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Composition of Behavioural Assume–Guarantee
Contracts

Brayan M. Shali , Graduate Student Member, IEEE, Arjan van der Schaft , Fellow, IEEE,
and Bart Besselink , Member, IEEE

Abstract—The growing complexity of modern engineer-
ing systems necessitates a method for design and anal-
ysis that is inherently modular. Methods based on using
contracts for system design have successfully tackled this
issue for a variety of system classes, but mostly in the
context of discrete software systems. Motivated by this,
we present assume–guarantee contracts for continuous
linear dynamical systems with inputs and outputs. Such
contracts serve as system specifications through two as-
pects. The assumptions specify the dynamic behavior of
the environment of the system, which provides inputs for
it, whereas, the guarantees specify the desired dynamic
behavior of the output of the system when interconnected
with a relevant environment. This is formalized by utiliz-
ing the behavioral approach to system theory. We define
and characterize notions of contract implementation and
contract refinement, where the latter is used to compare
contracts. We also define and characterize two notions of
contract composition that allow one to reason about two
types of system interconnections: series and feedback. The
properties of refinement and composition allow contracts
to be used for modular design and analysis.

Index Terms—Contract-based design, interconnected
systems, linear systems, modular design.

I. INTRODUCTION

MODERN engineering systems, such as smart grids and
intelligent transportation systems, are complex systems

that often comprise a large number of interconnected compo-
nents. These components can be quite complex themselves,
which usually means that they have to be developed by (dif-
ferent) specialized manufacturers, possibly at different stages of
the development of the overall system. Facilitating this requires
a method for system design that is inherently modular, i.e.,
that allows components to be developed independently while
still ensuring proper integration into the overall system. The
necessity for such methods is especially recognized in the field
of cyber-physical systems [1], [2]. In this article, we will focus on
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developing a method for modular analysis and design of physical
components modeled by differential equations.

Various methods for modular analysis already exist in the
control literature. Some of the most well-known ones are based
on the theory of dissipativity [3], [4], which includes the cele-
brated small-gain theorem and passivity theorems. On the other
hand, there are modular control methods, such as decentralized
control [5], [6], [7], which refers to the design of controllers for
components that use only local information to achieve a desired
behavior of the overall system in which they are embedded. A
major limitation of decentralized control is that the design of
controllers typically requires an a priori model of the overall
system. This limitation is addressed by Ishizaki et al. [8], see
also [9] and [10], where a method called retrofit control was
proposed. In this article, we propose an alternative method for
modular analysis and design based on using contracts.

Contract-based design is a design philosophy that finds its
origins in the field of software engineering [11]. It revolves
around using contracts as specifications for system behavior,
within a framework that allows the analysis and design of
interconnected systems to be kept at the level of contracts.
Contract-based design has attracted a lot of attention in the com-
puter science community, see [12] and the references therein.
However, the literature on contracts is focused mostly on discrete
(software) systems, whereas continuous (physical) systems have
been largely overlooked.

Motivated by this, we present assume–guarantee contracts
as specifications for continuous linear dynamical systems with
inputs and outputs. As a first contribution, we define contracts
and provide a necessary and sufficient condition for contract
implementation, which allows one to verify whether a given
system satisfies the specification that a contract expresses. In
particular, we define contracts as pairs of linear dynamical
systems called assumptions and guarantees, both characterized
in a behavioral framework [13]. The assumptions capture the
available information about the dynamic behavior of the en-
vironment, which provides inputs for the system, thus leading
to a class of compatible environments. The guarantees capture
the desired dynamic behavior of the output of the system when
interconnected with a compatible environment, thus leading to
a class of implementations. The contracts in this article express
a specification on the dynamic behavior of a system; hence,
they provide an alternative to common methods for expressing
system specifications in control, such as dissipativity [3] and
set invariance [14], which are typically static in nature. The
necessary and sufficient condition for contract implementation
is an inclusion of behaviors involving the assumptions and
guarantees, which can be verified in a systematic manner. This
is illustrated with examples throughout this article.
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As a second contribution, we define and characterize contract
refinement. The notion of contract refinement allows one to com-
pare two contracts in order to determine if one contract expresses
a stricter specification than the other contract. More precisely,
a contract refines another contract if it has a larger class of
compatible environments but a smaller class of implementations.
We provide necessary and sufficient conditions for contract
refinement in the form of two inclusions of behaviors involving
the assumptions and guarantees of the two contracts. Broadly
speaking, we show that a contract refines another contract if it
has stricter guarantees and looser assumptions.

As a third contribution, we define and characterize two types
of contract composition, corresponding to two types of intercon-
nections: series and feedback. For each type, the composition of
two contracts is such that the corresponding interconnection of
any two of their implementations is guaranteed to implement the
composition. Furthermore, the environment of each implemen-
tation within the interconnection is guaranteed to be compatible
with the corresponding contract. We provide necessary and
sufficient conditions for the existence of each composition in
the form of inclusions of behaviors involving the assumptions
and guarantees of the two contracts. We also provide an explicit
expression for this composition when it exists.

Together, the notions of contract refinement and contract
composition allow components within interconnected systems
to be developed independently since the tasks of design and
verification are kept at the level of contracts. In particular, given
a contract for the overall system, one can use the notions of
refinement and composition to determine appropriate contracts
for the components such that their interconnection is guaranteed
to implement the contract for the overall system. This facilitates
independent design since the developer of an individual com-
ponent can focus on implementing their assigned contract only,
and can disregard the other components or their integration into
the overall system.

Various notions of contracts have already been used as speci-
fications for dynamical systems. Parameteric assume–guarantee
contracts are introduced in [15] and used in [16] and [17],
whereas the assume–guarantee contracts introduced in [18] are
used in [19], [20], and [21]. We also refer to [22], [23], [24],
[25], and [26] as further examples of works involving contracts.
While the contracts in this article express specifications on the
dynamics of continuous-time systems, the contracts in [15], [16],
[17], and [25] are defined only for discrete-time systems, and
the contracts in [18], [19], [20], [21], [22], and [27] cannot
express specifications on dynamics. In this respect, the contracts
in this article are most closely related to the contracts in [23],
whereas [28], [29], and [30] contain related work on composi-
tional reasoning. The contracts in [26] do not suffer from the
abovementioned limitations, but their generality comes at the
expense of algorithms for verification. Our work is specialized
to linear systems, allowing for a more complete instantiation of
the metatheory that includes algebraic characterization that can
be verified algorithmically.

The rest of this article is organized as follows. In Section II,
we introduce the class of systems that will be considered in this
article. In Section III, we introduce contracts and define and
characterize contract implementation and contract conjunction.
In Section IV, we introduce three operations on systems: inter-
section, projection, and product. These are used in Section V,
where we define and characterize two types of contract compo-
sition corresponding to two types of system interconnections:

Fig. 1. System Σ.

series and feedback. Finally, Section VI concludes this article.
Throughout the article, we illustrate relevant concepts using
simple examples.

The notation in this article is mostly standard. The space of
smooth functions from R to Rn is denoted by C∞n . A matrix
whose entries are polynomials is called a polynomial matrix,
and a matrix whose entries are rational functions is called a
rational matrix. All polynomials are univariate and have real
coefficients. A rational function is proper if the degree of its
denominator is greater than or equal to the degree of its numer-
ator. A rational matrix is proper if all of its entries are proper
rational functions. A square polynomial matrixP (s) is invertible
if there exists a rational matrix Q(s) such that P (s)Q(s) = I ,
and it is unimodular if there exists a polynomial matrix Q(s)
such that P (s)Q(s) = I . In both cases, Q(s) is the inverse of
P (s) and is denoted by P (s)−1. It is well known that P (s) is
invertible if and only if detP (s) is a nonzero polynomial, and
P (s) is unimodular if and only if detP (s) is a nonzero constant.
Equivalently, P (s) is invertible if and only if P (λ) is invertible
for all but finitely many λ ∈ R, and it is unimodular if and only
ifP (λ) is invertible for all λ in R. Finally, a rational matrixP (s)
has full row rank if P (λ) has full row rank for all but finitely
many λ ∈ R.

II. SYSTEM CLASS

In this article, we consider systems of the form

Σ :

{
ẋ = Ax+Bu,
y = Cx+Du,

(1)

where x ∈ C∞n is the state trajectory, u ∈ C∞m is the input tra-
jectory, and y ∈ C∞p is the output trajectory. We regard u and
y as external variables that can interact with the environment,
whereas x is internal, as illustrated in Fig. 1.

Our goal is to develop a formal method for expressing spec-
ifications on the dynamic behavior of such systems, which is
a part of a framework that facilitates the independent design
of components within interconnected systems. Inspired by the
metatheory of contracts presented in [12], we will do this by in-
troducing contracts as specifications and developing appropriate
notions of contract refinement and contract composition.

A distinguishing feature of using contracts as specifications
is that they specify the desired behavior of a system when
interconnected with its environment. As the environment of a
system has access only to its external variables, this means that
we are only interested in the behavior of the external variables
u and y, whereas the behavior of the internal variable x can
be disregarded. To formalize this, we will utilize the behavioral
approach to systems theory [13], [31].

The external behavior of Σ is defined as

B (Σ) =
{
(u, y) ∈ C∞m+p

∣∣ ∃x ∈ C∞n s.t. (1) holds
}
. (2)

In the behavioral approach to systems theory, the system Σ
is seen as a representation of its external behavior B(Σ). In
view of [32, Th. 6.2], the same external behavior can always be
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represented by a system of the form

Σ : P
(

d
dt

)
y = Q

(
d
dt

)
u, (3)

where u ∈ C∞m , y ∈ C∞p , and P (s) and Q(s) are polynomial
matrices such that P (s) is invertible and P (s)−1Q(s) is proper.
If these conditions on P (s) and Q(s) are satisfied, then Σ
of the form (3) is said to be in input–output form [13, Sec.
3.3]. Then, [32, Th. 6.2] says that the external behavior of any
system of the form (1) is equal to the external behavior of an
appropriately chosen system of the form (3) in input–output
form, where the latter is defined as

B (Σ) =
{
(u, y) ∈ C∞m+p

∣∣ (3) holds
}
. (4)

However, systems of the form (3) are the more convenient
alternative for analysis since they involve only the external
variables u and y. Therefore, in the rest of this article, we will
consider systems Σ of the form (3) in input–output form instead
of systems of the form (1), and we stress that the two forms are
completely interchangeable.

The concept of behavior allows one to compare different
systems. In particular, ifB(Σ1) ⊂ B(Σ2), then for a given input
trajectory u ∈ C∞m , the set of output trajectories produced by Σ1

is contained in the set of output trajectories produced by Σ2;
hence, Σ2 can be interpreted as having richer dynamics than
Σ1. Behavioral inclusion plays a major role in the definition of a
contract and its related concepts. The following theorem, whose
proof can be found in [33], see also [34], provides an algebraic
characterization of behavioral inclusion that will be used in the
following sections.

