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Abstract
Background: Personalized treatment is increasingly required for oropharyn-
geal squamous cell carcinoma (OPSCC) patients due to emerging new cancer
subtypes and treatment options.Outcome prediction model can help identify low
or high-risk patients who may be suitable to receive de-escalation or intensified
treatment approaches.
Purpose: To develop a deep learning (DL)-based model for predicting multi-
ple and associated efficacy endpoints in OPSCC patients based on computed
tomography (CT).
Methods: Two patient cohorts were used in this study: a development cohort
consisting of 524 OPSCC patients (70% for training and 30% for inde-
pendent testing) and an external test cohort of 396 patients. Pre-treatment
CT-scans with the gross primary tumor volume contours (GTVt) and clinical
parameters were available to predict endpoints, including 2-year local control
(LC), regional control (RC), locoregional control (LRC), distant metastasis-free
survival (DMFS), disease-specific survival (DSS), overall survival (OS), and
disease-free survival (DFS). We proposed DL outcome prediction models with
the multi-label learning (MLL) strategy that integrates the associations of
different endpoints based on clinical factors and CT-scans.
Results: The multi-label learning models outperformed the models that were
developed based on a single endpoint for all endpoints especially with high
AUCs ≥ 0.80 for 2-year RC, DMFS, DSS, OS, and DFS in the internal inde-
pendent test set and for all endpoints except 2-year LRC in the external test
set. Furthermore, with the models developed, patients could be stratified into
high and low-risk groups that were significantly different for all endpoints in the
internal test set and for all endpoints except DMFS in the external test set.
Conclusion: MLL models demonstrated better discriminative ability for all 2-
year efficacy endpoints than single outcome models in the internal test and for
all endpoints except LRC in the external set.
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1 INTRODUCTION

Oropharyngeal squamous cell carcinoma (OPSCC)
is a sub-type of head and neck cancers (HNCs).
Many patients with OPSCC are treated primarily with
(chemo) radiotherapy. The 5-year overall survival (OS)
rate of human papillomavirus (HPV) related (HPV-
positive) OPSCC patients is significantly higher than
that of the HPV-negative cases (75−80% vs.45−50%).1

The OPSCC subtypes and treatment options have
increased thus that there is more need for per-
sonalized treatment. Outcome prediction models may
stratify patients with favorable and unfavorable out-
come, which may help selecting patients to investi-
gate innovative de-escalation or intensified treatment
approaches.2–4

The tumor-node-metastasis (TNM) staging system,
translated in overall tumor staging (including HPV-status
in the AJCC8th edition5) is widely used for prognostic
evaluation and risk stratification of OPSCC.6,7 How-
ever, this staging is not specific enough for a more
personalized response evaluation. Ang et al. classified
OPSCC patients as a low, intermediate, or high risk of
death using HPV status, smoking combined with tumor
stage, and nodal stage.8 Prediction models based on
clinical parameters and radiomics features have shown
good performance in the prediction efficacy endpoints,
such as overall survival (OS) and local control (LC), or
complications like xerostomia in HNCs9–12 and OPSCC
patients.13,14 However, these descriptive image features
are restricted as they translate image characteristic in
quantitative hand-crafted radiomics values. In contrast,
convolutional neural networks (CNNs) can use informa-
tion from the entire image, not compressing it to single
values,and may therefore be more capable of obtaining
the comprehensive and predictive information from the
clinical images, and thus potentially improving OPSCC
outcome predictions.15

Recently, CNNs have been successfully applied in
image classification tasks16,17 and showed the potential
of predicting complications and prognostic outcomes in
HNC.18–20 For OPSCC specifically, Cheng et al.21 and
Fujima et al.22 proposed fully automated CNNs-based
models using (positron emission tomography) PET
images for the prediction of OS and local tumor control,
respectively. Moreover, the winner in HECKTOR 2021
challenge23 used FDG-PET/CT images, GTVt contours,
and clinical parameters together to build a DenseNet24

for (progression-free survival) PFS prediction.25

Multi-label learning is a technique that predicts all the
relevant labels for a given example by exploiting the
label correlations and the input feature information.26 Its

