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Abstract: Quality inspection, typically performed manually by workers in the past, is now
rapidly switching to automated solutions, using artificial intelligence (AI)-driven methods. This
elevates the job function of the quality inspection team from the physical inspection tasks
to tasks related to managing workflows in synergy with AI agents, for example, interpreting
inspection outcomes or labeling inspection image data for the AI models. In this context, we
have studied how defect inspection can be enhanced, providing defect hints to the operator to
ease defect identification. Furthermore, we developed machine learning models to recognize and
predict operators’ fatigue. By doing so, we can proactively take mitigation actions to enhance the
workers’ well-being and ensure the highest defect inspection quality standards. We consider such
processes to empower human and non-human actors in manufacturing and the sociotechnical
production system. The paper first outlines the conceptual approach for integrating the operator
in the AI-driven quality inspection process while implementing a fatigue monitoring system to
enhance work conditions. Furthermore, it describes how this was implemented by leveraging
data and experiments performed for a real-world manufacturing use case.

Keywords: manufacturing plant control; intelligent manufacturing; human-centric
manufacturing; fatigue monitoring

1. INTRODUCTION

Human-centricity is one of the core values of the evolv-
ing fifth industrial revolution. New approaches must be
devised to ensure that AI-driven solutions developed for
manufacturing settings serve human workers and opera-
tors better, enhancing their work conditions, while also
contributing to operational and enterprise goals. Looking
at artificial intelligence (AI) - enabled manufacturing from
such a viewpoint, this paper focuses on a key pattern in the
emerging transformation of jobs transitioning to functions
that involve further cognitive involvement from human
workers and operators instead of largely physical routine

⋆ This work was supported by the Slovenian Research Agency and
the European Union’s Horizon 2020 program project STAR under
grant agreement number H2020-956573.

activities. A typical example is in manufacturing quality
inspection. This was a common manual activity under-
taken by workers in the quality control teams but is now
served by a range of automated solutions, starting from
simple computer vision-based solutions. The job profile
of workers in such teams increasingly involves sampling
outcomes of the automated visual inspection to confirm
the automated classification of parts or larger compo-
nents. Similarly, it involves curating inspection data, such
as inspection images, and labeling them for training a
machine learning solution. This requires a cognitive shift
in the workers’ activities, resulting in higher added-value
outcomes. Such outcomes can hardly be achieved by the
automated solution alone, without human involvement.

Within this context, the present paper offers a novel view
of the human in the loop of AI-driven visual quality
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Dunja Mladenić ∗∗ Christos Emmanouilidis †
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inspection, with interventions targeting the empowerment
of both the human and the AI agent to jointly perform the
intended activities in ways that would have been hard for
either type of actor alone to achieve. The empowerment
of the AI actor is achieved through the integration of
the human cognitive capabilities in the AI loop, in the
form of labeling instances of data and engaging with
the AI process through an Active Learning mechanism.
The empowerment of the human actors is twofold: first,
the AI-driven automated visual inspection system delivers
not only inspection outcomes but offers also hints and
explanations as to how this outcome was derived; second,
it supports the operator through a fatigue monitoring
system, thus enabling more optimal human engagement
and triggering fatigue prevention or mitigation actions.
The remainder of the paper is structured as follows. The
next section outlines related work on automated visual
quality inspection, human fatigue monitoring, and human
in the AI loop. Section 3 presents the use case that offers
the industrial context for the presented research. The
active learning methodology and experiment design are
provided in Section 4. Results are presented and analyzed
in Section 5. A brief discussion and the main conclusions
drawn from the research are provided in Section 6.

2. RELATED WORK

A brief overview of literature related to (a) visual quality
inspection; (b) humans in the AI loop; and (c) fatigue
monitoring is provided here. Visual quality inspection
is the main manufacturing operation application focus
and serves as a research baseline. The involvement of
the human in the AI loop is aimed to achieve dual
empowerment: of the worker; and of the AI approach.
Therefore key concepts about such involvement are part of
the methodology baseline. Finally, human workers, either
performing manual inspections or engaged in interacting
with AI for achieving a joint quality inspection outcome,
are subject to fatigue and relevant monitoring needs to be
considered.

