

 University of Groningen

Bit-Vector Typestate Analysis
Arslanagic, Alen; Subotić, Pavle; Pérez, Jorge A.

Published in:
Formal Aspects of Computing

DOI:
10.1145/3595299

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Arslanagic, A., Subotić, P., & Pérez, J. A. (2023). Bit-Vector Typestate Analysis. Formal Aspects of
Computing, 35(3), 1-36. Article 19. https://doi.org/10.1145/3595299

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-12-2023

https://doi.org/10.1145/3595299
https://research.rug.nl/en/publications/a99e4e66-b041-44a7-a180-9697e3c14358
https://doi.org/10.1145/3595299

19

Bit-Vector Typestate Analysis

ALEN ARSLANAGIĆ, University of Groningen, The Netherlands

PAVLE SUBOTIĆ, Microsoft, Serbia

JORGE A. PÉREZ, University of Groningen, The Netherlands

Static analyses based on typestates are important in certifying correctness of code contracts. Such analyses rely
on Deterministic Finite Automata (DFAs) to specify properties of an object. We target the analysis of contracts
in low-latency environments, where many useful contracts are impractical to codify as DFAs and/or the size
of their associated DFAs leads to sub-par performance. To address this bottleneck, we present a lightweight

compositional typestate analyzer, based on an expressive specification language that can succinctly specify
code contracts. By implementing it in the static analyzer Infer, we demonstrate considerable performance
and usability benefits when compared to existing techniques. A central insight is to rely on a sub-class of
DFAs whose analysis uses efficient bit-vector operations.

CCS Concepts: • Software and its engineering → Formal software verification;

Additional Key Words and Phrases: Static analysis, code contracts, typestates

ACM Reference format:

Alen Arslanagić, Pavle Subotić, and Jorge A. Pérez. 2023. Bit-Vector Typestate Analysis. Form. Asp. Comput.

35, 3, Article 19 (September 2023), 36 pages.
https://doi.org/10.1145/3595299

1 INTRODUCTION

Industrial-scale software is generally composed of multiple interacting components, which are typ-
ically produced separately. As a result, software integration is a major source of bugs [20]. Many
integration bugs can be attributed to violations of code contracts. Because these contracts are im-
plicit and informal in nature, the resulting bugs are particularly insidious. To address this problem,
formal code contracts are an effective solution [13] because static analyzers can automatically
check whether client code adheres to ascribed contracts.

Typestate is a fundamental concept in ensuring the correct use of contracts and APIs. A typestate
refines the concept of a type: whereas a type denotes the valid operations on an object, a typestate
denotes operations valid on an object in its current program context [23]. Typestate analysis is a
technique used to enforce temporal code contracts. In object-oriented programs, where objects
change state over time, typestates denote the valid sequences of method calls for a given object.
The behavior of the object is prescribed by the collection of typestates, and each method call can
potentially change the object’s typestate.

This work has been partially supported by the Dutch Research Council (NWO) under project No. 016.Vidi.189.046 (Unifying
Correctness for Communicating Software).
Authors’ addresses: A. Arslanagić and J. A. Pérez, University of Groningen, The Netherlands, Groningen, Nijenborgh 9,
9747 AG; emails: alen.arslanagic@gmail.com, j.a.perez@rug.nl; P. Subotić, Microsoft, Serbia, Belgrade, Španskih Boraca 3,
11070; email: psubotic@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0934-5043/2023/09-ART19 $15.00
https://doi.org/10.1145/3595299

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

https://orcid.org/0000-0002-0292-478X
https://orcid.org/0000-0002-6536-3932
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.1145/3595299
https://doi.org/10.1145/3595299
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3595299&domain=pdf&date_stamp=2023-09-13

19:2 A. Arslanagić et al.

Fig. 1. State diagram of a DFA-based setter/getter contract (case n = 4, with 16 states and 64 transitions).

Given this, it is natural for static typestate checkers, such as Fugue [10], SAFE [26], and Infer’s
Topl checker [1], to define the analysis property using Deterministic Finite Automata (DFAs).
The abstract domain of the analysis is a set of states in the DFA; each operation on the object
modifies the set of possible reachable states. If the set of abstract states contains an error state,
then the analyzer warns the user that a code contract may be violated. Widely applicable and
conceptually simple, DFAs are the de facto model in typestate analyses.

Here, we target the analysis of realistic code contracts in low-latency environments such as, e.g.,
Integrated Development Environments (IDEs) [24, 25]. In this context, to avoid noticeable
disruptions in the users’ workflow, the analysis should ideally run under a second [2]. However,
relying on DFAs jeopardizes this goal, as it can lead to scalability issues.

To illustrate these limitations, consider the representative example of a class with four setter/
getter method pairs, where each setter method enables a corresponding getter method and
then disables itself; the intention is that values can be set up once and accessed multiple times.
The associated DFA contract has 24 states, as any subset of getter methods can be available
at a particular program point, depending on previous calls (cf. Figure 1). Additionally, the full
DFA-based specification requires as many as 64 state transitions. To see this, each state has 4
transitions available, with complementary enabled setter and getter methods; this way, e.g., state
q3 has outgoing transitions with labels д1,д2, s3, s4 and state q7 has outgoing transitions with
labels д1,д2,д3, s4. In the general case (n methods), a DFA for this kind of contract can have 2n

states. Even with a small n, as in Figure 1, such contracts are impractical to codify manually and
are likely to result in sub-par performance.

This kind of enable/disable properties are referred to as may call properties. Interestingly,
the specification of common “must call” properties can also result in prohibitively large DFA

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:3

state-space. As an example, consider a class that has m pairs of methods for acquiring/releasing
some resources. The contract should ensure that all acquired resources are released before the
object is destructed. Because states would need to track unreleased resources, a DFA for this
contract requires 2m states.

Any DFA-based typestate analysis crucially depends on the number of states. Typically the anal-
ysis has a finite-state domain and a distributive transfer function; it falls into a category of so-called
distributive analysis that admits precise interprocedural (compositional) analysis in polynomial
time (see IFDS [21]). The number of states is critical: in the worst case, the analysis takes |Q |3

operations per method invocation, where Q is the set of states of the underlying DFA. To see why
this is the case, we may notice that a procedure can be invoked in any state—thus, we need to
analyze a function with every state as a potential entry state. Furthermore, this per-state analysis
must deal with subsets of states. Thus, contracts that induce a large state space can severely impact
the performance of the compositional analysis.

Interestingly, many practical contracts do not require a full DFA. In our enable/disable example,
the method dependencies are local to a subset of methods—an enabling/disabling relation concerns
a pair of methods. In contrast, DFA-based approaches have by definition a global standpoint; as a
result, local method dependencies can impact transitions of unrelated methods. Thus, using DFAs
for contracts that specify dependencies that are local to each method (or to a few methods) is
redundant and/or prone to inefficient implementations.

Our Solution. Based on these observations, we present a lightweight typestate analyzer for lo-
cally dependent code contracts in low-latency environments. It rests upon two insights:

(1) Allowed and disallowed sequences of method calls for objects can be succinctly specified without
using DFAs. To unburden the task of specifying typestates, we introduce lightweight anno-
tations to specify method dependencies as annotations on methods. Lightweight annotations
can specify code contracts for usage scenarios commonly encountered when using libraries
such as File, Stream, Socket, and so on, in considerably fewer lines of code than DFAs.

(2) A sub-class of DFAs suffices to express many useful code contracts. To give semantics to
lightweight annotations, we define Bit-Vector Finite Automata (BFAs): a sub-class of
DFAs whose analysis uses bit-vector operations. We establish the exact difference between
DFAs and BFAs: a context-independence property, satisfied by the latter but not by the former.
In many practical scenarios, BFAs suffice to capture information about the enabled and dis-
abled methods at a given point. Because this information can be codified using bit-vectors,
associated static analyses can be performed efficiently. In particular, we are able to abstract
BFA states and transitions in such a way that our compositional analysis requires a constant
number of bit-vector operations per method invocation. This makes our analysis insensitive
to the number of states, which in turn ensures scalability with contract and program size.

Importantly, code contracts that are locally dependent allow efficient reasoning about contract
subtyping, as required by class inheritance. Relying on DFAs can make reasoning and specifying
contract subtyping a difficult task. Suppose c2 is a sub-class of c1 (i.e., c1 is the super-class of
c2). Intuitively, a contract for c2 must be at least as permissive as a contract for c1. That is, a set
of allowed sequences of method invocations for c2 must subsume that of c1. Locally-dependent
contracts enable succinct specifications, which in turn enable an efficient subsumption checking
algorithm, thereby making reasoning about subtyping an easy task. Indeed, by relying on our
annotation language, we can check the subtyping relation simply by comparing annotations of
the corresponding methods of super- and sub-classes; because this comparison operation is usual
set inclusion, subtyping checking is insensitive to the number of states in a corresponding DFA.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:4 A. Arslanagić et al.

We have implemented our lightweight typestate analysis in the industrial-strength static ana-
lyzer Infer [8]. Our analysis exhibits concrete usability and performance advantages and is expres-
sive enough to encode many relevant typestate properties in the literature. On average, compared
to state-of-the-art typestate analyses, our approach requires less annotations than DFA-based an-
alyzers and does not exhibit slowdowns due to state increase.

Contributions and Organization. We summarize our contributions as follows:

— A specification language for typestates based on lightweight annotations. Our language rests
upon BFAs, a new sub-class of DFA based on bit-vectors (Section 2).

— A lightweight analysis technique for code contracts, implemented in Infer (Section 3). An
associated artifact is publicly available [4].

— The specification language in Section 2 and the analysis technique in Section 3 con-
cern “may call” properties, which involve methods that may be called at some program
point. In Section 4, we extend our approach to consider also “must call” properties,
which are useful to express that a method requires another one to be invoked in a code
continuation.

— Extensive evaluations for our lightweight analysis technique, which demonstrate consider-
able gains in performance and usability (Section 5).

We review related work in Section 6 and collect some closing remarks in Section 7.

This article is an extended and revised version of our conference paper [3]. In this presentation,
we consider a more general formalism of BFAs, which incorporates “must call” properties. More-
over, this article includes formal proofs for the extended formalism in Section 4 and an updated
experimental evaluation in Section 5.

2 BIT-VECTOR TYPESTATE ANALYSIS

2.1 Annotation Language

We introduce BFA specifications, which succinctly encode temporal properties by describing local
method dependencies, thus avoiding the need for a full DFA specification. BFA specifications de-
fine code contracts by using atomic combinations of annotations “@Enable(n)” and “@Disable(n)”,
where n is a set of method names. Intuitively:

— “@Enable(n) m” asserts that invoking method m makes calling methods in n valid in a
continuation.

— Dually, “@Disable(n) m” asserts that a call to m disables calls to all methods in n in the
continuation.

Notation 2.1. We define some base sets and notations.

— We write Classes to denote the finite set of all classes under consideration. We use c, c ′, . . .
to denote elements of Classes.

— The set Σc = {m↑,m1, . . . ,mn ,m
↓} denotes the n methods of a class c . In Σc , bothm↑ andm↓

are notations reserved for the constructor and destructor methods of the class, respectively.
We assume a single constructor and destructor for simplicity and clarity; our formalism can
be extended to support multiple constructors without difficulties.

— The set Σ•
c is defined as Σc \ {m

↑,m↓}. For convenience, we will assume a total ordering on
Σ•

c ; this will be useful when defining BFAs in the next section.

We will often use E and D to denote subsets of Σ•
c . Also, we shall write x̃ to denote finite sequences

of elements x1, . . . ,xk (with k > 0).

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:5

Definition. Following the above intuitions on “@Enable(n)m” and “@Disable(n)m”, we define
BFA annotations per method and a corresponding notion of valid method sequences:

Definition 2.1 (Annotation Language). Let c ∈ Classes such that Σc = {m↑,m1, . . . ,mn ,m
↓}. We

have:

— The constructor methodm↑ is annotated by

@Enable(Ec) @Disable(Dc)m↑

where Ec ∪ Dc = Σ•
c and Ec ∩ Dc = ∅;

— Eachmi ∈ Σ•
c is annotated by

@Enable(Ei) @Disable(Di)mi

where Ei ⊆ Σ•
c , Di ⊆ Σ•

c , and Ei ∩ Di = ∅.

Let x̃ =m↑,x1,x2, . . . be a sequence where each xi ∈ Σ•
c . We say that x̃ is valid (w.r.t. annotations)

if for all subsequences x̃ ′ = xi , . . . ,xk of x̃ such that xk ∈ Di there is j (i < j ≤ k) such that xk ∈ Ej .

The formal semantics for these specifications is given in Section 2.2. We note that if Ei or Di is
∅ then we omit the corresponding annotation.

Derived Annotations. The annotation language can be used to derive other useful annotations:

@EnableOnly(Ei)mi
def
= @Enable(Ei) @Disable(Σ

•
c \ Ei)mi

@DisableOnly(Di)mi
def
= @Disable(Di) @Enable(Σ

•
c \ Di)mi

@EnableAllmi
def
= @Enable(Σ•

c)mi

This way, the annotation “@EnableOnly(Ei)mi ” asserts that a call to methodmi enables only calls
to methods in Ei while disabling all other methods in Σ•

c . The annotation “@DisableOnly(Di)mi ”
is defined dually. Finally, the annotation “@EnableAllmi ” asserts that a call to methodmi enables
all methods in a class; an annotation “@DisableAllmi ” can be defined similarly.