advantage over single-label learning is that it can cap-
ture the correlations between different labels and exploit
them for better prediction performance.27 To our best
knowledge, no previous studies have applied multi-label
learning in the outcome prediction of OPSCC. Inspired
by strong associations between different outcome end-
points of the same patient,28 we propose a CNN-based
multi-label learning (MLL) approach, which integrates
these associations for further improving the prediction
ability in OPSCC outcome prediction. The proposed
approach first utilized the 3D Resnet16 to extract image
features from the gross primary tumor volume (GTVt)
contoured on the contrast-enhanced planning CT. Sec-
ond, all clinical parameters were encoded and then
concatenated with the extracted image features. Finally,
a multilayer perceptron (MLP) was applied to further
extract combined features to enable multi outcome
endpoints prediction at 2 years after treatment. The per-
formance of the MLL model was compared with that of
a single-label model.

2 MATERIALS AND METHODS

2.1 Data and preprocessing

The development cohort included a total of 524 OPSCC
patients from the publicly available TCIA (The Cancer
Imaging Archive) OPC-Radiomics set collected from
Princess Margaret Cancer Centre, Toronto, Canada.29

The OPC-radiomic set was randomly divided into a
training set (n = 367) and an independent internal (hold
out) test set (n = 157). Pre-treatment CT imaging with
a slice thickness of 2.5 or 2.0 mm and GTVt contours
used for treatment planning were available for each
patient. Detailed descriptions of the OPC-Radiomics
dataset can be found in [45].30 Furthermore, a total
of 396 OPSCC patients collected from the University
Medical Centre Groningen, the Netherlands (UMCG)
were used as the external test set.A detailed description
of the UMCG OPC dataset (the external test set) can
be found in Supplementary Part 1. GTVt masks were
generated with pixel values 1 inside 0 outside the GTVt
contour. All CT images and the corresponding GTVt
masks were resampled to a resolution of 1×1×2 mm3.
Subsequently, the CT images and GTVt masks were
cropped to a size of 180 × 180 × 92 voxels (180 × 180
× 184 mm3) with respect to the center of mass of the
GTVt contour to include the complete tumour volume
for all patients. Finally, the CT intensity values were
truncated to a range between −1024 and 1800,31 and
then normalized to [0, 1].
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The candidate clinical predictors include categorical
variables: gender (female vs. male), T-stage (T4 vs. T1-
3), N-stage (N3 vs. N2 vs. N0-N1), WHO PS (1-3 vs.
0), smoking status (non-smoker vs. ex-smoker vs. cur-
rent), HPV status (unknown vs. positive vs. negative),
and one continuous variable: age. Outcome endpoints
consist of 2-year local control (LC), regional control
(RC), locoregional control (LRC),distant metastasis-free
survival (DMFS),disease-specific survival (DSS),overall
survival (OS), and disease-free survival (DFS).

The events of 2-year LC or RC were defined as recur-
rent or residual tumor within or around the primary site or
the regional nodes within 2 years after radiotherapy.The
events for 2-year LRC include the events of LC and RC.
Distant metastasis was the event in the 2-year DMFS
endpoint. Events for 2-year DSS and 2-year OS were
defined as the death related to the tumor and death by
any cause, respectively. Events for 2-year DFS were all
events mentioned above.Positive (label: 1) cases for the
2-year outcome endpoints represent the patients having
endpoint events within 2 years (their follow up can be
any time) and negative (label: 0) cases had no events
for at least 2 years (their follow up ≥ 2 years). Patients
with follow up < 2 years and no events were cen-
sored.Follow-up was executed according to the National
Comprehensive Cancer Network guidelines32 in OPC-
Radiomics set. For patients in UMCG OPC follow-up
data were acquired every 3 months in the first year after
treatment and then every 6 months.

2.2 Model architecture

We constructed a deep MLL model for multi-prognostic
outcome prediction in OPSCC patients, as illustrated
in Figure 1a. First, image features from the CT cube
including tumor volume as well as the GTVt mask were
extracted by the 3D ResNet. The extracted 32 image
features were then concatenated with the 32 features
encoded from seven clinical parameters using a dense
layer. Finally, a multi-layer perceptron (MLP) was used
to predict 2-year outcome for multiple endpoints with a
focus on one single endpoint.