2.1 Visual quality inspection

Quality inspection on engineered products may involve
simple visual features, such as colors, as well as more
complex ones, needed to detect defects, cracks, orientation
deficiencies, or other anomalies (Rajan et al. (2020)).
Quality assessment based on surface visual inspection re-
lates to products of varying shapes and sizes, and there-
fore the complexity of the task varies as well (Cao et al.
(2018)) (Tsai and Jen (2021)) (Yun et al. (2020)). Pro-
duction process quality monitoring may also involve con-
siderable complexity, especially in assembly operations.
(Frustaci et al. (2022)). Moreover, quality inspection is
particularly relevant also for remanufacturing production
processes, involving the assessment of individual parts
(Saiz et al. (2021)). Whether quality inspection applies to
the beginning of life (production), middle of life (operation
and maintenance), or end of life (such as in remanufac-
turing), a commonly encountered problem is that of data
sparsity: rarely the available sample images are sufficient
for training, a problem which can partly be handled by
data augmentation (Yun et al. (2020)). Whether it is in

the management and curation of image data exemplars,
the tuning of algorithmic parameters or the labeling of
instances for training, the role of the human in such pro-
cesses is undeniable and yet not sufficiently appreciated.

2.2 Human in the AI Loop

When considering the joint involvement of human and
AI actors in collaborative settings, the issue of trust
attains paramount importance. Trust in itself depends
on (a) AI offering an explanation about its outcomes,
related to the concept of explainable AI; (b) humans
exercising their own judgment regarding domain-specific
decision-making circumstances, related to the concept of
interpretable AI; (c) AI outcomes to achieve to narrow
the distance between decisions and actions, related to the
concept of actionable AI. All these require a careful design
for involving the human in the AI loop (Emmanouilidis
et al. (2019)) (Lyytinen et al. (2020)).

2.3 Human fatigue monitoring

Research on fatigue estimation produced several contribu-
tions in the last decade, with models to estimate human
fatigue while doing different kinds of activities, including
working, rehabilitation, and sports activities. In the re-
habilitation and sport domains, monitored activities are
usually predefined, with a desired level of fatigue demand,
with involved subjects just repeating an exercise (e.g.,
sit-to-stand exercise (Aguirre et al. (2021)), or shoulders
flexion and abduction, and elbow extension (Papakostas
et al. (2019))). When coming to work activities, the same
activity might be executed in different ways by each oper-
ator, possibly showing different fatigue demands. Studies
have been conducted to estimate the physical or mental
fatigue of operators while monitoring their job routine,
including driving and piloting (Hooda et al. (2022)), pal-
letizing and transporting of weighted containers (Maman
et al. (2020)), supply carrying (Lambay et al. (2021)),
construction (masonry) (Zhang et al. (2019)). Zhang et al.
(2014) monitored operators while just walking (involving
firefighters and construction workers).

Fatigue estimation is realized in different ways, including
biological features, physical features, interactions monitor-
ing, and hybrid approaches (Sikander and Anwar (2018)).
While there are many examples of driver fatigue estima-
tion, few can be identified in the manufacturing context.
A physiological feature like eye blinking has been applied
for fatigue estimation during the execution of push and
pull tasks (Biondi et al. (2023)), while biological charac-
teristics, such as heart rate variability and galvanic skin
conductance, have been used to estimate fatigue in the ex-
ecution of human-robot collaboration task (Bettoni et al.
(2020)).