Theorem 1 ([33, Th. 2]): Consider the behaviors

Bj =
{
w ∈ C∞k

∣∣ Rj

(
d
dt

)
w = 0

}
, j ∈ {1, 2},

where R1(s) and R2(s) are polynomial matrices. Then, B1 ⊂
B2 if and only if there exists a polynomial matrix M(s) such
that R2(s) = M(s)R1(s).

III. CONTRACTS

In this section, we define contracts and introduce notions
of contract implementation and contract refinement. We also
establish necessary and sufficient conditions for both contract
implementation and contract refinement, the latter being the
main result of this section.

Let Σ be a system of the form (3) in input–output form. An
environment E for Σ is a system of the form

E : 0 = E
(

d
dt

)
u, (5)

which defines the behavior

Bi (E) = {u ∈ C∞m | (5) holds} . (6)

Here, the subscript i indicates that the behaviorBi(E) is in terms
of u, which is the input of Σ. Therefore, we will also refer to
Bi(E) as an input behavior.

The interconnection of the system Σ and its environment E is
given by

E ∧ Σ :

[
P ( d

dt )

0

]
y =

[
Q( d

dt )

E( d
dt )

]
u, (7)

that is, we obtain E ∧ Σ by setting the input generated by E as
input ofΣ, as shown in Fig. 2. The interconnection E ∧ Σ defines

Fig. 2. Interconnection E ∧Σ.

the behavior

Bo (E ∧ Σ) =
{
y ∈ C∞p

∣∣ ∃u ∈ C∞m s.t. (7) holds
}
, (8)

where the subscript o indicates that Bo(E ∧ Σ) is in terms of y,
which is the output of Σ. Analogously to Bi(E), we will refer
to Bo(E ∧ Σ) as an output behavior.

We are interested in guaranteeing properties of Σ when inter-
connected with relevant environments E. This will be formalized
via the notion of a contract. To define a contract, we introduce
another two systems: the assumptions A and the guarantees Γ.
On the one hand, the assumptions A are a system of the form

A : 0 = A( d
dt )u, (9)

and they define the input behavior Bi(A). On the other hand,
the guarantees Γ are a system of the form

Γ : G( d
dt )y = 0, (10)

and they define the output behavior Bo(Γ).
Definition 1: A contract C is a pair (A,Γ) of assumptions A

and guarantees Γ.
Contracts can be used as a formal specification for the external

behavior of Σ in the following way.
Definition 2: Consider the contract C = (A,Γ).
1) An environment E is compatible with C if

Bi (E) ⊂ Bi (A) . (11)

2) A system Σ of the form (3) in input–output form imple-
ments C if

Bo (E ∧ Σ) ⊂ Bo (Γ) (12)

for all environments E compatible with C. In this case, we
say that Σ is an implementation of C.

A contract gives a formal specification for the external be-
havior of a system through two aspects. First, the assumptions
specify the class of environments in which the system is sup-
posed to operate. Second, the guarantees characterize the desired
external behavior of the system, which needs to be achieved for
any compatible environment.

Remark 1: According to Definition 2, when using the contract
C = (A,Γ) as a specification, only the behaviors Bi(A) and
Bo(Γ) are relevant, not their particular representations A and Γ.
This means that, without loss of generality, we can assume that
A and Γ are minimal representations of Bi(A) and Bo(Γ), that
is, A and Γ are of the form (9) and (10), respectively, with A(s)
and G(s) being polynomial matrices that have full row rank,
see [13, Sec. 2.5.6].

According to Definition 1, verifying that a system Σ imple-
ments the contract C = (A,Γ) requires the explicit construction
of all compatible environments E and the confirmation of (12)
for each one of them. The following theorem shows that this
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is not necessary and contract implementation can be verified
directly from the assumptions and guarantees.

Theorem 2: A system Σ of the form (3) in input–output form
implements C = (A,Γ) if and only if

Bo (A ∧ Σ) ⊂ Bo (Γ) . (13)

Proof: Suppose that (13) holds. Let E be an environment
compatible with C. Note that u and y satisfy (7) if and only
if (u, y) ∈ B(Σ) and u ∈ Bi(E); hence, y ∈ Bo(E ∧ Σ) if and
only if there exists u ∈ Bi(E) such that (u, y) ∈ B(Σ). Let
y ∈ Bo(E ∧ Σ) and let u ∈ Bi(E) be such that (u, y) ∈ B(Σ).
Since E is compatible withC, it follows thatBi(E) ⊂ Bi(A) and,
thus, u ∈ Bi(A). But then, y ∈ Bo(A ∧ Σ) ⊂ Bo(Γ), which
shows that Bo(E ∧ Σ) ⊂ Bo(Γ) for all environments E com-
patible with C, i.e., Σ implements C.

Conversely, suppose that Σ implements C. Then, (13) holds
because A is an environment compatible with C. �

Remark 2: As guarantees do not restrict the input, we have
that Bo(A ∧ Σ) ⊂ Bo(Γ) if and only if B(A ∧ Σ) ⊂ B(Γ),
where the external behaviors of A ∧ Σ and Γ are defined in the
obvious way, namely, as the spaces of smooth functions (u, y)
that satisfy the respective equations. In view of Theorems 1 and
2, this implies that a system Σ of the form (3) in input–output
form implements the contract C = (A,Γ), where A is given by
(9) and Γ is given by (10), if and only if there exist polynomial
matrices M1(s) and M2(s) such that

[
G(s) 0

]
=

[
M1(s) M2(s)

] [P (s) −Q(s)

0 −A(s)
]
. (14)

The existence of such polynomial matrices M1(s) and M2(s)
can be verified using the Smith canonical form of the right-hand
side of (14), as shown in [33, Lemma 1].

Remark 3: We point out that if Σ implements the contract
C = (A,Γ) and Σ′ is such that B(Σ′) ⊂ B(Σ), then Bo(A ∧
Σ′1) ⊂ Bo(A ∧ Σ) and, thus, Σ′ also implements C. This means
that we can replace Σ by Σ′ without verifying that Σ′ is an
implementation, as long as it is known that B(Σ′) ⊂ B(Σ).

We will illustrate how contracts can be used as specifications
in practice with a simple example.

Example 1: Suppose that we have two ships on the open sea,
one much bigger than the other. The large ship has a crane that
moves cargo to the smaller ship. We want the crane to be such that
the cargo descends to the smaller ship at a given rate. To make
this more concrete, let ql and qs denote the vertical displacements
of the large and small ships, respectively. The dynamics of ql
and qs can be modeled simply as

τlq̇l = −ql + d, τsq̇s = −qs + d, (15)

where τl and τs are constants, and d is the water surface dis-
placement caused by waves. We assume that τl is much larger
than τs because the influence of the waves on the large ship
is much smaller. Let qc denote the vertical displacement of the
cargo, which the crane needs to control. We want qc to converge
to qs with a given rate k > 0, that is, we want

q̇c − q̇s = −k(qc − qs). (16)

In order to achieve this, we assume that the crane has the vertical
displacements of both ships and the vertical velocity of the large
ship available for measurement.

We will express this specification for the crane in the form of
a contract. First, we note that the input is given by

u =
[
u1 u2 u3

]�
=

[
qs ql q̇l

]�
(17)

and the output is given by

y =
[
y1 y2

]�
=

[
qs qc

]�
. (18)

We have that u̇2 = u3, while subtracting the two equations in
(15) yields

τsu̇1 + u1 − u2 − τlu3 = 0. (19)

Therefore, we can take the assumptions A as in (9) with

A(s) =

[
0 s −1

τss+ 1 −1 −τl

]
. (20)

Note that we make an assumption only on the relative motion of
the two ships on the open sea, i.e., we make no assumption on
the water surface displacement d. Meanwhile, in view of (16),
we have the guarantees Γ as in (10) with

G(s) =
[
s+ k −s− k

]
. (21)

Now, the specification on the crane is captured by the contract
C = (A,Γ), that is, the crane is a system Σ that needs to
implement C. We claim that the crane satisfies the specification
if it is designed to lower the cargo according to

q̇c = −kqc +
(
k − 1

τs

)
qs +

1

τs
ql +

τl
τs
q̇l. (22)

Since u1 = qs = y1, it follows that:

y1 = u1

ẏ2 + ky2 =

(
k − 1

τs

)
u1 +

1

τs
u2 +

τl
τs
u3. (23)

Therefore, the claim is that the system Σ given by (3) with

P (s) =

[
1 0

0 s+ k

]
, Q(s) =

[
1 0 0

k − 1
τs

1
τs

τl
τs

]
(24)

implements C. Note that Σ is in input–output form, i.e., it can
be represented as a system of the form (1), and (14) holds for

M1(s) =
[
s+ k −1] , M2(s) =

[
0 − 1

τs

]
, (25)

which, due to Remark 2, implies that Σ implements C. Note
also that we have artificially included the input qs as part of the
output in order to express (16) as guarantees on the output.

We proceed to developing a notion of contract refinement,
which is an essential ingredient in a contract theory. It allows
contracts to be compared in order to determine if one contract
represents a stricter specification than another contract. For-
mally, we have the following definition.

Definition 3: The contract C1 refines the contract C2 if the
following conditions hold:

1) if E is compatible with C2, then E is compatible with C1;
2) if Σ implements C1, then Σ implements C2.

In other words, C1 refines C2 if it has a larger class of compati-
ble environments and a smaller class of implementations. Then,
it is clear that C1 expresses a more restrictive specification than
C2.
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Just like contract implementation, contract refinement can be
verified directly from the assumptions and guarantees. Given
C1 = (A1,Γ1) and C2 = (A2,Γ2), it is easily seen from Def-
inition 2 that the first condition in Definition 3 is equivalent
to Bi(A2) ⊂ Bi(A1). However, it is not immediately clear
what the second condition is equivalent to. To resolve this, we
will make use of autonomous implementations. A system Σ is
autonomous if it can be represented by

Σ : P
(

d
dt

)
y = 0, (26)

where P (s) is an invertible polynomial matrix. Note that au-
tonomous systems are of the form (3) with Q(s) = 0 and are,
thus, in input–output form. Since autonomous systems do not
admit inputs, we have that Bo(A1 ∧ Σ) = Bo(Σ) if Σ is au-
tonomous; hence, by Theorem 2, an autonomous Σ implements
C1 if and only if Bo(Σ) ⊂ Bo(Γ1). Similarly, an autonomous
Σ implements C2 if and only if Bo(Σ) ⊂ Bo(Γ2). With this
in mind, we state and prove the following result regarding
autonomous systems and behavioral inclusion.

Lemma 3: If Bo(Σ) ⊂ Bo(Γ1) implies Bo(Σ) ⊂ Bo(Γ2)
for all autonomous Σ, then Bo(Γ1) ⊂ Bo(Γ2).