Examples. We illustrate the expressivity and usability of BFA annotations by means of exam-
ples. First, the complete setter/getter contract from Figure 1 can be specified with only four BFA

annotations, namely:

@Enable(д1) @Disable(s1) s1

@Enable(д2) @Disable(s2) s2

@Enable(д3) @Disable(s3) s3

@Enable(д4) @Disable(s4) s4

Next, we consider the SparseLU class from Eigen C++ library.1 This class implements a lower-

upper (LU) decomposition of a sparse matrix. We illustrate the expressivity and usability of BFA
annotations by means of the following example. For brevity, we consider representative methods
for a typestate specification (we also omit return types):

1 class SparseLU {

2 void analyzePattern(Mat a);

3 void factorize(Mat a);

4 void compute(Mat a);

5 void solve(Mat b); }

1https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

19:6 A. Arslanagić et al.

Fig. 2. DFA for the class SparseLU.

1 class SparseLU {

2 states q0, q1 , q2 , q3;

3 @Pre(q0) @Post(q1)

4 @Pre(q3) @Post(q1)

5 void analyzePattern(Mat a);

6 @Pre(q1) @Post(q2)

7 @Pre(q3) @Post(q2)

8 void factorize(Mat a);

9 @Pre(q0) @Post(q2)

10 @Pre(q3) @Post(q2)

11 void compute(Mat a);

12 @Pre(q2) @Post(q3)

13 @Pre(q3)

14 void solve(Mat b); }

Listing 1. SparseLU DFA Contract.

class SparseLU {

@EnableOnly(factorize)

void analyzePattern(Mat a);

@EnableOnly(solve)

void factorize(Mat a);

@EnableOnly(solve)

void compute(Mat a);

@EnableAll

void solve(Mat b); }

Listing 2. SparseLU BFA Contract.

Eigen’s implementation of the class SparseLU uses assertions to dynamically check that:
(i) analyzePattern is called prior to factorize and (ii) factorize or compute are called prior to
solve. At a high-level, this contract tells us that compute (or analyzePattern().factorize())
prepares resources for invoking solve.

Some method call sequences do not cause errors but have redundancies. For example, we can
disallow consecutive calls to compute in sequences such as, e.g.,

“compute().compute().solve()”

as the result of the first call to compute is never used. Also, because compute is essentially imple-
mented as “analyzePattern().factorize()”, it is also redundant to call factorize after compute.

Figure 2 gives the corresponding DFA that substitutes dynamic checks and avoids redundancies.
(In the figure, and in the following, we write aP to denote/abbreviate “analyzePattern”.) Follow-
ing the literature [10], this DFA can be annotated inside the definition of the class SparseLU as
in Listing 1: States are listed in the class header and transitions are specified by @Pre and @Post
conditions on methods. Already in this small example, this DFA specification is too low-level
and presents high annotation overheads, which makes it unreasonable for software engineers to
annotate their APIs.

The entire contract for the SparseLU class can be succinctly specified using BFA annotations
as in Listing 2. In this case, the starting state is unspecified, as it is determined by annotations. In
fact, methods that are not guarded by other methods (such as solve is guarded by compute), or

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:7

have weaker guards, are enabled in the starting state. We assume that @EnableOnly is a stronger
guard than @EnableAll. Thus, here we infer that analyzePattern() and compute() are the
only methods enabled upon object creation. This condition can be overloaded by specifying
annotations on the constructor method. Remarkably, the contract can be specified with only
four annotations; in contrast, the corresponding DFA requires eight annotations plus four states
specified in the class header.

Another difference concerns the treatment of local method dependencies: a small change in
BFA annotations can result in a substantial change of the corresponding DFA. To see this, let
{m1,m2,m3, . . . ,mn} be methods of some class with an associated DFA (with set of states Q), in
which m1 and m2 are enabled in each state of Q . Adding an annotation such as “@Enable(m2)
m1” doubles the number of states of the required DFA, as we need the set of states Q where m2 is
enabled in each state, but also states fromQ withm2 disabled in each state. Accordingly, transitions
have to be duplicated for the new states and the remaining methods (m3, . . . ,mn).

2.2 Bit-Vector Finite Automata

We define BFA (BFA, in the following): a class of DFAs that captures enabling/disabling depen-
dencies between the methods of a class (cf. Definition 2.1) leveraging a bit-vector abstraction on
typestates.

Definition 2.2 (Sets and Bit-vectors). Let Bn denote the set of bit-vectors of length n > 0. We
write b,b ′, . . . to denote elements of Bn , with b[i] denoting the ith bit in b. Given a finite set S
with |S | = n, every A ⊆ S can be represented by a bit-vector bA ∈ Bn , obtained via the usual
characteristic function.

By a small abuse of notation, given sets A,A′ ⊆ S , we may write A ⊆ A′ to denote the subset
operation applied on bA and bA′ (and similarly for ∪,∩, and \).

We first define a BFA per class. We assume c ∈ Classes and Σ•
c = {m1, . . . ,mn} be as described

in Notation 2.1. Given that c has n methods, we consider states qb , where, following Definition 2.2,
the bit-vector bA ∈ Bn denotes the set of methods A ⊆ Σ•

c enabled at that point. We assume that
the bit-vector representation of the subset A is consistent with respect to the total ordering on Σ•

c ,
in the sense that bit b[i] corresponds tomi ∈ Σ•

c . We often write “b” (and qb) rather than “bA” (and
‘‘qbA

”), for simplicity. As we will see, the intent is that ifmi ∈ b (resp.mi � b), then the ith method
is enabled (resp. disabled) in qb .

Definition 2.3, given next, gives a mapping from methods to triples of bit-vectors, denoted Lc .
Given k > 0, let us write 1k (resp. 0k) to denote a sequence of 1s (resp. 0s) of length k .

The initial state is determined by Ec , the set of enabling annotations on the constructor.

Definition 2.3 (Mapping Lc). Given a class c , we define Lc as a mapping from methods to triples
of subsets of Σ•

c as follows:

Lc : Σc → P(Σ•
c) × P(Σ•

c) × P(Σ•
c)

Given mi ∈ Σc , we shall write Ei , Di , and Pi to denote each of the elements of the triple Lc (mi).
Similarly, we write Ec , Dc , and Pc to denote the elements of the triple Lc (m

↑). The mapping Lc

is induced by the annotations in class c: for each mi , the sets Ei and Di are explicit, and Pi is
simply the singleton {mi }. This singleton formulation is convenient to define the domain of the
compositional analysis in Section 3.2: as we will see later, it allows us to uniformly treat method
calls and procedure calls which can have more elements in pre-set Pi .

We impose some natural well-formedness conditions on the BFA mapping.

Definition 2.4 (well_formed(Lc)). Let c , Σc , and Lc be a class, its method set, and its BFA map-
ping, respectively. Then, well_formed(Lc) = true iff the following conditions hold:

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:8 A. Arslanagić et al.

— Lc (m
↑) = 〈Ec ,Dc , ∅〉 such that Ec ∪ Dc = Σ•

c and Ec ∩ Dc = ∅;
— formi ∈ Σ•

c we have Lc (mi) = 〈Ei ,Di , {mi }〉 such that Ei ,Di ⊆ Σ•
c and Ei ∩ Di = ∅.

The first condition says that the constructor’s enabling and disabling sets must be disjunctive and
complementary with respect to Σ•

c ; this will be convenient later when defining the compositional
analysis algorithm in Section 3. The second condition ensures that every method’s enabling and
disabling sets are disjunctive. Furthermore, by taking Ei ,Di ∈ Σ•

c we ensure that the annotations
of methodmi cannot refer to the constructor nor the destructor (see Notation 2.1).

In a BFA, transitions between states (qb ,qb′, . . .) are determined by Lc . Givenmi ∈ Σc , we have
j ∈ Ei if and only if mi enables mj ; similarly, we have k ∈ Di if and only if mi disables mk . A
transition from qb labeled by method mi leads to state qb′ , where b ′ is determined by Lc using b.
Such a transition is defined only if a pre-condition formi is met in state qb , i.e., P ⊆ b. In that case,
b ′ = (b ∪ Ei) \ Di .

These intuitions should serve to illustrate our approach and, in particular, the local nature of
enabling/disabling dependencies between methods. The following definition makes them precise.

Definition 2.5 (BFA). Given a c ∈ Classes with n > 0 methods, a BFA for c is defined as a tuple
M = (Q, Σ•

c ,δ ,qEc ,Lc) where:

—Q is a finite set of states qb ,qb′, . . ., where b,b ′, . . . ∈ Bn ;
— Σ•

c = {m1, . . . ,mn} is the alphabet (method identities);
— qEc is the starting state (recall that Ec is enabling set of a constructor);
— Lc is a BFA mapping (cf. Definition 2.3).
— δ : Q × Σc → Q is the transition function, where

δ (qb ,mi) = qb′

with b ′ = (b ∪ Ei) \ Di , if Pi ⊆ b, and is undefined otherwise.

We remark that in a BFA all states in Q are accepting.

Example 2.6 (SparseLU). We give the BFA derived from the annotations in the SparseLU example
(Listing 2). We associate indices to methods:

[0 : constr, 1 : aP, 2 : compute, 3 : factorize, 4 : solve]

The constructor annotations are implicit: this enables methods that are not guarded or have
the weakest annotations guards on other methods (in this case, aP and compute). The mapping
LSparseLU is as follows:

LSparseLU ={0 �→ 〈{1, 2}, {3, 4}, ∅〉, 1 �→ 〈{3}, {1, 2, 4}, {1}〉,

2 �→ 〈{4}, {1, 2, 3}, {2}〉, 3 �→ 〈{4}, {1, 2, 3}, {3}〉, 4 �→ 〈{1, 2, 3}, ∅, {4}〉}

The starting state is q1100, as given by the annotations on the constructor. The set of states is

Q = {q1100,q0010,q0001,q1111}

Finally, the transition function δ is given by following eight transitions:

δ (q1100, aP) = q0010 δ (q1100, compute) = q0010 δ (q0010, factorize) = q0001

δ (q0001, solve) = q1111 δ (q1111, aP) = q0010 δ (q1111, compute) = q0001

δ (q1111, factorize) = q0001 δ (q1111, solve) = q1111

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:9

Fig. 3. State diagram of the DFA of an iterator.

Contrasting BFAs and DFAs. We have already seen the differences between BFAs and DFAs in
the specification of a representative concrete example. We now compare BFAs and DFAs more
formally, by identifying a property that distinguishes the two models.

The property, called context-independence, is satisfied by all BFAs but not by all DFAs. To state
the property and prove this claim, we need some convenient notations. First, we use m̃ to denote a
finite sequence of method names in Σ. Also, we use “·” to denote sequence concatenation, defined
as expected. Furthermore, given a BFA M , we write L(M) to denote the language accepted by M ,
defined as {m̃ : δ̂ (qEc ,m̃) = q′ ∧q′ ∈ Q}, where δ̂ (qb ,m̃) is the extension of the one-step transition
function δ (qb ,mi) to a sequence m̃ of method calls.

BFAs determine a strict sub-class of DFAs. First, because all states inQ are accepting, BFA cannot
encode must call properties (cf. Section 6). Next, we have the context-independence property:

Theorem 2.1 (Context-independence). LetM = (Q, Σ•
c ,δ ,qEc ,Lc) be a BFA. Then, formn ∈ Σ•

c

we have

(1) If there is p̃ ∈ L(M) andmn+1 ∈ Σ•
c such that p̃ ·mn+1 � L(M) and p̃ ·mn ·mn+1 ∈ L(M) then

there is no m̃ ∈ L(M) such that m̃ ·mn ·mn+1 � L(M).
(2) If there is p̃ ∈ L(M) andmn+1 ∈ Σ•

c such that p̃ ·mn+1 ∈ L(M) and p̃ ·mn ·mn+1 � L(M) then
there is no m̃ ∈ L(M) such that m̃ ·mn ·mn+1 ∈ L(M).

Proof. We only consider the first item, as the second item is shown similarly. By p̃ ·mn+1 � L(M)

and p̃ ·mn ·mn+1 ∈ L(M) and Definition 2.5 we know that

mn+1 ∈ En (1)

Furthermore, for any m̃ ∈ (Σ•
c)

∗, let qb be such that δ (q10n−1 ,m̃) = qb and qb′ such that δ (qb ,mn) =

qb′ . Now, by Definition 2.5 we have that δ (qb′,mn+1) is defined, as by (1) we know Pn+1 = {mn+1} ⊆

b ′. Thus, for all m̃ ∈ L(M) we have m̃ ·mn ·mn+1 ∈ L(M). This concludes the proof. �

Informally, the above theorem says that the effect of a call to mn to subsequent calls (mn+1) is
not influenced by previous calls (i.e., the context) m̃. That is, Item 1. (resp. Item 2.) says that method
mn enables (resp. disables) the same set of methods in any context.

The context-independence property is not satisfied by all DFAs. Consider, for example, a DFA
that disallows modifying a collection while iterating is not a BFA (as in [6, Figure 3]). Let it be a
Java Iterator with its usual methods for a collection c . For the sake of illustration, we assume a
single DFA relates the iterator and its collection methods; we give the associated state diagram in
Figure 3. Then, the sequence

“c.remove();it.hasNext()”

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:10 A. Arslanagić et al.

1 class Foo {

2 SparseLU lu; Matrix a;

3 void setupLU1(Matrix b) {

4 this.lu.compute(this.a);

5 if (?) this.lu.solve(b); }

6 void setupLU2 () {

7 this.lu.analyzePattern(this.a);

8 this.lu.factorize(this.a); }

9 void solve(Matrix b) {

10 this.lu.solve(b); } }

Listing 3. Class Foo using SparseLU.

void wrongUseFoo () {

Foo foo; Matrix b;

foo.setupLU1 ();

foo.setupLU2 ();

foo.solve(b);

}

Listing 4. Client code for Foo.

should be allowed, whereas

“it.hasNext();it.next();c.remove();it.hasNext()”

should not. That is, “c.remove” disables “it.hasNext” only if “it.hasNext” has been previously
called. Thus, the effect of calling “c.remove” depends on the calls that precede it.

