a ≤ 0.9k for which ga ≠ 0.

For this a we have 2(k + 1 − a) ⋅ ga ≥ 0.2k. Also note that

(
2k − 1

2

)
+ k(k + 1 − (k − 1)) =

(
2k − 1

2

)
+ 2k =

(
2k
2

)
+ 1.
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1094 HE ET AL.

Arguing as in previous lemmas, it follows that the sought sum is at most

kO(1) ⋅ (1 − q)2k−1 ⋅ q
(

2k
2

)
+0.2k = o

(

(1 − q)2kq
(

2k
2

))

.

(The polynomial term kO(1)
also absorbs the k ways of choosing an index a for which

ga ≠ 0 and the k3
ways of choosing a value for ga.) ▪

Lemma 9.8. We have

∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

ja≠ja−1+1 for some 0.1k≤a≤0.9k

pi,j = o
(

(1 − q)2k ⋅ q
(

2k
2

))

,

as k →∞.

Proof. If ja ≠ ja−1 + 1 for some 0.1k ≤ a ≤ 0.9k then, provided k is sufficiently large,

c ≤ a ≤ k − 1 − c and moreover min(a, k − 1 − a) ⋅ ha ≥ 0.05k. Arguing as in previous

lemmas, the sought sum is therefore at most

kO(1) ⋅ (1 − q)2k−1 ⋅ q
(

2k
2

)
+0.05k = o

(

(1 − q)2kq
(

2k
2

))

.

(The polynomial term also absorbs the 0.9k ways of choosing a and the k3
ways of

choosing ha.) ▪

Lemma 9.9. We have

∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

h1+···+h⌊0.1k⌋≥2

pi,j = o
(

(1 − q)2k ⋅ q
(

2k
2

))

,

as k →∞.

Proof. For each pi,j occurring in the sought sum, we have

pi,j = pj,i ≤ (1 − q)2kq
(

2k−1

2

)
+2

∑k−1

a=1
(r−a)ha+

1

2

∑

c≤a≤k−c
min(a,k−a)⋅ga

,

by Lemma 9.3. (Notice the roles of 𝓁 = k and r = k−1 and ga and ha are switched. Notice

in particular (k − 1) ⋅ ((k − 1) + 1 − k) = 0.) The sought sum is thus at most

S ∶=
∑

1≤x<y≤0.1k

∑

0≤h1 ,… ,hk−1<k3
,

0≤g1 ,… ,gk<k3
,

hx+hy≥2

(1 − q)2kq
(

2k−1

2

)
+2

∑k−1

a=1
(r−a)Δa+

1

2

∑

c≤a≤k−c
min(a,k−a)⋅Δ′a

.

By computations similar to those in previous proofs:

S = kO(1) ⋅ (1 − q)2k ⋅ q
(

2k−1

2

)
+4⋅0.9k
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HE ET AL. 1095

= kO(1) ⋅ (1 − q)2k ⋅ q
(

2k
2

)
+1.6k

= o
(

(1 − q)2k ⋅ q
(

2k
2

))

.

▪

We next observe that if Σ(0) = 0 and Σ(−i1) = i1, … ,Σ(−ik) = ik and Σ(j1) = −j1, … ,Σ(jk−1) =
−jk−1 then there must be some x ≥ 1 and y ≤ −1 such that Σ(x) = y and x ∉ {j1, … , jk−1}, and

y ∉ {−j1, … ,−jk−1}. (Since Σ is “balanced.”)

This will allow us to improve over our previous bounds on pi,j.

Proof of Proposition 9.1, Part (ii). By the previous lemmas and the observation immedi-

ately preceding the present proof, it suffices to show that

S ∶=
∑

px→y
i,j = o

(

(1 − q)2k ⋅ q
(

2k
2

))

,

as k → ∞, where the sum is over all 0 < j1 < · · · < jk ≤ k3
and 0 < i1 < · · · < ik−1 ≤ k3

and 0 < x < k3
and −k3

< y < 0 such that

• ia = a for all 1 ≤ a ≤ 0.9k, and;

• ja = ja−1 + 1 for all 0.1k ≤ a ≤ 0.9k, and;

• there is at most one 1 ≤ a ≤ 0.1k such that ja ≠ ja−1 + 1 and if such an a exists then we

have ja = ja−1 + 2, and;

• x, |y| ∉ J ∶= {j1, … , jk−1}.

We first notice that if i, j, x, y are as described then either (a) {j1, … , j⌊0.9k⌋} =
{1, … , ⌊0.9k⌋} or (b) {j1, … , j⌊0.9k⌋} = {1, … , ⌊0.9k⌋+1}⧵{z} for some 1 ≤ z ≤ 0.1k.

In case (a) we thus have x, |y| > j⌊0.9k⌋ and in particular

px→y
o,i,j ≤ (1 − q)2k−1 ⋅ qΨ(ij)+r∕4

.