Proof: Let Γ1 and Γ2 be given by

Γ1 : G1

(
d
dt

)
y = 0 and Γ2 : G2

(
d
dt

)
y = 0, (27)

where G1(s) and G2(s) are polynomial matrices. In view of
Remark 1, we can assume that G1(s) has full row rank. This
means that there exists a polynomial matrix G′1(s) such that[

G1(s)

G′1(s)

]
(28)

is invertible. Thus, for any positive integer k, the system

Σk : Pk

(
d
dt

)
y = 0, (29)

is autonomous, where

Pk(s) =

[
G1(s)

skG′1(s)

]
=

[
I 0

0 skI

] [
G1(s)

G′1(s)

]
. (30)

Furthermore, since

G1(s) =
[
I 0

]
Pk(s), (31)

it follows from Theorem 1 that Bo(Σk) ⊂ Bo(Γ1), which im-
plies thatBo(Σk) ⊂ Bo(Γ2) by assumption. Due to Theorem 1,
the latter holds if and only if there exists a polynomial matrix
Mk(s) such that

G2(s) = Mk(s)Pk(s). (32)

Using (30), we find that (32) holds if and only if

G2(s)

[
G1(s)

G′1(s)

]−1
= Mk(s)

[
I 0

0 skI

]
. (33)

Note that the left-hand side of (33) does not depend on k.
Moreover, as the right-hand side is a polynomial matrix, every
entry of the left-hand side of (33) is a polynomial. Take k to be
larger than the degree of any of these polynomials. This means
that the product of sk with any nonzero polynomial yields a
polynomial whose degree is larger than the degree of any of the
polynomial entries in the left-hand side of (33). Consequently,
(33) holds only if

Mk(s) =
[
M(s) 0

]
(34)

for some polynomial matrix M(s). Then, (33) yields

G2(s) =
[
M(s) 0

] [G1(s)

G′1(s)

]
= M(s)G1(s) (35)

and, thus, Bo(Γ1) ⊂ Bo(Γ2) due to Theorem 2. �
Lemma 3 can be used to obtain necessary and sufficient

conditions for contract refinement. This is done in the following
theorem, which is the main result of this section.

Theorem 4: The contract C1 = (A1,Γ1) refines the contract
C2 = (A2,Γ2) if and only if

Bi (A2) ⊂ Bi (A1) and Bo (Γ1) ⊂ Bo (Γ2) . (36)

Proof: Suppose that (36) holds. Let E be compatible with C2
and Σ be an implementation of C1. Then, Bi(E) ⊂ Bi(A2) ⊂
Bi(A1); hence, E is compatible with C1 and the first condition
in Definition 3 is satisfied. On the other hand, due to Theorem 2,
we have that Bo(A1 ∧ Σ) ⊂ Bo(Γ1) ⊂ Bo(Γ2). As Bi(A2) ⊂
Bi(A1), it follows that Bo(A2 ∧ Σ) ⊂ Bo(A1 ∧ Σ) and, thus,
Bo(A2 ∧ Σ) ⊂ Bo(Γ2). This implies that Σ implements C2 and
the second condition in Definition 3 is also satisfied, that is, C1
refines C2.

Conversely, suppose that C1 refines C2. As A2 is compatible
with C2, from the first condition in Definition 3, we get that A2 is
compatible with C1 and, thus, Bi(A2) ⊂ Bi(A1). On the other
hand, if Σ is autonomous, then

Bo (A1 ∧ Σ) = Bo (Σ) = Bo (A2 ∧ Σ) ,

hence, by Theorem 2, Σ implements Ci, i ∈ {1, 2}, if and only
if Bo(Σ) ⊂ Bo(Γi). Therefore, from the second condition in
Definition 3, we get that Bo(Σ) ⊂ Bo(Γ1) implies Bo(Σ) ⊂
Bo(Γ2) for all autonomous Σ, and thus, Bo(Γ1) ⊂ Bo(Γ2) due
to Lemma 3. This shows that (36) holds. �

Remark 4: The sufficiency of the conditions in (36) is fairly
easy to see. However, their necessity is somewhat surprising.
In particular, the fact that the inclusion Bo(Γ1) ⊂ Bo(Γ2) is
necessary indicates that the satisfaction of the second property
in Definition 3 does not depend on the assumptions of either
contract, even though their classes of implementations do, as
can be seen from Theorem 2. This is because the subclasses of
autonomous implementations are independent of the assump-
tions, and rich enough to necessitate that Bo(Γ1) ⊂ Bo(Γ2), as
can be seen from Lemma 3.

Remark 5: Refinement defines a preorder, as can be eas-
ily verified from the definition. In view of Theorem 4,
C1 = (A1,Γ1) refines C2 = (A2,Γ2) and vice versa if and only
if Bi(A1) = Bi(A2) and Bo(Γ1) = Bo(Γ2). Since the latter
might hold even if A1 	= A2 or Γ1 	= Γ2, it follows that refine-
ment does not define a partial order. Nevertheless, the greatest
lower bound of two contracts always exists. It is typically re-
ferred to as the conjunction of contracts, which is treated in [33].
The least upper bound also exists, and can be found similarly to
the greatest lower bound.

We will illustrate how Theorem 4 can be used in practice with
a simple example.

Example 2: Consider the contracts C1 = (A1,Γ1) and
C2 = (A2,Γ2) with

A1 : A1

(
d
dt

)
u = 0 Γ1 : G1

(
d
dt

)
y = 0, (37)

A2 : A2

(
d
dt

)
u = 0 Γ2 : G2

(
d
dt

)
y = 0, (38)
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and A1(s), A2(s), G1(s), and G2(s) given by

A1(s) =
[
s3 − 2s2 − s+ 2 s2 − s− 2

]
, (39)

A2(s) =
[
s2 − 1 s+ 1

]
, (40)

G1(s) = s3 + s2 + s+ 1, (41)

G2(s) = s4 − 1. (42)

To find out whether C1 refines C2 using Theorem 4, we need to
check if Bo(Γ1) ⊂ Bo(Γ2) and Bi(A2) ⊂ Bi(A1).

In view of Theorem 1, we have that Bo(Γ1) ⊂ Bo(Γ2) if
and only if G2(s) = M(s)G1(s) for some polynomial M(s).
Since G1(s) is a nonzero polynomial, the latter holds if and
only if M(s) = G2(s)G1(s)

−1 is a polynomial, which is the
case because G2(s)G1(s)

−1 = s− 1.
On the other hand, we have that Bi(A2) ⊂ Bi(A1) if and

only if there exists a polynomial matrix N(s) such that A1(s) =
N(s)A2(s). We will make use of [33, Lemma 1] to establish if
such a polynomial matrixN(s) exists. To do this, we first need to
bring A2(s) to its Smith form. Note that adding s− 1 times the
second column to the first column of A2(s) and interchanging
the columns of the resulting matrix yields

[
s+ 1 0

]
, which is

in Smith form. Therefore,

A2(s) = U(s)
[
D(s) 0

]
V (s) (43)

for U(s) = 1, D(s) = s+ 1 and

V (s)−1 =

[
1 0

s− 1 1

] [
0 1

1 0

]
=

[
0 1

1 s− 1

]
. (44)

Then, [33, Lemma 1] tells us that there exists a polynomial
matrix N(s) such that A1(s) = N(s)A2(s) if and only if:

1) A1(s)V (s)−1
[
0

1

]
= 0;

2) A1(s)V (s)−1
[
D(s)−1

0

]
is a polynomial.

It is easily seen that both items hold since

A1(s)V (s)−1 =
[
s2 − s− 2 0

]
= D(s)

[
s− 2 0

]
, (45)

hence, there exists a polynomial matrix N(s) such that A1(s) =
N(s)A2(s), and thusBi(A2) ⊂ Bi(A1). In conclusion, we have
thatBi(A2) ⊂ Bi(A1) andBo(Γ1) ⊂ Bo(Γ2), henceC1 refines
C2 due to Theorem 4.

IV. PROJECTION, INTERSECTION, AND PRODUCT

In this section, we define three operations on behaviors and
the systems representing them, namely, projection, intersection,
and product. These will play a role in characterizing contract
composition in the next section. In particular, when defining
contract composition, we will consider interconnections of sys-
tems, where only parts of the inputs and outputs are used for
the interconnection. This will inevitably lead us to consider
projections, intersections, and products.

With this in mind, consider the behavior

B =
{
w ∈ C∞k

∣∣ R (
d
dt

)
w = 0

}
and the partitioning w = (w1, w2). We denote the projection of
B on w1 or w2 as Π1B or Π2B, respectively. More precisely,

if w1 ∈ C∞k1
and w2 ∈ C∞k2

, then we define

Π1B =
{
w1 ∈ C∞k1

∣∣ ∃w2 ∈ C∞k2
s.t. (w1, w2) ∈ B

}
,

Π2B =
{
w2 ∈ C∞k2

∣∣ ∃w1 ∈ C∞k1
s.t. (w1, w2) ∈ B

}
.

In view of [13, Th. 6.2.6], there exist polynomial matrices
Rπ1(s) and Rπ2(s) satisfying

ΠjB =
{
wj ∈ C∞kj

∣∣∣ Rπj
(

d
dt

)
wj = 0

}
, j ∈ {1, 2}.

Remark 6: Checking if a projection of the behavior B is con-
tained in another behavior B1 can be done by using Theorem 1
without explicitly constructing a representation of the projection
ofB. For example, suppose that we have to check ifΠ1B ⊂ B1,
where

B1 =
{
w1 ∈ C∞k1

∣∣ R1

(
d
dt

)
w1 = 0

}
. (46)

Naively using Theorem 1 to do this would require the con-
struction of Rπ1(s). We can avoid this by using the fact that
Π1B ⊂ B1 if and only if B ⊂ Be

1, where

Be
1 =

{
w ∈ C∞k

∣∣ [
R1

(
d
dt

)
0
]
w = 0

}
(47)

is the extension of B1 to the full external variable w. Using
Theorem 1, B ⊂ Be

1 if and only if there exists a polynomial
matrix M(s) such that[

R1(s) 0
]
= M(s)R(s). (48)

Therefore, to check if Π1B ⊂ B1, we can check if there exists
a polynomial matrix M(s) such that (48) holds, which does not
require the explicit construction of Rπ1(s).

On the other hand, we denote the intersection ofBwithw2 =
0 or w1 = 0 by I1B or I2B, respectively. More precisely, we
define

I1B =
{
w1 ∈ C∞k1

∣∣ (w1, 0) ∈ B
}
,

I2B =
{
w2 ∈ C∞k2

∣∣ (0, w2) ∈ B
}
.