BFA subtyping. The combination of (i) locally-dependent annotations and (ii) the context-inde-
pendence property they satisfy enable us to check for contract subtyping by independently com-
paring annotations method-wise; importantly, this comparison boils down to usual set inclusion.
Suppose M1 and M2 are BFAs for classes c1 and c2, respectively, with c1 being the super-class of c2.
The class inheritance imposes the question: how to check that c2 is a proper refinement of c1? In
other words, c2 must subsume c1: any valid sequence of calls to methods of c1 must also be valid
for c2. Using BFAs, we can verify this simply by checking annotations method-wise. We can check
whether M2 subsumes M1 only by considering their respective annotation mappings Lc2 and Lc1 .
Then, we have M2 � M1 iff for all mj ∈ Lc we have E1 ⊆ E2, D1 ⊇ D2, and P2 ⊆ P1 where
〈Ei ,Di , Pi 〉 = Lci

(mj) for i ∈ {1, 2}.

3 A COMPOSITIONAL ANALYSIS ALGORITHM

Since BFAs can be encoded as bit-vectors, standard data-flow analysis frameworks can be employed
for the non-compositional case (e.g., intra-procedural analyses) [16]. Here, we address the case of
member object methods being called: we present a compositional algorithm that is tailored to the
Infer compositional static analysis framework.

3.1 Key Ideas

We motivate our compositional analysis technique with the example below.

Example 3.1. Let Foo be a class that has a member lu of class SparseLU (cf. Listing 3). For each
method of Foo that invokes methods on luwe compute a symbolic summary that denotes the effect
of executing that method on typestates of lu. To check against client code, a summary gives us:
(i) a pre-condition (i.e., which methods should be allowed before calling a procedure) and (ii) the
effect on the typestate of an argument when returning from the procedure. A simple instance of a
client is wrongUseFoo in Listing 4.

The central idea of our analysis is to accumulate enabling and disabling annotations. For
this, the abstract domain maps object access paths to triples from the definition of LSparseLU

(cf. Definition 2.3). A transfer function interprets method calls in this abstract state. We illustrate
the transfer function; the evolution of the abstract state is presented as comments in the following
code listing.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:11

1 void setupLU1(Matrix b) {

2 // s1 = this.lu -> ({}, {}, {})

3 this.lu.compute(this.a);

4 // s2 = this.lu -> ({ solve}, {aP , factorize , compute}, {compute })

5 if (?) this.lu.solve(b); }

6 // s3 = this.lu -> ({solve , aP , factorize , compute}, {}, {compute })

7 // join s2 s3 = s4

8 // s4 = sum1 = this.lu -> ({solve}, {aP , factorize , compute}, {compute })

At the procedure entry (line 2), we initialize the abstract state as a triple with empty sets (s1). Next,
the abstract state is updated at the invocation of compute (line 3): we copy the corresponding
tuple from LSparseLU(compute) to obtain s2 (line 4). Notice that compute is in the pre-condition
set of s2. Further, given the invocation of solve within the if-branch in line 5 we transfer s2 to
s3 as follows: the enabling set of s3 is the union of the enabling set from LSparseLU(solve) and the
enabling set of s2 with the disabling set from LSparseLU(solve) removed (i.e., an empty set in this
case). Dually, the disabling set of s3 is the union of the disabling set of LSparseLU(solve) and the
disabling set of s1 with the enabling set of LSparseLU(solve) removed. Here, we do not have to add
solve to the pre-condition set, as it is in the enabling set of s2.

Finally, we join the abstract states of two branches (i.e., s2 and s3) at line 7. Intuitively, this join
operates as follows: (i) a method is enabled only if it is enabled in both branches and not disabled
in any branch; (ii) a method is disabled if it is disabled in either branch; (iii) a method called in
either branch must be in the pre-condition (cf. Definition 3.2). Accordingly, in line 8, we obtain
the final state s4, which is also a summary for the method SetupLU1.

Now, we illustrate the checking of the client code wrongUseFoo() (cf. Listing 4), with computed
summaries:

1 void wrongUseFoo () {

2 Foo foo; Matrix b;

3 // d1 = foo.lu -> ({aP, compute}, {solve , factorize}, {})

4 foo.setupLU1(); // apply sum1 to d1

5 // d2 = foo.lu -> ({solve}, {aP, factorize , compute}, {})

6 foo.setupLU2(); // apply sum2 = {this.lu -> ({ solve}, {aP, factorize , compute},

{aP}) }

7 // warning! `analyzePattern ' is in pre of sum2 , but not enabled in d2

8 foo.solve(b); }

Above, at line 2, the abstract state is initialized with annotations of the constructor Foo. Upon
invocation of setupLU1() (line 4), we apply sum1 in the same way as user-entered annotations
are applied to transfer s2 to s3 above. Next, in line 6, we can see that aP is in the pre-condition set
in the summary for setupLU2() (sum2), which is computed similarly as sum1; however, it is not
in the enabling set of the current abstract state d2. Thus, a warning is raised: foo.lu set up by
foo.setupLU1() is never used and overridden by foo.setupLU2(). �

Class Composition. In the above example, the allowed orderings of method calls to an object of
class Foo are imposed by the contracts of its object members (SparseLU) and the implementation
of its methods. In practice, a class can have multiple members with their own BFA contracts. For
instance, a class Bar can use two solvers, SparseLU and SparseQR:

1 class Bar {

2 SparseLU lu; SparseQR qr; /* ... */ }

where the class SparseQR has its own BFA contract. The implicit contract of Bar depends on the
contracts of lu and qr. Moreover, a class such as Bar can be a member of some other class. Thus,
we refer to those classes as composed and to classes that have declared contracts (as SparseLU) as
base classes.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:12 A. Arslanagić et al.

3.2 The Algorithm

We formally define our analysis, which presupposes the control-flow graph (CFG) of a program.
Let us write AP to denote the set of access paths, which enable a field-sensitive data-flow analysis;
see, e.g., [5, 18, 22] for more information on this subject. Access paths model heap locations as
paths used to access them: a program variable followed by a finite sequence of field accesses (e.g.,
f oo.a.b). We use access paths as we would like to explicitly track states of class members; this, in
turn, enables a precise compositional analysis. The abstract domain, denotedD, maps access paths
AP to BFA triples; below we write Cod(-) to denote the codomain of a mapping:

D : AP →
⋃

c ∈Classes

Cod(Lc)

As the variables denoted by an access path in AP can be of any declared class c ∈ Classes, the
co-domain of D is the union of codomains of Lc for all classes in a program. We remark that D is
sufficient for both checking and computing summaries, as we will show in the remainder of the
section.

Definition 3.2 (Join Operator). We define
⊔

: Cod(Lc) ×Cod(Lc) → Cod(Lc) as follows:

〈E1,D1, P1〉 � 〈E2,D2, P2〉 = 〈E1 ∩ E2 \ (D1 ∪ D2), D1 ∪ D2, P1 ∪ P2〉

The join operator on Cod(Lc) is lifted to D by taking the union of un-matched entries in the
mapping.

We now define some useful functions and predicates. First, we remark that our analysis is only
concerned with three types of CFG nodes: a method call node, entry, and exit node of a method
body; all other node types are irrelevant.

Notation 3.1. We introduce convenient notations for entry and method call nodes:

— Entry-node[mj (p0, . . . ,pn)] denotes a method entry node where mj is a method name and
p0, . . . ,pn are formal arguments;

— Call-node[mj (p0 : b0, . . . ,pn : bn)] denotes a call to methodmj where p0, . . . ,pn are formal
arguments and b0, . . . ,bn are actual arguments.

The following definitions concern CFG traversal, predecessor nodes, exit nodes, and actual
parameters:

Definition 3.3 (forward(-)). Let G be a CFG. Then, forward(G) enumerates nodes ofG by travers-
ing it in a breadth-first manner.

Definition 3.4 (pred(-)). Let G be a CFG and v a node of G. Then, pred(v) denotes a set of prede-
cessor nodes of v . That is, pred(v) =W such that w ∈W if and only if there is an edge from w to
v in G.

Definition 3.5 (warning(-)). Let G be a CFG and L1, . . . ,Lk be a collection of BFAs. We define
warning(G,L1, . . . ,Lk) = true if there is a path in G that violates some of Li for i ∈ {1, . . . ,k}.

Definition 3.6 (exit_node(-)). Let v be a method call node. Then, exit_node(v) denotes the exit
node w of a method body corresponding to v .

Definition 3.7 (actual_arg(-, -)). Let v = Call-node[mj (p0 : b0, . . . ,pn : bn)] be a call node.
Suppose p ∈ AP. We define actual_arg(p,v) = bi if p = pi for i ∈ {0, . . . ,n}; otherwise
actual_arg(p,v) = p.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:13

ALGORITHM 1: BFA Compositional Analysis

Data: G : A program’s CFG, a collection of BFA mappings: Lc1 , . . . ,Lck
over classes c1, . . . ck such

that well_formed(Lci) for i ∈ {1, . . . ,k}
Result: warninд(G,Lc1 , . . . ,Lck

)

1 Initialize NodeMap : Node → D as an empty map;

2 foreach v in forward(G) do

3 if pred(v) is empty then

4 Initialize σ : D as an empty mapping;

5 else

6 σ =
⊔

w ∈pr ed (v)w ;

7 if guard(v , σ) then NodeMap[v] := transfer(v ,σ); else return True;

8 return False

ALGORITHM 2: Guard Predicate
Data: v : CFG node, σ : D
Result: False iff v is a method call that cannot be called in σ

1 Procedure guard (v,σ)
2 switch v do

3 case Call-node[mj (p0 : b0, . . . ,pn : bn)] do

4 Let w = exit_node(v);

5 for i ∈ {0, . . . ,n} do

6 if σw [pi].P ∩ σ [bi].D � ∅ then return False;

7 return True

8 otherwise do

9 return True

For convenience, we use a dot notation to access elements of BFA triples:

Definition 3.8 (Dot Notation for BFA Triples). Let σ ∈ D and p ∈ AP. Further, let σ [p] =
〈Eσ ,Dσ , Pσ 〉. Then, we have σ [p].E = Eσ , σ [p].D = Dσ , and σ [p].P = Pσ .

The compositional analysis is given in Algorithm 1. It expects a program’s CFG and a series
of contracts, expressed as BFAs annotation mappings (Definition 2.3). If the program violates the
BFA contracts, a warning is raised. For the sake of clarity, we only return a boolean indicating if
a contract is violated (cf. Definition 3.5). In the actual implementation, we provide more elaborate
error reporting.

The algorithm traverses the CFG nodes top-down in a for-loop (lines 2–7) as given by forward(G)
(cf. Definition 3.3). For each node v , we first check whether v has predecessors: if not, when
pred(v) = ∅, we initialize domain σ as an empty mapping of type D; otherwise, we collect in-
formation from its predecessors (as given by pred(v)) and join them as σ (line 6). Then, it uses
predicate guard(-,-) (cf. Algorithm 2) to check whether a method can be called in the given abstract
state σ . If the pre-condition is met, then the function transfer(-, -) (cf. Algorithm 3) is called on a
node. We assume a collection of BFA contracts (given as Lc1 , . . . ,Lck

, the input for Algorithm 1)
is accessible in Algorithm 3 to avoid explicit passing.

Guard Predicate. Predicate guard(v,σ) checks whether a pre-condition for method call node v
in the abstract state σ is met (cf. Algorithm 2). We represent a call node as mj (p0 : b0, . . . ,pn : bn)

where pi and bi (for i ∈ {0, . . . ,n}) are formal and actual arguments, respectively. Let σw be a post-
state of an exit node of methodmj . A pre-condition is satisfied if for all bi there are no elements in

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:14 A. Arslanagić et al.

ALGORITHM 3: Transfer Function
Data: v : CFG node, σ : D
Result: Output abstract state σ ′ : D

1 Procedure transfer (v,σ)
2 switch v do

3 case Entry-node[mj (p0, . . . ,pn)] do

4 Let ci be the class of methodmj (p0, . . . ,pn);

5 if There is Lci then return {this �→ Lci (mj)};

6 else return EmptyMap ;

7 case Call-node[mj (p0 : b0, . . . ,pn : bn)] do

8 Let σw be an abstract state of exit_node(v);

9 Initialize σ ′ := σ ;

10 if this not in σ ′ then

11 for ap in dom(σw) do

12 ap′ = actual_arд(ap{b0/this},v);

13 if ap′ in dom(σ) then

14 E ′ = (σ [ap′].E ∪ σw [ap].E) \ σw [ap].D;

15 D ′ = (σ [ap′].D ∪ σw [ap].D) \ σw [ap].E;

16 P ′ = σ [ap′].P ∪ (σw [ap].P \ σ [ap′].E);

17 σ ′[ap′] = 〈E ′,D ′, P ′〉;

18 else

19 σ ′[ap′] := σw [ap];

20 return σ ′

21 otherwise do

22 return σ

their pre-condition set (i.e., the third element of σw [bi]) that are also in disabling set of the current
abstract state σ [bi].

For this predicate, we need the property D = Σ•
ci
\ E, where Σ•

ci
is a set of methods for class ci .

This is ensured by condition well_f ormed(Lci
) (Definition 2.4) and by the definition of transfer()

(see below).

The Transfer Function. The transfer function, given in Algorithm 3, distinguishes between two
types of CFG nodes:

Entry-node: (lines 3–6) This is a function entry node. As described in Notation 3.1, for sim-
plicity, we represent it as mj (p0, . . . ,pn) where mj is a method name and p0, . . . ,pn are formal
arguments. We assume p0 is a reference to the receiver object (i.e., this). If methodmj is defined in
a class ci with user-supplied annotations Lci

, in line 5, we initialize the domain to the singleton
map (i.e., this mapped to Lci

(mj)). Otherwise, we return an empty map meaning that a summary
has to be computed.