The corresponding sum Sa thus satisfies

Sa ∶=
∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

ia=ja=a for 1≤a≤0.9k

∑

0.9k≤x<k3
,

−k3
<y≤0.9k,

x,|y|∉J

px→y
i,j

≤
∑

i,j

∑

0.9k≤x<k3
,

−k3
<y≤0.9k,

x,|y|∉J

(1 − q)2k−1 ⋅ qΨ(ij)+r∕4

≤ k6
∑

ij
(1 − q)2k−1 ⋅ qΨ(ij)+r∕4

≤ k6 ⋅ (1 − q)2k−1 ⋅ q
(

2k
2

)
+r∕4

∑

0≤g1 ,… ,gk<k3
,

0≤h1 ,… ,hk−1<k3

q
2
∑k

a=1
(k+1−a)ga+

1

2

∑

c≤a≤k−1−c
min(a,k−1−a)ha

≤ kO(1)(1 − q)2k−1q
(

2k
2

)
+r∕4

= o
(

(1 − q)2kq
(

2k
2

))

.
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1096 HE ET AL.

(Using the familiar observation that

(
2k−1

2

)
+ k(k + 1 − (k − 1)) =

(
2k
2

)
+ 1 in the

fourth line, and computations as in previous lemmas.)

In case (b) it is possible that either (b-1) x, |y| ≥ 0.9k, or (b-2) x = z and y = −z, or

(b-3) x > 0.9k and y = −z, or (b-4) x = z and y < −0.9k.

In the case (b-1) the same bound on px→y
o,i,j applies as in the case (a), and via similar

computations we obtain that the corresponding contribution to the sum satisfies

Sb-1 ∶=
∑

1≤b≤0.1k

∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

ia=a for 1≤a≤0.9k ,
ja=a for a≤b,

ja=a+1 for b<a≤0.9k

∑

0.9k≤x<k3 ,

−k3
<y≤0.9k,

x,|y|∉J

px→y
i,j

≤ kO(1)(1 − q)2k−1q
(

2k
2

)
+r∕4

= o
(

(1 − q)2kq
(

2k
2

))

.

In case (b-2) we have px→y
i,j = pi,j′ , where j′

1
= 1, … , j′⌊0.9k⌋ = ⌊0.9k⌋ and j′a = ja−1 for

0.9k ≤ a ≤ k − 1. (i.e., we’ve filled the “gap at z” and made a vector of length k.) So the

sum corresponding to case (b-2) is

Sb-2 ≤
∑

0<i1<···<ik<k3
,

0<j′
1
<···<j′k<k3

pi,j′ = kO(1)(1 − q)2kq
(

2k
2

)
+k = o

(

(1 − q)2kq
(

2k
2

))

.

To deal with case (b-3) we note that in this case

px→y
i,j = py→x

j,i

≤ (1 − q)2k−1q
(

2k−1

2

)
+2(k−1−x)+x+|y|+2

∑

0.9k≤a≤k−1

(k−1−a)ha+
1

2

∑

0.9k≤a≤k−c
(k−a)ga

≤ (1 − q)2k−1q
(

2k−1

2

)
+3.7k−2+2

∑

0.9k≤a≤k−1

(k−1−a)ha+
1

2

∑

0.9k≤a≤k−c
(k−a)ga

≤ (1 − q)2k−1q
(

2k
2

)
+1.7k+2

∑

0.9k≤a≤k−1

(k−1−a)ha+
1

2

∑

0.9k≤a≤k−c
(k−a)ga

.

Hence, the corresponding sum satisfies

Sb-3 ∶=
∑

1≤x≤0.1k

∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

ia=a for 1≤a≤0.9k ,
ja=a for a<x,

ja=a+1 for x≤a≤0.9k

∑

−k3
<y≤0.9k,
|y|∉J

px→y
i,j

= o
(

(1 − q)2kq
(

2k
2

))

.
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Finally, we deal with case (b-4). We now use (18) to see that in this case

px→y
i,j = p−x→−y

j,i

≤ (1 − q)2k−1q
(

2k−1

2

)
+2(k−1−x)+x+|y|+2

∑

0.9k≤a≤k−1

(k−1−a)ha+
1

2

∑

c≤a≤k−c
min(a,k−a)ga

≤ (1 − q)2k−1q
(

2k−1

2

)
+3.7k−2+2

∑

0.9k≤a≤k−1

(k−1−a)ha+
1

2

∑

c≤a≤k−c
min(a,k−a)ga

,

and hence repeating the computations bounding Sb-3 we find

Sb-4 ∶=
∑

−0.1k≤y≤1

∑

0<i1<···<ik<k3
,

0<j1<···<jk−1<k3
,

ia=a for 1≤a≤0.9k ,
ja=a for a<|y|,

ja=a+1 for |y|≤a≤0.9k

∑

0.9k≤x≤k3
,

x∉J

px→y
i,j = o

(

(1 − q)2kq
(

2k
2

))

.

