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A B S T R A C T   

Maritime Autonomous Surface Ships (MASS) are deemed as the future of maritime transport. 
Although showing attractiveness in terms of the solutions to emerging challenges such as carbon 
emission and insufficient labor caused by black swan events such as COVID-19, the applications of 
MASS have revealed problems in practice, among which MASS navigation safety presents a 
prioritized concern. To ensure safety, rational route planning for MASS is evident as the most 
critical step to avoiding any relevant collision accidents. This paper aims to develop a holistic 
framework for the unsupervised route planning of MASS using machine learning methods based 
on Automatic Identification System (AIS) data, including the coherent steps of new feature 
measurement, pattern extraction, and route planning algorithms. Historical AIS data from man-
ned ships are trained to extract and generate movement patterns. The route planning for MASS is 
derived from the movement patterns according to a dynamic optimization method and a feature 
extraction algorithm. Numerical experiments are constructed on real AIS data to demonstrate the 
effectiveness of the proposed method in solving the route planning for different types of MASS.   

1. Introduction 

Shipping has undertaken more than 80% of global trade volume as a strong tie and primary indicator between the global economy 
and maritime trade (Bueger, 2015; Li et al., 2023b). Meanwhile, according to the global annual reports of marine casualties and 
accidents from 2014 to 2020 by the European Maritime Safety Agency (EMSA), the numbers of marine casualties and accidents 
(Fig. 1a) remain high, despite huge efforts in the past decades. The distribution of different ship types during the period of 2014 to 2020 
(Fig. 1b) shows that cargo ships have the highest accident rate, indicated by the 24,772 relevant casualties and accidents (EMSA, 
2022). Safety at sea has been at the top of the research agenda in maritime transport, and the emerging risks due to the fast devel-
opment and possible uncertainties brought by the implementation of advanced technologies such as Maritime Autonomous Surface 
Ships (MASS) have even become more worrisome in recent years (Chang et al., 2021; Li and Fung, 2019; Zhang et al., 2021b). 

Within the context of shipping automation and intelligence, the International Maritime Organisation (IMO) initially raised an E- 
Navigation concept to enhance navigation safety and facilitate the Maritime Intelligent Transportation System (M-ITS) in 2005. The 
modernization of the satellite-terrestrial is integrated with communication networks in M-ITS, enabling the collection of massive data 
in maritime traffic and promoting data mining technologies for maritime situational awareness and knowledge discovery (Li et al., 
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2023a; Zhang et al., 2011, 2022b). The global communication network of maritime vessels in M-ITS is shown in Fig. 2, which can help 
aid in realizing intelligent vessel traffic services according to the exchanged information by advanced techniques. Automatic Iden-
tification System (AIS) is a vessel self-reporting messaging system that can broadcast and provide a large amount of near-real static and 
dynamic information by combining with Radar and Vessel Traffic Services (VTS) (Goudossis and Katsikas, 2019; Liang et al., 2022; Liu 
et al., 2022b). The AIS data includes Maritime Mobile Service Identity (MMSI), position, Speed Over Ground (SOG), and Course Over 
Ground (COG), etc., which can provide navigation guidance and route reference for manned and unmanned ships. Facilitated by the 
widespread use of AIS, Automatic Radar Plotting Aid (ARPA), Long-Range Identification and Tracking (LRIT), and VTS equipments, 
the explosion of AIS data has made traffic pattern mining and route planning a new dimension for ensuring the safety of both manned 
ships and MASS and their hybrid traffic existence. 

In recent years, shipping has been undergoing the digital technology revolution under the content of shipping 4.0 and the Maritime 
Internet of Things (Li et al., 2023a; Aiello et al., 2020). These technological and industrial advancements provide a solid foundation for 
developing autonomous shipping. The IMO defines MASS development at four levels according to the degree of human interaction to 

Nomenclature 

Roman letters 
Variable Definition 
AADTW Automatic and Adaptive Dynamic Time Warping 
ACDTW Adaptive Constrained Dynamic Time Warping 
ADP Automatic Douglas and Peucker 
AE AutoEncoder 
ARPA Automatic Radar Plotting Aid 
AIS Automatic Identification System 
ANN Artificial Neural Network 
ASV Autonomous Surface Vehicles 
CAE Convolutional Auto-Encoder 
CHS Calinski-Harabasz Score 
CNN Convolutional Neural Network 
COG Course Over Ground 
COLREG Convention on the International Regulations for Preventing Collisions at Sea 
CUSUM CUmulative SUM 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
DBSCANSD Density-Based Spatial Clustering of Applications with Noise considering Speed and Direction 
DDPG Deep Deterministic Policy Gradient 
DRL Deep Reinforcement Learning 
DTW Dynamic Time Warping 
ECDIS Electronic Chart Display and Information System 
EMSA European Maritime Safety Agency 
IMO International Maritime Organisation 
1NN The Nearest Neighbor search 
KNN K-Nearest Neighbor 
LNG Liquefied Natural Gas 
LPW Local Planning Window 
LRIT Long-Range Identification and Tracking 
LSTM Long Short-Term Memory 
MAS Mayflower Autonomous Ship 
MASS Maritime Autonomous Surface Ships 
M-ITS Maritime Intelligent Transportation System 
MMSI Maritime Mobile Service Identity 
PCA Principal Component Analysis 
RNN Recurrent Neural Network 
SAE Sparse AutoEncoder 
SCAF Spectral Clustering with Affinity Feature 
SC Silhouette Coefficient 
SOG Speed Over Ground 
USV Unmanned Surface Vehicles 
VAE Variational Auto-Encoder 
VG Visibility Graph 
VTS Vessel Traffic Services  
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guide the development progress of MASS in the future (IMO, 2018). In industrial research, Rolls-Royce Marine believes that remotely 
controlled ships will initially appear in local maritime applications and move to the global area in the near future (Gu et al., 2021). 
Autonomous shipping research has been attracting growing interest and attention. While Mayflower Autonomous Ship (MAS), the 
world’s first fully autonomous unmanned research ship, was launched to conduct scientific research tasks on Sep. 7, 2021. The Atlantic 
Crossing trip for MAS is planned for Spring 2022 (Mayflower Autonomous Ship, 2021). The critical development of MASS mainly relies 
on such areas as maritime situational awareness, system control, and independent decision-making to reduce human error-induced 
accidents and improve navigation safety (Ahvenjärvi, 2016; Burmeister et al., 2014b; Burmeister et al., 2014a). All their success 
lies in effective and safe route planning as an essential condition. Traditional route planning research methods are qualitative, sub-
jective, and experience-oriented. For example, the route selection for cost and benefit optimization (Wu et al., 2021b), routing and 
scheduling for fuel supply vessels (Christiansen et al., 2017), routing for liner shipping (Lin and Chang, 2018), route planning for food 
delivery (Liu et al., 2020), routing for container transportation (Wang et al., 2021b), a location-inventory-routing model for managing 
supply chains (Liu et al., 2021), routing for shared autonomous electric vehicles (Ge et al., 2021; Zhang et al., 2022a), routing with 
inventory costs and emissions (Qi et al., 2022). Despite the fact that there are no short of routing studies in transportation, AIS 
data-driven ship trajectory research for MASS remains scanty. To date, the development of MASS is still at the ship model test and 
experimental study stages in both commercial and academic worlds (He et al., 2021; Zhang et al., 2021a). The hybrid traffic of un-
manned and manned ships will be first appearing at the early stage. However, the real data from MASS is largely unavailable, which 
limits the development of situational awareness for hybrid traffic. M-ITS has enabled the collection of massive trajectory data from the 
AIS equipment in shipping. The explosion of AIS data will support the traffic pattern mining of classical manned ships and further aid 
the maritime situation awareness for MASS. After all, MASS route planning has to use the established shipping routes as the baseline to 
enable the incorporation of specific MASS features for better route planning in the future when more real-world MASS trajectories 
become available. The historical AIS data knowledge extraction will provide valuable navigation references for MASS in different 

Fig. 1. The information on accidents from 2014 to 2020: the number of marine casualties and accidents (1a) and the distribution of different ship 
types (1b). 

Fig. 2. The global communication network of maritime vessels in M-ITS.  
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areas. Meanwhile, the movement patterns from historical AIS data can provide effective sailing knowledge, research foundation, and 
automatic system design for MASS. Moreover, MASS navigation does not require human intervention. Therefore, using ship trajec-
tories and new unsupervised routing algorithms for maritime traffic studies is imperative for the development of MASS. 

The existing studies often rely on the optimization methods with specific conditions for tramp and liner ship routing, such as 
container routing and repositioning (Dong et al., 2015; Song and Dong, 2013, 2012) and tramp ship routing (Meng et al., 2015; Wang 
and Meng, 2012). It reveals some challenges to applying such methods from the existing literature to formulate the routing of MASS 
because MASS routing has special needs in the provision of route reference for different types of MASS. The development of data-driven 
knowledge extraction for an autonomous system looks promising. Moreover, it is challenging to directly conduct AIS data-based MASS 
route research because there are very few real trajectories by MASS in practice. A complex navigational environment further affects the 
applications of MASS in practice (Liu et al., 2022a; Öztürk et al., 2022; Shi and Liu, 2020). Meantime, MASS route planning is also 
related to communication, system control, traffic information exchange, and decision-making between manned and unmanned ships 
(Gao et al., 2022). This paper aims to conduct a deep analysis and classification exploration of historical data from manned ships to 
mine the movement patterns and develop a new and rational route planning methodology for MASS safe navigation. 