Call-node: (lines 7–20) We represent a call node as mj (p0 : b0, . . . ,pn : bn) (cf. Notation 3.1)
where we assume actual arguments b0, . . . ,bn are access paths for objects, with b0 representing a
receiver object.

The analysis is skipped if this is in the domain (line 10): this means the method has user-entered
annotations. Otherwise, we transfer an abstract state for each argument bi , but also for each class
member whose state is updated by mj . Thus, we consider all access paths in the domain of σw ,
that is ap ∈ dom(σw) (line 11). We construct an access path ap ′ given ap. We distinguish two
cases: ap denotes (i) a member and (ii) a formal argument of mj . In line 12, we handle both cases.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:15

In the former case, we know ap has form this .c1.cn . We then construct ap ′ as ap with this
substituted for b0 (actual_arg(-) is the identity in this case, see Definition 3.7): e.g., if receiver
b0 is this .a and ap is this .c1.cn then ap ′ = this .a.c1.cn . In the latter case ap denotes
the formal argument pi and actual_arg(-) returns the corresponding actual argument bi (as
pi {b0/this} = pi).

Now, as ap ′ is determined, we construct its BFA triple. If ap ′ is not in the domain of σ (line
13) we copy a corresponding BFA triple from σw (line 19). Otherwise, we transfer elements of an
BFA triple at σ [ap ′] as follows. The resulting enabling set is obtained by (i) adding methods that
mj enables (σw [ap].E) to the current enabling set σ [ap ′].E, and (ii) removing methods that mj

disables (σw [ap].D), from it. The disabling set D ′ is constructed in a complementary way. Finally,
the pre-condition set σ [ap ′].P is expanded with elements of σw [ap].P that are not in the enabling
set σ [ap ′].E. We remark that the property D = Σ•

ci
\ E is preserved by the definition of E ′ and D ′.

Transfer is the identity on σ for all other types of CFG nodes.
We can see that for each method call we have a constant number of bit-vector operations per

argument. That is, our BFA analysis is insensitive to the number of states, as a set of states is
abstracted as a single set. Next, we discuss the efficiency of our compositional analysis algorithm
by comparing it to the DFA-based approach.

Analysis Complexity: Comparison to DFA-based algorithm. As already mentioned, the perfor-
mance of a compositional DFA-based analysis depends on the number of states.

In DFA-based analyses, the analysis domain is given by P(Q), where Q is the set of states. In
the intraprocedural analysis, at each method call, the transfer function would need to transition
each state in the abstract state according to a given DFA. That is, the transfer function is the
DFA’s transition function lifted to a subset of states (with signature P(Q) �→ P(Q)). Clearly, the
intraprocedural analysis depends linearly in the number of DFA states.

Even more prominently, the compositional interprocedural analysis is affected by the number of
states. Each procedure has to be analyzed taking each state as an entry state: thus, effectively, we
would need to run the intraprocedural analysis |Q | times. Now, as a procedure body can contain
branches, the analysis can result in a set of states for a given input state: the procedure summary is
a mapping from a state into a set of states. For a procedure call, the transfer function would need
to apply this mapping, thus taking |Q |2 in the worst case. Overall, the compositional analysis takes
|Q |3 operations in the worst-case per a procedure call.

To sum up, taking BFAs as the basis for our analysis, an abstract domain is a set of bit-vectors;
also, both transfer and join functions are bit-vector operations. The resulting intraprocedural anal-
ysis thus requires a constant number of operations per method invocation. More importantly, the
compositional analysis also has a constant number of operations per method invocation. In fact,
the bit-vector abstraction allows a uniform treatment of intraprocedural analysis and procedure
summary computation. That is, our compositional analysis is insensitive to the number of states,
which is in sharp contrast with DFA-based analyses.

Implementation. Note, in our implementation, we use several features specific to Infer: (1) In-
fer’s summaries, which allow us to use a single domain for intra and inter procedural analysis;
(2) scheduling on CFG top-down traversal, which simplifies the handling of branch statements. In
principle, however, BFA can be implemented in other frameworks, such as, e.g., IFDS [21].

Correctness. In a BFA, we can abstract a set of states by an intersection of states in the set. Let
M be a BFA, and Q be its state set. Then, for S ⊆ Q every method call sequence accepted by M
starting in each state of S is also accepted starting in a state that is an intersection of bits of states
in S . Theorem 3.1 formalizes this property. First, we need an auxiliary definition:

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:16 A. Arslanagić et al.

Definition 3.9 (�-�(-)). Let 〈E,D, P〉 ∈ Cod(Lc) and b ∈ Bn . We define �〈E,D, P〉�(b) = b ′, where
b ′ = (b ∪ E) \ D if P ⊆ b, and is undefined otherwise.

Theorem 3.1 (BFA ∩-Property). Suppose M = (Q, Σ•
c ,δ ,qEc ,Lc), S ⊆ Q , and b∗ =

⋂
qb ∈S b.

Then we have:

(1) Form ∈ Σ•
c , it holds: δ (qb ,m) is defined for all qb ∈ S iff δ (qb∗

,m) is defined.
(2) Let σ = Lc (m). If S ′ = {δ (qb ,m) : qb ∈ S} then

⋂
qb ∈S ′ b = �σ�(b∗).

Proof. We show the two items:

(1) By Definition 2.5, for all qb ∈ S we know δ (qb ,m) is defined when P ⊆ b with 〈E, P ,D〉 =
Lc (m). So, we have P ⊆

⋂
qb ∈P b = b∗ and δ (qb∗

,m) is defined.
(2) By induction on |S |.

— |S | = 1. Follows immediately as
⋂

qb ∈{qb } qb = qb .
— |S | > 1. Let S = S0 ∪ {qb }. Let |S0 | = n. By IH, we know

⋂
qb ∈S0

�σ�(b) = �σ�
��	
⋂

qb ∈S0

b

�� . (2)

We should show

⋂
qb ∈(S0∪{qb′ })

�σ�(b) = �σ�
��	

⋂
qb ∈(S0∪{qb′ })

b

��

We have⋂
qb ∈(S0∪{qb′ })

�σ�(b) =
⋂

qb ∈S0

�σ�(b) ∩ �σ�(b ′)

= �σ�(b∗) ∩ �σ�(b ′) (by (2))

= ((b∗ ∪ E) \ D) ∩ ((b ′ ∪ E) \ D)

= ((b∗ ∩ b ′) ∪ E) \ D (by set laws)

= �σ�(b∗ ∩ b ′) = �σ�
��	

⋂
qb ∈(S0∪{qb′ })

b

��

where b∗ = �σ�(
⋂

qb ∈S0
b). This concludes the proof. �

Our BFA-based algorithm (Algorithm 1) interprets method call sequences in the abstract state
and joins them (using the join operator from Definition 3.2) following the control flow of the pro-
gram. Thus, we can prove its correctness by separately establishing: (1) the correctness of the
interpretation of call sequences using a declarative representation of the transfer function (Defini-
tion 3.10) and (2) the soundness of join operator (Definition 3.2). For brevity, we consider a single
program object, as method call sequences for distinct objects are analyzed independently.

We define the declarative transfer function as follows:

Definition 3.10 (dtransferc (-, -)). Let c ∈ Classes be a class, Σ•
c be a set of methods of c , and Lc

be a BFA mapping. Furthermore, let m ∈ Σ•
c be a method, 〈Em ,Dm , Pm〉 = Lc (m), and 〈E,D, P〉 ∈

Cod(Lc). Then, we define

dtransferc (m, 〈E,D, P〉) = 〈E ′,D ′, P ′〉

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:17

where

— E ′ = (E ∪ Em) \ Dm ,
— D ′ = (D ∪ Dm) \ Em , and
— P ′ = P ∪ (Pm \ E), if Pm ∩ D = ∅, and is undefined otherwise.

Letm1, . . . ,mn ,mn+1 be a method sequence and ϕ = 〈E,D, P〉, then

dtransferc (m1, . . . ,mn ,mn+1,ϕ) = dtransferc (mn+1, dtransferc (m1, . . . ,mn ,ϕ))

Relying on Theorem 3.1, we state the soundness of join:

Theorem 3.2 (Soundness of �). Let qb ∈ Q and ϕi = 〈Ei ,Di , Pi 〉 for i ∈ {1, 2}. Then,

�ϕ1�(b) ∩ �ϕ2�(b) = �ϕ1 � ϕ2�(b)

Proof. By Definition 3.9, Definition 3.2, and set laws we have:

�ϕ1�(b) ∩ �ϕ2�(b) = ((b ∪ E1) \ D1) ∩ ((b ∪ E2) \ D2)

= ((b ∪ E1) ∩ (b ∪ E2)) \ (D1 ∪ D2)

= (b ∪ (E1 ∩ E2)) \ (D1 ∪ D2)

= (b ∪ (E1 ∩ E2 \ (D1 ∪ D2)) \ (D1 ∪ D2)

= �ϕ1 � ϕ2�(b) �

With these auxiliary notions in place, we show the correctness of the transfer function (i.e.,
summary computation that is specialized for the code checking):

Theorem 3.3 (Correctness of dtransferc (-, -)). Let M = (Q, Σ•
c ,δ ,qEc ,Lc). Let qb ∈ Q and

m̃ =m1, . . . ,mn ∈ (Σ•
c)

∗. Then

dtransferc (m1, . . . ,mn , 〈∅, ∅, ∅〉) = 〈E ′,D ′, P ′〉 ⇐⇒ δ̂ (qb ,m1, . . . ,mn) = qb′

such that b ′ = �〈E ′,D ′, P ′〉�(b).

Proof. We show the two directions of the equivalence:

— (⇒, Soundness): By induction on n, the length of m̃ =m1, . . . ,mn .
– Casen = 1. In this case, we have m̃ =m1. Let 〈Em ,Dm , {m1}〉 = Lc (m1). By Definition 3.10,

we have E ′ = (∅ ∪ Em) \ Dm = Em and D ′ = (∅ ∪ Dm) \ Em = Dm , as Em and Dm are
disjoint, and P ′ = ∅ ∪ ({m} \ ∅). So, we have b ′ = (b ∪ Em) \ Dm . Further, we have P ′ ⊆ b.
Finally, by the definition of δ (·) (from Definition 2.5) we have δ̂ (qb ,m1, . . . ,mn) = qb′ .

– Case n > 1. Let m̃ =m1, . . . ,mn ,mn+1. By IH we know

dtransferc (m1, . . . ,mn , 〈∅, ∅, ∅〉) = 〈E ′,D ′, P ′〉 =⇒ δ̂ (qb ,m1, . . . ,mn) = qb′ (3)

such that b ′ = (b ∪ E ′) \ D ′ and P ′ ⊆ b. Now, we assume P ′′ ⊆ b and

dtransferc (m1, . . . ,mn ,mn+1, 〈∅, ∅, ∅〉) = 〈E ′′,D ′′, P ′′〉

Then, we should show

δ̂ (qb ,m1, . . . ,mn ,mn+1) = qb′′ (4)

where b ′′ = (b ∪ E ′′) \ D ′′.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:18 A. Arslanagić et al.

Let Lc (mn+1) = 〈Em ,Dm , Pm〉. We know Pm = {mn+1}. By Definition 3.10, we have

dtransferc (m1, . . . ,mn ,mn+1, 〈∅, ∅, ∅〉)

= dtransferc (mn+1, dtransferc (m1, . . . ,mn , 〈∅, ∅, ∅〉)〉)

= dtransferc (mn+1, 〈E
′,D ′, P ′〉)

Further, we have

E ′′ = (E ′ ∪ Em) \ Dm D ′′ = (D ′ ∪ Dm) \ Em P ′′ = P ′ ∪ (Pm \ E ′) (5)

Now, by substitution and De Morgan’s laws we have:

b ′′ = (b ∪ E ′′) \ D ′′

= (b ∪ ((E ′ ∪ Em) \ Dm)) \ ((D ′ ∪ Dm) \ Em)

= ((b ∪ (E ′ ∪ Em)) \ (D ′ \ Em)) \ Dm

= (((b ∪ E ′) \ D ′) ∪ Em) \ Dm

= (b ′ ∪ Em) \ Dm

Now, by P ′′ ⊆ b, P ′′ = P ′ ∪ (Pm \ E ′), and Pm ∩ D ′ = ∅, we have Pm ⊆ (b ∪ E ′) \ D ′ = b ′

(by (3)). Furthermore, by Definition 2.5, we have

δ (qb′,mn+1) = qb′′ (6)

Now, by the definition of δ̂ (·) we have

δ̂ (qb ,m1, . . . ,mn+1) = δ (δ̂ (qb ,m1, . . . ,mn),mn+1)

By this, Equations (3), and (6) the goal Equation (4) follows. This concludes this case.
— (⇐, Completeness): By induction on n, the length of m̃ =m1, . . . ,mn .

– n = 1. In this case m̃ = m1. Let 〈Em ,Dm , {m1}〉 = Lc (m1). By Definition 2.5 we have
b ′ = (b ∪ Em) \ Dm and {m1} ⊆ b. By Definition 3.10 we have E ′ = Em , D ′ = Dm , and
P ′ = {m1}. Thus, as {m1} ∩ ∅ = ∅ we have b ′ = �〈E ′,D ′, P ′〉�(b).