In detail, the 3D ResNet consists of one convolu-
tional layer, one maxpooling layer with stride 2, eight
residual blocks, and one average pooling layer, which
converts 512 feature maps to 512 image features.Then,
a dense layer converted 512 features to 32 features.
Each residual block includes two consecutive convo-
lution layers and one residual connection summing up
the input and output of the residual block. Solid curves
mean direct summing up while dash curves mean down-
sampling the input by a factor of two before summing
it up with the output. Every convolutional layer in the
3D ResNet was followed by one batch normalization
layer. Relu activation functions were added after either
the batch normalization layer or the residual connection
operation as shown in Figure 1b.MLP was composed of

one input layer and three dense connected layers which
have 64, 32, 16, and 7 nodes corresponding to 7 out-
come endpoints, respectively. The first two dense layers
were followed by Relu functions, while the last layer was
followed by a sigmoid function.

2.3 Label encoding and loss definition

A multi-tasking strategy using associations among end-
points was deployed, in which the feature extraction was
optimized for all endpoints with a focus on one single
endpoint. We denote by N the number of patients in
the training set and E the number of different outcome
endpoints. The training set can be represented by T =

{ (V1, y1, c1), (V2, y2, c2),… , (VN, yN, cN) }, where Vi is
the 3D volumetric data and clinical data of the i-th
patient, yi ≡ [y1

i , y2
i … ; yE

i ] is the corresponding 2-year
outcome endpoints label vector with the label of the j-th
endpoint yj

i ∈ {0, 1}, and ci = [c1
i , c2

i … ; cE
i ] (cj

i ∈ {0, 1})

is the censoring labels. The censoring label cj
i = 1 if

follow-up < 2 years and yj
i = 0, otherwise cj

i = 0. When

cj
i = 1, the j-th endpoint of the i-th patient will not be

included in the loss function in the training process. For
the training criterion, we used a combined loss function
which was denoted as .

 = a
E∑

j = 1

j + 𝛽e

where j is the loss between the prediction and the label
of each endpoint in E endpoints while e is the loss of
one single enhanced endpoint.This enhanced endpoint,
whose predictive performance gets a higher weight in
the loss function than other endpoints in the MLL model
training process, can be selected as any one of LC, RC,
LRC, DMFS, DSS, OS and DFS.e enables the models
to focus more on the prediction of the enhanced end-
point than other endpoints, and j is applied to utilize
the associations among different endpoints for improv-
ing prediction. Both two loss functions are composed of
a binary cross entropy loss and a Dice loss and they
were weighted with parameters α and β,respectively.The
Dice loss was used to solve the problem of the class
imbalance.

2.4 Implementation details

For training the models, we augmented the data with
random rotations (−45 to 45 degree) and flipping ran-
domly along the vertical and horizontal directions. The
models were trained with a batch size of 14 and an
Adam optimizer with an initial learning rate of 0.001.The
learning rate will decrease by 10 times if the training loss
does not decrease in 10 consecutive training epochs.
The α in the loss function was set to 1. We trained two
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MLL FOR OPSCC OUTCOME PREDICTION 6193

F IGURE 1 The schematic overview of the deep multi-label learning pipeline for multiple 2-year prognostic outcome endpoints prediction in
OPSCC patients. (a) Deep multi-label learning pipeline. (b) The detailed structure of residual blocks. (c) The assessment methods of models’
performance. BN, batch normalization layer. H×W×D@N stands for the height, width, depth, and number of the feature maps obtained after each
residual block.

MLL models, MLL1 and MLL2, by empirically setting β to
5 and 17, respectively, corresponding to a weight of the
enhanced endpoint of 50% and 75% in the total loss
function, to illustrate the influence of the weight of the
enhanced endpoint on the model performance. To avoid
over-fitting, the early stopping was set to 20 epochs,
meaning that the training process stops if the validation
set loss does not decrease in 20 consecutive training
epochs. Finally, we obtained the model weights with
the lowest validation loss. Additionally in each outcome
prediction task, we trained the model for five times and
ensembled five models’ outputs on the test set by their
average. In each of the five training cycles, for the orig-
inal training set, a new random selection of 30% of the
patients for the validation set was performed and the
other 70% of the patients were used for training. During
this process, the rate of the positive/negative/censored
samples was kept equal to the original training
set.