It is easily verified that

IjB =
{
wj ∈ C∞kj

∣∣∣ Rij
(

d
dt

)
wj = 0

}
, j ∈ {1, 2},

where Ri1(s) and Ri1(s) are polynomial matrices that partition
R(s) as R(s) =

[
Ri1(s) Ri2(s)

]
.

The projection and intersection operations on behaviors and
the polynomial matrices that represent them can straightfor-
wardly be extended to operations on systems. The following
definition does so for assumptions and guarantees.

Definition 4: Consider the assumptions A given by (9), and
the partitionu = (u1, u2). For j ∈ {1, 2}, the projected assump-
tions ΠjA and the intersected assumptions IjA are defined as

ΠjA : Aπj
(

d
dt

)
u = 0 and IjA : Aij

(
d
dt

)
u = 0.

Consider the guarantees Γ given by (10), and the partition y =
(y1, y2). For j ∈ {1, 2}, the projected guarantees ΠjΓ and the
intersected guarantees IjΓ are defined as

ΠjΓ : Gπj
(

d
dt

)
y = 0 and IjΓ : Gij

(
d
dt

)
y = 0.

Finally, we define the product of systems as a representation
of the Cartesian product of their behaviors. This is done for
assumptions and guarantees in the following definition.

Definition 5: Consider the assumptions A1 and A2, and the
guarantees Γ1 and Γ2, given by (37) and (38). The product
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assumptions A1 × A2 are defined as

A1 × A2 : 0 =

[
A1

(
d
dt

)
0

0 A2

(
d
dt

)
]
u, (49)

and the product guarantees Γ1 × Γ2 are defined as

Γ1 × Γ2 :

[
G1

(
d
dt

)
0

0 G2

(
d
dt

)] y = 0. (50)

It is easily seen that Bi(A1 × A2) = Bi(A1)×Bi(A2) and
Bo(Γ1 × Γ2) = Bo(Γ1)×Bo(Γ2).

V. COMPOSITION

In order to facilitate the independent design of components
within interconnected systems, we will introduce methods for
contract composition. Loosely speaking, our goal is to answer
the following question: Given implementations Σ1 and Σ2 of
the contracts C1 and C2, respectively, what contract does the
interconnection of Σ1 and Σ2 implement? Naturally, the answer
to this question depends on the type of interconnection that is
considered. In this article, we consider two types of interconnec-
tion, namely, the series interconnection and the feedback inter-
connection. The definitions of these interconnections are fairly
general, which will ultimately allow us to analyze and design
a large class of interconnected systems by decomposing them
into a sequence of series and feedback interconnections. Before
we proceed to defining and characterizing the corresponding
contract compositions, we will briefly discuss how they enable
the independent design of components within interconnected
systems.

A. Interconnected System Design

When designing an interconnected system, a designer starts
with a given specification for the overall system in the form of
a contract C. As a simple example, suppose that this contract C
needs to be implemented by an interconnection of two systems
Σ1 and Σ2, denoted by Σ1 ⊗ Σ2. These systems often need to
be developed independently, possibly by different developers.
Therefore, the goal of the designer is to assign specifications
for Σ1 and Σ2, in the form of contracts C1 and C2, such that
the following property holds: if Σ1 implements C1 and Σ2

implements C2, then the interconnection Σ1 ⊗ Σ2 implements
C. Indeed, then each developer is only concerned with develop-
ing an implementation of their assigned contract and need not
concern themselves with the development of the implementation
of the other contract. In other words, the correct choice of C1
and C2 ensures that the interconnected system implements the
overall contract C.

With an appropriate notion of contract composition, the de-
signer can ensure that if Σ1 and Σ2 implement C1 and C2,
respectively, then the interconnection Σ1 ⊗ Σ2 implements the
composition C1 ⊗ C2, where the definition of C1 ⊗ C2 mirrors
that of Σ1 ⊗ Σ2. To ensure that Σ1 ⊗ Σ2 implements C as well,
the designer can make use of the notion of contract refinement.
In particular, the designer can design C1 and C2 such that C1 ⊗ C2
refines C. Then, any implementation of C1 ⊗ C2 implements C
as well, thus Σ1 ⊗ Σ2 implements C. The following example
makes these ideas a bit more concrete.

Example 3: Consider the interconnection of Σ1 and Σ2 de-
picted in Fig. 4. Suppose that we want this interconnection to

Fig. 3. Interconnected system design with contracts.

implement the contract C = (A,Γ) with A as in (9),Γ as in (10),
and A(s) and G(s) given by

A(s) =

[
s+ 1 0

0 s

]
, G(s) =

[
s2 − 1 s2 + 3s

]
. (51)

Our goal is to do this by allowing Σ1 and Σ2 to be developed
independently. In other words, our goal is to determine contracts
C1 and C2 such that the interconnection of Σ1 and Σ2 is guaran-
teed to implement C whenever Σ1 and Σ2 implement C1 and C2,
respectively. In the next section, we will show that the contracts
C1 = (A1,Γ1) and C2 = (A2,Γ2) with

A1 : A1

(
d
dt

)
u1 = 0, Γ1 : G1

(
d
dt

)
y1 = 0, (52)

A2 : A2

(
d
dt

)
u2 = 0, Γ2 : G2

(
d
dt

)
y2 = 0, (53)

and A1(s), G1(s), A2(s), and G2(s) given by

A1(s) = s+ 1, (54)

G1(s) =

[
s −1

s+ 1 −s− 1

]
, (55)

A2(s) =
[
s2 − 1 s

]
, (56)

G2(s) = s2 + 3s, (57)

achieve our goal. This will be done in Example 4.
The ideas presented so far can be taken even further. If the

notion of contract composition is such that C′1 ⊗ C′2 refines
C1 ⊗ C2 wheneverC′1 refinesC1 andC′2 refinesC2, then individual
developers can also design interconnected systems to implement
their assigned contracts. For example, the first developer can
design C11 and C12 such that C11 ⊗ C12 refines C1, and since
C2 refines itself, this would imply that (C11 ⊗ C12)⊗ C2 refines
C1 ⊗ C2, which in turn refines C, as illustrated in Fig. 3. Then,
instead of developing an implementation Σ1 of C1, the first
developer can develop implementations Σ11 and Σ12 of C11 and
C12, respectively, and the interconnection (Σ11 ⊗ Σ12)⊗ Σ2

would be guaranteed to implement the overall contract C.
We conclude this section by noting that the use of contracts

for the design of interconnected systems greatly simplifies com-
ponent substitution. Indeed, if one wants to replace the compo-
nent Σ11 with a new component Σ′11 while still ensuring that
the interconnection (Σ′11 ⊗ Σ12)⊗ Σ2 implements the overall
contract C, then it is enough to verify that Σ′11 implements C11.
In particular, it is not necessary to verify that (Σ′11 ⊗ Σ12)⊗
Σ2 implements C, which can be much more difficult due to
the high complexity of (Σ′11 ⊗ Σ12)⊗ Σ2 as compared with
Σ′11.
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Fig. 4. Series interconnection Σ1 → Σ2.

B. Series Composition

We will first consider the series interconnection. We will begin
by defining the series interconnection of two systems and the
corresponding notion or series composition of two contracts.
We will then characterize the latter, which will lead us to
necessary and sufficient conditions for the existence of the series
composition of contracts, and an explicit expression for it when
it exists.

LetΣ1 andΣ2 be systems of the form (3) in input–output form.
Typically, the series interconnection of Σ1 to Σ2 is obtained by
setting the output of Σ1 as input of Σ2. In this article, we will
consider a slightly more general type of series interconnection,
where we set part of the output of Σ1 as part of the input of Σ2.

Definition 6: Denote the input and output of Σ1 by u1 and
y1, respectively, and the input and output of Σ2 by u2 and y2,
respectively. Suppose that y1 is partitioned as y1 = (y11, y12),
and u2 as u2 = (u21, u22), where y12 has the same dimension
as u21. The series interconnection of Σ1 to Σ2, denoted by
Σ1 → Σ2, is obtained by setting y21 = u21, as shown in Fig. 4.
The input of Σ1 → Σ2 is given by (u1, u22), and the output by
(y11, y2).

Following the metatheory in [12], we define the series com-
position of contracts as follows.

Definition 7: The series composition of the contract C1 to the
contract C2, denoted by C1 → C2, is the smallest (with respect to
refinement) contract C that satisfies the following implication:
if Σ1 and Σ2 implement C1 and C2, respectively, and E is an
environment compatible with C, then:

1) the environment of Σ1 in E ∧ (Σ1→Σ2) is compatible
with C1;

2) the environment of Σ2 in E ∧ (Σ1→Σ2) is compatible
with C2;

3) Σ1 → Σ2 implements C1 → C2.
The definition of the series composition C1 → C2 has the

following aspects. First, C1 → C2 must satisfy properties that
would support independent development, as described in Sec-
tion V-A. Second, C1 → C2 must be the smallest contract that
satisfies these properties. In view of Theorem 4, this means
that the C1 → C2 assumes the least while still ensuring that
the components of Σ1 → Σ2 operate in interconnection with
environments compatible with their respective contracts, and
guarantees the most while still ensuring that Σ1 → Σ2 is an
implementation.

The series composition does not necessarily exist. On the one
hand, a contract that satisfies the implementation in Definition 7
might not exist. On the other hand, even if such a contract exists,
the smallest one might not exist. In the following, we will show
that a contract that satisfies the implication in Definition 7 does
exists under certain conditions, and when these conditions are
met, the smallest such contract also exists.

Definition 7 is quite abstract in its current form. To make it
more concrete, recall that the environment of a system is another
system that generates inputs for it. Therefore, if C = (A,Γ),
C1 = (A1,Γ1), and C2 = (A2,Γ2), then the conditions in Def-
inition 7 hold if and only if the input of Σ1 in E ∧ (Σ1→Σ2)
is contained in Bi(A1), the input of Σ2 in E ∧ (Σ1→Σ2) is
contained in Bi(A2), and the output of Σ2 in E ∧ (Σ1→Σ2) is
contained in Bo(Γ). In view of the interconnection structure of
Σ1 → Σ2, which is depicted in Fig. 4, these conditions hold if
and only if the following implication holds:

(u1, u22) ∈ Bi (E)
(u1, y11, u21) ∈ B (Σ1)
(u21, u22, y2) ∈ B (Σ2)

}
⇒

{
u1 ∈ Bi (A1)
(u21, u22) ∈ Bi (A2)
(y11, y2) ∈ Bo (Γ) .