– n > 1. Let m̃ =m1, . . . ,mn ,mn+1. By IH we know

δ̂ (qb ,m1, . . . ,mn) = q
′
b ⇒ dtransferc (m1, . . . ,mn , 〈∅, ∅, ∅〉) = 〈E ′,D ′, P ′〉 (7)

where b ′ = (b ∪ E ′) \ D ′ and P ′ ⊆ b. Now, we assume

δ̂ (qb ,m1, . . . ,mn ,mn+1) = qb′′ (8)

We should show that

dtransferc (m1, . . . ,mn ,mn+1, 〈∅, ∅, ∅〉) = 〈E ′′,D ′′, P ′′〉

such that b ′′ = (b ∪ E ′′) \ D ′′ and P ′′ ⊆ b. We know

dtransferc (m1, . . . ,mn ,mn+1, 〈∅, ∅, ∅〉) = dtransferc (mn+1, 〈E
′,D ′, P ′〉)

By Definition 2.5, we have:

δ̂ (qb ,m1, . . . ,mn ,mn+1) = δ (δ̂ (qb ,m1, . . . ,mn),mn+1) = qb′′

So by Equations (7) and (8) we have {mn+1} ⊆ b ′ and b ′ = (b∪E ′) \D ′. It follows {mn+1}∩

D ′ = ∅. That is, dtransferc (mn+1, 〈E
′,D ′, P ′〉) is defined. Finally, showing that b ′′ = (b ∪

E ′′) \ D ′′ follows by the substitution and De Morgan’s laws as in the previous case. This
concludes the proof. �

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:19

Let us discuss the specialization of Theorem 3.3 for code checking. In this case, we know
that a method sequence starts with the constructor method (i.e., the sequence is of the form
m↑,m1, . . . ,mn) and qEc is the input state. By well_formed(Lc) (Definition 2.4), we know that
if δ (qEc ,m↑) = qb and

dtransferc (m
↑,m1, . . . ,mn , 〈∅, ∅, ∅〉) = σ

then methods not enabled in qb are in the disabling set of σ . Thus, for any sequence
m1, . . . ,mk−1,mk such that mk is disabled by the constructor and not enabled in substring
m1, . . . ,mk−1, the condition P ∩ Di � ∅ correctly checks that a method is disabled. If
well_formed(Lc) did not hold, the algorithm would fail to detect an error as it would put mk in P
sincemk � E.

Aliasing. We discuss how aliasing information can be integrated into our approach. In
Example 3.1, member lu of object foo can be aliased. Thus, we keep track of BFA triples for all
base members instead of constructing an explicit BFA contract for a composed class (e.g., Foo).
Furthermore, we would need to generalize an abstract state to a mapping of alias sets to BFA
triples. That is, given a set of access paths {a1, . . . ,an}, the elements of the abstract state would
be {a1, . . . ,an} �→ 〈E,D, P〉. For example, when invoking method setupLU1 we would need to
apply its summary (sum1) to triples of each alias set that contains “foo.lu” as an element. Let
d1 = {S1 �→ t1, S2 �→ t2, . . .} be an abstract state where S1 and S2 are the only keys such that
foo.lu ∈ Si (for i ∈ {1, 2}) and t1 and t2 are some BFA triples.

1 // d1 = S1 -> t1 , S2 -> t2 , ...

2 foo.setupLU1 (); // apply sum1 = {this.lu -> t3}

3 // d2 = S1 -> apply t3 to t1 , S2 -> apply t3 to t2, ...

Above, at line 2, we would need to update the bindings of S1 and S2 by applying a BFA triple for
this.foo from sum1 (that is t3) to t1 and t2. The resulting abstract state d2 is given at line 3. We
remark that if a procedure does not alter aliases, we can soundly compute and apply summaries,
as shown above.

4 ANALYZING “MUST CALL” PROPERTIES

Up to here, we have considered the specification of so-called may call properties—our BFA ab-
straction contains states that represent methods that may be called at some program point. It is
natural to also consider must call properties, in which a method requires another method to be
invoked in a code continuation. In this section, we show how the main ideas of our approach can
be accommodated to support the analysis of contracts with “must call” properties, by relying on a
conservative extension of our BFA formalism with a “require” annotation.

We note that local contracts involving only “must call” method dependencies also suffer from
the state explosion problem. To illustrate this, consider a class that contains n pairs of methods
such that one method requires another one to be invoked in a code continuation. Depending on
the call history, at any given program point, any subset of n methods is required to be called in a
code continuation. As this information must be encoded in states, the corresponding DFA would
have 2n reachable states.

Now we discuss how we refine our abstraction of states (set of states) in the presence of require
annotations. In the case of enabling/disabling annotations, we showed that states only differ in
a set of output edges. We leveraged this fact to abstract a set of states into a set of output edges.
However, by having the additional “require” annotations there could be two distinct states with the
same set of output edges where incoming paths of one state can satisfy the “require” annotation,
whereas paths of the other state cannot. Furthermore, only states whose incoming paths satisfy all

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:20 A. Arslanagić et al.

“require” conditions can be accepting. Therefore, our abstraction of states must include information
of required methods in addition to enabled methods. We remark that this refined abstraction still
allow us to represent a set of states as a single state.

4.1 Annotation Language Extension

First, we extend the BFA specification language given in Section 2.1 with the following base
annotation:

@Require(Ri)mi

which asserts that invoking method mi requires invocations of methods in Ri in a code continua-
tion. In other words, a method call sequence starting withmi is only valid if all methods in Ri are
present in the sequence.

We extend the definition of annotation language from Definition 2.1 as follows:

Definition 4.1 (Annotation Language, Extended). Let Σc = {m↑,m1, . . . ,mn ,m
↓} be a set of

method names, where we have

— The constructor methodm↑ is annotated by

@Enable(Ec) @Disable(Dc) @Require(Rc)m↑

where Ec ∪ Dc = Σ•
c , Ec ∩ Dc = ∅, and Rc ⊆ Ec ;

— Eachmi formi ∈ Σ•
c is annotated by

@Enable(Ei) @Disable(Di) @Require(Ri)mi

where Ei ⊆ Σ•
c , Di ⊆ Σ•

c , Ei ∩ Di = ∅, and Ri ⊆ Ei .

Let x̃ =m↑,x0,x1,x2, . . . be a sequence where each xi ∈ Σ•
c . We say that x̃ is valid (w.r.t. annota-

tions) if the following holds:

— For all subsequences x̃ ′ = xi , . . . ,xk of x̃ such that xk ∈ Di there is j (i < j ≤ k) such that
xk ∈ Ej ;

— If x̃ ′ = xi , . . . is a subsequence of x̃ then for each x j ∈ Ri there is subsequence xi , . . . ,x j

in x̃ ′.

Analogously to @EnableOnly(Ei)mi we can derive @RequireOnly(Ri)mi as follows:

@RequireOnly(Ri)mi
def
= @Enable(Ri) @Disable(Σ

•
c \ Ri) @Require(Ri)mi

We illustrate the semantics of “@Require(Ri) m
′′
i by appealing to our running example from

Figure 2. We wish to refine the contract for class SparseLU in such a way that all computed
resources must be used. For example, a call to method compute has to be followed by at least one
invocation of method solve. The contract in Listing 6 makes use of “@RequireOnly(Ri)m

′′
i to en-

force that all computed resources are properly consumed. Compare this “must call” contract to its
“may call” counterpart in Listing 5: the only difference is that occurrences of “@EnableOnly(Ei)m

′′
i

are substituted by “@RequireOnly(Ri)m
′′
i . Also, annotations for a constructor method are inferred

similarly: methods that enabled upon an object’s creation are those that are unguarded or have
weaker annotation guards. Here, we assume that @EnableOnly and @RequireOnly are stronger
guards than @EnableAll and @RequireAll. Thus, in both ‘must call’ and ‘may call’ contracts the
only methods enabled in the starting state are analyzePattern and compute.

Observe that the “must call” contract induces an extended BFA (abbreviated BFA∗ in the follow-
ing) in which not all states are accepting (differently from Figure 2). Such a BFA∗ is given in Figure 4:
there, for instance, state q2 is not an accepting state: calling compute() in q1 cannot lead to an ac-
cepting state as it imposes a requirement to call solve. Hence, in order to reach an accepting state

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:21

Fig. 4. SparseLU BFA∗ with Require annotation.

class SparseLU {

@EnableOnly(factorize)

void analyzePattern(Mat a);

@EnableOnly(solve)

void factorize(Mat a);

@EnableOnly(solve)

void compute(Mat a);

@EnableAll

void solve(Mat b); }

Listing 5. BFA∗ May-Contract for SparseLU.

class SparseLU {

@RequireOnly(factorize)

void analyzePattern(Mat a);

@RequireOnly(solve)

void factorize(Mat a);

@RequireOnly(solve)

void compute(Mat a);

@EnableAll

void solve(Mat b); }

Listing 6. BFA∗ Must-Contract for SparseLU.

from q2 this requirement must be satisfied. In this case, a simple call to solve in q2 leads to the
accepting state q3.

Our insight is that every state q should record the accumulated requirements for its outgoing
paths, i.e., methods that must be invoked to reach accepting states. For example, the abstraction
of state q2 should contain information that method solve() must be an element of a path to an
accepting state. Therefore, only states without any such requirements are accepting states. As we
have seen, we abstract a state by a bit-vector b, which records enabled methods in a state. Now,
our abstraction of a state should also include another bit-vector f that records the accumulated
requirements of a state. We now proceed to make these intuitions formal.

4.2 Formalizing the “Must Call” Property

4.2.1 Extended BFA (BFA∗). Following the intuition that a state must record requirements for
outgoing paths, we extend the state bit-vector representation as follows:

qb,f

where b, f ∈ Bn with n being the number of methods in a class. Here, b represents the enabled
methods in a state, as before, and f accumulates require annotations: methods that must be ele-
ments of every path from qb,f to some accepting state.

Now, we define L∗
c as the extension of the mapping Lc from Definition 2.3 as follows:

Definition 4.2 (Mapping L∗
c). Given a class c , we define L∗

c as a mapping from methods to tuple
of subsets of Σc :

L∗
c : Σc →

(
P(Σ•

c) × P(Σ•
c) × P(Σ•

c)
)
×
(
P(Σ•

c) × P(Σ•
c)
)

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:22 A. Arslanagić et al.

Above, the first triple is as before: given mi ∈ Σc we write Ei , Di , and Pi to denote first three
elements of L∗

c (mi). There is an additional pair in L∗
c (mi), which collects information needed to

encode the “must call” property. We shall write Ri and Ci to denote its elements.
Similarly as before, transitions between states qb,f ,qb′,f ′, · · · are determined by L∗

c . In addition
to the semantics of Ei , Di , and Pi on transitions, we give the following intuitions for Ri and Ci .
The set of methods Ri adds the following requirements for subsequent transitions: given mi ∈ Σc

we have l ∈ Ri if and only if ml must be called after mi . Dually, Ci records the fulfillment of
requirements for a transition. Similarly to Pi , Ci is a singleton set containing method mi . Again,
we define this is as a set to ease the definition of the domain of the compositional analysis algorithm
in Section 4.3. We formalize these intuitions as an extension of BFA (Definition 2.5).

Well-formed mapping. We identify some natural well-formedness conditions on the mapping
L∗

c . First, we remark that a method cannot require a call to itself, as this would make a self-loop of
requirements which cannot be satisfied by any finite sequence. Furthermore, in order to be able to
satisfy requirements (i.e., to reach accepting states), we need a condition that require annotations
are subset of enabling annotations. We incorporate these conditions in the extension of predicate
well_f ormed(-) (Definition 2.4):

Definition 4.3 (well_f ormed(L∗
c)). Let c , Σc , and L∗

c be a class, its method set, and its mapping,
respectively. Then, well_formed(L∗

c) = true iff the following conditions hold:

— L∗
c (m

↑) = 〈〈Ec ,Dc , ∅〉, 〈Rc , ∅〉〉 such that Ec ∪ Dc = Σ•
c , Ec ∩ Dc = ∅, and Rc ⊆ Ec ;

— Formi ∈ Σc we have L∗
c (mi) = 〈〈Ei ,Di , {mi }〉, 〈Ri , {mi }〉〉 such that

Ei ,Di ⊆ Σ•
c , Ei ∩ Di = ∅, mi � Ri , and Ri ⊆ Ei .

We are now ready to extend the definition of BFA from Definition 2.5:

Definition 4.4 (BFA∗). Given a c ∈ Classes with n > 0 methods, an extended BFA (BFA∗) for c is
defined as a tuple M = (Q, Σ•

c ,δ ,qEc ,Rc ,L∗
c , F) where:

—Q is a finite set of states qb,f ,qb′,f ′, . . ., where b,b ′, . . . , f , f ′, . . . ∈ Bn

— Σ•
c = {m1, . . . ,mn} is the alphabet (method identities);

— qEc ,Rc is the starting state;
— δ : Q × Σ•

c → Q is the transition function, where

δ (qb,f ,mi) = qb′,f ′

with b ′ = (b ∪ Ei) \ Di if Pi ⊆ b, and is undefined otherwise. Also, f ′ = f \Ci ∪ Ri ;
— L∗

c is an extended BFA mapping (cf. Definition 4.2) such that well_f ormed(L∗
c) (cf. Defini-

tion 4.3);
— The set of accepting states F is defined as

F = {qb,0n : qb,0n ∈ Q}

The definition of F captures the intuition that a state is accepting only if it has no outstanding
requirements, i.e., its bit-vector f is the zero-vector.