2.5 Assessment of model performance

The evaluation of model performance is illustrated in
Figure 1c. The receiver operating characteristic (ROC)-
area under the curve (AUC) was employed to evaluate
the discriminative power of MLL models.The 95% confi-
dence interval (CI) of AUCs was calculated according to

1000 bootstrapping samples in test sets.The goodness-
of -fit of the MLL models was assessed with calibration
curves which show the observed actual 2-year event
rates versus the MLL predicted 2-year event rates.Addi-
tionally, the discriminative ability of the MLL models was
evaluated by sensitivity, specificity, and balanced accu-
racy, with the final predictions determined by the cut-off
which is the probability value obtaining the highest S-
score in the training set (see Supplementary Part 2).
F1-score and PR-AUC (Precision-Recall Area Under the
Curve) were also evaluated for MLL models, and F1-
score was calculated using the cut-off of the probability
obtaining the highest F1-score in the training set.Finally,
these cut-off values determined by the S-score were
used to stratify patients into a high-risk group (predicted
probability by MLL > cut-off) and a low-risk group (pre-
dicted probability by MLL ≤ cut-off) for each endpoint.
Kaplan-Meier curves33 were generated to investigate
LC, RC, LRC, DMFS, DSS, OS, and DFS rates for the
high and low-risk groups.

To demonstrate the benefit of MLL, we compared its
performance with single-label learning-based models,
clinical and image models. SLL models have the same
inputs as MLL models but can only predict one outcome
endpoint by training with the loss of only this endpoint.
The clinical and image models were obtained by train-
ing SLL models with clinical data and image data only
as input, respectively.
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2.6 Statistical analysis

Statistical analyses were performed using scikit-learn
v0.24.2 package in Python v3.7.4. The AUCs of clinical,
image, SLL, and MLL models in each outcome endpoint
were compared using the independent-sample t-test.
Hosmer-Lemeshow (HL) tests [48] were performed to
evaluate the goodness-of -fit of the points in calibration
curves with the ideal calibration line.The log-rank tests34

were applied to compare the differences between the
high and low-risk patient groups in the Kaplan-Meier
cures. Categorical and normally distributed clinical vari-
ables between different cohorts were compared using
chi-square tests and independent-sample t-test, respec-
tively. Two-tailed p-values < 0.05 were considered
statistically significant.

2.7 Other strategies of improving the
MLL model

Because the dataset we used is quite imbalanced for
some endpoints such as LC and RC as shown in Table
S2, in additional to the Dice loss, oversampling the train-
ing set may help further solve the imbalanced classes
problem. Thus, oversampling was used in the training of
MLL models to investigate whether this strategy (MLL +
oversampling) can obtain higher predictive performance
for outcome endpoints than the MLL models.

Additionally,some studies demonstrated that combing
radiomics features and deep learning achieved bet-
ter outcome prediction performance in HNC cancer18

and OPSCC cancer.35 Thus, we built radiomics mod-
els for each endpoint as described in Supplementary
Part 3. Then, we incorporated radiomics features from
the radiomic model into the MLL models by concate-
nating them with the seven clinical features of the
MLL model so that the MLL model will extract 32 clin-
ical and radiomics features using a fully connected
layer (Figure 1). This strategy (MLL + radiomics) was
compared with the MLL model for each endpoint.

3 RESULTS

The patient characteristics of the data sets are listed in
Table S1. No significant differences were observed in
the characteristics between the patients in training and
internal independent test set. However, gender, smoking
status, HPV status, and T-stage were significantly differ-
ent between the training and external test sets. Higher
proportions of female (32.1% vs.18.0%),current smoker
(49.2% vs.32.4%),HPV negative (49.2% vs.24.3%),and
T4 stage patients (45.2% vs.21.2%) were present in the
external test set than the training set.

The number of patients with and without events as
well as the censored patients and the outcome rate at

2-year follow-up for each endpoint of HPV negative and
positive patients were shown in Table S2 for the three
datasets. For HPV-negative and HPV-positive patients,
respectively, the 2-year rate of each outcome endpoint
among three sets are comparable.