This establishes that S = o
(

(1 − q)2kq
(

2k
2

))

. Proposition 9.1, Part (ii) is proved. ▪

Proof of Proposition 9.1, Part (iv). The proof proceeds in the same manner as the proof

of Proposition 9.1 Part (ii), we highlight here only the differences. We will now define for

sequences 0 < i1 < · · · < i𝓁 and 1 < j1 < · · · < jr the probability

p̃i,j = P (Σ(−i1) = i1 + 1, … ,Σ(−i𝓁) = i𝓁 + 1,Σ(j1) = −j1 + 1, … ,Σ(jr) = −jr + 1) .

For sequences satisfying the above we have (𝜌 ◦Σ)(is) = is and (𝜌 ◦Σ)(js) = js. For p̃i,j the

bound in Lemma 9.3 may be replaced by the stronger bound

p̃i,j ≤ (1 − q)𝓁+rq𝓁+r+Ψ(i,j)
, (19)

the proof is the same, but we now have

P(Πn(i) = j + 1|Πn(−n) = x−n, … ,Πn(i − 1) = xi−1)

=
⎧
⎪
⎨
⎪
⎩

(
1−q

1−qn−i+1

)
⋅ qj−i+k+1

if j ∉ {x−n, … , xi−1},

0 otherwise,

which gives the additional 𝓁+r term in the exponent of q in 19. Also, as in Lemma 9.5, the

contribution from such sequences whereΣ(1) ≠ 0 orΣ(0) ≠ 1 is o
(

q
(

2k+1

2

)

⋅ (1 − q)2k+1

)

.

Then we need only consider cases with Σ(1) = 0 and Σ(0) = 1, so that we consider

the case 𝓁 + r = 2k − 1. The remaining estimates for the different such sequences

i1, … , i𝓁 and j1, … , jr follow in the same manner as the estimates for r ◦Σ, where now

the q𝓁+r
term in (19) contributes q2k−1

. In the above proofs we estimate P [Σ(0) = 0] by

a a coupling with Πn ∼ Mallows(n, q), which we can sample element by element. If

during this sampling 0 does not yet have a preimage when determining the image of 0,

then P [Σ(0) = 1] ≤ q P [Σ(0) = 0]. Subsequently, when determining the image of 1, if

Σ(0) = 1, then P [Σ(1) = 0] equals the probability that Σ(0) = 0 in the previous step, as 1
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1098 HE ET AL.

now needs to skip over exactly all elements below 0 that are not yet selected. In the esti-

mations of the r ◦Σ case, the additional contribution of q𝓁+rq = q2k
is exactly as needed

as q
(

2k
2

)
+2k = q

(
2k+1

2

)

. ▪

10 SUGGESTIONS FOR FURTHER WORK

We expect that much more information can be extracted about the constants ce, co,mi, 𝜇2i and the prob-

ability measures of C2i−1(r ◦Σ) and C2i−1(𝜌 ◦Σ) from the explicit expressions for them in terms of

q-hypergeometric series that can be obtained from Theorem 5.1 in [17]. There might well be some

low-hanging fruit available to someone better versed in q-hypergeometric series than the present

authors. In particular, the plot in Figure 3 strongly suggests that co > 1∕2 > ce for all q > 1, but we

have not been able to show this rigorously. We leave it as an open problem for other teams. Other obvi-

ous open problems are the (strict) monotonicity of co and ce (which together with our results will imply

co > 1∕2 > ce for all q > 1), of m1 shown in Figure 1 and of 𝜇2 shown in Figure 2. The plots clearly

suggest these to be (strictly) monotonic in q, but as the reader may have noticed our proofs do not show

this to be the case and there does not seem to be any obvious way to adapt the proofs to obtain this.

A curious phenomenon we’ve observed is that if q ↓ 1 then the expected number of 1-cycles in

the limiting distribution tends to 1∕2, which is different from the value of 1 that we get when q = 1

(which corresponds to sampling a permutation uniformly at random). At the moment we do not even

have a reasonable intuitive explanation for this phenomenon. Clearly something interesting must be

going on in the phase change regime when q = q(n) is a function of n that approaches one from above.

It is also intriguing that the odd and even cycle counts behave so differently for q > 1, the odd cycle

counts being “tight” and the even ones being linear in n, but at q = 1 there appears to be no trace of

this difference. We would be very interested to see an analysis of the regime when q = q(n) → 1 that

can shed some light on these phenomena.

Finally, given the Gaussian fluctuations for fixed q, and Poisson fluctuations when q is close to 1,

it would be interesting to understand what happens in the intermediate regime, and whether there is a

phase transition. Let us note that the techniques of the renewal theoretic techniques used in this article

are not very helpful, because the lengths between regenerations grow extremely quickly as q → 1.
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