We now need to show that a well-formed L∗
c ensures that its induced BFA∗ has reachable ac-

cepting states. This boils down to showing that in each state, the required bit set f is contained in
the enabled bit set b:

Lemma 4.5. Let M = (Q, Σ•
c ,δ ,qEc ,Rc ,L∗

c , F) be a BFA∗. Then, for qb,f ∈ Q we have f ⊆ b.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:23

Proof. First, we can see that initial state qEc ,Rc trivially satisfies f ⊆ b. Furthermore, let qb,f ∈

Q such that f ⊆ b. Then, formi ∈ Σ•
c we have

δ (qb,f ,mi) = qb′,f ′

with b ′ = (b ∪ Ei) \ Di if Pi ⊆ b, and is undefined otherwise. Also, f ′ = f \ Ci ∪ Ri . Now, the
goal f ′ ⊆ b ′ follows by this and conditions Ei ∩ Di = ∅ and Ri ⊆ Ei ensured by well_formed(L∗

c)

(Definition 4.3). �

We illustrate states and transitions of a BFA∗ given in Figure 4 in the following example:

Example 4.6 (SparseLU must-contract). The mapping L∗
SparseLU that corresponds to the contract

given in Listing 6 is as follows:

L∗
SparseLU =

{
0 �→ 〈〈{1, 2}, {3, 4}, ∅〉, 〈∅, ∅〉〉, 1 �→ 〈〈{3}, {1, 2, 4}, {1}〉, 〈{3}, {1}〉〉,

2 �→ 〈〈{4}, {1, 2, 3}, {2}〉, 〈{4}, {2}〉〉, 3 �→ 〈〈{4}, {1, 2, 3}, {3}〉, 〈{4}, {3}〉〉,

4 �→ 〈〈{1, 2, 3}, ∅, {4}〉, 〈∅, {4}〉〉
}

The starting state is q1100,0000. The set of states is

Q = {q1100,0000,q0010,0010,q0001,0001,q1111,0000}

Differently from the contract given in Example 2.6, in which all states were accepting, here we
have an explicit set of accepting states:

F = {q1100,0000,q1111,0000}.

The corresponding transition function δ (-) is as follows:

δ (q1100,0000, aP) = q0010,0010 δ (q1100,0000, compute) = q0010,0010

δ (q0010,0010, factorize) = q0001,0001 δ (q0001,0001, solve) = q1111,0000

δ (q1111,0000, aP) = q0010,0010 δ (q1111,0000, compute) = q0001,0001

δ (q1111,0000, factorize) = q0001,0001 δ (q1111,0000, solve) = q1111,0000

Notice that the transformations of b-bits of states are as in Example 2.6. Additionally, transitions
operate on f -bits to determine the accepting states. For example, the transition

δ (q1111,0000, compute) = q0001,0001

adds the requirement to call solve by f -bits 0001. This is satisfied in transition δ (q0001,0001, solve) =
q1111,0000. As the f -bits of q1111,0000 are all zeros, this state is accepting. �

BFA∗ subtyping. We now discuss the extension of the subtyping relation given in Section 2.2. In
order to check that c1 is a superclass of c2, that is that M2 subsumes M1 (M2 � M1), additionally to
checking respective E, D, and P sets of L∗

c1
and L∗

c2
for each method, as given in Section 2.2, we

need the following checks: R2 ⊆ R1 andC1 ⊆ C2. This follows the intuition that a superclass must
be at least permissive as its subclasses: the subclass methods can only have less requirements.

4.3 An Extended Algorithm

We now present the extension of the compositional analysis algorithm to account for BFAs∗. We
illustrate the key ideas of the required extensions with an example.

Example 4.7. In Listing 7, we give class Bar that has a member lu of SparseLU and implements
two methods that make calls on lu; Listing 8 contains a client code for class Bar. Now we illustrate
how a summary is computed in the presence of a “require” annotation for setupLU_must() and
solveLU_must().

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:24 A. Arslanagić et al.

1 class Bar {

2 SparseLU lu; Matrix a, b;

3 void solveLU_must () {

4 this.lu.solve(this.b); }

5 void setupLU_must () {

6 if (?) {

7 this.lu.analyzePattern ();

8 this.lu.factorize ();

9 } else {

10 this.lu.compute (); } } }

Listing 7. Class Bar using SparseLU.

void useBar () {

Bar bar;

bar.setupLU_must ();

bar.solveLU_must ();

}

Listing 8. Client code for Bar.

Analogously to how our original algorithm accumulates enabling annotations by traversing a
program’s CFG, in the extension, we will accumulate require annotations. We extend the abstract
domain with a pair 〈R,C〉, where R and C are sets of methods in which we will appropriately
accumulate require annotations. Intuitively, we use R to record call requirements for a code con-
tinuation and C to track methods that have been called up to a current code point.

First, we compute a summary for solveLU_must() as follows:

1 void solveLU_must () {

2 // s1 = this.lu -> ({}, {})

3 this.lu.solve();

4 // s2 = this.lu -> ({}, {solve})

5 // sum_solveLU = s2

6 }

At procedure entry, we initialize the abstract state as an empty pair (s1). Next, on the invocation
of solve(), we simply copy the corresponding annotations from L∗

SparseLU (solve). Therefore, the
summary sum_solveLU essentially only records that solve is called within this procedure.

Next, we compute a summary for setupLU_must:

1 void setupLU_must(Matrix b) {

2 // s1 = this.lu -> ({}, {})

3 if (?) {

4 this.lu.analyzePattern ();

5 // s2 = this.lu -> ({ factorize}, {})

6 this.lu.factorize ();

7 // s3 = this.lu -> ({ solve}, {})

8 } else {

9 this.lu.compute ();

10 // s4 = this.lu -> ({ solve}, {})

11 }

12 // join s3 s4 = s5

13 // s5 = this.lu -> ({ solve}, {})

14 // sum_setupLU = s5

15 }

In the first if-branch, on line 4, we copy the corresponding annotations from L∗
SparseLU (aP) to

obtain s2. Here, we remark that factorize is in the require set of s2. Next, on line 6 on the invo-
cation of factorize() we remove factorize from the require set of s2 and add its requirements,
i.e., solve to the require set of s2 to obtain s3. Similarly, we construct s4 on line 9.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:25

Now, on line 12, we should join the resulting sets of the two branches, that is, s3 and s4. For
this we take the union of the require sets and the intersection of the called sets: this follows the
intuition that a method must be called in a continuation if it is required within any branch; dually,
a method call required prior to branching is satisfied only if it is invoked in both branches.

Once summaries for solveLU_must() and setupLU_must() are computed, we can check the
client code useBar:

1 void useBar () {

2 Bar bar;

3 // b1 = bar -> ({}, {})

4 bar.setupLU_must ();

5 // copy sum_setupL1 to get b2

6 // b2 = bar -> ({ solve}, {})

7 bar.solveLU_must ();

8 // apply sum_solveLU to b2 to get b3

9 // b3 = bar -> ({}, {})

10 bar.destructor (); // explicit call to a destructor

11 // bar can be destructed here as there are no requirements for it

12 // that is, b3[bar].R is the empty set

13 }

Here, on line 4, we simply copy the summary computed for method setupLU_must(). Next, on
line 7, we apply the summary of solveLU_must() to the current abstract state b1 to obtain b2:
the resulting require set of b3 is obtained by taking an union of the current require set and the
summary’s require set (the first component of sum_solveLU) and by removing elements of the
called set (the second component of sum_solveLU) from it. The resulting called set is the union
of the current called set and the called set of the summary. Finally, when destructor method is
called (line 10) we check if there are any outstanding requirements for object bar: i.e., if a required
set of the current abstract state is empty. As the required set in b3 is empty, there no warning is
raised. �

We show how to extend our compositional analysis algorithm from Section 3 to incorporate
analysis of “must call” properties.

Abstract Domain. First, we recall that our abstract domain D is a mapping from access paths to
elements of mapping Lc . Given the extended mapping L∗

c , this is reflected on the abstract domain
as follows:

D : AP →
⋃

c ∈Classes

Cod(L∗
c)

The elements of the co-domain have now the following form:〈
〈E,D, P〉, 〈R,C〉

〉
where R,C ⊆ Σ•

c . Intuitively, R is a set of methods that must be called in a code continuation, andC
is a set of methods that have been called up to the current program point.

Algorithm. We modify the algorithm to work with an abstract domain extended with the pair
〈R,C〉. To this end, we extend (i) the join operator, (ii) the guard predicate (Algorithm 2), and
(iii) the transfer function (Algorithm 3). Next, we discuss these extensions.

Join operator. The modified join operator has the following signature:⊔
: Cod(L∗

c) ×Cod(L∗
c) → Cod(L∗

c)

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:26 A. Arslanagić et al.

Its definition is conservatively extended as follows:〈
〈E1,D1, P1〉, 〈R1,C1〉

〉
�
〈
〈E2,D2, P2〉, 〈R2,C2〉

〉
=
〈
〈E1 ∩ E2 \ (D1 ∪ D2), D1 ∪ D2, P1 ∪ P2〉, 〈R1 ∪ R2, C1 ∩C2〉

〉
Guard predicate. In Algorithm 2, in the body of case Call-node[mj (p0 : b0, . . . ,pn : bn)] we add

the following check after line 4:

ifmj == destructor and σw [p0].R � ∅ then return False;

In the case mj is destructor, we additionally check whether its requirements are empty; if not we
raise a warning.

Transfer function. In Algorithm 3, we add the following lines after line 16 to transfer the new
elements 〈R,C〉:

R′ =
(
σ (ap).R ∪ σw (ap).R

)
\ σw (ap).C

C ′ = (σ (ap).C ∪ σw (ap).C) \ σw (ap).R

Then, the output abstract state σ ′ is constructed as follows:

σ ′(ap ′) =
〈
〈E ′,D ′, P ′〉, 〈R′,C ′〉

〉
where E ′,D ′, and P ′ are constructed as in Algorithm 3.

4.4 Extended Proofs of Correctness

Here, we present the correctness guarantees for BFAs∗. We describe the needed extensions to the
definitions, theorems, and proofs we discussed in the case of BFA. As we will see, all the correctness
properties that hold for “may call” contracts, hold for “must call” contracts as well. Hence, we
confirm that the main ideas of our bit-vector abstraction of DFAs are not limited to “may call”
properties that we initially focused on: the principles of our abstraction can be applied to “must
call” properties too.

Context-independence. Here, we characterize context-independence property for required anno-
tations. Recall that context-independence states that the effects of annotations on subsequent calls
do not depend on previous calls. Similarly, in the case of enabling/disabling annotations, this prop-
erty directly follows from the idempotence of the operation on f -bits in the extended definition
of δ (-), that is, f ′ = (f \ Ci) ∪ Ri . The effect of this operation is independent of bits in f , which
are accumulated by preceding calls (i.e., they represent a context).

Now, we formalize the extension of the statement and proof. First, as not all states in a BFA∗ are
accepting, the definition of L(M) that denotes strings accepted by M is now as follows:

L(M) = {m̃ : δ̂ (qEc ,Rc ,m̃) = q′ ∧ q′ ∈ F }

Consequently, we need to reformulate statements of first two items to preserve their meanings,
and add the item concerning require annotations. Thus, we extend Theorem 2.1 as follows:

Theorem 4.1 (Context-independence, Extended). LetM = (Q, Σ•
c ,δ ,qEc ,Rc ,L∗

c , F) be a BFA∗.
Then, formn ∈ Σ•

c we have

(1) If there is p̃1 ∈ (Σ•
c)

∗ andmn+1 ∈ Σ•
c such that for any s̃2 ∈ (Σ•

c)
∗ we have p̃1 ·mn+1 · s̃2 � L(M)

and there is p̃2 ∈ (Σ•
c)

∗ such that p̃1 ·mn ·mn+1 · p̃2 ∈ L(M) then there is no m̃ ∈ (Σ•
c)

∗ such that
m̃ ·mn ·mn+1 · s̃2 � L(M) for all s̃2 ∈ (Σ•

c)
∗.

(2) If there is p̃1, p̃2 ∈ (Σ•
c)

∗ andmn+1 ∈ Σ•
c such that p̃1 ·mn+1 ·p̃2 ∈ L(M) and p̃ ·mn ·mn+1 ·̃s2 � L(M)

for all s̃2 ∈ Σ•
c
∗ then there is no m̃1,m̃2 ∈ (Σ•

c)
∗ such that m̃1 ·mn ·mn+1 · m̃2 ∈ L(M).

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:27

(3) If there are p̃1, p̃2 ∈ L(M) andmn ∈ Σ•
c such that p̃1 ·mn · p̃2 ∈ L(M) then there is no m̃ ∈ L(M)

with L∗
c (m).R = ∅ form ∈ m̃ such that m̃ ·mn · p̃2 � L(M).

Proof. This property follows directly by the definition of transition function δ (-) in BFAs∗ (Def-
inition 4.4): that is, by the idempotence of b and f -bits transformation. More precisely, the effects
of transformations b ′ = (b∪Ei)\Di (resp. f ′ = (f \Ci)∪Ri) do not depend on input bits b (resp. f).

The first two items are shown similarly as in the proof of Theorem 2.1. We remark that
additional sequences are only introduced in order to properly use the definition of L(M) for BFAs∗.

Now we show item (3). We prove directly by the extended definition of the transition function
δ (-), that is by f ′ = (f \Ci) ∪ Ri . First, let qb,f be defined as follows:

δ (qEc ,Rc , p̃1 ·mn) = qb,f

Further, by p̃1 ·mn · p̃2 ∈ L(M) we have p̃2 ⊇ f , as qb′,0n ∈ F by the definition of F . By this we
have p̃2 ⊇ Rn as Rn ⊆ f . Finally, as L∗

c (m).R = ∅ form ∈ m̃ we have

δ (qEc ,Rc ,m̃ ·mn) = qb′,Rn

Using this and p̃2 ⊇ Rn we have m̃ ·mn · p̃2 ∈ L(M). �

BFA ∩-Property. We first extend �-�(-) from Definition 3.9 to operate on both b-bits and f -bits:

Definition 4.8 (�-�(-) Extended). Let
〈
〈E,D, P〉, 〈R,C〉

〉
∈ Cod(L∗

c), b, f ∈ Bn . We define

�
〈
〈E,D, P〉, 〈R,C〉

〉
�(b, f) = b ′, f ′

where b ′ = (b ∪ E) \ D if P ⊆ b, and is undefined otherwise; and f ′ = (f \C) ∪ R.