Figure 2 shows the AUC [95% CI] values of differ-
ent models in the test sets. In the internal test set, the
SLL models for LC, RC, LRC, and OS, which utilize both
clinical and image data, showed higher AUC than the
clinical or image only models (Figure 2a). The AUCs
for five endpoints (LC: 0.75 RC: 0.66, DMFS: 0.76, OS:
0.71, and DFS: 0.72) were higher in the MLL1 models
than in the other non-MLL models. The MLL2 mod-
els obtained significantly highest AUCs in all endpoints
especially AUCs> 0.80 in RC,DMFS,DSS,OS and DFS.
In the external test set, the MLL1 model had significantly
higher AUCs of 0.57 and 0.66 for RC and DMFS,respec-
tively, than other non-MLL models (Figure 2B).The MLL2
model achieved significantly highest AUCs in six of the
seven endpoints (LC: 0.73, RC: 0.65, DMFS: 0.69, DSS:
0.78, OS: 0.72, and DFS: 0.65) in the external test set.
Figure 3 displays receiver operator characteristic (ROC)
curves of the different models for 2-year DMFS predic-
tions, in which the MLL2 model obtained highest AUC
values in both test sets.

Because MLL2 models achieved higher AUCs than
MLL1 models, all other performance analysis of MLL
models were based on MLL2 models instead of MLL1
models. The AUCs results of radiomics models and
MLL2 models trained by only imaging data were shown
in Figure S4 in which MLL2 models (image only) gen-
erally showed better AUCs than radiomics models in
most endpoints in both internal and external test sets.
Additionally, the AUCs comparison of MLL2, MLL2 +

oversampling and MLL2 + radiomics models is also dis-
played in Figure S4. Generally, MLL2 + oversampling
and MLL2+ radiomics models cannot improve the AUCs
of most endpoints compared to MLL2 models in both
internal and external test sets.

Additionally, we investigated sensitivity, specificity, bal-
anced accuracy, F1-score, and PR-AUC values of MLL2
models in the internal and external test sets (Figure 4
and Figure S2), respectively. Balanced sensitivity and
specificity values and balanced accuracies ≥ 0.70 were
obtained for all endpoints except DSS in the internal
test set and for DSS in the external test set and either
high sensitivity or specificity values were obtained for
the other endpoints.High F1-score of 0.62 and PR-AUC
of 0.65 was observed in DFS only and not in the other
endpoints in the internal test set.

Figure 5 and Figure S3 display the calibration curves
of MLL2 models for all endpoint events in the internal
independent test set and external test set, respectively.
In Figure 5, most circles were located near the ideal
calibration lines (slope: 1 and intercept: 0). A good
calibration (p > 0.05 with HL tests) was obtained for
all endpoints in the internal independent test set. In
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MLL FOR OPSCC OUTCOME PREDICTION 6195

F IGURE 2 Comparison of AUC values [95% CI] of different models on the internal independent test set (a) and the external test set (b). *
means the AUCs of this model are significantly higher (p < 0.05 by independent-sample t-test) than that of all other models.

Figure S3, the models developed for distant metastasis
(DM) (p = 0.51), death (p = 0.14), and any recurrence
and death (ARD) (p = 0.59) calibrated well on the
external test set.

Kaplan-Meier curves of LC, DMFS, and OS and all
endpoints in the two test sets stratified by MLL2 models
are shown in Figure 6 and Figure S4,respectively.For the
internal independent test set, differences between high

 24734209, 2023, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16465 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [13/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6196 MLL FOR OPSCC OUTCOME PREDICTION

F IGURE 3 Comparison of ROC curves of different models for 2-year DMFS prediction on the internal independent test set (a) and the
external test set (b).

F IGURE 4 Sensitivity, specificity and balanced accuracy, F1-score, and PR-AUC values of MLL2 models in the internal independent test set.

and low-risk groups are significant for all endpoints. For
the external test set, significant differences were found
for all endpoints except DMFS.

Overall, these results indicate that our proposed
MLL model is effective in discriminating and stratifying
patients into different risk groups.

4 DISCUSSION

In this study, we proposed a deep learning model based
on a multi-label learning strategy for 2-year outcome
prediction in OPSCC patients. In the internal indepen-
dent test set, MLL2 models obtained significantly better

discriminative performance (AUC values) in the predic-
tion of all endpoints than the clinical, image, and SLL
models and showed good calibration for all endpoints.
Furthermore, the models had the capability to effectively
stratify patients into low and high-risk groups for all end-
points. In the external test set, MLL models still obtained
significantly highest AUCs in all endpoints except LRC,
good calibration in DM, Death and ARD, and good risk
stratification for most endpoints.