The current route planning has three different definitions: 1) voyage planning (IMO Resolution, 1999), 2) weather routing (IMO 
Resolution, 1983), and 3) collision avoidance planning (Convention on the International Regulations for Preventing Collisions at Sea, 
1972 (COLREGs)). Our manuscript falls in the context of collision avoidance planning, especially in the water with traffic separation 
schemes to aid the realization of mixed traffic of manned ships and MASS in the same areas. Some existing studies (Cai et al., 2021; 
Chian Tan et al., 2021; Filipiak et al., 2020; Han and Yang, 2020; Jeong et al., 2019) already demonstrate the feasibility of using AIS 
data for developing MASS route planning. Although showing some attractiveness, these studies still reveal some theoretical challenges 
which have implications not being well dealt with in the current literature and cannot be easily solved without developing new 
methods. They are related to the issues of 1) how to make a thorough berth-to-berth guide; 2) how to optimize the routes based on the 
detailed and up-to-the-minute weather information adaptively; and 3) how to plan safe routes to avoid collisions based on AIS 
equipment, radar, Electronic Chart Display and Information System (ECDIS), LRIT, and APRA. All these issues become even more 
worrisome when mixed encounter situations happen in the waters of complex traffic (e.g. ports and canals). This paper attempts to 
address this research challenge by incorporating historical AIS data of manned ships into unsupervised route planning to guide safe and 
rational navigation of MASS in complex waters of mixed traffic of manned and unmanned ships. The route planning results can provide 
an effective solution to the collision avoidance of manned ships and MASS. 

The remainder of this paper is organized as follows. The literature review of MASS route planning research is presented in Section 2. 
Problem statements are listed in Section 3. Section 4 describes the methodology, including the new movement pattern extraction 
methods and route planning algorithm. The experimental results and analysis are shown in Section 5. Section 6 concludes the paper 
with future exploration. 

2. Literature review 

In this section, a systematic review is first conducted to better understand the state of the art of route planning studies in maritime 
transport to extract the research with a focus on MASS (i.e. Section 2.1) and AIS-based route planning for manned ships and MASS (i.e. 
Section 2.2). It is followed by the critical analysis of movement pattern extraction methods (i.e. Section 2.3) and route planning 
methods (i.e. Section 2.4) from a methodological perspective. Finally, the state of the art and our contributions are listed in Section 2.5. 
The flowchart of the literature review is displayed in Fig. 3. 

Fig. 3. The flowchart of the literature review.  
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2.1. Review of studies on route planning in maritime transport 

To retrieve all the route planning research in maritime transport, a systematic review was conducted using the Web of Science 
(WoS) Core Collection in January 2022. The systematic review framework and content are shown in Fig. 4. It is evident that the route 

Fig. 4. The systematic review framework, content, and results.  

H. Li and Z. Yang                                                                                                                                                                                                     



Transportation Research Part E 176 (2023) 103171

6

planning for MASS and Unmanned Surface Vehicles (USV) is the foundation to help rescue, explore bathymetric study, and reduce the 
influence of human factors and carbon emission. A deep analysis of the route and path planning is carried out to explore the research 
theme and content distribution, especially for MASS and USV. First, it is obvious that the maritime route planning research tendency 
sharply increased from 2017 to 2021 and arrives at the highest level in 2022. Furthermore, a deeper understanding of the current 
landscape in different research areas is emphasized. The research focus was the route planning system control in 2014–2017 and 
collision avoidance and route planning in 2018–2021. Within 2018–2021, route planning based on AIS data has been initiated and 
gained preliminary developments. While revealing the importance of this research topic, the results clearly show the vast research 
challenges, such as the applications of historical trajectories in MASS, wanting for solutions to be found. 

To assess how the research focus of route planning of MASS and USV have developed and evolved, the theme network, keywords 
network, and overlay visualization are analyzed using the VOSviewer software. The themes of the retrieval results in titles and ab-
stracts are further analyzed to discover the different theme clusters and allow researchers to gain insights into different research 
networks. There are three clusters in the visualization result about maritime route planning. The green cluster represents the different 
algorithms and routing problems for ports and companies, such as the planning problem in supply chains, liquid natural gas, fuel 
consumption, and cargo planning with high profits and low costs. The red cluster is the technology development in different areas and 
countries. Risk and technology are the two important themes in this network. The route planning based on AIS data and historical 
trajectories is shown in the blue cluster, while data and knowledge can provide support for rational decision-making. Collision 
avoidance is also a small part related to the application of route planning. The line indicates their relationships across different themes. 
The bubbles show their frequency. The bigger the circles, the more they occur. The three theme clusters from Fig. 4 clearly indicate that 
the route planning research based on AIS data is far less than the other two parts (e.g. routing problems for ports and companies and the 
technology development in different areas and countries), despite their fast growth in recent years. 

Furthermore, the network visualization of research themes for MASS and USV reveals the five relevant clusters, including 1) route 
planning based on the dynamic obstacle and case study, 2) the motion planning and control of Autonomous Surface Vehicles (ASV), 3) 
path planning algorithm, 4) the route planning and challenges analysis, and 5) the optimization methods of route planning in USVs. 
The word cloud visualization shows the keyword analysis results, such as path planning problems, optimation algorithms, systems, and 
collision avoidance applications. 

Despite its high attractiveness, there is little evidence of the use of AIS data for MASS route planning research in the theme analysis. 
The vast volume of positioning data contained in AIS makes it impractical to determine routes for MASS and USV in the maritime 
environment. Moreover, it’s indispensable to investigate and extract rational routes by historical AIS data because route planning is 
dynamic and changeable in MASS navigation under complicated environments and traffic conditions. Given the facts that 1) there is 
little real data available from MASS trajectories and 2) MASS routing will at large follow the established manned ship trajectories, it is 
significant and insightful to extract and design the safe routes for MASS based on the historical AIS data from manned ships (Chian Tan 
et al., 2021; Han and Yang, 2020). 

2.2. Review of studies on route planning based on AIS data 

To explore the development of maritime route planning based on AIS data, we retrieved all the relevant publications and found 290 
journal papers from 1990 to 2021. Through the title, abstract, introduction, and methods screening in Fig. 4, seven papers have shown 
their direct association with the route planning of manned ships and MASS based on AIS data. The research content and method 

Table 1 
Ship route planning comparative analysis based on AIS data.  

Research 
paper 

Method Application Strength Weakness 

(Cai et al., 
2021) 

Speed-weighted geolocation method, 
DBSCAN, and Kmeans method 

Route selection in tramp 
shipping 

Propose a practical data- 
driven methodology to 
select routes 

Expert/manual intervention, 
connection points identification is 
not accurate 

(Filipiak 
et al., 
2020) 

Cumulative sum (CUSUM) algorithm, a 
genetic algorithm with spatial 
partitioning 

Generate maritime traffic 
network and plan routes 

Find the route based on the 
graph creation 

A zig-zag route in historical 
trajectories 

(Guo et al., 
2020) 

Deep deterministic policy gradient 
(DDPG) algorithm and improved deep 
reinforcement learning (DRL) method 

Interaction with the 
environment and historical 
data 

Better learning and fitting 
ability 

Environment information and 
motion model are ignored, and 
complex design 

(Jeong et al., 
2019) 

Risk contour map, multi-criteria model Integrate the safety, 
efficiency,convenience, and 
ability of navigation 

Propose a multi-criteria 
route planning technique 

Content only for liquefied natural 
gas (LNG) ship type, subjective 
factor evaluation 

(Han and 
Yang, 
2020) 

DBSCAN, central line extraction Integrate empirical 
navigation information 

Construct ship historical 
route network topology 

Simple patterns, only explore the 
historical trajectories without 
different ship types 

(Chian Tan 
et al., 
2021) 

The nearest neighbor search (1NN), 
feature representation 

Estimate risk based on route 
and 1NN distance 

Select routes for 
autonomous ships 

Insufficient and clear experiments 

(Naus, 2020) GRID reference systems (density, speed, 
course) 

Generate route planning 
templates 

Take into account average 
speed and course 

High computational complexity, 
big data preprocessing  
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comparison are listed in Table 1. It can be seen that the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method 
is the commonly used pattern extraction method. The pattern extraction method can effectively mine the hidden information to aid 
route planning in both manned and unmanned ships. The comprehensive comparative results in Table 1 show that the automatic route 
generation methods include 1) electronic charts-based routes, 2) turning points identification-based routes by clustering in historical 
trajectories, and 3) routes in specific sea areas from historical trajectories. These methods generate ship routes from local features, 
turning points, and lines based on historical AIS data. From this state-of-the-art analysis, it is evident that MASS route planning has 
theoretical implications that are not being dealt with holistically in the current literature. It urgently needs powerful algorithms using 
big AIS data for an overall effective solution that can fit different ship types for MASS. 

2.3. Review of studies on movement pattern extraction methods 

The patterns are extracted from the historical trajectories by the trajectory data mining methods, including machine learning and 
deep learning methods. 