Now, to abstract the set of states of a BFA∗ we also need to handle f -bits of states. Complemen-
tary to b∗, we define f ∗ as the union of f -bits. Now, we extend Theorem 3.1 by incorporating f -bits
in states and also item (3), which shows that a union of f -bits is the right way to abstract set of
states P into a single state: intuitively, set of states P can be abstracted into the accepting state only
if all states in P are accepting.

Theorem 4.2 (BFA∗ ∩-Property). Suppose M = (Q, Σ•
c ,δ ,qEc ,Rc ,L∗

c , F), S ⊆ Q , b∗ =
⋂

qb ∈P b,
and f ∗ =

⋃
qb, f ∈P f . Then we have:

(1) Form ∈ Σ•
c , it holds: δ (qb,f ,m) is defined for all qb,f ∈ S iff δ (qb∗,f∗ ,m) is defined.

(2) Let σ = L∗
c (m). If S ′ = {δ (qb,f ,m) : qb,f ∈ S} then

⋂
qb, f ∈S ′ b,

⋃
qb, f ∈S ′ f = �σ�(b∗, f∗).

(3) S ⊆ F if and only if f ∗ = 0n .

Proof. The first item is only concerned with b-bits, thus it is shown as in Theorem 3.1.
Now, we discuss the proof for item (2). Here, we can separately prove the part for b-bits and

for f -bits. The former proof is the same as in the corresponding case of Theorem 3.1. Moreover,
the proof concerning f -bits follows the same lines as for b-bits (by induction on the cardinality
of S and set laws): it again directly follows by the idempotence of transformation of f -bits (i.e.,
f ′ = (f \Ci) ∪Ri); we remark that difference here is that we use the union (in the definition of f ∗

bits) instead of the intersection.
Finally, the proof of item (3) follows directly from the definition of accepting states, that is

F = {qb,0n : qb,0n ∈ Q}. Thus, we know S ⊆ F if and only if for all qb,f ∈ S we have f = 0n . The
right-hand side is equivalent to f ∗ = 0n . �

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:28 A. Arslanagić et al.

Soundness of join operator. We extend Theorem 3.2 with f -bits in the state representation,
〈Ri ,Ci 〉 in ϕi , and using the extended �-�(-) from Definition 4.8. We note that this theorem again
relies on Theorem 4.2: we abstract set of reachable states by the union of f -bits.

For convenience, we will use “projections” of �-�(-) to b and f -bits. Let ϕ = 〈〈E,D, P〉, 〈R,C〉〉,
then will use �ϕ�b (b) = b

′ and �ϕ�f (f) = f ′, where b ′ and f ′ are defined as in Definition 4.8.

Theorem 4.3 (Soundness of Extended �). Let qb,f ∈ Q and ϕi = 〈〈Ei ,Di , Pi 〉, 〈Ri ,Ci 〉〉 for
i ∈ {1, 2}. Then, �ϕ1�b (b) ∩ �ϕ2�b (b) = �ϕ1 � ϕ2�b (b) and �ϕ1�f (f) ∪ �ϕ2�f (f) = �ϕ1 � ϕ2�f (f).

Proof. The proof concerning b-bits is the same as in Theorem 3.2. Now, we show the part
concerning f -bits, that is

�ϕ1�f (f) ∪ �ϕ2�f (f) = �ϕ1�ϕ2�f (f)

The proof follows by the extended definition of �-�(-) from Definition 4.8 and set laws as follows:

�ϕ1�(f) ∪ �ϕ2�(f) = ((f \C1) ∪ R1) ∪ ((f \C2) ∪ R2)

= (f \ (C1 ∩C2)) ∪ (R1 ∪ R2) = �ϕ1 � ϕ2�(f) �

Correctness of dtransferc (-, -). We extend dtransferc (-, -) from Definition 3.10 to account for the
extended transfer function as follows:

Definition 4.9 (dtransferc (-, -)). Let c ∈ Classes be a class, Σ•
c be a set of methods of c , and

L∗
c be a BFA∗. Furthermore, let m ∈ Σ•

c be a method, 〈〈Em ,Dm , Pm〉, 〈Rm ,Cm〉〉 = L∗
c (m), and

〈〈E,D, P〉, 〈R,C〉〉 ∈ Cod(L∗
c). Then,

dtransferc (m,
〈
〈E,D, P〉, 〈R,C〉

〉
) =

〈
〈E ′,D ′, P ′〉, 〈R′,C ′〉

〉
where E ′ = (E ∪ Em) \Dm , D ′ = (D ∪ Dm) \ Em , and P ′ = P ∪ (Pm \ E), if Pm ∩D = ∅, and is
undefined otherwise. Also, R′ = (R ∪ Rm) \Cm and C ′ = (C ∪Cm) \ Rm .

Letm1, . . . ,mn ,mn+1 be a method sequence and ϕ =
〈
〈E,D, P〉, 〈R,C〉

〉
, then

dtransferc (m1, . . . ,mn ,mn+1,ϕ) = dtransferc (mn+1, dtransferc (m1, . . . ,mn ,ϕ))

We now extend Theorem 3.3 to show the correctness of the extended dtransferc (-, -) as follows:

Theorem 4.4 (Correctness of dtransferc (-, -)). Let M = (Q, Σ•
c ,δ ,qEc ,Rc ,L∗

c , F). Let qb,f ∈ Q
andm1, . . . ,mn ∈ (Σ•

c)
∗. Then

dtransferc (m1, . . . ,mn ,
〈
〈∅, ∅, ∅〉, 〈∅, ∅〉

〉
) = ϕ ′ ⇐⇒ δ̂ (qb,f ,m1, . . . ,mn) = qb′,f ′

such that b ′, f ′ = �ϕ ′�(b, f) where ϕ ′ =
〈
〈E ′,D ′, P ′〉, 〈R′,C ′〉

〉
.

Proof. The proof concerningb-bits is as in Theorem 3.3. Now, we will prove the part concerning
transformation of f -bits.

We show only the Soundness (⇒) direction as the other direction is shown similarly. The proof
is by induction. We strengthen the induction hypothesis with the following invariant: R′ ∩C ′ = ∅.

— Case n = 1. We have m̃ =m1. Let Rm = L∗
c (m1).R andCm = L∗

c (m1).C . First by the definition
of dtransferc (-) we have R′ = (∅ ∪ Rm) \ Cm = Rm and C ′ = (∅ ∪ Cm) \ Rm = Cm . Thus,
we have f ′ = �ϕ ′�f (f) = (f \ Cm) ∪ Rm . Thus, directly by the definition of δ (-) we have
δ (qb,f ,m1) = qb′,f ′ .

— Case n > 1. Let m̃ =m1, . . . ,mn ,mn+1. By IH we know

dtransferc (m1, . . . ,mn ,
〈
〈∅, ∅, ∅〉, 〈∅, ∅〉

〉
) = ϕ ′ ⇒ δ̂ (qb,f ,m1, . . . ,mn) = qb′,f ′ (9)

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:29

such that b ′, f ′ = �ϕ ′�(b, f) and f ′ ⊆ b ′ where ϕ ′ =
〈
〈E ′,D ′, P ′〉, 〈R′,C ′〉

〉
. As we focus

only on f ′ bits, we can infer f ′ = (f \C ′) ∪ R′. Now, we assume

dtransferc (m1, . . . ,mn ,mn+1,
〈
〈∅, ∅, ∅〉, 〈∅, ∅〉

〉
) = ϕ ′′ (10)

such that ϕ ′′ =
〈
〈E ′′,D ′′, P ′′〉, 〈R′′,C ′′〉

〉
. We should show

δ̂ (qb,f ,m1, . . . ,mn ,mn+1) = qb′′,f ′′ (11)

such that f ′′ = (f \C ′′)∪R′′ and f ′′ ⊆ b ′′. Let L∗
c (mn+1) = 〈Rm ,Cm〉. We knowCm = {mn+1}.

By Definition 3.10 we have

dtransferc (m1, . . . ,mn ,mn+1,
〈
〈∅, ∅, ∅〉, 〈∅, ∅〉

〉
) = dtransferc (mn+1,ϕ

′)

Furthermore, by Equations (9), (10) and Definition 3.10 we have:

R′′ = (R′ ∪ Rm) \Cm

C ′′ = (C ′ ∪Cm) \ Rm

Here, we remark that the invariant R′′ ∩C ′′ = ∅ holds as Rm ∩Cm = ∅ bywell_f ormed(L∗
c)

(Definition 4.3). Now, by substitution and De Morgan’s laws we have:

f ′′ = (f \C ′′) ∪ R′′

= (f \ (C ′ ∪Cm)) ∪ ((R′ ∪ Rm) \Cm)

= (((f \C ′) ∪ R′) \Cm) ∪ Rm

= ((f ′ \Cm) ∪ Rm

where the third equivalence holds by invariant R′∩C ′ = ∅ and Rm∩Cm = ∅. Furthermore, by
the definition of δ (-) (from Definition 2.5) we have δ (qb′,f ′,mn+1) = qb′′,f ′′ . This concludes
this case. �

Summing up, we presented BFAs∗, the extension to BFAs that allow us to specify both “may
call” and “must call” properties, while enabling the bit-vector representation of states and transi-
tions in the underlying BFA∗. The bit-vector abstraction provides noticeable scalability benefits in
terms of both specification and the code analysis. Next, we present the usability and performance
evaluations that substantiate the claim of the smaller annotation overhead, as well as theoretical
discussions of the algorithm performance improvements over DFA-based techniques.

5 EVALUATION

To evaluate our technique, we implement two analyses in Infer, namely BFA∗ and DFA, and use
the default Infer typestate analysis Topl as a baseline comparison. More in details:

(1) BFA∗: The Infer implementation of the analysis technique introduced in this article.
(2) DFA: A lightweight, DFA-based typestate analyzer implemented in Infer. We translate BFA∗

annotations to a minimal DFA and perform the analysis.
(3) Topl: An industrial typestate analyzer, implemented in Infer [1].

We remark that Topl is designed for high precision and not for low-latency environments. It
uses Pulse, an Infer memory safety analysis, which provides it with alias information. We include
it in our evaluation as a baseline state-of-the-art typestate analysis, i.e., an off-the-shelf industrial-
strength tool that we could hypothetically use. We note our benchmarks do not require aliasing
and in theory Pulse is not required.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:30 A. Arslanagić et al.

Goals and Considered Contracts. Our evaluation aims to validate the following two claims:

Claim-I: Reduced annotation overhead. The BFA∗ contract annotation overheads are
smaller in terms of atomic annotations (e.g., @Post(...), @Enable(...)) than the two competing
analyses.

Claim-II: Improved scalability on large code and contracts. Our analysis scales better
than the competing analyzers for our use case on two dimensions, namely, caller code size,
and contract size.

We analyzed a benchmark of 22 contracts that specify common patterns of locally dependent
contract annotations for a class. Of these, 18 are may contracts and 4 are must contracts. We
identified common patterns of locally dependent contracts, such as the setter/getter example given
in Figure 1, and generated variants of them (e.g., by varying annotations and number of methods)
such that we have contract samples that are almost linearly distributed in the number of (DFA)
states. This can be seen in Figure 7, which outlines key features of these contracts (such as number
of methods and number of states). The annotations for BFA∗ are varied; from them, we generated
minimal DFA representations in the DFA annotation format and Topl annotation format. This
allows us to clearly show how the performance of the analyzers under consideration is impacted
by the increase of the state space.

Moreover, we self-generated 122 client programs that follow the compositional patterns we de-
scribed in Example 3.1 (this kind of patterns are also considered in, e.g., [14]). The pattern defines
a composed class, as the class Bar illustrated at the end of Section 3.1, that has an object mem-
ber of classes that have declared contracts (recall that we refer to those as base classes). Each
of the methods of the composed class invokes methods on its members. Thus, a compositional
analysis computes procedure summaries of these methods; this way, it effectively infers a con-
tract of the composed class based on those of its class members. We remark that a composed
class can itself be a member of another composed class, as expected. This pattern depends on im-
portant parameters, namely, number of composed classes, lines of code (i.e., number of method
invocations), if-branches, and loops. The self-generation that follows this pattern allows us to
precisely vary those parameters and measure their impact on the analysis performance. Note,
the code is such that it does not appeal to aliasing (as we do not support it yet in our BFA∗

implementation).

5.1 Experimental Setup

We used an Intel(R) Core(TM) i9-9880H CPU at 2.3 GHz with 16 GB of physical RAM running
macOS 11.6 on the bare-metal. The experiments were conducted in isolation without virtualization
so that runtime results are robust. All experiments shown here are run in single-thread for Infer
1.1.0 running with OCaml 4.11.1.

Our use case is to integrate static analyses in interactive IDEs e.g., Microsoft Visual Studio
Code [24], so that code can be analyzed at coding time. For this reason, our use case requires low-
latency execution of the static analysis. Our SLA is based on the RAIL user-centric performance
model [2].

5.2 Usability Evaluation

Figure 7 outlines the key features of the 22 contracts we considered, called CR-1 – CR-22. Among
these, CR-12, CR-14, CR-17, and CR-22 are must contracts. For each contract, we specify the num-
ber of methods, the number of DFA states the contract corresponds to, and number of atomic

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:31

Fig. 5. DFA, BFA∗, and TOPL specifications of CR4 contract for SparseLU class.

annotation terms in BFA∗, DFA, and Topl. An atomic annotation term is a standalone annotation
in the given annotation language. In Figures 5 and 6, we detail CR-4 as an example.

Figure 7 shows that as the contract sizes increase in number of states, the annotation overhead
for DFA and Topl increase significantly. On the other hand, the annotation overhead for BFA∗

remain largely constant wrt. state increase and increases rather proportionally with the number of
methods in a contract. Observe that for contracts on classes with four or more methods, a manual
specification using DFA or Topl annotations becomes impractical. Overall, we validate Claim-I
by the fact that BFA∗ requires less annotation overhead on all of the contracts, making contract
specification more practical.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:32 A. Arslanagić et al.