(58)
Stated differently, the implication in Definition 7 is satisfied

if and only if the implication (58) is satisfied for all Σ1, Σ2, and
E such that Σ1 and Σ2 implement C1 and C2, respectively, and E
is compatible with C. While the latter is certainly more concrete,
it still does not clarify what conditions A and Γ should satisfy in
order forC to satisfy the implication in Definition 7. To determine
these, we can make use of autonomous implementations and
Lemma 3 again. The subclass of autonomous implementations
is rich enough to yield necessary and sufficient conditions for
the satisfactions of the implication in Definition 7, as it was for
refinement, see Remark 4. In particular, by restricting ourselves
to autonomous implementations, we can obtain necessary condi-
tions for the satisfaction of the implication in Definition 7, which
we can then show to be sufficient, even without the restriction
to autonomous implementations. This is done in the following
lemma, whose proof can be found in the Appendix.

Lemma 5: Suppose that C = (A,Γ), C1 = (A1,Γ1), and
C2 = (A2,Γ2). Then, the implication in Definition 7 is satisfied
if and only if

Bi (A) ⊂ Bi (A1)× I2Bi (A2) , (59)

Bo (Γ1) ⊂ I1Bo (Γ)× I1Bi (A2) , (60)

Bo (Γ2) ⊂ I2Bo (Γ) . (61)

Note that the conditions in Lemma 5 are in terms of A and
Γ only, i.e., they do not refer to implementations or compatible
environments. Furthermore, while (59) and (61) strongly depend
on C, (60) is partially independent of it. Indeed, (60) holds only if
Π2Bo(Γ1) ⊂ I1Bi(A2), and the latter depends solely on C1 and
C2. This suggests that the inclusion Π2Bo(Γ1) ⊂ I1Bi(A2) is a
necessary condition for the existence of C1 → C2. This turns out
to be true. In fact, the following theorem, which is the main result
of this section, shows that this condition is both necessary and
sufficient for the existence of C1 → C2, and provides an explicit
expression for C1 → C2 when it exists.

Theorem 6: The series composition of C1 = (A1,Γ1) to
C2 = (A2,Γ2) exists if and only if

Π2Bo (Γ1) ⊂ I1Bi (A2) . (62)

If the series composition exists, then it is given by

C1 → C2 = (A1 × I2A2,Π1Γ1 × Γ2). (63)

Proof: We begin by proving necessity of (62). Suppose that
the series composition C1 → C2 exists. Then, there exists a
contract C = (A,Γ) that satisfies the implication in Defini-
tion 7. Due to Lemma 5, this implies that (60) holds and, thus,
Π2Bo(Γ1) ⊂ I1Bi(A2).
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We proceed by proving sufficiency of (62). Suppose that (62)
holds and let C = (A,Γ). We will show that (59), (60), and (61)
hold if and only if

Bi (A) ⊂ Bi (A1 × I2A2) , (64)

Bo (Π1Γ1 × Γ2) ⊂ Bo (Γ) . (65)

To this end, note that (59) is equivalent to (64) because Bi(A1 ×
I2A2) = Bi(A1)× I2Bi(A2), as follows from Definitions 4 and
5. On the other hand, under the assumption that (62) holds, we
have that (60) is equivalent to Π1Bo(Γ1) ⊂ I1Bi(Γ). Then, it is
immediate that (60) and (61) both hold if and only if

Bo (Π1Γ1 × Γ2) ⊂ I1Bo (Γ)× I2Bo (Γ) , (66)

where we used Bo(Π1Γ1 × Γ2) = Π1Bo(Γ1)×Bo(Γ2).
We claim that (66) holds if and only if (65) holds. It is

easily seen that I1Bo(Γ)× I2Bo(Γ) ⊂ Bo(Γ), which shows
that (66) implies (65). To show the converse, suppose that (65)
holds and let (y11, y2) ∈ Bo(Π1Γ1 × Γ2). This implies that
y11 ∈ Bo(Π1Γ1) and y2 ∈ Bo(Γ2). But 0 ∈ Bo(Γ2) and 0 ∈
Bo(Π1Γ1); hence, (y11, 0) ∈ Bo(Π1Γ1 × Γ2) and (0, y2) ∈
Bo(Π1Γ1 × Γ2). Since (65) holds, it follows that (y11, 0) ∈
Bo(Γ) and (0, y2) ∈ Bo(Γ), which yields y11 ∈ I1Bo(Γ) and
y2 ∈ I2Bo(Γ). Then, (y11, y2) ∈ I1Bo(Γ)× I2Bo(Γ) and thus
(66) holds.

We now know that (59) is equivalent to (64), and (60) and
(61) together are equivalent to (65). Due to Theorem 4, (64)
and (65) hold if and only if C refines C1 → C2, with C1 → C2 as
defined in (63). In view of Lemma 5, this means that C satisfies
the implication in Definition 7 if and only if C refines C1 →
C2; hence, C1 → C2 is the smallest contract that satisfies the
implication in Definition 7, that is, C1 → C2 is indeed the series
composition of C1 to C2. �

The condition (62) in Theorem 6 is quite intuitive. It effec-
tively says that any output behavior that an implementation of C1
can generate must be behavior that an environment compatible
with C2 can generate. Nevertheless, it is still surprising that this
condition is both necessary and sufficient. In fact, the necessity
of (62) follows only because of the existence of autonomous
implementations, which is the case because guarantees specify
only an output behavior, rather than a relation between inputs
and outputs.

To see how Theorem 6 can be used in practice, consider the
following example.

Example 4: We continue from the end of Example 3. Note
that the output of Σ1 is partitioned into two single outputs as
y1 = (y11, y12), and the input ofΣ2 is partitioned into two single
inputs as u2 = (u21, u22). The series interconnection Σ1 → Σ2

is obtained by setting y12 = u21, and has (u1, u22) as input and
(y11, y2) as output. To check whether the series composition
C1 → C2 exists, we need to check whether (62) holds. In view of
Remark 6, we can do this using Theorem 1 without constructing
an explicit representation of Π2Bo(Γ1). In particular, since

I1Bi (A2) =
{
u21 ∈ C∞1

∣∣ Ai1
2

(
d
dt

)
u21 = 0

}
, (67)

where Ai1
2 (s) = s2 − 1 is the first entry of A2(s), it follows that

(62) holds if and only if

[
0 Ai1

2 (s)
]
= M(s)G1(s) (68)

Fig. 5. Full series interconnection Σ1 →f Σ2.

for some polynomial matrix M(s). But G1(s) is invertible;
hence, (68) holds if and only if

[
0 Ai1

2 (s)
]
G1(s)

−1 is a poly-
nomial matrix. We can compute

[
0 Ai1

2 (s)
]
G1(s)

−1 =
[
0 s2 − 1

] [ 1
s−1 − 1

s2−1
1

s−1 − s
s2−1

]
(69)

= [s+ 1 −s] , (70)

which shows that (68) holds. This implies that (62) holds and
thus the series composition C1 → C2 exists.

Now, (63) provides an explicit expression for C1 → C2. It is
easily seen that the assumptions of C1 → C2 are given by

A1 × I2A2 : 0 = �A
(

d
dt

)
u, (71)

where

�A(s) =

[
A1(s) 0

0 Ai2
2 (s)

]
=

[
s+ 1 0

0 s

]
. (72)

On the other hand, to find the guarantees of C1 → C2, we first
need a description of Π1Γ1, or, more specifically, an expression
for Gπ1

1 (s). To this end, note that

U(s) =

[
1 0

−s− 1 1

]
(73)

is a unimodular matrix such that

U(s)G1(s) =

[
s −1

−s2 + 1 0

]
, (74)

henceGπ1
1 (s) = −s2 + 1 due to [13, Th. 6.2.6]. Then, it follows

that the guarantees of C1 → C2 are given by

Π1Γ1 × Γ2 : �G
(

d
dt

)
y = 0, (75)

where

�G(s) =

[
Gπ1

1 (s) 0

0 G2(s)

]
=

[−s2 + 1 0

0 s2 + 3s

]
. (76)

Finally, note that �A(s) = A(s) and

G(s) =
[−1 1

]
�G(s). (77)

In view of Theorem 1, this means that Bi(A) = Bi(A1 × I2A2)
and Bo(Π1Γ1 × Γ2) ⊂ Bo(Γ). Therefore, due to Theorem 4,
C1 → C2 refines C, and thus Σ1 → Σ2 implements C for any Σ1

and Σ2 that implement C1 and C2, respectively.
Theorem 6 can be simplified when considering the full series

interconnection. In particular, without partitioning the output of
Σ1 or the input of Σ2, the full series interconnection of Σ1 to
Σ2, denoted by Σ1 →f Σ2, is obtained by setting the whole
output of Σ1 as the whole input of Σ2, as shown in Fig. 5. The
corresponding full series composition of C1 to C2 is denoted
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by C1 →f C2, and its definition is the same as the one for the
series composition. However, because of the simpler structure
of Σ1 →f Σ2, (58) is reduced to the following implication:

u1 ∈ Bi (E)
(u1, u2) ∈ B (Σ1)
(u2, y2) ∈ B (Σ2)

}
⇒

{
u1 ∈ Bi (A1)
u2 ∈ Bi (A2)
y2 ∈ Bo (Γ) .

(78)

Consequently, we obtain the following corollary of Theorem 6.
Corollary 7: The full series composition of C1 = (A1,Γ1) to

C2 = (A2,Γ2) exists if and only if

Bo (Γ1) ⊂ Bi (A2) . (79)

If the full series composition exists, then it is given by

C1 →f C2 = (A1,Γ2). (80)

We conclude this section with another consequence of Theo-
rem 6, namely, that the series composition satisfies the compo-
sitionality property described in Section V-A. This is shown in
the following proposition.

Proposition 8: If C′1 refines C1, C′2 refines C2, and C1 → C2
exists, then C′1 → C′2 exists and refines C1 → C2.

Proof: For j ∈ {1, 2}, let C′j = (Aj ,
′ Γ′j), Cj = (Aj ,Γj), and

note that, by Theorem 4,

Bi (Aj) ⊂ Bi
(
A′j

)
and Bo

(
Γ′j

) ⊂ Bo (Γj) . (81)

In view of Theorem 6 and the assumption that C1 → C2 exists,
it follows that (62) holds and C1 → C2 is given by (63). Using
(81) with (62) implies that

Π2Bo (Γ
′
1) ⊂ Π2Bo (Γ1) ⊂ I1Bi (A2) ⊂ I1Bi (A

′
2) , (82)

which shows that C′1 → C′2 exists and is given by

C′1 → C′2 = (A′1 × I2A2,
′Π1Γ

′
1 × Γ′2). (83)

Finally, (81) also implies that

Bi (A1 × I2A2) ⊂ Bi (A
′
1 × I2A′2) , (84)

Bo (Π1Γ
′
1 × Γ′2) ⊂ Bo (Π1Γ1 × Γ2) , (85)

hence C′1 → C′2 refines C1 → C2 due to Theorem 4. �
The fact that the series composition satisfies the composi-

tionality property is no coincidence. In fact, it is a key property
of refinement and the series composition, and can be obtained
directly from their definitions, even in the abstract metatheoretic
setting in [12].