The majority of considered contributions investigated
physical fatigue (Aguirre et al. (2021); Hooda et al. (2022);
Maman et al. (2020); Papakostas et al. (2019); Zhang et al.
(2014, 2019); Lambay et al. (2021)), sometimes focusing
on specific muscles (Papakostas et al. (2019)). Recently,
mental fatigue is getting more attention (Hooda et al.
(2022)), even combined with physical fatigue evaluation
(Ramos et al. (2020)). Specifically, mental fatigue can be
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inspection, with interventions targeting the empowerment
of both the human and the AI agent to jointly perform the
intended activities in ways that would have been hard for
either type of actor alone to achieve. The empowerment
of the AI actor is achieved through the integration of
the human cognitive capabilities in the AI loop, in the
form of labeling instances of data and engaging with
the AI process through an Active Learning mechanism.
The empowerment of the human actors is twofold: first,
the AI-driven automated visual inspection system delivers
not only inspection outcomes but offers also hints and
explanations as to how this outcome was derived; second,
it supports the operator through a fatigue monitoring
system, thus enabling more optimal human engagement
and triggering fatigue prevention or mitigation actions.
The remainder of the paper is structured as follows. The
next section outlines related work on automated visual
quality inspection, human fatigue monitoring, and human
in the AI loop. Section 3 presents the use case that offers
the industrial context for the presented research. The
active learning methodology and experiment design are
provided in Section 4. Results are presented and analyzed
in Section 5. A brief discussion and the main conclusions
drawn from the research are provided in Section 6.

2. RELATED WORK

A brief overview of literature related to (a) visual quality
inspection; (b) humans in the AI loop; and (c) fatigue
monitoring is provided here. Visual quality inspection
is the main manufacturing operation application focus
and serves as a research baseline. The involvement of
the human in the AI loop is aimed to achieve dual
empowerment: of the worker; and of the AI approach.
Therefore key concepts about such involvement are part of
the methodology baseline. Finally, human workers, either
performing manual inspections or engaged in interacting
with AI for achieving a joint quality inspection outcome,
are subject to fatigue and relevant monitoring needs to be
considered.

2.1 Visual quality inspection

Quality inspection on engineered products may involve
simple visual features, such as colors, as well as more
complex ones, needed to detect defects, cracks, orientation
deficiencies, or other anomalies (Rajan et al. (2020)).
Quality assessment based on surface visual inspection re-
lates to products of varying shapes and sizes, and there-
fore the complexity of the task varies as well (Cao et al.
(2018)) (Tsai and Jen (2021)) (Yun et al. (2020)). Pro-
duction process quality monitoring may also involve con-
siderable complexity, especially in assembly operations.
(Frustaci et al. (2022)). Moreover, quality inspection is
particularly relevant also for remanufacturing production
processes, involving the assessment of individual parts
(Saiz et al. (2021)). Whether quality inspection applies to
the beginning of life (production), middle of life (operation
and maintenance), or end of life (such as in remanufac-
turing), a commonly encountered problem is that of data
sparsity: rarely the available sample images are sufficient
for training, a problem which can partly be handled by
data augmentation (Yun et al. (2020)). Whether it is in

the management and curation of image data exemplars,
the tuning of algorithmic parameters or the labeling of
instances for training, the role of the human in such pro-
cesses is undeniable and yet not sufficiently appreciated.

2.2 Human in the AI Loop

When considering the joint involvement of human and
AI actors in collaborative settings, the issue of trust
attains paramount importance. Trust in itself depends
on (a) AI offering an explanation about its outcomes,
related to the concept of explainable AI; (b) humans
exercising their own judgment regarding domain-specific
decision-making circumstances, related to the concept of
interpretable AI; (c) AI outcomes to achieve to narrow
the distance between decisions and actions, related to the
concept of actionable AI. All these require a careful design
for involving the human in the AI loop (Emmanouilidis
et al. (2019)) (Lyytinen et al. (2020)).