2.3.1. Movement pattern extraction based on machine learning methods 
Machine learning methods are widely used in exploring and mining ships’ movement patterns. Data preprocessing, speed, and 

Gaussian Mixture Model were applied to track the fishing footprints and patterns (Vespe et al., 2016). This method can discover fishing 
knowledge and avoid steaming errors; however, it only relies on speed anomaly. Principal Component Analysis (PCA) and multi-step 
trajectory clustering method were put forward to discover movement patterns and discern the course (Li et al., 2017). Li et al. (2018a) 
developed the DBSCAN method to mine the hidden patterns in historical trajectories based on merge distance. Liu et al. (2019) 
proposed an Automatic Douglas and Peucker (ADP) compression method to simplify the data set and reserve the critical features, then 
simplify the data set and extract the critical features. However, the previous three studies are not enough to verify the effectiveness 
with small datasets, and they are also difficult to be applied to large datasets directly. Wei et al. (2020) combined the clustering al-
gorithm and the sliding window method to mine moving features and spatial information. Zhao and Shi (2019) developed a new 
clustering method, Density-Based Spatial Clustering of Applications with Noise considering Speed and Direction (DBSCANSD), to 
extract the distribution information and discern the normal behavior patterns. Li et al. (2020) proposed an Adaptive Constrained 
Dynamic Time Warping (ACDTW) to calculate the distance more accurately and aid the pattern extraction. A novel trajectory simi-
larity measurement method, hierarchical clustering, and a mixed regression model were combined to discover the hidden information 
and discover the hidden information (Zhen et al., 2017). A spatio-temporal trajectory clustering method was proposed to discover 
intricate features and patterns (Nanni and Pedreschi, 2006). A novel Bayesian network learning model was developed to learn the 
patterns of moving vessels and detect abnormal behavior (Mascaro et al., 2014). Ordering Points To Identify the Clustering Structure 
(OPTICS), Gaussian process, and graph theory methods were applied to extract ship movement patterns and aid maritime traffic 
prediction (Rong et al., 2022). Pallotta et al. (2013) proposed a Traffic Route Extraction and Anomaly Detection (TREAD) method to 
discover traffic knowledge and understand traffic patterns. 

From the comparison of the previous studies, it is evident that the similarity measurement and feature extraction methods are the 
common ones to mine similar patterns and find the optimal path, such as Dynamic Time Warping (DTW) and its improvement 
methods. Compared with Euclidean Distance (Chan et al., 2003), Hidden Markov Model (Krogh et al., 2001), Hausdorff Distance 
(Huttenlocher et al., 1993), Fréchet distance (Alt and Godau, 1995), Longest Common Subsequence (Hirschberg, 1977), the strengths 
of DTW and the improvement methods lie in the capacity to find the shape similarity of the investigated trajectories and warping an 
optimal route from feature to feature. Meanwhile, the chosen clustering methods are density-based (i.e. DBSCAN and OPTICS) since 
they do not require the number of cluster centers to be defined. However, the radius and the number contained in the circle should be 
set in advance. Therefore, the optimization methods of these two parameters (i.e. radius and number) are deemed the main innovations 
in the improved methods in the current literature. 

2.3.2. Movement pattern extraction based on deep learning methods 
In recent years, deep learning methods such as Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) have 

been attracting great attention in maritime safety research. The ship AIS trajectories are first encoded and decoded into feature vectors 
(e.g. encoder-decoder, AutoEncoder (AE), Variational Auto-Encoder (VAE), and Sparse AutoEncoder (SAE)). Then, different point 
clustering methods can be conducted to cluster the trajectories and mine useful information. A Seq2Seq learning (t2vec) method was 
proposed to extract the features and compute the similarity of ship trajectories, and then realize the representations of trajectories (Li 
et al., 2018b). Yao et al. (2017) combined a sliding window and RNN-based Seq2Seq autoencoder model to achieve deep represen-
tations of moving trajectories in a small AIS dataset. Furthermore, they applied a fixed-length sliding window and a sequence-to- 
sequence auto-encoder to extract moving features and realize the deep representation of the trajectories (Yao et al., 2018). Zhang 
et al. (2019a) considered an attention mechanism and an auto-encoder model to realize the feature representations of noisy vessel 
trajectories in a low dimensional space in a small AIS dataset. Zhang et al. (2019b) put forward a new Activity trajectory to a vector 
(At2vec) model to measure trajectory similarity with semantic information. Liang et al. (2021a) proposed a convolutional auto- 
encoder (CAE) feature extraction method to calculate the similarity between vessel trajectories accurately and realize the deep rep-
resentations of trajectories. Deep learning methods have strong learning abilities; however, their poor interpretability and parameter 
setting are the main problems in the current literature. Overall, it is found that there is no uniform way to set all parameters, and the 
interpretability of the results cannot be effectively matched to the models. 

Although deep learning methods have shown strong feature learning performance, it is still difficult to determine the parameter 
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setting in the learning rate, batch size, gride size, epoch size, iteration number, and loss function, hence leading to limited applications. 

2.4. Review of studies on route planning methods 

2.4.1. Route planning based on machine learning methods 
Heuristic algorithms are the common methods in ship route design and planning, including the genetic algorithm (Zhao et al., 

2021), the Dijkstra algorithm (Dijkstra, 1959), the ant colony algorithm (Tsou and Cheng, 2013), the A* algorithm (Wang et al., 
2021a), and sampling-based approach (Devaurs et al., 2015). However, the associated local optimal solution problem and high 
computational cost are often the encountered difficulties influencing their applications. A genetic algorithm and cell-free method were 
proposed to determine optimal shipping routes and speed simultaneously (Lee et al., 2018). However, it reveals that complex input 
parameters and settings are difficult to be solved. A three-dimensional Dijkstra algorithm was developed to receive a global optimal 
ship route, and then reduce fuel consumption (Wang et al., 2019). Despite the advantages, the weight setting of different variables 
becomes problematic. A route planning method based on A* was proposed to avoid collisions and support autonomous navigation 
(Larson et al., 2006). A multi-criteria route planning method was applied with an ECDIS to design routes according to the navigational 
traffic risk and risk contour map (Jeong et al., 2019). It is, however, evident that it is difficult to set the weight of different factors. 
Dijkstra, the ant colony algorithm, and the DBSCAN method were combined to extract and optimize shipping routes (He et al., 2019). 
However, the parameter setting and the optimal method selection are identified as the main problems. A rapidly-exploring random tree 
(Véras et al., 2019) is a common method in sampling-based approaches and can find optimal routes in constructing a graph. It is 
criticized as always finding non-optimal solutions. A fuzzy genetic algorithm and fuzzy set theory were jointly proposed to aid shipping 
planning with market demand based on the simulation experiments for container ships (Chuang et al., 2010). However, the relevant 
parameters are still difficult to set optimally. A route prediction method was combined to extract historical ship routes and predict the 
future position based on the k-nearest neighbor (KNN) classification (Duca et al., 2017). DBSCAN and grid methods were combined to 
generate the topological structure and shipping routes from the historical AIS data (Han and Yang, 2020). A regular square reference 
system (GRID) traffic intensity was proposed to integrate speed and course into route plan templates (Naus, 2020). However, this 
method has exposed high computational complexity. 

2.4.2. Route planning based on deep learning methods 
Deep learning methods have gradually emerged to support route planning in recent years. Heuristic planning, CNN, and Long short- 

term memory (LSTM) are combined in one way or another to optimize route planning and avoid collision (Li and Zheng, 2021). Deep 
reinforcement learning and artificial potential field are applied to generate safe routes for USV (Li et al., 2021). Xue et al. (2011) 
proposed a potential field method and dynamic route planning to extract the turning area and avoid collision for autonomous ships. 
Wen et al. (2020) combined the DBSCAN and Artificial Neural Network (ANN) methods to design the routes for autonomous ships. Wu 
et al. (2021a) put forward the Visibility Graph (VG) and Local Planning Window (LPW) to improve route accuracy based on small, 
middle, and large scales. The route planning research shows that deep learning has exposed the difficulties of addressing hyper- 
parameter selection problems. Its inherent black-box mechanism results in that the results are often unexplainable. 

2.5. State of the art and contributions of our study 

From both the systematic analysis of MASS routing studies and the critical review of generic routing research using machine 
learning and deep learning methods, it reveals that it is necessary to develop new research using historical AIS data to address the two 
major weaknesses (i.e. inference invisible and result unexplainable) when using the deep learning methods in MASS routing. In 
practice, the development and implementation of MASS require insightful information on the implications of the inference process and 
the result to be observable to a certain extent. Furthermore, MASS routing has to evolve from a local to global level, starting with its 
pilot in domestic waters (Cheng and Ouyang, 2021). From this perspective, the MASS route planning for autonomous navigation in a 
local area will provide useful insights for the global shipping of MASS. This paper uses historical AIS data in a domestic waterway with 
traffic separation schemes to develop a new optimal function. The model is tested at a local-level navigation situation to demonstrate 
its feasibility for route planning of MASS. It can be easily popularized as a globally optimal solution when more AIS data becomes 
available and applicable. 

More specifically, following the above critical analysis, our research falls into the route planning for MASS based on AIS data and 
enriches the existing literature from the following three parts. The state-of-the-art against the three new contributions (i.e. N1-N3) is 
summarised below. 

N1. A new feature measurement method in movement pattern extraction of historical trajectories from manned ships for MASS. 
State of the art: The traditional similarity measurement method, DTW, always finds a local optimization and results in over- 

stretching and over-compression of features during the distance calculation of different trajectories (Li et al., 2020; Liu et al., 
2019). The similarities among different trajectories are critical for maritime movement pattern extraction, anti-collision, and route 
planning. Therefore, it is challenging to address the issue of how to find the optimal global similarity between trajectories. 

Our solution: This paper presents a pioneering attempt to propose and apply an Automatic and Adaptive Dynamic Time Warping 
(AADTW) algorithm to aid situational awareness in modeling the MASS route planning problem. The weight and range are taken into 
account in the AADTW method to find the global optimization similarity value in the warping routes. The new feature method can 
extract effective features based on historical AIS data and be used for finding feature centers as route guidance in the route planning of 
MASS. 
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N2. An unsupervised clustering method in movement pattern mining of historical trajectories from manned ships for MASS. 
State of the art: The traditional point clustering methods cannot aid in achieving any improved performance when handling large- 

scale ship trajectories (Li et al., 2017; Zhao and Shi, 2019). Furthermore, some parameters need to be set manually, such as density 
threshold, radius threshold, clustering centers, and the number of clustering centers (Li et al., 2018a; Liang et al., 2021a). Obviously, 
human intervention is not suitable for the pattern mining of a MASS navigation system. Therefore, the concern on how to eliminate the 
influence of the setting values of the parameters has not yet been well addressed. 