C. Feedback Composition

We will now consider the feedback interconnection. The
feedback interconnection that we consider in this article is meant
to capture bidirectional interconnections of stand-alone compo-
nents, i.e., it does not necessarily represent the interconnection
of a plant and its controller. We will begin by defining the
feedback interconnection of two systems and the corresponding
notion of feedback composition of two contracts. Characterizing
the latter will prove to be somewhat more challenging than
characterizing the series composition, but will ultimately lead
to necessary and sufficient conditions for the existence of the
feedback composition of contracts, and an explicit expression
for it when it exists.

Let Σ1 and Σ2 be systems of the form (3) in input–output
form. The feedback interconnection of Σ1 to Σ2 is obtained by

Fig. 6. Feedback interconnection Σ1 ←↩ Σ2.

setting part of the output of Σ1 as the input of Σ2, and the output
of Σ2 as part of the input of Σ1.

Definition 8: Denote the input and output of Σ1 by u1 and
y1, respectively, and the input and output of Σ2 by u2 and
y2, respectively. Suppose that u1 and y1 are partitioned as
u1 = (u11, u12) and y1 = (y11, y12), where u12 has the same
dimension as y2, and y12 has the same dimension as u2. The
feedback interconnection of Σ1 to Σ2, denoted by Σ1 ←↩ Σ2, is
obtained by setting y12 = u2 and y2 = u12, as shown in Fig. 6.
Note that the input and output of Σ1 ←↩ Σ2 are given by u11 and
y11, respectively.

Remark 7: The feedback interconnection Σ1 ←↩ Σ2 can be
obtained from the series interconnection Σ1 → Σ2 by setting
part of the input of Σ1 → Σ2 equal to part of its output. In
particular, without partitioning the input of Σ2, we obtain Σ1 →
Σ2 by setting y12 = u2. Then, the input and output of Σ1 → Σ2

are given by (u11, u12) and (y11, y2), respectively, and setting
y2 = u12 results in Σ1 ←↩ Σ2.

The feedback composition of contracts is defined similarly to
the series composition.

Definition 9: The feedback composition of a contract C1 to a
contract C2, denoted by C1 ←↩ C2, is the smallest contract C that
satisfies the following implication: if Σ1 and Σ2 implement C1
and C2, respectively, Σ1 ←↩ Σ2 is in input–output form, and E
is an environment compatible with C, then:

1) the environment of Σ1 in E ∧ (Σ1←↩Σ2) is compatible
with C1;

2) the environment of Σ2 in E ∧ (Σ1←↩Σ2) is compatible
with C2;

3) Σ1 ←↩ Σ2 implements C1 ←↩ C2.
The definition of the feedback composition C1 ←↩ C2 has

the same aspects as the series composition, namely, C1 ←↩ C2
assumes the least while still ensuring that the components of
Σ1 ←↩ Σ2 operate in interconnection with environments com-
patible with their respective contracts, and guarantees the most
while still ensuring that Σ1 ←↩ Σ2 is an implementation. The
only difference with the series composition is in the requirement
that Σ1 ←↩ Σ2 is in input–output form. This is a natural require-
ment, especially considering that, by definition, only systems
in input–output form can be implementations. This requirement
was not necessary for the series composition because Σ1 → Σ2

is guaranteed to be in input–output form if Σ1 and Σ2 are
in input–output form. In fact, the condition that Σ1 ←↩ Σ2 is
in input–output form can be related to the condition of well-
posedness in feedback interconnections, [35, Sec. 5.2]. In other
words, the requirement that the feedback interconnection of two
systems of the form (3) is in input–output form is equivalent
to the requirement that the feedback interconnection of two
systems of the form (1) is well-posed.
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Fig. 7. System Σf .

We can characterize the feedback composition similarly to
the series composition. Given the interconnection structure of
Σ1 ←↩ Σ2, we find that the conditions in Definition 9 hold if and
only if the following implication holds:

u11 ∈ Bi (E)
(u11, u12, y11, u2) ∈ B (Σ1)

(u2, u12) ∈ B (Σ2)

}
⇒

{
(u11, u12) ∈ Bi (A1)
u2 ∈ Bi (A2)
y11 ∈ Bo (Γ) .

(86)
We can use autonomous implementations and Lemma 3 to

find what conditions A and Γ should satisfy in order for C to
satisfy the implication in Definition 9. Similarly to the series
composition, this will lead to necessary conditions for the satis-
faction of the latter, namely, that

Bi (A) ⊂ I1Bi (A1) , (87)

Bo (Γ1) ⊂ Bo (Γ)×Bi (A2) , (88)

Bo (Γ2) ⊂ I2Bi (A1) , (89)

where we note that (89) is independent and (88) is partially
independent of A and Γ, similarly to (60). However, in contrast
to the series composition, it will take more effort to show that
these conditions are also sufficient. The difficulty here lies in
“closing the loop” of the feedback interconnection. In Remark 7,
we explained that the feedback interconnection Σ1 ←↩ Σ2 can
be obtained from the series interconnection Σ1 → Σ2 by setting
part of the input of Σ1 → Σ2 as part of its output. While we
understand how the behavior of Σ1 → Σ2 relates to that of Σ1

andΣ2, it is not immediately clear how the behavior ofΣ1 ←↩ Σ2

relates to that of Σ1 → Σ2.
To resolve this, we will first consider a simpler scenario, where

only a single system is involved. LetΣbe a system of the form (3)
in input–output form. Suppose that the input u and output y of Σ
are partitioned as u = (u1, u2) and y = (y1, y2). The systemΣf

is obtained from Σ by setting u2 = y2, as shown in Fig. 7. The
input and output ofΣf are given byu1 and (y1, y2), respectively.
Note that, in view of Remark 2, the only difference between
Σ1 ←↩ Σ2 and (Σ1 → Σ2)f is that output of the former is given
by y11, whereas the output of the latter is given by (y11, y2).
Therefore, we can determine how the behavior of Σ1 ←↩ Σ2

relates to that of Σ1 → Σ2 by determining how the behavior of
(Σ1 → Σ2)f relates to that of Σ1 → Σ2.

With this in mind, the following lemma, whose proof can be
found in the Appendix, shows how the behavior of Σf relates to
that of Σ, under a condition related to (89).

Lemma 9: If Σ implements the contract C = (A,Γ), where
Π2Bo(Γ) ⊂ I2Bi(A), and Σf is in input–output form, then Σf

implements the contract Cf = (I1A,Γ).
Using Lemma 9, we can show that (87), (88), and (89) are not

only necessary for C to satisfy the implication in Definition 9,

but also sufficient. This is done in the following lemma, whose
proof can also be found in the Appendix.

Lemma 10: Suppose that C = (A,Γ), C1 = (A1,Γ1), and
C2 = (A2,Γ2). Then, the implication in Definition 7 is satisfied
if and only if (87), (88), and (89) hold.

As already mentioned, the conditions in Lemma 10 are par-
tially independent of C, similarly to the conditions in Lemma 5.
Indeed, (88) holds only if Π2Bo(Γ1) ⊂ Bi(A2), which de-
pends solely on C1 and C2, as does (89). This suggests that
Π2Bo(Γ1) ⊂ Bi(A2) and Bo(Γ2) ⊂ I2Bi(A2) are necessary
conditions for the existence of C1 ←↩ C2. The following theorem,
which is the main result of this section, shows that these condi-
tions are not only necessary but also sufficient for the existence
of C1 ←↩ C2, and provides an explicit expression for it when it
exists.

Theorem 11: The feedback composition of C1 = (A1,Γ1) to
C2 = (A2,Γ2) exists if and only if

Π2Bo (Γ1) ⊂ Bi (A2) and Bo (Γ2) ⊂ I2Bi (A1) . (90)

If the feedback composition exists, then it is given by

C1 ←↩ C2 = (I1A1,Π1Γ1). (91)

Proof: We begin by proving necessity. Suppose that the feed-
back composition of C1 to C2 exists. Then, there exists a contract
C = (A,Γ) that satisfies the implication in Definition 9. From
Lemma 10, it follows that (88) and (89) hold, which implies (90)
holds as well.

We proceed by proving sufficiency. Suppose that (90) holds.
This immediately implies that (89) holds as well. We will show
that (87) and (88) hold if and only if

Bi (A) ⊂ Bi (I1A1) , (92)

Bo (Π1Γ1) ⊂ Bo (Γ) . (93)

To this end, note that (87) is equivalent to (92) by definition
of I1A1. On the other hand, we have that (88) holds only if
Π1Bo(Γ1) ⊂ Bo(Γ), which is equivalent to (93) by defini-
tion of Π1Γ1. For the converse, suppose that (93) holds, and
let (y11, y12) ∈ Bo(Γ1). It follows that y11 ∈ Π1Bo(Γ1) and
y12 ∈ Π2Bo(Γ1); hence, y11 ∈ Bo(Γ) and y12 ∈ Bi(A2) due
to (93) and (90), respectively. In other words, we have that
(y11, y12) ∈ Bo(Γ)×Bi(A2), which shows that (88) holds.

Now, we have shown that (87), (88), and (89) hold if and
only if (92) and (93) hold. From Lemma 10, we know that
(87), (88), and (89) hold if and only if the contract C = (A,Γ)
satisfies the implication in Definition 9. On the other hand,
due to Theorem 4, (92) and (93) hold if and only if C refines
C1 ←↩ C2, with C1 ←↩ C2, as defined in (91). This means that C
satisfies the implication in Definition 9 if and only if it refines
C1 ←↩ C2; hence, C1 ←↩ C2 is the smallest contract that satisfies
the implication in Definition 9, that is, C1 ←↩ C2 is indeed the
feedback composition of C1 to C2. �

Remark 8: In the feedback interconnection Σ1 ←↩ Σ2, the
component Σ2 does not have external inputs or outputs. This
allows us to focus on the main ideas in deriving Theorem 11
without being overwhelmed by technical details, but it is not
essential. In fact, it might be more appropriate to define the
feedback interconnection Σ1 ←↩ Σ2, as shown in Fig. 8, with
input and output given by (u11, u22) and (y11, y22), respectively.
In such a case, the feedback composition of C1 = (A1,Γ1) to
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Fig. 8. General feedback interconnection Σ1 ←↩ Σ2.

C2 = (A2,Γ2) exists if and only if

Π2Bo (Γ1) ⊂ I1Bi (A2) and Π1Bo (Γ2) ⊂ I2Bi (A1) ,
(94)

and if the feedback composition exists, then it is given by

C1 ←↩ C2 = (I1A1 × I2A2,Π1Γ1 ×Π2Γ2). (95)

The proof of this result follows the same reasoning as the proof of
Theorem 11. In particular, necessity is proven using autonomous
implementations, and sufficiency is proven by utilizing Lemma 9
after noting that the feedback interconnectionΣ1 ←↩ Σ2 can still
be obtained from the series interconnection Σ1 → Σ2, albeit in
a more convoluted way than the one described in Remark 7.