2.3 Human fatigue monitoring

Research on fatigue estimation produced several contribu-
tions in the last decade, with models to estimate human
fatigue while doing different kinds of activities, including
working, rehabilitation, and sports activities. In the re-
habilitation and sport domains, monitored activities are
usually predefined, with a desired level of fatigue demand,
with involved subjects just repeating an exercise (e.g.,
sit-to-stand exercise (Aguirre et al. (2021)), or shoulders
flexion and abduction, and elbow extension (Papakostas
et al. (2019))). When coming to work activities, the same
activity might be executed in different ways by each oper-
ator, possibly showing different fatigue demands. Studies
have been conducted to estimate the physical or mental
fatigue of operators while monitoring their job routine,
including driving and piloting (Hooda et al. (2022)), pal-
letizing and transporting of weighted containers (Maman
et al. (2020)), supply carrying (Lambay et al. (2021)),
construction (masonry) (Zhang et al. (2019)). Zhang et al.
(2014) monitored operators while just walking (involving
firefighters and construction workers).

Fatigue estimation is realized in different ways, including
biological features, physical features, interactions monitor-
ing, and hybrid approaches (Sikander and Anwar (2018)).
While there are many examples of driver fatigue estima-
tion, few can be identified in the manufacturing context.
A physiological feature like eye blinking has been applied
for fatigue estimation during the execution of push and
pull tasks (Biondi et al. (2023)), while biological charac-
teristics, such as heart rate variability and galvanic skin
conductance, have been used to estimate fatigue in the ex-
ecution of human-robot collaboration task (Bettoni et al.
(2020)).

The majority of considered contributions investigated
physical fatigue (Aguirre et al. (2021); Hooda et al. (2022);
Maman et al. (2020); Papakostas et al. (2019); Zhang et al.
(2014, 2019); Lambay et al. (2021)), sometimes focusing
on specific muscles (Papakostas et al. (2019)). Recently,
mental fatigue is getting more attention (Hooda et al.
(2022)), even combined with physical fatigue evaluation
(Ramos et al. (2020)). Specifically, mental fatigue can be

classified into active (mental depletion caused by active
engagement in a task), passive (experienced because of
monotonous tasks, causing distractions), and sleep-related
fatigue (Sikander and Anwar (2019)).

However, a commonly agreed definition of fatigue is lacking
in the literature, with fatigue being considered both a bi-
nary (detection problem) and numerical property (predic-
tion problem). The binary definition is the most adopted
one, but a few studies tried to predict fatigue on a three-
level scale (Aguirre et al. (2021)). Approaches to predict
fatigue in larger ranges (e.g., the full Borg CR-10 scale)
is still lacking in the literature, possibly because a wider
range of values increases the task complexity. Besides, it is
hard to collect a balanced dataset with a sufficient amount
of samples for each considered value of the scale, especially
in non-controlled environments. This aspect prevents the
training phase of large machine learning models (as a
matter of fact, the largest dataset among the considered
studies contains only 660 records (Aguirre et al. (2021))),
with some trials conducted in recent years, spreading from
traditional machine learning models (e.g., SVM (Aguirre
et al. (2021); Hooda et al. (2022); Maman et al. (2020);
Papakostas et al. (2019); Ramos et al. (2020); Zhang
et al. (2014, 2019)), Random Forest (Aguirre et al. (2021);
Maman et al. (2020); Papakostas et al. (2019)), K-nearest
neighbors (Aguirre et al. (2021); Hooda et al. (2022);
Maman et al. (2020))), to modern deep learning models
(e.g., neural networks (Aguirre et al. (2021); Hooda et al.
(2022)), Autoencoder (Hooda et al. (2022)), recurrent neu-
ral networks (Lambay et al. (2021))). For supervised mod-
els, most of the conducted experiments preferred to label
collected data by verbally asking operators whether they
feel tired or not; in other cases, some approaches proposed
approaches to infer fatigue from sensors data: Ramos et al.
(2020) proposed the Global Fatigue Descriptor (GFD);
Zhang et al. (2014) used the maximum voluntary isokinetic
exertion (MVE)); various automobile companies rely on
the interaction of the driver with vehicle control (e.g.,
pedals and wheel), or driver’s physical features (e.g., eye
blinking). Of the drowsiness-detection measures available
in the literature, ”PERCLOS” represents the most reliable
and valid determination of alertness level, which reflects
slow eyelid closures (”droops”) rather than blinks (Junaedi
and Akbar (2018)), however, it does not consider individ-
ual differences.