Our solution: An unsupervised pattern extraction method, Spectral Clustering with Affinity Feature (SCAF), is newly proposed to 
extract the movement patterns and is combined with the AADTW method to make the route planning robustly based on the graph 
theory and affinity features for supporting MASS. Meanwhile, a novel clustering index function is developed in this process to enable 
the fast identification of the number of clustering centers to speed up the pattern extraction. The SCAF method can mine the hidden 
patterns from historical trajectory data, which provides the pattern reference for MASS navigation. The dynamic programming 
method, AADTW, can further extract the pattern centers for MASS route selection. 

N3. The classification pattern mining and feature centers generation for the route planning of MASS with multiple purposes. 
State of the art: The current route planning methods, including machine and deep learning methods, are based on different 

optimization methods to find the optimal routes (Tam et al., 2009; Wang et al., 2019; Wu et al., 2021a). They focus on efficiency- 
oriented, obstacle avoidance, and the shortest routes to make plans for a specific ship type. However, different ship types are not 
taken into account in route planning (Feng and Zhu, 2016; Liang et al., 2021b; Sheng et al., 2018). On the other hand, the exposed local 
optimal solutions and high time complexity problems have not been well addressed, wanting effective solutions to be found. 

Our solution: It is among the first investigations to incorporate the historical trajectories of different types of ships to generate 
routes for MASS with multiple purposes. The main ship types are extracted and classified to analyze the navigation routes separately 
from historical AIS data to aid the MASS route planning, projecting to support MASS involving various navigation purposes holisti-
cally. A new feature center generation method is proposed to find the optimal global route based on the AADTW dynamic pro-
gramming method for designing routes for MASS in future route planning. It is crucial from a theoretical perspective to incorporate 
more specific parameters into MASS route planning formation, as MASS route planning needs to be dynamic and optimal subject to 
different parameters (e.g. ship types and seasons). It pioneers the new incorporation of such influential parameters into MASS route 
planning. 

3. Definitions and problem statements 

In this research, the historical AIS data of manned ships is  incorporated into unsupervised route planning of MASS to aid the 
realization of safe and rational navigation in complex waters of hybrid traffic of manned and unmanned ships. The methodology 
consists of two main integrated parts: a movement pattern extraction method and a route planning method. These two parts are 
combined to create a holistic framework for solving the research problems defined in Sections 3.1 and 3.2 that are associated with the 
hybrid traffic of manned and unmanned ships. Fig. 5 illustrates the proposed framework and its corresponding methods through a 

Fig. 5. The research problems and the proposed framework.  
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flowchart, depicting the flow of information among all the components. 
To clarify the content, the notations in Section 3 are summarized in Table 2. 

3.1. Definitions 

Definition 1. Ship trajectory dataset and trajectory. 

Each trajectory includes a series of time series points with time and location (i.e. longitude and latitude) that are collected from AIS 
equipment. The m-th trajectory Tram with Nm points in a ship trajectory dataset Tra is shown below. 

Tram =
[
Pm

1 ,⋯,Pm
i ,⋯,Pm

Nm

]
, i = 1,⋯,Nm; m = 1,⋯,M (1) 

with the i-th point Pm
i = (tm

i , lonm
i , latm

i ). 
Then, the m-th ship trajectory can be expressed as 

Tram =
[(
tm1 , lon

m
1 , lat

m
1

)
,⋯,

(
tmi , lon

m
i , lat

m
i

)
,⋯,

(
tmNm

, lonm
Nm
, latmNm

)]
(2)  

Definition 2. Trajectory similarity matrix. 

The similarity between ship trajectories is measured by the proposed AADTW method, and a detailed description of AADTW is 
introduced in Sec 4.1.2. 

The similarity matrix of M trajectories in the whole trajectory dataset can be expressed as 

AADTWM×M =

⎡

⎢
⎢
⎢
⎣

AADTW(Tra1,Tra1) ⋯ AADTW(Tra1,Tran) ⋯ AADTW(Tra1,TraM)

⋮

AADTW(Tram,Tra1)

⋮

⋱

⋮

AADTW(Tram, TraM)

⋮

AADTW(TraM ,Tra1) ⋯ AADTW(TraM ,Trai) ⋯ AADTW(TraM ,TraM)

⎤

⎥
⎥
⎥
⎦

(3)  

Definition 3. Ship movement patterns. 

Different ship types are identified by the MMSI in AIS data, and the main ship types include cargo ships, tankers, and container 
ships. The SCAF method is proposed to extract the ship movement patterns by historical trajectories from the whole dataset, cargo 
ships, tankers, and container ships, respectively. Therefore, their extracted movement patterns are shown below. 

MP = C1,C2,⋯,Ck

MP1 = C1
1 ,C

1
2,⋯,C1

k1, k1⩽k
MP2 = C2

1 ,C
2
2,⋯,C2

k2, k2⩽k
MP3 = C3

1 ,C
3
2,⋯,C3

k3, k3⩽k

(4) 

The number of clusters (i.e. k, k1, k2, and k3) and the clusters (i.e. C1,C2,⋯,Ck, C1
1,C1

2,⋯,C1
k1, C2

1,C2
2,⋯,C2

k2, and C3
1,C3

2,⋯,C3
k3) are 

generated from the trajectories of the whole dataset, cargo ships, tankers, and container ships based on the SCAF method for the 
associated route planning accordingly. 

Table 2 
List of the notations used in Section 3.  

Notations Definition Notations Definition 

Tra A ship trajectory dataset MP1 The movement patterns of cargo ships 
M The number of trajectories in the ship trajectory dataset MP2 The movement patterns of tankers 
Tram,Tran The m-th and n-th trajectories MP3 The movement patterns of container ships 
Nm,Nn The length of the m-th and n-th trajectories (i.e. the number of points in the m- 

th and n-th trajectories) 
k The number of movement patterns in MP (i. 

e. the number of cluster centers) 
Pm

i The i-th point of the m-th trajectory k1 The number of movement patterns in MP1 
tmi The time of the i-th point in the m-th trajectory k2 The number of movement patterns in MP2 
lonm

i The longitude of the i-th point in the m-th trajectory k3 The number of movement patterns in MP3 
latmi The latitude of the i-th point in the m-th trajectory C1,C2 ,⋯,

Ck 

k movement patterns of the whole dataset 

AADTW(Tram,

Tran)

The similarity between the m-th trajectory and n-th trajectory (i.e. the 
minimum value of the warping path based on the proposed AADTW method) 

C1
1,C1

2 ,⋯,

C1
k1 

k1 movement patterns of cargo ships 

AADTWM×M The similarity matrix of M trajectories in the whole trajectory dataset C2
1,C2

2 ,⋯,

C2
k2 

k2 movement patterns of tankers 

MP The movement patterns of the whole trajectory dataset C3
1,C3

2 ,⋯,

C3
k3 

k3 movement patterns of container ships  
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Table 3 
List of the notations for the solutions in Section 4.  

Notations Definition Notations Definition 

Pn
j = (tnj , lonn

j , latnj ) The j-th point of the n-th trajectory b(x) The separation 
ai, j = d(Pm

i ,Pn
j ) The Euclidean distance between points Pm

i and Pn
j Tr(Bkc ) The trace of the between-cluster scatter matrix 

ANm×Nn =
{

ai, j
}

The distance between all points in the m-th and n-th trajectories Tr(Wkc ) The trace of the within-cluster scatter matrix 
W = {W1,⋯,WK} A warping path with the length K vol(Cl) The total degree of the vertices in the cluster Cl 
DTW(Tram,Tran) The minimum value of the warping path based on the DTW method Ncut(C1 ,C2,

⋯,Ck)

The Normalized Cut 

D(i, j) The distance from the previous step to step (i, j) by the DTW method (i.e. i denotes the 
i-th point in the m-th trajectory and j indicates the j-th point in the n-th trajectory) 

AD(i, j) The distance from the previous step to step (i, j) by the proposed AADTW method (i.e. i 
denotes the i-th point in the m-th trajectory and j indicates the j-th point in the n-th 
trajectory) 

N(i, j) The usage counts of one step (i, j) in a warping process (i.e. the i-th point in the m-th 
trajectory and j-th point in the n-th trajectory) 

wi,j The dynamic weight in one step (i, j) of a warping process (i.e. the i-th point in the m-th 
trajectory and j-th point in the n-th trajectory) 

L The Laplacian matrix Q The similarity matrix 
D The degree matrix Lnorm The Laplacian regularization 
TNm ,TNn The usage counts of points in the trajectories Tram and Tran H The membership matrix 
Ckc The current cluster V = {V1,⋯,

VM}

Vertex (i.e. the points mapped by the trajectories) 

⃒
⃒Ckc

⃒
⃒ The number of the current cluster E Edge (i.e. the distance between points) 

Ch,Cl The h-th and l-th clusters μr , r = 1,⋯,k The clustering centres 
|Ch| The number of the cluster Ch R(Vp,μr) The responsibility matrix 
Cl The complement of Cl (i.e. the other clusters except for the l-th cluster) A(Vp,μr) The availability matrix 
x,x′

,x′′ Sample points in the mapping point dataset R1 ,R2,⋯,Rk The optimal routes of the whole dataset 
c The mean of the target sample set R1 ,R2,⋯,Rk1 The optimal routes of cargo ships 
co The mean of the other clusters R1 ,R2,⋯,Rk2 The optimal routes of tankers 
a(x) The cohesion R1 ,R2,⋯,Rk3 The optimal routes of container ships  
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3.2. Problem statements 

As shown in Fig. 5, Problem 1 aims to solve the trajectory feature measurement and calculate accurate similarity values, which 
serves as the foundation of the following three problems. Therefore, the accuracy of feature measurement can determine the per-
formance of knowledge discovery and route planning. Problem 2 involves pattern extraction based on the proposed SCAF method to 
obtain effective patterns from historical AIS data. It can provide the pattern library for the entire dataset to aid the pattern mining of 
ship classification in Problem 3. Problem 3 is to design routes for different types of MASS based on the results from Problem 2. Lastly, 
Problem 4 is the safe navigation route reference for different types of MASS based on the results from Problem 3. These four research 
problems are interconnected and indispensable. 