Fig. 6. DFA for the class SparseLU (CR-4 contract). This contract extends the SparseLU contract from Exam-
ple 2.6 with an additional method (transpose). The intention is to capture the fact that consecutive calls to
transpose are redundant. In Figure 5, we can see how this extension is specified in the three specification
languages under consideration (DFA, TOPL, and BFA∗).

Fig. 7. Details of the 22 contracts in our evaluation. Contracts marked with “∗” include Require annotations.

5.3 Performance Evaluation

Recall that we distinguish between base and composed classes: the former have a user-entered
contract, and the latter have contracts that are implicitly inferred based on those of their members
(that could be either base or composed classes themselves). The total number of base classes in a
composed class and contract size (i.e., the number of states in a minimal DFA that is a translation
of a BFA∗ contract) play the most significant roles in execution-time. In Figure 8, we present a
comparison of analyzer execution-times (y-axis) with contract size (x-axis), where each line in the
graph represents a different number of base classes composed in a given class (given in legends).

Comparing BFA∗ and DFA analyses. The comparison is presented in Figure 8(a) and 8(b):

— Figure 8(a) compares various class compositions (with contracts) specified in the legend, for
client programs of 500-1K LoC. The DFA implementation sharply increases in execution-
time as the number of states increases. The BFA∗ implementation remains rather constant,
always under the SLA of 1 seconds. Overall, BFA∗ produces a geometric mean speedup over
DFA of 5.7×.

— Figure 8(b) compares various class compositions for client programs of 15K LoC. Both imple-
mentations fail to meet the SLA; however, the BFA∗ is close and exhibits constant behavior
regardless of the number of states in the contract. The DFA implementation is rather erratic,
tending to sharply increase in execution-time as the number of states increases. Overall,
BFA∗ produces a geometric mean speedup over DFA of 1.5×. We note that must contracts do
not have noticeable performance differences from may contracts.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:33

Fig. 8. Performance evaluation. Each line represents a different number of base classes composed in a client
code.

Comparing BFA∗-based analysis vs TOPL typestate implementation (Execution time). Here again,
client programs do not require aliasing. The comparison is presented in Figure 8(c) and 8(d):

— Figure 8(c) compares various class compositions for client programs of 500-1K LoC. The
Topl implementation sharply increases in execution-time as the number of states increases,
quickly missing the SLA. In contrast, the BFA∗ implementation remains constant always
under the SLA. Overall, BFA∗ produces a geometric mean speedup over Topl of 6.59×.

— Figure 8(d) compares various class compositions for client programs of 15K LoC. Both im-
plementations fail to meet the SLA. The Topl implementation remains constant until ∼30
states and then rapidly increases in execution time. Overall, BFA∗ produces a geometric mean
speedup over Topl of 301.65×.

Overall, we validate Claim-II by showing that our technique removes state as a factor of perfor-
mance degradation at the expense of limited but suffice contract expressively. Even when using
client programs of 15K LoC, we remain close to our SLA and with potential to achieve it with

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

19:34 A. Arslanagić et al.

further optimizations. Again, we note that must contracts do not have noticeable performance
differences from may contracts.

6 RELATED WORK

We focus on comparisons with restricted forms of typestate contracts. We refer to the typestate
literature [7, 9, 10, 17, 23] for a more general treatment. The work [15] proposes a restricted form
of typestates, tailored to use-cases of object construction using the builder pattern. This approach
is restricted in that it only accumulates called methods in an abstract (monotonic) state, and it
does not require aliasing for supported contracts. Compared to our approach, we share the idea of
specifying typestate without explicitly mentioning states. On the other hand, their technique is less
expressive than our annotations. They cannot express various properties we can (e.g., the property
“cannot call a method”). Similarly, [12] defines heap-monotonic typestates where monotonicity can
be seen as a restriction. It can be performed without an alias analysis.

Recent work on the Rapid analyzer [11] aims to verify cloud-based APIs usage. It combines
local type-state with global value-flow analysis. Locality of type-state checking in their work is
related to aliasing, not to type-state specification as in our work. Their type-state approach is
DFA-based. They also highlight the state explosion problem for usual contracts found in practice,
where the set of methods has to be invoked prior to some event. In comparison, we allow more
granular contract specifications with a very large number of states while avoiding an explicit DFA.
The Fugue tool [9] allows DFA-based specifications, but also annotations for describing specific
resource protocols contracts. These annotations have a locality flavor—annotations on one method
do not refer to other methods. Moreover, we share the idea of specifying typestate without
explicitly mentioning states. The annotations in Fugue can specify “must call” properties (e.g.,
“must call a release method”). In this version of our article, we propose BFA extended with must
logic that can express similar contracts. JaTyC [19] is a recent tool that supports Java inheritance.
Our formalism can also handle inheritance, which we discuss in this article as BFA subsumption
(cf. Section 2).

Our annotations could be mimicked by having a local DFA attached to each method. In this
case, the DFAs would have the same restrictions as our annotation language. We are not aware of
prior work in this direction. We also note that while our technique is implemented in Infer using
the algorithm in Section 2, the fact that we can translate typestates to bit-vectors allows typestate
analysis for local contracts to be used in distributive dataflow frameworks, such as IFDS [21].

7 CONCLUDING REMARKS

In this article, we have tackled the problem of analyzing code contracts in low-latency environ-
ments by developing a novel lightweight typestate analysis. Our technique is based on BFAs, a
sub-class of contracts that can be encoded as bit-vectors. We believe BFAs are a simple and effec-
tive abstraction. They allow for succinct annotations that can describe a range of may and must
call contracts; on the other hand, they exhibit more scalable performance compared to DFA based
approaches. We have implemented our typestate analysis in the industrial-strength static analyzer
Infer, which is publicly available and open source.

Future Work. There are several interesting research directions for the future work. First, it is
worth investigating how BFA and DFA-based analyses can be bundled into a single analysis, thus
inhering the benefits of both. Furthermore, we plan to integrate aliasing in our approach, leverag-
ing the fact that Infer already comes with aliasing checkers. This would enable an investigation to
verify our conjecture that our BFA-based analysis performance gains will be preserved, or perhaps
more prominently displayed, in the presence of aliasing information.

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

Bit-Vector Typestate Analysis 19:35

Moreover, it would be interesting to explore whether our BFA formalism can be effectively
used in settings where BFA-based methods are typically used, such as, for example, automata
learning, code synthesis, and automatic program repair. Finally, understanding the usability
gains of moving from DFAs to BFAs is definitely interesting and it deserves a separate user study
investigation.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their constructive remarks.

REFERENCES

[1] 2021. Infer TOPL. (2021). Retrieved from https://fbinfer.com/docs/checker-topl/
[2] 2021. RAIL model. (2021). Retrieved from https://web.dev/rail/ Accessed: 2021-09-30.
[3] Alen Arslanagic, Pavle Subotic, and Jorge A. Pérez. 2022. Scalable typestate analysis for low-latency environments. In

Integrated Formal Methods - 17th International Conference, IFM 2022, Lugano, Switzerland, June 7-10, 2022, Proceedings

(Lecture Notes in Computer Science), Maurice H. ter Beek and Rosemary Monahan (Eds.), Vol. 13274. Springer, 322–340.
DOI:https://doi.org/10.1007/978-3-031-07727-2_18

[4] Alen Arslanagić, Pavle Subotić, and Jorge A. Pérez. 2022. LFA checker: Scalable typestate analysis for low-latency
environments. (Mar 2022). DOI:https://doi.org/10.5281/zenodo.6393183

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. ACM SIGPLAN Notices 49, 6 (06 2014), 259–269. DOI:https://doi.org/10.1145/2594291.
2594299

[6] Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased objects. In Proceedings of the 22nd

Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’07).
Association for Computing Machinery, New York, NY, 301–320. DOI:https://doi.org/10.1145/1297027.1297050

[7] Eric Bodden and Laurie Hendren. 2012. The clara framework for hybrid typestate analysis. International Journal on

Software Tools for Technology Transfer 14, 3 (jun 2012), 307–326.
[8] Cristiano Calcagno and Dino Distefano. 2011. Infer: An automatic program verifier for memory safety of c programs.

In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer,
Berlin, 459–465.

[9] Robert Deline and Manuel Fähndrich. 2004. The Fugue Protocol Checker: Is Your Software Baroque? Technical Report
MSR-TR-2004-07. Microsoft Research.

[10] Robert DeLine and Manuel Fähndrich. 2004. Typestates for objects. In ECOOP 2004 - Object-Oriented Programming,

18th European Conference, Oslo, Norway, June 14-18, 2004, Proceedings (Lecture Notes in Computer Science), Martin
Odersky (Ed.), Vol. 3086. Springer, 465–490. DOI:https://doi.org/10.1007/978-3-540-24851-4_21

[11] Michael Emmi, Liana Hadarean, Ranjit Jhala, Lee Pike, Nicolás Rosner, Martin Schäf, Aritra Sengupta, and Willem
Visser. 2021. RAPID: Checking API usage for the cloud in the cloud. In Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, 1416–1426. DOI:https://doi.org/10.1145/3468264.3473934

[12] Manuel Fahndrich and Rustan Leino. 2003. Heap monotonic typestate. In Proceedings of the 1st International Workshop

on Alias Confinement and Ownership (IWACO) (proceedings of the first international workshop on alias confinement
and ownership (iwaco) ed.). Retrieved from https://www.microsoft.com/en-us/research/publication/heap-monotonic-
typestate/

[13] Manuel Fähndrich and Francesco Logozzo. 2010. Static contract checking with abstract interpretation. In Proceedings

of the 2010 International Conference on Formal Verification of Object-Oriented Software (FoVeOOS’10). Springer-Verlag,
Berlin, 10–30.

[14] Mathias Jakobsen, Alice Ravier, and Ornela Dardha. 2021. Papaya: Global typestate analysis of aliased objects. In
Proceedings of the 23rd International Symposium on Principles and Practice of Declarative Programming (PPDP’21).
Association for Computing Machinery, New York, NY, Article 19, 13 pages. DOI:https://doi.org/10.1145/3479394.
3479414

[15] Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schäf, and Michael D. Ernst. 2020. Verifying object construction.
In ICSE 2020, Proceedings of the 42nd International Conference on Software Engineering. Seoul, Korea.

[16] U. Khedker, A. Sanyal, and B. Sathe. 2017. Data Flow Analysis: Theory and Practice. CRC Press. Retrieved from https:
//books.google.rs/books?id=9PyrtgNBdg0C

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

https://fbinfer.com/docs/checker-topl/
https://web.dev/rail/
https://doi.org/10.1007/978-3-031-07727-2_18
https://doi.org/10.5281/zenodo.6393183
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/3468264.3473934
https://www.microsoft.com/en-us/research/publication/heap-monotonic-typestate/
https://doi.org/10.1145/3479394.3479414
https://books.google.rs/books?id=9PyrtgNBdg0C

19:36 A. Arslanagić et al.

[17] Patrick Lam, Viktor Kuncak, and Martin Rinard. 2004. Generalized typestate checking using set interfaces and plug-
gable analyses. SIGPLAN Not. 39, 3 (March 2004), 46–55. DOI:https://doi.org/10.1145/981009.981016

[18] Johannes Lerch, Johannes Späth, Eric Bodden, and Mira Mezini. 2015. Access-path abstraction: Scaling field-sensitive
data-flow analysis with unbounded access paths. In Proceedings of the 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE’15). IEEE Press, 619–629. DOI:https://doi.org/10.1109/ASE.2015.9
[19] João Mota, Marco Giunti, and António Ravara. 2021. Java typestate checker. In Coordination Models and Languages,

Ferruccio Damiani and Ornela Dardha (Eds.). Springer International Publishing, Cham, 121–133.
[20] Rajshakhar Paul, Asif Kamal Turzo, and Amiangshu Bosu. 2021. Why security defects go unnoticed during code

reviews? A case-control study of the chromium OS project. In Proceedings of the 43rd IEEE/ACM International Confer-

ence on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 1373–1385. DOI:https://doi.org/10.1109/
ICSE43902.2021.00124

[21] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’95).
Association for Computing Machinery, New York, NY, 49–61. DOI:https://doi.org/10.1145/199448.199462

[22] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-sensitive data-flow analysis using syn-
chronized pushdown systems. Proceedings of the ACM on Programming Languages 3, POPL, Article 48 (jan 2019),
29 pages. DOI:https://doi.org/10.1145/3290361

[23] Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language concept for enhancing software relia-
bility. IEEE Transactions on Software Engineering 12, 1 (1986), 157–171. DOI:https://doi.org/10.1109/TSE.1986.6312929

[24] Pavle Subotić, Lazar Milikić, and Milan Stojić. 2022. A static analysis framework for data science notebooks. In Pro-

ceedings of the 44th International Conference on Software Engineering.
[25] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: A DSL for the definition of incremental program

analyses. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE’16).
Association for Computing Machinery, New York, NY, 320–331. DOI:https://doi.org/10.1145/2970276.2970298

[26] Eran Yahav and Stephen Fink. 2011. The SAFE Experience. Springer, Berlin, 17–33. DOI:https://doi.org/10.1007/978-3-
642-19823-6_3

Received 14 October 2022; revised 15 March 2023; accepted 12 April 2023

Formal Aspects of Computing, Vol. 35, No. 3, Article 19. Publication date: September 2023.

https://doi.org/10.1145/981009.981016
https://doi.org/10.1109/ASE.2015.9
https://doi.org/10.1109/ICSE43902.2021.00124
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/3290361
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1007/978-3-642-19823-6_3