3. USE CASE

The research we present in this paper was performed with
data provided by Philips Consumer Lifestyle BV, from
Drachten, The Netherlands. The manufacturing plant is
considered one of the largest development and produc-
tion centers in Europe Philips has. The use case con-
cerns manual visual inspection of Philips logos printed on
shavers. In particular, Philips Consumer Lifestyle BV has
printing machine setups for various products and logos.
Many products whose logos are printed on these machines
are manually handled and inspected to determine their
visual quality. When a defect is observed, the product is
removed from the manufacturing line, leaving only those
that comply with the quality standards. Operators usually
spend several seconds handling, inspecting, and labeling
the products. This process could be enhanced with artifi-

cial intelligence in multiple ways. First, a machine learning
model could be developed to partially automate defect
identification. The operators would therefore focus only on
those cases where the machine could not determine with
enough confidence that a certain defect exists. For those
cases, artificial intelligence could generate defect hints,
thus providing valuable information on where to look for a
defect for a given piece. Generative models could be used
to mitigate class imbalance and therefore induce a higher
degree of attention from the operators and periodically
validate the quality of their labeling. Finally, we envision
machine learning could be used to predict operators’ fa-
tigue and the consequent labeling quality decay.

The original dataset provided by Philips Consumer Lifestyle
BV has 3.518 images, with three possible categories (see
Fig. 1): good printing, double printing, and interrupted
printing.

Fig. 1. Examples for the three classes present in the
dataset provided by Philips Consumer Lifestyle BV.
The dataset is imbalanced. Most images correspond
to non-defective pieces (good print), while the defec-
tive prints (double or interrupted prints) introduce
different levels of imbalance.

4. METHODOLOGY

For this research, we developed a web application for
defect inspection (see 2). The application required the
participants to log in with a username and password and
execute a series of experiments (labeling 600 images in each
case). The application forced them to execute the experi-
ments sequentially to ensure that the learning path for all
participants would be the same. To that end, the following
experiment was unlocked only when the current was com-
pleted. As a collateral effect, all the participants had an
increased learning process between the single experiments
and the hinting techniques, which we could not mitigate.
For each experiment, we collected data regarding the start
and end time of each experiment, the time required to label
each image, and the label the participants assigned to the
image. Furthermore, we also persisted the participant’s ID
executing the experiments, but no personal information
persisted in the database that could allow associating the
ID to a particular person. Finally, we must highlight that
for each image, we had complementary data to determine
whether it was obtained from the original dataset or gener-
ated with a generative model. Furthermore, for each image,
we had its ground truth label. We detail the experiments
in Table 1. Results on how different hinting techniques
affected the participants’ labeling accuracy were reported
in Rožanec et al. (2022).

We conducted the experiments among two groups of par-
ticipants: four researchers and students from an artificial
intelligence laboratory and three operators working on
manual visual inspection at Philips Consumer Lifestyle
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Fig. 2. Three screenshots describing the application we de-
veloped to test six labeling scenarios. In the image, we
highlight three different screens: (1) the login screen,
(2) the experiments menu (to choose the next avail-
able experiment), and (3) the particular experimental
setup. Among the experiments, when performing a
labeling task, we always display a good image on the
left side, the image to be inspected is shown in the
center, and on the right, we eventually provide some
defect hinting. In (3), the image corresponds to a
defective item (interrupted print), and the defect hint
was created with the GradCAM technique (Selvaraju
et al., 2017)).