Like the condition in Theorem 6, the conditions in Theorem 11
are quite intuitive. Nevertheless, showing that they are both nec-
essary and sufficient is not straightforward. As in Theorem 6, the
proof of necessity in Theorem 11 requires the use of autonomous
implementations, which is only possible because the guarantees
specify an output behavior instead of an input–output relation.
On the other hand, the proof of sufficiency is hindered by the
fact that the feedback interconnection contains a loop, and it is
not immediately clear how “closing the loop” impacts system
behavior.

As the conditions in Theorem 11 are similar to the condition
in Theorem 6, Example 4 is already a good illustration of how
Theorem 11 can be used in practice, hence we will not provide
an additional example. Instead, we conclude this section by
showing that, like the series composition, the feedback com-
position satisfies the compositionality property described in the
last paragraph of Section V-A.

Proposition 12: If C′1 refines C1, C′2 refines C2, and C1 ←↩ C2
exists, then C′1 ←↩ C′2 exists and refines C1 ←↩ C2.

Proof: The proof follows the same reasoning as the proof of
Proposition 8. For j ∈ {1, 2}, let C′j = (Aj ,

′ Γ′j), Cj = (Aj ,Γj),
and note that

Bi (Aj) ⊂ Bi
(
A′j

)
and Bo

(
Γ′j

) ⊂ Bo (Γj) . (96)

In view of Theorem 11 and the assumption that C1 ←↩ C2 exists,
it follows that (90) holds and C1 ←↩ C2 is given by (91). Using
(96) with (90) implies that

Π2Bo (Γ
′
1) ⊂ Π2Bo (Γ1) ⊂ Bi (A2) ⊂ Bi (A

′
2) , (97)

Bo (Γ
′
2) ⊂ Bo (Γ2) ⊂ I2Bi (A1) ⊂ I2Bi (A

′
1) (98)

which shows that C′1 ←↩ C′2 exists and is given by

C′1 ←↩ C′2 = (I1A1,
′Π1Γ

′
1). (99)

Finally, (96) also implies that

Bi (I1A1) ⊂ Bi (I1A′1) , Bo (Π1Γ
′
1) ⊂ Bo (Π1Γ1) , (100)

hence C′1 ←↩ C′2 refines C1 ←↩ C2 due to Theorem 4. �

VI. CONCLUSION

We presented assume–guarantee contracts for linear dynam-
ical systems with inputs and outputs. An assume–guarantee
contract serves as a specification on the external behavior of a
system through two aspects. First, the assumptions describe the
class of compatible environments, i.e., the environments that the
system is expected to operate in. Second, the guarantees describe
the desired output behavior of the system when interconnected
with a compatible environment.

We found necessary and sufficient conditions for contract
implementation in the form of a single behavioral inclusion
involving only the assumptions and guarantees of the contract.
On the other hand, we defined a notion of contract refinement
that allows us to compare two contracts, and we characterized it
as a pair of behavioral inclusions relating the assumptions and
guarantees of the two contracts.

Finally, we defined two notions of contract composition that
allow us to reason about two types of interconnections: series
and feedback. In both cases, the composition of two contracts is
such that any interconnection of implementations is an imple-
mentation of the composition, and when this interconnection is
interconnected with a compatible environment of the composi-
tion, each component operates in interconnection with an envi-
ronment compatible with its contract. We found necessary and
sufficient conditions for the existence of each type of contract
composition, and provided an explicit expression for it when
it exists. Furthermore, we showed that contract composition
satisfies a desirable compositionality property related to contract
refinement.

We suggest two directions for future work on contracts. First,
the theory presented in this article can be expanded by solving
relevant control problems, e.g., designing plant controllers that
achieve contract implementation. Second, the theory presented
in this article can be developed for a more general type of
contract, e.g., one where the guarantees specify not only an
output behavior but a relationship between inputs and outputs,
see [36] for the first step in this direction.

APPENDIX

A. Proof of Lemma 5

Recall that the implication in Definition 7 is equivalent to

(u1, u22) ∈ Bi (E)
(u1, y11, u21) ∈ B (Σ1)
(u21, u22, y2) ∈ B (Σ2)

⎫⎬
⎭⇒

⎧⎨
⎩
u1 ∈ Bi (A1)
(u21, u22) ∈ Bi (A2)
(y11, y2) ∈ Bo (Γ) .

(101)

Lemma 5 states that the inclusions

Bi (A) ⊂ Bi (A1)× I2Bi (A2) , (102)

Bo (Γ1) ⊂ I1Bo (Γ)× I1Bi (A2) , (103)

Bo (Γ2) ⊂ I2Bo (Γ) , (104)

are necessary and sufficient for the implication in Definition 7
to be satisfied.

Proof of Lemma 5: We begin by proving the necessity of (102),
(103), and (104). Suppose that the implication in Definition 7 is
satisfied. Then, (101) holds for all environments E compatible
with C, and all implementations Σ1 and Σ2 of C1 and C2,
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respectively. Note that A is an environment compatible with
C, and the systems

Σ1 : y = 0 and Σ2 : y = 0, (105)

implement C1 and C2, respectively. These implementations are
such that (u1, 0, 0) ∈ B(Σ1) and (0, u22, 0) ∈ B(Σ2) for all
(u1, u22) ∈ Bi(A). In view of (101), this implies that u1 ∈
Bi(A1) and (0, u22) ∈ Bi(A2) for all (u1, u22) ∈ Bi(A), which
shows that (102) holds.

Next, let Σ1 be autonomous with Bo(Σ1) ⊂ Bo(Γ1), and let
Σ2 be given as in (105). It is easily seen that Σ1 and Σ2 imple-
ment C1 and C2, respectively. Furthermore, for all (y11, u21) ∈
Bo(Σ1), we have (0, 0) ∈ Bi(A), (0, y11, u21) ∈ B(Σ1), and
(u21, 0, 0) ∈ B(Σ2), hence (u21, 0) ∈ Bi(A2) and (y11, 0) ∈
Bo(Γ) due to (101). In other words, we have that Bo(Σ1) ⊂
Bo(Γ1) implies Bo(Σ1) ⊂ I1Bi(A2)× I1Bo(Γ) for all au-
tonomous Σ1, thus (103) holds due to Lemma 3.

Finally, let Σ1 be given as in (105), and let Σ2 be au-
tonomous with Bo(Σ2) ⊂ Bo(Γ2). Again, it is easily seen that
Σ1 and Σ2 implement C1 and C2, respectively. Furthermore, for
all y2 ∈ Bo(Σ2), we have (0, 0) ∈ Bi(A), (0, 0, 0) ∈ B(Σ1),
and (0, 0, y2) ∈ B(Σ2), hence (0, y2) ∈ Bo(Γ) due to (101).
Therefore, Bo(Σ2) ⊂ Bo(Γ2) implies Bo(Σ2) ⊂ I2Bo(Γ) for
all autonomous Σ2, hence (104) holds due to Lemma 3. This
concludes the proof of necessity.

We proceed by proving sufficiency. Suppose that (102),
(103), and (104) hold. Let E be an environment compati-
ble with C, and let Σ1 and Σ2 be implementations of C1
and C2, respectively. Our goal is to show that (101) holds.
To this end, let (u1, u22) ∈ Bi(E), (u1, y11, u21) ∈ B(Σ1),
and (u21, u22, y2) ∈ B(Σ2). Since E is compatible with C,
it follows that Bi(E) ⊂ Bi(A) and (u1, u22) ∈ Bi(A). Then,
u1 ∈ Bi(A1) and u22 ∈ I2Bi(A2) due to (102). From the
former, we can conclude that (u1, y11, u21) ∈ B(A1 ∧ Σ1),
hence (y11, u21) ∈ Bo(Γ1) because Σ1 implements C1, that
is, Bo(A1 ∧ Σ1) ⊂ Bo(Γ1). Then, (103) implies that y11 ∈
I1Bo(Γ) and u21 ∈ I1Bi(A2). The latter, together with u22 ∈
I2Bi(A2), gives (u21, u22) ∈ Bi(A2). Summarizing, we have
shown u1 ∈ Bi(A1) and (u21, u22) ∈ Bi(A2), which are the
first two desired results in the implication (101).

We still need to show that (y11, y2) ∈ Bo(Γ). Since
(u21, u22) ∈ Bi(A2) and (u21, u22, y2) ∈ B(Σ2), it follows
that (u21, u22, y2) ∈ B(A2 ∧ Σ2), hence y2 ∈ Bo(Γ2) because
Σ2 implements C2. Then, y2 ∈ I2Bo(Γ) due to (104), thus
(y11, y2) ∈ Bo(Γ) because y11 ∈ I1Bo(Γ). With this, we have
shown that (101) holds and, thus, the implication in Definition 7
is satisfied. �

B. Proof of Lemma 9

Before giving the proof of Lemma 9, we need the following
two technical results.

Lemma 13: If the polynomial matrix B(s) has full row rank,
then there exists an invertible rational matrix T (s) such that

T (s)B(s) = B∞ +Bsp(s), where B∞ is a real matrix that has
full row rank, and Bsp(s) is a strictly proper rational matrix.