Problem 1. How to measure the similarity between historical trajectories for accurate feature extraction? 

The similarity between historical trajectories is measured by their distances. The larger the distance between two trajectories, the 
smaller their similarity, and vice versa. A similarity measurement method, AADTW, is proposed to calculate the distance between 
trajectories. The solving process involves finding the optimal warping route between any two trajectories based on dynamic pro-
gramming. The optimal warping route is the most similar correspondence of points between the two trajectories, i.e. the shortest route 
without over-stretching and over-compression. 

The challenge of feature extraction is to identify useful features that can aid in the subsequent pattern extraction contents. Given 
that pattern extraction relies on the similarity (i.e. distance) between trajectories, accurate measurement of the similarity between 
trajectories is crucial for feature extraction. Furthermore, the similarities between all trajectories (i.e. the optimal similarity value 
AADTW(Tram,Tran), m = 1,⋯,M,n = 1,⋯,M) are taken as an effective basis for ship movement pattern extraction. Therefore, the 
feature extraction is in nature to solve the optimal similarity value AADTW(Tram,Tran), m = 1,⋯,M, n = 1,⋯,M between the m-th 
trajectory Tram and the n-th trajectory Tran. 

Problem 2. How to extract ship movement patterns from historical AIS data to aid the safe navigation of MASS? 

There is a lack of real trajectory data of autonomous ships to aid the route planning research for MASS in the current literature. The 
pattern extraction of historical AIS data from manned ships will have to be used to provide the baseline support for MASS (Chen et al., 
2021). With the growth of MASS, more trajectory data involving MASS could be obtained and then used to support the updated 
analysis of MASS route planning. MASS should be categorized based on the cargo they carry, hence following the same/similar routes 
of the same types of manned cargo ships currently used. Consequently, it is beneficial to analyze the clustering results based on the 
SCAF method for the whole fleets and different ship types. 

The pattern extraction problem is to solve the number of clusters k and the optimal clusters C1,C2,⋯,Ck from the historical AIS data 
based on the SCAF method as the pattern library. 

Problem 3. How to set the movement pattern reference for different types of MASS? 

Different types of ships have significant diversity in their navigational characteristics and patterns. It is therefore essential to 
classify the historical trajectory data to design the routes for different types of MASS. The trajectories of cargo ships, tankers, and 
container ships are identified using MMSI from the historical AIS data, which serves as the datasets. The navigation route reference 
problem of different types of MASS is to mine the patterns C1

1,C1
2,⋯,C1

k1 for cargo ships, C2
1,C2

2,⋯,C2
k2 for tankers, and C3

1,C3
2,⋯,C3

k3 for 
container ships based on the SCAF method, respectively. Meantime, the number of clusters k1, k2, and k3 can be calculated in the 
solving process. 

Problem 4. How to plan safe navigation routes based on historical AIS data for different types of MASS? 

The configured route that contains the maximum similarity among the trajectories has been used to indicate an acceptable safe 
route (Sarraf and McGuire, 2020; Yu et al., 2023). Within this context, the representation feature centers and route generation al-
gorithm are proposed to plan the safe routes for different types of ships based on the feature extraction method and dynamic pro-
gramming. The safe navigation route planning problem is to excavate safe routes with maximum similarity among trajectories in each 
pattern of C1,C2,⋯,Ck as the representation feature routes in the investigated water area. In particular, the planned representation 
feature routes for cargo ships, tankers, and container ships are solved from the patterns C1

1,C1
2,⋯,C1

k1, patterns C2
1,C2

2,⋯,C2
k2, and 

patterns C3
1,C3

2,⋯,C3
k3 based on the route generation method, respectively. 

4. Methodology 

This section outlines a new methodology of integrating a new movement pattern extraction method and a machine learning-based 
route planning using a global optimization method for MASS route planning. As shown in Fig. 5, the movement pattern extraction 
method includes data preprocessing, a new feature measurement algorithm, a novel trajectory clustering algorithm, and trajectory 
classification to discover ship moving patterns. The new route planning method contains a route optimization method and a feature 
center generation algorithm to automatically make the route planning for MASS. Along with the notations used for problem definitions 
in Section 3, this section employs new notations for the solutions listed in Table 3. 
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4.1. The movement pattern extraction method 

A new movement pattern extraction method has been developed, leveraging exploratory data analysis and innovative data mea-
surement from an unsupervised perspective. It depends on a feature extraction method and a novel trajectory clustering method. The 
feature extraction method enables the development of the trajectory similarity measurement to increase the similarity and enlarge 
dissimilarity. The proposed AADTW method is used to alleviate the pathological correspondence between trajectories and accurately 
calculate the distance between trajectories. Furthermore, the SCAF method is put forward to extract the movement patterns auto-
matically based on the trajectory features. The SCAF algorithm integrates a new clustering index function and the affinity feature into 
an improved spectral clustering method to achieve unsupervised pattern extraction with better performance. 

4.1.1. The original feature extraction method 
The original DTW can minimize the cumulative distance between two trajectories with local optimization. The dynamic warping 

route of the trajectories Tram and Tran is selected from the distance matrix ANm×Nn , and the distance between points Pm
i and Pn

j is d(Pm
i ,

Pn
j ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Pm
i − Pn

j )
2

√

∈ ANm×Nn = {ai, j}. Then the distance between all points in the two trajectories Tram and Tran is expressed as 

ANm×Nn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1, 1 a1, 2 ⋯ a1, (Nn − 1) a1, Nn

a2, 1 a2, 2 ⋯ a2, (Nn − 1) a2, Nn

⋮ ⋮ ⋱ ⋮ ⋮
aNm − 1, 1 aNm − 1, 2 ⋯ a(Nm − 1), (Nn − 1) a(Nm − 1), Nn

aNm , 1 aNm , 2 ⋯ aNm , (Nn − 1) aNm , Nn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d
(
Pm

1 ,P
n
1

)
d
(
Pm

1 ,P
n
2

)
⋯ d

(
Pm

1 ,P
n
Nn − 1

)
d
(
Pm

1 ,P
n
Nn

)

d
(
Pm

2 ,P
n
1

)
d
(
Pm

2 ,P
n
2

)
⋯ d

(
Pm

2 ,P
n
Nn − 1

)
d
(
Pm

2 ,P
n
Nn

)

⋮ ⋮ ⋱ ⋮ ⋮
d
(
Pm

Nm − 1,P
n
1

)
d
(
Pm

Nm − 1,P
n
2

)
⋯ d

(
Pm

Nm − 1,P
n
Nn − 1

)
d
(
Pm

Nm − 1,P
n
Nn

)

d
(
Pm

Nm
,Pn

1

)
d
(
Pm

Nm
,Pn

2

)
⋯ d

(
Pm

Nm
,Pn

Nn − 1

)
d
(
Pm

Nm
,Pn

Nn

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5) 

The essence of the DTW is to calculate the distance matrix between two trajectories to find the optimal warping path. The warping 
path W = {W1,⋯,Wt ,⋯,WK} with K denotes the length of the warping path and the normalizing factor (Kwong et al., 1998; Rashidi 
et al., 2015), max{Nm,Nn}〈K⩽Nm + Nn − 1. 

Every warping path has to meet the following conditions (Keogh and Ratanamahatana, 2005; Petitjean et al., 2011): 
(1) Boundary condition: W1 = a1, 1,WK = aNm , Nn ; 
(2) Continuity: if Wt− 1 = ai′ , j′ ,Wt = ai, j, then i − i′⩽1, j − j′⩽1; 
(3) Monotonicity: if Wt− 1 = ai′ , j′ ,Wt = ai, j, then i − i′ ⩾0, j − j′ ⩾0, the time at each point is also monotonic in W. 
The schematic diagram of the distance matrix for trajectories Tram and Tran is displayed in Fig. 6 (a), while the green route is the 

optimal warping route received by the DTW method. Take the largest and smallest K as examples to explain the warping path W in 
Fig. 6 (b). The light blue route is the warping path with the minimum K when Nm > Nn. The warping path with the length K = Nm is 
W =

{
a1, 1, a2, 1,⋯, a(Nm − Nn − 1), 1, a(Nm − Nn), 1,⋯, a(Nm − 3), (Nn − 3), a(Nm − 2), (Nn − 2), a(Nm − 1), (Nn − 1), aNm , Nn

}
. While the dark blue route is the 

warping path with the maximum K = Nm +Nn − 1,Nm > Nn and the warping path is W =
{
a1, 1, a1, 2,⋯, a1, (Nn − 1),

a1, Nn , a2, Nn ,⋯, a(Nm − 2), Nn , a(Nm − 1), Nn , aNm , Nn

}
. 

Fig. 6. The schematic diagram of the DTW algorithm, (a) the schematic diagram of the distance matrix for trajectories Tram and Tran, and (b) the 
schematic diagram of the warping paths based on the DTW method. 
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The DTW method aims to find the optimal warping path, i.e. the minimum warping path. The path with the lowest warping cost in 
the original DTW (Berndt and Clifford, 1994) is given by 

DTW(Tram, Tran) = min

{
1
K

∑K

t=1
Wt

}

(6) 

s.t. 