Experiment Balanced dataset? Defect hinting technique
1 NO No defect hinting
2 YES No defect hinting
3 NO DRAEM anomaly map
4 YES DRAEM anomaly map
5 YES GradCAM heatmap
6 YES Nearest labeled image, considering SSIM.

Table 1: Experiments description. SSIM is the acronym for
Structural Similarity Index Measure.

BV. We asked them to execute the experiments daily to
avoid fatigue affecting their performance.

Experiments 1-4 were designed to determine whether the
class imbalance affects the quality of labeling, while Ex-
periments 4-6 aimed to examine whether defect hinting
could enhance the quality of labeling and which hinting
techniques would be most helpful. For this research, we
were interested in the quality of labeling dynamics over
time and whether a consistent decrease in the quality of
labeling could be observed across the experiments. To that
end, we computed precision and recall for each participant
over a rolling window comprehending the last hundred
images. When computing precision and recall, we con-
sidered a binary classification (defective vs. non-defective
images, with defective samples as the class of interest).
We confirmed that decay in precision and recall could be
observed for most experiment participants. Furthermore,
the highest precision and recall were obtained for Experi-
ment 6. We, therefore, chose the precision and recall time
series to develop machine learning models to detect the
participants’ fatigue (see Fig. 3).

When analyzing the precision and recall time series, we
considered that for this research, we would consider the
participant fatigued once their performance drops below
0.75, either considering precision or recall, over a rolling

Participant ID Fatigue point (Image ID)
1 580
2 594
4 242
10 305
11 310
14 133

Table 2: Fatigue points identified for the participants.
Participants who did not meet the fatigue criteria were
excluded from the table.

time window considering the last hundred images labeled
by a given participant within an experiment. In other
scenarios, such thresholds could be adjusted based on the
use case requirements (e.g., defined acceptance quality
levels for each defect). We then checked when such events
(we call them fatigue points) took place and reported them
in Table 2. We also analyzed the time required to label each
image and whether participants required more or less time
to annotate the images. We found no strong signals in this
regard and therefore did not consider labeling time when
creating features for a machine-learning model.

We defined fatigue as a performance drop below a 0.75
threshold for precision or recall and decided to solve the
problem with two regression models: one to predict the
expected precision and one to predict the expected recall.
We did so for two-time horizons: one and thirty images
ahead. We report the features created for each model in
Table 3.

Both models were created with a Linear Regression al-
gorithm, given its simplicity and good results obtained.
We trained the models with the first half of the dataset
(three hundred images) and predicted the second half. Our
decision to do so was mainly guided by the fact that (a)
we were interested in identifying the first fatigue point
for each user, (b) we had only seven participants, and (c)
most fatigue points were located in the second half of the
dataset.

5. RESULTS AND ANALYSIS

We present the results in Table 4 and Table 5. From Table
5 we see that the forecasts’ performance between an image
ahead and thirty images ahead forecast strongly degrades.
Nevertheless, in Table 4 we found that the fatigue points
were predicted accurately. The fatigue points were pre-
dicted perfectly for all relevant cases in a one-image-ahead
forecast. For the thirty images ahead, on the other hand,
a perfect prediction was issued for participant id = 2, and
a prediction close to the target for participants id = 10
and id = 11, predicting a fatigue point three and one
images before the actual event occurrence. We consider
the model failed to accurately predict the fatigue point
for participant id = 1, given it predicted a fatigue point
140 images earlier than the actual event. We, therefore,
consider this prediction a false positive.

6. DISCUSSION AND CONCLUSION

From multiple experiments we performed for data labeling
of manufacturing defects, we observed that most of the
participants’ quality of labeling (measured as precision
and recall) declined over time. Therefore, we hypothesize
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Fig. 2. Three screenshots describing the application we de-
veloped to test six labeling scenarios. In the image, we
highlight three different screens: (1) the login screen,
(2) the experiments menu (to choose the next avail-
able experiment), and (3) the particular experimental
setup. Among the experiments, when performing a
labeling task, we always display a good image on the
left side, the image to be inspected is shown in the
center, and on the right, we eventually provide some
defect hinting. In (3), the image corresponds to a
defective item (interrupted print), and the defect hint
was created with the GradCAM technique (Selvaraju
et al., 2017)).