Proof: To find the desired T (s), we will first transform B(s)
to row-reduced form. Let ki be the degree of the polynomial
with the highest degree on the ith row of B(s), and let r be the
number of rows of B(s). Then, we can write

B(s) = D(s)Bh +Bl(s), (106)

where Bh is a real matrix

D(s) = diag(sk1 , sk2 , . . . , skr ), (107)

and Bl(s) is a polynomial matrix such that D(s)−1Bl(s) is
strictly proper. We say that B(s) is row-reduced if Bh has full
row rank, see [37, Sec. 6.3] or [38, Sec. 2.5] for a detailed
treatment. It is known that any full row rank polynomial matrix
can be transformed to row-reduced form by a sequence of
elementary row operations. In other words, as B(s) has full row
rank, there exists a unimodular matrix U(s) such that U(s)B(s)
is in row-reduced form. Therefore, if ki now denotes the degree
of the polynomial with the highest degree on the ith row of
U(s)B(s), then we can write

U(s)B(s) = D(s)B∞ +Bl(s), (108)

where B∞ is a real matrix that has full row rank, D(s) is
defined as in (107), and D(s)−1Bl(s) is strictly proper. Then,
T (s) = D(s)−1U(s) is the desired invertible rational matrix,
and Bsp(s) = D(s)−1Bl(s). �

Lemma 14: If A(s) is a polynomial matrix, B(s) is a polyno-
mial matrix that has full row rank, and C(s) is a proper rational
matrix such that

A(s)B(s) = B(s)C(s), (109)

then detA(s) is constant.
Proof: Since B(s) has full row rank, it follows that

B(s)B(s)� is invertible and

A(s) = B(s)C(s)B(s)�
(
B(s)B(s)�

)−1
, (110)

which implies that

detA(s) =
det

(
B(s)C(s)B(s)�

)
det (B(s)B(s)�)

. (111)

Due to Lemma 13, there exists an invertible rational matrix T (s)
such that T (s)B(s) = B∞ +Bsp(s), where B∞ has full row
rank and Bsp(s) is a strictly proper rational matrix. Let B̃(s) =
T (s)B(s) and note that

detA(s) =
det

(
B̃(s)C(s)B̃(s)�

)
det

(
B̃(s)B̃(s)�

) . (112)

Since C(s) is proper, there exists a real matrix C∞ such that

lim
s→∞C(s) = C∞. (113)

This implies that

lim
s→∞detA(s) =

det
(
B∞C∞B�∞

)
det (B∞B�∞)

(114)
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because B∞ has full row rank and det(B∞B�∞) 	= 0. Then,
detA(s) is a polynomial that converges as s→∞, which is
possible only if detA(s) is constant. �

We are now ready to prove Lemma 9.
Proof of Lemma 9: Let Σ be given by (3), where we partition

Q(s) =
[
Q1(s) Q2(s)

]
andP (s) =

[
P1(s) P2(s)

]
accord-

ing to the partition of u and y, respectively. Then,

Σf :
[
P1

(
d
dt

)
P2

(
d
dt

)−Q2

(
d
dt

)]
y = Q1

(
d
dt

)
u, (115)

where the polynomial matrix

Pf (s) =
[
P1(s) P2(s)−Q2(s)

]
(116)

is invertible because Σf is assumed to be in input–output form.
Let A and Γ be given by (9) and (10), where we par-

tition A(s) =
[
A1(s) A2(s)

]
and G(s) =

[
G1(s) G2(s)

]
according to the partition ofu and y, respectively. By Theorem 2,
Σf implements Cf if and only if

Bo (I1A ∧ Σf ) ⊂ Bo (Γ) , (117)

which, by Remark 2, holds if and only if there exist polynomial
matrices N1(s) and N2(s) such that

[
G(s) 0

]
=

[
N1(s) N2(s)

] [Pf (s) −Q1(s)

0 −A1(s)

]
. (118)

Therefore, we can focus on finding such N1(s) and N2(s).
To this end, we have that Bo(A ∧ Σ) ⊂ Bo(Γ) because Σ

implements C, hence, by Remark 2, there exist polynomial
matrices M1(s) and M2(s) such that

[
G(s) 0

]
=

[
M1(s) M2(s)

] [P (s) −Q(s)

0 −A(s)

]
. (119)

Then, G(s) = M1(s)P (s) and M2(s)A2(s) = −M1(s)Q2(s),
which implies that

G(s) +M2(s)
[
0 A2(s)

]
= M1(s)Pf (s). (120)

In view of Remark 6, Π2Bo(Γ) ⊂ I2Bi(A) if and only if there
exists a polynomial matrix L(s) such that[

0 A2(s)
]
= L(s)G(s)

which we can substitute in (120) to obtain

(I +M2(s)L(s))G(s) = G(s)P (s)−1Pf (s), (121)

where we used that M1(s) = G(s)P (s)−1 P (s) is invertible
because Σ is assumed to be in input–output form. Note that

P (s)−1Pf (s) = I − P (s)−1
[
0 Q2(s)

]
is a proper rational matrix because Σ is in input–output form,
that is, P (s)−1Q(s) is proper. Furthermore, due to Remark 1,
we can assume that G(s) has full row rank. Then, Lemma 14
and (121) imply that det I +M2(s)L(s) is constant. But we
know thatP (s)−1Pf (s) is invertible becausePf (s) is invertible;
hence, I +M2(s)L(s) is invertible because G(s) has full row
rank and (121) holds. Therefore, I +M2(s)L(s) is an invertible

polynomial matrix with constant determinant, which implies that
I +M2(s)L(s) is unimodular.

As I +M2(s)L(s) is unimodular, from (121) it follows that

N1(s) = (I +M2(s)L(s))
−1M1(s) (122)

is a polynomial matrix such that G(s) = N1(s)Pf (s). Note that
M1(s)Q1(s) = −M2(s)A1(s) due to (119), hence

N1(s)Q1(s) = −(I +M2(s)L(s))
−1M2(s)A1(s)

and the polynomial matrix

N2(s) = (I −M2(s)L(s))
−1M2(s) (123)

is such that N1(s)Q1(s) +N2(s)A1(s) = 0. Then, N1(s) and
N2(s) as defined in (122) and (123) are polynomial matrices
satisfying (118), which shows that (117) holds, as desired. �

C. Proof of Lemma 10

Recall that the implication in Definition 9 is equivalent to

u11 ∈ Bi (E)
(u11, u12, y11, u2) ∈ B (Σ1)

(u2, u12) ∈ B (Σ2)

⎫⎬
⎭⇒

⎧⎨
⎩
(u11, u12) ∈ Bi (A1)
u2 ∈ Bi (A2)
y11 ∈ Bo (Γ) .

(124)
Lemma 10 states the inclusions

Bi (A) ⊂ I1Bi (A1) , (125)

Bo (Γ1) ⊂ Bo (Γ)×Bi (A2) , (126)

Bo (Γ2) ⊂ I2Bi (A1) , (127)

are necessary and sufficient for the implication in Definition 9
to be satisfied.

Proof of Lemma 10: We begin by proving the necessity of
(125), (126), and (127), following a similar approach as in the
proof of Lemma 5. Suppose that the implication in Definition 9
is satisfied. Then, (124) holds for all environments E compatible
with C, and implementations Σ1 and Σ2 of C1 and C2, respec-
tively. Note that A is an environment compatible with C, and the
systems

Σ1 : y = 0 and Σ2 : y = 0, (128)

implement C1 and C2, respectively. Also, for all u11 ∈ Bi(A),
we have (u11, 0, 0, 0) ∈ B(Σ1) and (0, 0) ∈ B(Σ2), hence
(u11, 0) ∈ Bi(A1) due to (124). This shows that (125) holds.

Next, let Σ1 be autonomous with Bo(Σ1) ⊂ Bo(Γ1), and let
Σ2 be given as in (128). Then, Σ1 and Σ2 implement C1 and
C2, respectively, and for all (y11, u2) ∈ Bo(Σ1), we have 0 ∈
Bi(A), (0, 0, y11, u2) ∈ B(Σ1) and (u2, 0) ∈ B(Σ2), hence
u2 ∈ Bi(A2) and y11 ∈ Bo(Γ) due to (124). Consequently,
Bo(Σ1) ⊂ Bo(Γ1) implies Bo(Σ1) ⊂ Bo(Γ)×Bi(A2) for all
autonomous Σ1, hence (126) holds due to Lemma 3.

Finally, let Σ1 be given as in (128), and let Σ2 be autonomous
withBo(Σ2) ⊂ Bo(Γ2). Note thatΣ1 andΣ2 implement C1 and
C2 respectively. Moreover, for all u12 ∈ Bo(Σ2), we have 0 ∈
Bi(A), (0, u12, 0, 0) ∈ B(Σ1), and (0, u12) ∈ B(Σ2), hence
(0, u12) ∈ Bi(A1) due to (124). Then, Bo(Σ2) ⊂ Bo(Γ2) im-
plies Bo(Σ2) ⊂ I2Bi(A1) for all autonomous Σ1, hence (127)
holds due to Lemma 3.
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We proceed by proving sufficiency. Suppose that (125), (126),
and (127) hold. Let E be compatible with C, and letΣ1 andΣ2 be
implementations of C1 and C2, respectively, such that Σ1 ←↩ Σ2

is in input–output form. We will make use of the relationship
betweenΣ1 ←↩ Σ2 andΣ1 → Σ2 described in Remark 7, as well
as Lemma 9. Recall that the only difference between Σ1 ←↩ Σ2

and (Σ1 → Σ2)f is that output of the former is given by y11
while the output of the latter is given by (y11, y2). Given that their
inputs and dynamics are the same, and Σ1 ←↩ Σ2 is assumed to
be in input–output form, this implies that (Σ1 → Σ2)f is also
in input–output form.

Furthermore, (126) implies thatΠ2Bo(Γ1) ⊂ Bi(A2), hence,
due to Theorem 6, C1 → C2 exists and is given by

C1 → C2 = (A1,Π1Γ1 × Γ2). (129)

Furthermore, Σ1 → Σ2 implements C1 → C2, and

Π2Bo (Π1Γ1 × Γ2) = Bo (Γ2) ⊂ I2Bi (A1) (130)

because of (127). Using Lemma 9, we find that (Σ1 → Σ2)f
implements the contract

(C1 → C2)f = (I1A1,Π1Γ1 × Γ2), (131)

hence, due to Theorem 2, we have that

Bo (I1A1 × (Σ1 → Σ2)f ) ⊂ Bo (Π1Γ1 × Γ2) . (132)

Now, let u11 ∈ Bi(E), (u11, u12, y11, u2) ∈ B(Σ1) and
(u2, u12) ∈ B(Σ2). Our goal is to show that (124) holds. To
this end, we have that Bi(E) ⊂ Bi(A) because E is compatible
with C. Then, u11 ∈ Bi(A), which yields u11 ∈ I1Bi(A1) due
to (125). On the other hand, we have that (u11, u12, y11, u12) ∈
B(Σ1 → Σ2) and thus (u11, y11, u12) ∈ B((Σ1 → Σ2)f ). In
view of (132), this implies that (y11, u12) ∈ Bo(Π1Γ1 × Γ2),
and, in particular, that y11 ∈ Π1Bo(Γ1) and u12 ∈ Bo(Γ2).
Then, y11 ∈ Bo(Γ) due to (126), and u12 ∈ I2Bi(A1) due
to (127). Given that u11 ∈ I1Bi(A1) and u12 ∈ I2Bi(A1),
we have that (u11, 0) ∈ Bi(A1) and (0, u12) ∈ Bi(A1), hence
(u11, u12) ∈ Bi(A1). We still need to show that u2 ∈ Bi(A2)
before we can conclude that (124) holds. To do this, we note
that (y11, u2) ∈ Bo(A1 ∧ Σ1) because (u11, u12) ∈ Bi(A1)
and (u11, u12, y11, u2) ∈ B(Σ1). But Bo(A1 ∧ Σ1) ⊂ Bo(Γ1)
because Σ1 implements C1, hence (y11, u2) ∈ Bo(Γ1) and thus
u2 ∈ Bi(A2) due to (126). With this, we have shown that
(u11, u12) ∈ Bi(A1), u2 ∈ Bi(A2) and y11 ∈ Bo(Γ), which
shows that (124) holds and the implication in Definition 9 is
satisfied. �
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