D(1, 1) = d
(
Pm

1 ,P
n
1

)
(7)  

D(i, j) = d
(
Pm

i ,P
n
j

)
+ min{D(i, j − 1),D(i − 1, j − 1),D(i − 1, j)}

i⩾2, i = 1,⋯,Nm; j⩾2, j = 1,⋯,Nn

(8) 

The objective function (i.e. Eq. (6)) minimizes the warping route, where 
∑K

t=1Wt is the sum of the elements in the warping route. 
Constraint (7) mandates that to determine the correspondence between the points, the warping path needs to commence from the first 
point of the two trajectories. Constraint (8) indicates that there are three different choices from the previous step (i.e. (i, j − 1), (i-1, j −
1), and (i-1, j)) to reach the point (i, j). The range of i and j implies that once the mapping relationship between the initial points of the 
two trajectories has been established, the subsequent corresponding relationships are determined by starting from the second point, 
and the minimum distance is guaranteed. 

4.1.2. A new feature extraction method 
To find the optimal global similarity between trajectories and avoid their overstretch, a new AADTW method is developed based on 

the optimal warping routes and the dynamic weights to different steps. The proposed AADTW method includes two innovative fea-
tures: limiting the searching range and implementing dynamic weights based on the usage counts of each point. 

Given the usage counts of each point in a warping process N(i, j), i = 1,⋯,Nm; j = 1,⋯,Nn and the dynamic weight wi,j =

Nm+Nn
2max(Nm ,Nn)

• N(i, j), which can be adaptively controlled based on a cumulative usage factor. The problem of the optimal global warping 
path based on the proposed AADTW can therefore be formulated by a mathematical model as follows: 

AADTW(Tram,Tran) = min

{
1
K

∑K

t=1
Wt

}

(9) 

s.t. 

AD(1, 1) = d
(
Pm

1 ,P
n
1

)
(10)  

AD(i, 1) = AD(1, j) = +∞ (11)  

Fig. 7. The schematic diagram and results of the DTW and proposed AADTW methods, (a) the warping path of DTW, (b) the warping path of 
AADTW, (c) the corresponding result based on DTW, and (d) the corresponding result based on AADTW. 

H. Li and Z. Yang                                                                                                                                                                                                     



Transportation Research Part E 176 (2023) 103171

15

AD(i, j) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 + wi− 1,j

)
• d

(
Pm

i ,P
n
j

)
+ AD(i − 1, j),

d
(
Pm

i ,P
n
j

)
+ AD(i − 1, j − 1),

(
1 + wi,j− 1

)
• d

(
Pm

i ,P
n
j

)
+ AD(i, j − 1),

(12)  

wi,j =
Nm + Nn

2max(Nm,Nn)
• N(i, j) (13)  

N(i, j)⩽N
(

i+
Nm

3
, j
)

, N(i, j)⩽N
(

i, j+
Nn

3

)

i⩾2, i = 1,⋯,Nm; j⩾2, j = 1,⋯,Nn

m = 1,⋯,M; n = 1,⋯,M

(14) 

The objective function (i.e. Eq. (9)) minimizes the warping route, where 
∑K

t=1Wt is the sum of the elements in the warping route. 
Similar to constraint (7), constraint (10) also denotes that the warping path needs to start from the first point of the two trajectories. 
Constraint (11) indicates the avoidance of all points in one trajectory corresponding to a point in another trajectory. Constraint (12) 
shows that there are three different choices from the previous step (i.e. (i, j − 1), (i-1, j − 1), and (i-1, j)) to step (i, j) in the proposed 
AADTW method. As seen in Eq. (12), the j-th point in the Tran is used again if the path is from (i − 1, j) to (i, j), then the weight wi− 1,j will 
increase to constrain the overstretching. Similarly, the i-th point in the Tram is reused if the path is from (i, j − 1) to (i, j), then the 
weight wi,j− 1 will increase to constrain the overstretching. There is no weight if the path is from (i-1, j − 1) to (i, j). Constraint (13) 
expresses the dynamic weights based on the usage counts of each point and the length of two trajectories Tram and Tran. Constraint (14) 
denotes the limitation of usage counts of each point, defined by Nm

3 and Nn
3 , representing the length and width of the search space. i and j 

indicate the range of points in two trajectories Tram and Tran, respectively. 
The distance between any two trajectories can be calculated by Eq. (9) to form the final similarity matrix of M trajectories (i.e. 

AADTWM×M) in the whole dataset. The AADTW method is to find the most similar route and eliminate the overstretching within a 
certain boundary by Eq. (14). 

The pseudocode of the AADTW algorithm is shown in Algorithm 1.  

Algorithm 1: AADTW algorithm. 

Input: The trajectories Tram with length Nm and Tran with length Nn. 
Output: AADTW(Tram,Tran). 
1. Initialize: Zero matrices TNm and TNn denote the usage counts of points in the trajectories Tram and Tran. 
TNm (1, 1) = TNn (1, 1) = 1 and TNm (i, j) = TNn (i, j) = 0. 
AD(1,1) = d(Pm

1 , Pn
1) indicates the calculation process starts at the first point in trajectories Trm and Trn. 

2. AD(i,1) = AD(1, j) = + ∞. 
3. for i=1: Nm do 
4. for j=1: Nn do 
5. AD1 = di,j + wi− 1,j • di,j + AD(i − 1, j); 
6. AD2 = di,j + AD(i − 1, j − 1); 
7. AD3 = di,j + wi,j− 1 • di,j + AD(i, j − 1); 
8. AD(i, j) = min(AD1,AD2,AD3); 
9. W(i, j) = min index[(i − 1, j), (i − 1, j − 1), (i, j − 1)]; 

10. N(i, j)⩽N
(
i+

Nm

3
, j
)
, N(i, j)⩽N

(
i, j+

Nn

3

)

; 

11. if AD(i, j) = = AD1; 
12 then TNm (i, j) = 1, TNn (i, j) = TNn (i − 1, j) + 1; 
13. else if AD(i, j) = = AD2; 
14. then TNm (i, j) = 1, TNn (i, j) = 1; 
15. else AD(i, j) = = AD3; 
16. then TNm (i, j) = TNm (i, j − 1) + 1, TNn (i, j) = 1. 
17. ADTrm ,Trn = AD(Nm,Nn). 
18. end if 
19. end for 
20. end for  

Fig. 7 illustrates the schematic diagrams and corresponding results of the DTW and AADTW methods, both of which aim to identify the 
optimal warping path with the lowest warping cost. The warping cost is inversely proportional to the similarity between the two 
trajectories. The warping window, represented by the blue box in Fig. 7, is computed using Eq. (14) to restrict the scope of optimal 
feature extraction. The green squares in Fig. 7 (a) and (b) represent the optimal warping path and the best features between two 
trajectories identified by the traditional DTW and the newly proposed AADTW methods, respectively. The globally optimal path is 
taken as the sum of all green routes. The correspondence between the two trajectories is depicted in Fig. 7 (c) and (d). The results of the 
comparison in Fig. 7 (c) and (d) clearly indicate that the proposed AADTW method does not suffer from the issue of overstretching that 
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is present in the original DTW method. 

4.1.3. The proposed feature identification method 
A new unsupervised SCAF algorithm is designed for conducting trajectory clustering and support pattern extraction. It is unsuitable 

to use traditional point clustering methods such as K-means, hierarchical-based, and density-based methods to directly undertake 
trajectory clustering due to the large data volume and lack of global features (Li et al., 2017, 2018a). To achieve accurate features and 
mine the complete patterns of ship trajectories, an unsupervised SCAF algorithm is developed in this paper by integrating two parts: a 
new clustering index function and an improved spectral clustering with affinity features. The proposed clustering index function can 
automatically receive the number of clustering centers in the process of graph optimization. Then, the SCAF, integrating the essence of 
affinity propagation, can automatically be applied to extract the movement patterns. The unsupervised SCAF algorithm can be used for 
the situational awareness and route planning system design of MASS. 

Traditional index functions are used to evaluate the clustering performance separately. For instance, the Silhouette Coefficient (SC) 
index (Layton et al., 2013) can help measure the similarity between the clusters by comparing the degree of compactness and sepa-
ration for different clusters, while the Calinski-Harabasz Score (CHS) index (Chen et al., 2022) can compare the similarity of within- 
cluster and between-cluster. The larger these two indexes, the better the clustering performance. However, no single index can capture 
all aspects of clustering quality, and a combination of multiple indexes can therefore provide more information in evaluating clustering 
performance (Jaskowiak et al., 2016). 

To address this challenge, a new optimal function is formulated by combining the maximum similarity ratio of the within-cluster 
and the between-cluster, as well as the maximum ratio of the between-cluster scatter and within-cluster scatter. This hybrid model 
provides a more accurate and comprehensive measure of the clustering quality than the case of using individual measures, and can help 
researchers determine the appropriate number of clusters for their data. A new clustering index function is developed based on the 
degree of compactness and separation and the distance within and between clusters. The larger the new index, the better the clustering 
performance. 

The ship trajectories can be mapped into points based on the graph theory. Then, the distance between the points can be measured 
by the similarity matrix between trajectories. More specifically, the hybrid model of combining the maximum similarity ratio of the 
within-cluster and the between-cluster and the maximum ratio of the between-cluster scatter and within-cluster scatter is formulated 
as the new optimal function to calculate the number of clustering centres. The optimization goal is formulated as 

f (k) = max
k

∑|Ch |

x=1
s(x) + max

k

Tr(Bkc )

Tr(Wkc )
×

(k − kc)
(kc − 1)

(15) 

s.t. 