Experiment Balanced dataset? Defect hinting technique
1 NO No defect hinting
2 YES No defect hinting
3 NO DRAEM anomaly map
4 YES DRAEM anomaly map
5 YES GradCAM heatmap
6 YES Nearest labeled image, considering SSIM.

Table 1: Experiments description. SSIM is the acronym for
Structural Similarity Index Measure.

BV. We asked them to execute the experiments daily to
avoid fatigue affecting their performance.

Experiments 1-4 were designed to determine whether the
class imbalance affects the quality of labeling, while Ex-
periments 4-6 aimed to examine whether defect hinting
could enhance the quality of labeling and which hinting
techniques would be most helpful. For this research, we
were interested in the quality of labeling dynamics over
time and whether a consistent decrease in the quality of
labeling could be observed across the experiments. To that
end, we computed precision and recall for each participant
over a rolling window comprehending the last hundred
images. When computing precision and recall, we con-
sidered a binary classification (defective vs. non-defective
images, with defective samples as the class of interest).
We confirmed that decay in precision and recall could be
observed for most experiment participants. Furthermore,
the highest precision and recall were obtained for Experi-
ment 6. We, therefore, chose the precision and recall time
series to develop machine learning models to detect the
participants’ fatigue (see Fig. 3).

When analyzing the precision and recall time series, we
considered that for this research, we would consider the
participant fatigued once their performance drops below
0.75, either considering precision or recall, over a rolling

Participant ID Fatigue point (Image ID)
1 580
2 594
4 242
10 305
11 310
14 133

Table 2: Fatigue points identified for the participants.
Participants who did not meet the fatigue criteria were
excluded from the table.

time window considering the last hundred images labeled
by a given participant within an experiment. In other
scenarios, such thresholds could be adjusted based on the
use case requirements (e.g., defined acceptance quality
levels for each defect). We then checked when such events
(we call them fatigue points) took place and reported them
in Table 2. We also analyzed the time required to label each
image and whether participants required more or less time
to annotate the images. We found no strong signals in this
regard and therefore did not consider labeling time when
creating features for a machine-learning model.

We defined fatigue as a performance drop below a 0.75
threshold for precision or recall and decided to solve the
problem with two regression models: one to predict the
expected precision and one to predict the expected recall.
We did so for two-time horizons: one and thirty images
ahead. We report the features created for each model in
Table 3.

Both models were created with a Linear Regression al-
gorithm, given its simplicity and good results obtained.
We trained the models with the first half of the dataset
(three hundred images) and predicted the second half. Our
decision to do so was mainly guided by the fact that (a)
we were interested in identifying the first fatigue point
for each user, (b) we had only seven participants, and (c)
most fatigue points were located in the second half of the
dataset.

5. RESULTS AND ANALYSIS

We present the results in Table 4 and Table 5. From Table
5 we see that the forecasts’ performance between an image
ahead and thirty images ahead forecast strongly degrades.
Nevertheless, in Table 4 we found that the fatigue points
were predicted accurately. The fatigue points were pre-
dicted perfectly for all relevant cases in a one-image-ahead
forecast. For the thirty images ahead, on the other hand,
a perfect prediction was issued for participant id = 2, and
a prediction close to the target for participants id = 10
and id = 11, predicting a fatigue point three and one
images before the actual event occurrence. We consider
the model failed to accurately predict the fatigue point
for participant id = 1, given it predicted a fatigue point
140 images earlier than the actual event. We, therefore,
consider this prediction a false positive.