Although MLL1 models achieved higher AUCs in five
of seven endpoints than clinical, image, and SLL mod-
els in the internal test set (Figure 2), they obtained
higher AUCs in only RC and DMFS in the external
test set. One possible reason is that the MLL model
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MLL FOR OPSCC OUTCOME PREDICTION 6197

F IGURE 5 Calibration curves of MLL2 models on the internal independent test set. p-value was from the HL test. ARD, any recurrence and
death; DM, distant metastasis; DSD, disease-specific death; LR, local recurrence; LRR, loco-regional recurrence; RR, regional recurrence.

depends on associations between different outcomes.
These associations could be different between institu-
tions due to different treatment, follow-up procedures,
and HPV-positive patients’percentage,which decreased
the performance of MLL models in external testing.
Another possible reason is that our MLL1 model did not
give enough attention to the enhanced endpoint while
focusing too much on optimizing the correlated end-
points. The MLL2 models that used a larger weight for
the enhanced endpoint in the loss function performed
significantly better than the other models in all end-
points except LRC in the external test set (Figure 2).This
shows that a suitable weight of the enhanced endpoint
is essential for training MLL models. Additionally, MLL
model validation in the internal test set showed better
performance (higher AUCs) than in the external test set.
This is most probably related to the differences in clinical
characteristics (gender,smoking status,HPV status,and

T-stage shown in Table S1),CT quality,GTVt delineation,
and the treatments between the internal and external
patient cohorts.

Many papers have demonstrated the prognostic val-
ues of clinical features for OPSCC such as HPV
status, age, gender, T-stage, N-stage, and smoking
status.8,14,36–44 They were also used as candidate pre-
dictors in our work. As shown in Figure 2A, high AUC
values > 0.60 were obtained by clinical models for
almost all outcome endpoints in the internal test set.The
AUCs of 0.64 and 0.67 for LRC and OS are comparable
to the reported AUCs of 0.61 and 0.71 in,14 which built
and tested clinical models for LRC and OS prediction
using 177 OPSCC patients in one center.

Compared with radiomics features,CNNs may extract
more comprehensive and representative high-level fea-
tures which may improve the outcome prediction of
OPSCC. From Figure S1, we could observe that our
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6198 MLL FOR OPSCC OUTCOME PREDICTION

F IGURE 6 Kaplan-Meier curves of high and low risk groups of LC, DMFS, and OS determined by MLL2 models. HR, the hazard ratio
between high and low-risk groups. p values are from the log-rank test.

MLL2 models trained by using image data only showed
better prediction performance for most endpoints than
traditional radiomics models in both internal and exter-
nal test sets. In other relevant studies, CNNs were
already used to acquire highly representative image fea-
tures from PET- with/without CT-images, which showed
good prediction ability for OS,21 local failure,22 and
PFS25,45 of OPSCC. Pang et al. proposed an advanced
combination of training loss with oversampling to train
a 3D ResNet18 based on pre-treatment CT and GTV,
which achieved the state-of -art AUCs of 0.91, 0.78, and
0.70 for DMFS,LRC,and OS prediction in HNC patients,
respectively.46 Our obtained highest AUCs of 0.76 and
0.82 for LRC and OS, respectively, in the internal testing
set as shown in Figure 2A are comparable to this study
while our AUC of 0.81 for DMFS prediction is worse. In
Pang’s study, heat maps were obtained by Grad-CAM47

to visualize the contribution of each part of image to the
outcome prediction. Similarly, the Grad-CAM results of
MLL2 models for LC and RC prediction are shown in
Figure S5, which shows that image features extracted
from primary tumor and peri-tumor regions contributed
mostly to the outcome prediction, while other regions
such as lymph nodes did not contribute much to the
outcome prediction.