∑|Ch |

x=1
s(x) =

∑|Ch |

x=1

b(x) − a(x)
max{a(x), b(x)}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
a(x)
b(x)

, a(x) < b(x)

0
b(x)
a(x)

− 1, a(x) > b(x)

(16)  

a(x) =
∑

x′ ∈Ckc ,x∕=x′ d(x, x
′

)

|Ckc | − 1
(17)  

b(x) = min
1⩽h⩽k,h∕=kc

∑
x′′∈Ch

d(x, x′′)
|Ch|

, h = 1,⋯, k (18)  

Tr(Bkc ) =
∑kc

o=1
‖co − c‖2 (19)  

Tr(Wkc ) =
∑kc

o=1

∑
‖x − co‖22

, o = 1,⋯, kc (20) 

The objective function (i.e. Eq. (15)) indicates the result of maximizing intra-class similarity and inter-class dispersion. a(x) in 
constraint (17) expresses the average distances between a sample x and all the other samples x′ in the same cluster. b(x) in constraint 
(18) shows the minimum average distances between a sample x and all the other samples x′′ in other clusters. Tr(Bkc ) and Tr(Wkc ) in 
constraints (19) and (20) denote the trace of the between-cluster and the within-cluster scatter matrix, respectively. 

The number of clustering centers is determined by the new clustering index function from Eq. (15). The proposed SCAF algorithm 
and the solution method are presented as follows. 

Problem modeling. Given a ship trajectory dataset Tra = {Tra1,⋯,TraM} , the result of the proposed SCAF is to solve k clusters C1,

C2,⋯,Ck, where C1 ∪ C2 ∪ ⋯ ∪ Ck = V, C1 ∩ C2 ∩ ⋯ ∩ Ck = ∅ (Li et al., 2022). The trajectories are mapped into vertexes based on the 
graph theory and the similarity matrix. Then the ship trajectory dataset Tra is converted into the point dataset V = {V1,⋯Vp,⋯,VM},

p = 1,⋯,M with the edge weight E = ACDTW(Trm,Trn). The dataset is formed into an undirected graph G(V, E) based on the result of 
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the AADTW method. 
Suppose the clustering centers are μr, r = 1, ⋯, k. The responsibility matrix R(Vp, μr) is a square matrix that represents the re-

sponsibility of each data point in a cluster to serve as an exemplar for another data point. It measures the availability of a candidate 
exemplar to be selected by other data points. The responsibility matrix can update the current estimates of the exemplars during each 
iteration of the algorithm (Sun and Guo, 2014). The availability matrix, A(Vp,μr), is another square matrix that measures the suitability 
of each candidate exemplar to serve as an exemplar for other data points. It represents the ability of a candidate exemplar to be selected 
by other data points as their exemplar. The availability matrix is utilized to update the current estimates of the cluster centers during 
each iteration of the algorithm (Sun et al., 2017). In essence, the responsibility matrix and the availability matrix work together to 
iteratively update the estimates of the exemplars and the cluster centers until the convergence in the original affinity propagation 
algorithm is reached. 

The edge weight of the m-th trajectory Tram and n-th trajectory Tran is AADTW(Tram, Tran), and the graph cut (i.e. the sum of 
connection weights) is calculated by Eq. (21), 

Cut(Cl,Cl) =
1
2

∑

m∈Cl ,n∕∈Cl

AADTW(Tram,Tran), l = 1,⋯, k (21) 

The total degrees of V in the cluster Cl is vol(Cl) =
∑

Vm∈Cl
AADTW(Trm, Trm), and the Normalized Cut is Ncut(C1,C2,⋯,Ck) =

Tr(YTLY) (Von Luxburg, 2007). Therefore, the goal of the SCAF clustering method is to solve the Normalized Cut objective function 
through Eq. (22): 

Ncut(C1,C2,⋯,Ck) =
∑k

l=1

Cut(Cl,Cl)

vol(Cl)
=

∑k

l=1

yTl Lyl
yTl Dyl

= Tr
(
YTLY

)
(22) 

Problem-solving. The objective function in Eq. (22) can be converted into 

min
YTDY=I

Tr
(
YTLY

)
(23) 

Suppose the similarity matrix is Q = AADTWM×M and the degree matrix is D = diag(D11,D22,…,DMM), then the Laplacian matrix is 
L = D − Q. Let us normalize the Laplacian matrix, and the property of the Laplacian matrix is obtained as follows. 

Lnorm = D− 1/2LD− 1/2 (24) 

with H = D1/2Y, and then Y = D− 1/2H. Therefore, the problem in Eq. (23) can be rewritten based on the graph Laplacian. 

min
H∈Rm×k

Tr
(
HTLnormH

)

s.t. HTH = Ik
(25) 

Then the first k smallest eigenvalues of the normalized Laplacian matrix Lnorm can be calculated as follows. 

LnormHl = λHl
D− 1/2LD− 1/2Hl = λHl

D− 1/2LD− 1/2D1/2Yl = λD1/2Yl
D− 1L = Yl

(26) 

Finally, Y has the k eigenvectors of D− 1L corresponding to its k smallest eigenvalues, while k is solved by Eq. (15). 
While the similarity matrix is Q(Vm,Vn) = AADTW(Tram,Tran) and the cluster number is k, the clustering centers are μr,r = 1,⋯,k. 
Initialize the responsibility matrix and availability matrix R(Vp, μr) = A(Vp, μr) = 0. R(Vp, μr) and A(Vp, μr) can be iteratively 

calculated based on each row in Y and the similarity matrix W. 

R
(
Vp, μr

)
←s

(
Vp, μr

)
− max

r′ ∕=k

(
s
(
Vp, μr′

)
+ A

(
Vp, μr′

))
,

A
(
Vp, μr

)
←min

{

0,R(Vr′ , μr′ ) +
∑

n′ ∕=m,n

max(0,R(Vi, μr′ ))

}
(27) 

With p = 1,⋯,M; r, r′

= 1,⋯,k. 
The update process is shown as follows: 

Rtt+1
(
Vp, μr

)
= 0.5 ×

[
Rtt+1

(
Vp, μr

)
+ Rtt

(
Vp, μr

)]

Att+1
(
Vp, μr

)
= 0.5 ×

[
Att+1

(
Vp, μr

)
+ Att

(
Vp, μr

)] (28) 

with p = 1,⋯,M; r = 1,⋯,k; tt = 1,⋯,M /3. 
Finally, the update process is ended as the clustering results. 
To have a clear understanding, the flowchart of the SCAF method is illustrated in Fig. 8. The algorithm flow is shown in Algorithm 

2. 
The pseudocode of the unsupervised SCAF algorithm is shown below. Algorithm 2 can be utilized to generate the movement 

patterns C1,C2,⋯,Ck for the entire dataset. Furthermore, movement patterns for specific types of ships, such as cargo ships (i.e. C1,C2,
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⋯,Ck1), tankers(i.e. C1,C2,⋯,Ck2), and container ships (i.e. C1,C2,⋯,Ck3), can also be calculated using the unsupervised SCAF al-
gorithm.  

Algorithm 2: The unsupervised SCAF algorithm. 

Input: The similarity matrix Q = AADTWM×M . 
Output: The movement patterns C1,C2 ,⋯,Ck. 
1. Initialize: zero matrix R(Vp,μr) = A(Vp,μr)

2. Graph network←Q 
3. Degree matrix D←Graph network 
4. L = D − Q 
5. Lnorm←D− 1/2LD− 1/2 

6. Yl = D− 1L 
7. The number of clustering centers k←f(k)
8. k←maxf(k)
9. μr; r = 1,⋯,k←select the k cluster centers from Q 
10. for p=1: M 
11. for tt=1: M/3 
12. R(Vp,μr), A(Vp,μr)←Y,Q 
13. Update Rtt+1(Vp, μr) and Att+1(Vp,μr)

14. Until C1,C2,⋯,Ck are received 
15. end for 
16. end for  

4.2. Route planning algorithm for MASS 

To address the aforementioned optimal local solution and high time complexity in traditional route planning methods, a new route 
planning algorithm is developed based on the similarity and optimization algorithm in this paper. Leveraging the hidden patterns 
revealed by the trajectory clustering, the represented route in each cluster is extracted by the proposed AADTW method and the route 
planning method. The route optimization problem is transformed into a maximum similarity measurement problem, which is 
essentially a minimum distance calculation problem. The essence of the optimization in the proposed AADTW method is to calculate 
the similarity and find the best similarity value in each part, i.e., the shortest path, to warp the route based on the Dijkstra algorithm. 

Problem modeling. In order to navigate safely and efficiently, historical AIS data is utilized to determine the optimal route be-
tween ports or within waterways. By analyzing customary routes from historical AIS data, ships can be guided towards a safe and 
effective path at sea. It is also important to take into account the specific navigation characteristics and customary paths of different 
types of ships, such as cargo ships, tankers, and container ships. Therefore, it is crucial to establish distinct routes for each type of vessel 
to ensure safe navigation. The feature trajectory can be defined as the minimum distance from one trajectory to all other trajectories in 
each cluster of the whole dataset, cargo ship dataset, tanker dataset, and container ship dataset, and find the specific trajectory as the 
safe trajectory. Then a new route planning optimization model is formulated by 

Fig. 9. The experimental flowchart.  

Fig. 8. The flowchart of the proposed SCAF method.  
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f (n) = min
n

∑|Ch |

m=1
min

{
1
K

∑K

t=1
Wt

}

= min
n

∑|Ch |

m=1
AADTW(Trm,Trn)

(29) 

s.t. 