6. DISCUSSION AND CONCLUSION

From multiple experiments we performed for data labeling
of manufacturing defects, we observed that most of the
participants’ quality of labeling (measured as precision
and recall) declined over time. Therefore, we hypothesize

Fig. 3. Precision (left) and recall (right) plots for each of the participants. Participants 1-4 correspond to researchers
from an artificial intelligence laboratory, while the rest correspond to operators from Philips Consumer Lifestyle
BV. A detailed analysis of discrepancies between precision and recall among researchers and operators is presented
in Rožanec et al. (2022).

Model Feature Explanation

Precision
p-t Precision value at t, computed over the last 100 images. We considered t=0, 1, 2, 3.
p-t1/p-t2 Ratio between p-t1 and p-t2.

Recall
r-t Recall value at t, computed over the last 100 inspected images. We considered t=0, 1, 2, 3.
r-t1/r-t2 Ratio between r-t1 and r-t2.

Table 3: Features used to predict future precision and recall.

participant id
fatigue point Precision Recall

target
predicted

target
predicted

target
predicted

1 s.a. 30 s.a. 1 s.a. 30 s.a. 1 s.a. 30 s.a.
1 580 580 440 0,8089 0,8117 0,8033 0,7333 0,7450 0,7398
2 594 594 594 0,8261 0,8241 0,8169 0,7500 0,7445 0,7394
10 305 305 302 0,7439 0,7454 0,7309 0,9385 0,9382 0,9347
11 310 310 309 0,7560 0,7464 0,7270 0,9841 0,9840 0,9821

Table 4: Predicted fatigue points and the corresponding predicted precision and recall. s.a. abbreviates steps ahead,
indicating the forecasting horizon.

One image ahead Thirty images ahead
Precision Recall Precision Recall

RMSE 0,0474 0,0442 0,2622 0,2465
MAE 0,0057 0,0059 0,1079 0,1049
R2 0,8470 0,8450 0,1433 0,1910

Table 5: Predicted RMSE, MAE, and R2 values for both
forecasting horizons: one image ahead and thirty images
ahead.

such a decline in the quality of labeling is associated with
the operators’ fatigue. In this research, we successfully
predict operators’ performance in one and thirty images
in advance. If operators’ fatigue is measured through their
labeling performance, they can decide when to stop the
labeling activity based on the expected performance. This
could be achieved by generating short streams of labeled,
GAN-generated synthetic images on which the labeling
accuracy can be measured and the operators’ fatigue de-
termined. Nevertheless, including random streams of syn-
thetic data affects the labeling throughput of unlabeled
data. Therefore, this approach could complement predic-
tive models aiming to predict operators’ fatigue based on
some sensor data.

We have identified several work limitations based on the
experience acquired through this research. While for this

research, we considered the first case when either precision
or recall had a value lower than 0.75, more complex rules
can be established. For example, we could consider accep-
tance quality levels for each type of defect or establish the
extent to which performance dropping below the estab-
lished acceptance quality level is tolerated and produce
predictions for multiple horizons. This would allow us to
determine participants’ fatigue with higher confidence and
robustness. Furthermore, while there is a clear decreasing
trend in the operators’ labeling performance, such perfor-
mance fluctuates. Therefore, this must be considered to
understand how such fluctuations affect the overall visual
inspection performance and what mitigation actions can
be taken to prevent such a performance drop when ap-
proaching lower bounds of acceptable quality thresholds.

Our future work will be focused on upgrading our exist-
ing software to incorporate (a) a machine learning model
for eye blinking detection, (b) incorporate information
regarding eye blinking into our fatigue detection model,
(c) include questionnaires and cognitive tests, to have an
objective measurement and baseline understanding of the
participants (e.g., regarding fatigue and cognitive abili-
ties) before labeling, (d) complement the application data
with data obtained from wearable sensors, and (e) use
active learning techniques to improve our fatigue detec-
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tion machine learning models. We also plan to conduct
experiments with a larger population in a homogeneous
environment to enhance the robustness of our findings.
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