This study has some limitations. First, the training set
was imbalanced. From Table S2, control and survival
rates of all endpoints are larger than 50% in the training
set, which probably led to a better prediction for patients
without events than for the patients with events. As a
result, the positive samples may not have been identi-
fied well, which can be reflected by the low F1-scores
and PR-AUCs, which focus on the positive samples
(Figure 4). The low positive sample rate in the internal
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MLL FOR OPSCC OUTCOME PREDICTION 6199

and external test sets for each endpoint (Table S2) also
made the range of 95% CI of AUCs large as shown
in Figure 2, especially in the internal test set due to its
lower positive sample rates than the external test set.
Second, patients in the training set came from only one
center, which may restrict the MLL in the learning of a
more general association between outcome endpoints.
Third, the β values in the loss function were set empiri-
cally instead of selecting an optimal value. Finally, GTV
contour of lymph nodes, which may provide additional
predictive information for outcomes were not used.

In the future,MLL models could be used as pre-trained
models and finetuned on the external test sets for the
prognostic outcome prediction. Additionally, advanced
deep learning methods such as attention mechanisms
and larger, balanced and multicenter training datasets
could be used to improve MLL models. Third, the GTV
contour of lymph nodes could help MLL models extract
more image features from lymph node for outcome pre-
diction. Finally, learnable weights of all endpoints in the
loss function can be used. The learned weights may
reveal the contributions of each endpoint to the training
of the prediction model for the enhanced endpoint.

In conclusion, we designed a new multilabel learning
(MLL) model predicting multiple endpoints simultane-
ously based on planning CT and clinical data to improve
the prediction of OPSCC outcomes compared to single
label CNNs. The MLL models showed better discrimina-
tive performance for all 2-year outcome predictions than
the other models in the internal test set. Furthermore,
the models showed good calibration. In the external test
set, the model performance was lower due to differences
between the patient cohorts, but the MLL models still
outperformed the other models for most endpoints.
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PET/CT tumour segmentation and prediction of progression-
free survival using a full-scale UNet with attention. arXiv Prepr
arXiv211103848. 2021.

46. Pang S, Field M, Dowling J, Vinod S, Holloway L, Sowmya
A. Training radiomics-based CNNs for clinical outcome pre-
diction: challenges, strategies and findings. Artif Intell Med.
2022;123:102230. doi:10.1016/j.artmed.2021.102230

47. Selvaraju RR,Cogswell M,Das A,Vedantam R,Parikh D,Batra D.
Grad-CAM: visual explanations from deep networks via gradient-
based localization. Int J Comput Vis.2020;128(2):336-359.doi:10.
1007/s11263-019-01228-7

SU P P ORTI NG I NF OR M ATI ON
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Ma B, Guo J, Zhai T-T,
et al. CT-based deep multi-label learning
prediction model for outcome in patients with
oropharyngeal squamous cell carcinoma. Med
Phys. 2023;50:6190-6200.
https://doi.org/10.1002/mp.16465

 24734209, 2023, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16465 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [13/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1158/1078-0432.CCR-20-4935
https://doi.org/10.1186/s12885-021-08599-6
https://doi.org/10.1186/s12885-021-08599-6
https://doi.org/10.1007/978-3-642-23808-6_15
https://doi.org/10.1007/978-3-642-23808-6_15
https://doi.org/10.4103/ijdr.IJDR_415_16
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.3390/cancers13184730
https://doi.org/10.1038/bjc.2013.458
https://doi.org/10.1002/hed.26001
https://doi.org/10.1038/bjc.2013.639
https://doi.org/10.1038/bjc.2013.639
https://doi.org/10.1016/j.amjoto.2021.102915
https://doi.org/10.1016/j.radonc.2014.09.005
https://doi.org/10.1016/j.radonc.2014.09.005
https://doi.org/10.1200/JCO.2016.72.0748
https://doi.org/10.1007/s10006-021-00986-4
https://doi.org/10.1002/lary.27130
https://doi.org/10.1002/lary.27130
https://doi.org/10.1016/j.artmed.2021.102230
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1002/mp.16465

	CT-based deep multi-label learning prediction model for outcome in patients with oropharyngeal squamous cell carcinoma
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Data and preprocessing
	2.2 | Model architecture
	2.3 | Label encoding and loss definition
	2.4 | Implementation details
	2.5 | Assessment of model performance
	2.6 | Statistical analysis
	2.7 | Other strategies of improving the MLL model

	3 | RESULTS
	4 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICTS OF INTEREST STATEMENT
	REFERENCES
	SUPPORTING INFORMATION