AD(1, 1) = d
(
Pm

1 ,P
n
1

)
(30)  

AD(i, 1) = AD(1, j) = +∞ (31)  

AD(i, j) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 + wi− 1,j

)
• d

(
Pm

i ,P
n
j

)
+ AD(i − 1, j),

d
(
Pm

i ,P
n
j

)
+ AD(i − 1, j − 1),

(
1 + wi,j− 1

)
• d

(
Pm

i ,P
n
j

)
+ AD(i, j − 1),

(32)  

AADTW(Trm,Trn) = AADTW(Trn, Trm) (33)  

wi,j =
Nm + Nn

2max(Nm,Nn)
• N

(
xi,j

)
(34)  

N
(
xi,j

)
⩽
Nm

3
, N

(
xi,j

)
⩽
Nn

3
i⩾2, i = 1,⋯,Nm; j⩾2, j = 1,⋯,Nn

Ch = 1, 2,⋯, k

(35) 

The objective function (i.e. Eq. (29)) aims to minimize the distance from one trajectory to all other trajectories, ultimately iden-
tifying the feature center in each cluster. Constraint (30) ensures that the warping path starts from the first point of both trajectories. 
Constraint (31) restricts all points from one trajectory to be matched with a point in another trajectory. Constraint (32) is to find the 
minimum path in the three choices from the step (i.e. (i, j − 1), (i-1, j − 1), and (i-1, j)) to (i, j) in the proposed AADTW method. 
Constraint (33) requires the distance matrix is a real symmetric matrix. Constraint (34) expresses the dynamic weights, and constraint 
(35) limits the usage counts of each point. Similarly, this optimization model can also be used to generate the optimal routes for cargo 
ships, tankers, and container ships when the input patterns are C1,C2,⋯,Ck1, C1,C2,⋯,Ck2, and C1,C2,⋯,Ck3. 

Problem-solving. Given V←(Tra1,⋯,TraM) and E←{ACDTWM×M}. The goal is to find the minimum distance from one trajectory to 
all other trajectories in the same cluster Ch for the whole dataset with h = 1,⋯,k. 

The trajectory with the maximum similarity with all the other trajectories in each cluster will be determined by Eq. (29). Therefore, 
R1,R2,⋯,Rk are calculated and defined as the optimal routes for different patterns. 

The pseudocode of the proposed route planning method is outlined in Algorithm 3. Step 5 in Algorithm 3 is solved by the objective 
function specified in Eq. (9). Moreover, the same model can be utilized to calculate the optimal routes R1,⋯,Rk1, R1,⋯,Rk2, and R1,

⋯,Rk3 for cargo ships, tankers, and container ships, respectively. The final optimal routes R1,R2,⋯,Rk, R1,R2,⋯,Rk1, R1,R2,⋯,Rk2, and 
R1,R2,⋯,Rk3 are generated to support the navigation of MASS.  

Algorithm 3. Route planning algorithm. 

Input: Cluster C1,C2,⋯,Ck 
Output: The safe routes R1,R2 ,⋯,Rk 
1. Initialize: The similarity matrix AD = ∅ 
2. for h = 1 : k 
3. for m = 1 : |Ch|

4. for n = 1 : |Ch|

5. AD(m,n)←AADTW(Tram,Tran)

6. AD←AD(m,n)
7. f(n)←

∑ni
n=1AD(m,n)

8. Ri
n←min

n
f(n)

9. Ri←Ri
n 

10. end for 
11. end for 
12. end for  
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5. Experimental results and analysis 

5.1. Experimental setting 

The autonomous navigation of unmanned ships needs experience learned from manned ships. Therefore, the research of movement 
patterns based on historical AIS data has important guidance for MASS in the waters with a traffic separation scheme. A traffic sep-
aration scheme, governing the ships of opposite navigational directions in two separate lanes, is often established in areas with 
complex waterways to ensure the safe navigation of ships in maritime traffic management. In this paper, the Chengshan Jiao Prom-
ontory (CJP) area, one of the complex shipping traffic areas with a traffic separation scheme, is chosen to analyze the movement 
patterns and hence develop the route planning for MASS. As one of the busiest coastal waters in the world, the CJP water area has a 
complicated traffic flow and diverse natural environments (wind, wave, current, fog, etc.). Many shipping routes traverse this water 
area, involving geographical regions such as South Korea, Japan, Taiwan, Bohai Bay, Dalian, Dandong Port, and the Shandong 
Peninsula. 

All numerical experiments are performed using 64-bit Windows 10 on a 3.60 GHz Intel Core i9-11900U CPU, 1080 Ti GPU with 32 
GB memory. The proposed algorithms are programmed in MATLAB R2020a and Python. The experimental flowchart is displayed in 
Fig. 9. 

5.2. Data collection and preprocessing 

There are many noise points, missing data, incomplete data, and redundant data in the raw AIS dataset. Data processing is 
indispensable in feature engineering and further guarantees the accuracy of feature mining, such as denoising and compression (Huang 
et al., 2020). Table 4 lists the statistical and geometrical information in the investigated CJP water. The investigated water area is 
defined by a longitudinal range of [122.58, 123.17] and a latitudinal range of [37.16, 37.76]. The MMSI, a unique nine-digit number, 
is selected to identify the different trajectories and classify the ship types in the collected AIS data. The trajectory preprocessing can 
help find the noise and missing data during the data acquisition and transmission processes. Trajectory compression can significantly 
simplify ship trajectories while maintaining the main geometric structure and features. The adaptive trajectory compression method is 
applied to improve the accuracy of feature extraction for MASS route planning (Li et al., 2022; Liu et al., 2019). After the data pre-
processing, the dataset comprises 5944 trajectories containing 288,045 points, as displayed in Fig. 10 (a). The investigated CJP area 
can be defined by the four vertices (122.58, 37.16), (122.58, 37.76), (123.17, 37.16), and (123.17, 37.76). Fig. 10 (b) presents the ship 
traffic separation scheme in the investigated CJP water area. The black solid lines depict the navigation directions of various ships, 
while the irregular pink areas are the defined separation zones in different areas. 

The statistical information of different types of ships is shown in Table 5, with cargo ships ranking first (73.46%), followed by 
tankers (15.36%) and container ships (8.8%). The pattern extraction based on ship type classification is carried out in Section 5.5, 
discovering the hidden features and pattern information to generate navigation knowledge. 

5.3. Feature visualization 

The features are extracted by the proposed AADTW method, and the similarity between trajectories is measured to discern the 
patterns for the following MASS route planning. The visualization results of two-dimensional (2D) and three-dimensional (3D) features 
are displayed in Fig. 11. The 2D result can clearly show the differences in the similarity between trajectories, while the 3D image can 
further reveal the differences between different patterns. Comparing the results in Fig. 11 (a) and (b), the similarities among trajec-
tories are highlighted to emphasize the high similarity. Furthermore, the comparison results from Fig. 11 also aid in verifying the 
effectiveness of the proposed AADTW method. 

5.4. Pattern extraction results and analysis 

To mine and discover the movement patterns quickly and accurately, the 5944 trajectories with 288,045 points are mapped into 
5944 points based on feature isometric transformation using the proposed SCAF method in Section 4.2. The optimal k is calculated as 
the number of clustering centers according to Eq. (15) based on the proposed internal evaluation index function. The optimal value is 
determined to be the best when k = 11. The pattern extraction is carried out after setting the number of clustering to 11 in the abstract 
graph space based on the SCAF method. The final movement pattern extraction results are displayed in Fig. 12. 

The 11 different movement patterns are discovered from the historical AIS trajectory data that can be viewed as a reference for 
abnormal behaviors. The difference between the routing scheme and the actual routing can also be found by comparing the routing 
scheme of vessels in the CJP water with Fig. 12. The movement pattern 3 is prohibited in the routing scheme, while it can still be 
extracted in the historical AIS trajectories data. A thorough analysis is conducted to find the reason for this pattern. The ship types 
information indicates that the trajectories of pattern 3 are derived from the patrol vessel, rescue ship, and others. 

The pattern findings can be used to discern abnormal routes and behaviors when comparing the pattern results with the routes in 
the traffic separation scheme. Finally, the movement patterns provide navigation support to the route planning for MASS. 

To further analyze the information on different patterns, the pattern descriptions are listed to explore the navigation purposes from 
an overall perspective in Table 4. It shows the moving characteristics and directions in the investigated CJP area. The number of 
trajectories in each pattern is presented in Table 4, which helps uncover how busy different routes are. It also indicates the traffic 
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situations and trade flows of different waterways. Maritime authorities can therefore increase their capacity to supervise busy wa-
terways or channels to ensure navigation safety. From the number and percentage comparison in Table 6, the top five patterns are 11, 
7, 4, 10, and 6, indicating the high traffic density in navigation networks. 

To verify the accuracy and effectiveness of pattern extraction, we select the Gaussian mixture model to fit the similarity distribution 
in each cluster (Li et al., 2022). The features of the within-cluster are extracted based on the AADTW algorithm. Then the Gaussian 
fitting function is applied to measure the degree of compactness in different clusters. The fitting results of different patterns are shown 
in Table 7. The fitting performance evaluation based on R2, Adjusted R2 and Root Mean Square Error (RMSE). The closer both R2 and 
Adjusted R2 are to 1, the better fitting result is. As shown in Table 11, the values of R2, Adjusted R2, and RMSE all fall in a reasonable 
range. The ranges of R2 and Adjusted R2 belong to [0.9793,0.9999] in each cluster. Therefore, the Gaussian fitting results further verify 
the effectiveness and accuracy of pattern extraction based on the SCAF method. 

Fig. 10. Visualisation of the ship traffic separation scheme and the dataset after cleaning in the CJP water area.  

Table 5 
Different types of ships.  

Type Raw dataset After data preprocessing 

Number of ships Percentage (%) Number of points Number of ships Percentage (%) Number of points 

Cargo ship 6720 73.46 5,101,617 4299 72.33 187,912 
Tanker 1405 15.36 1,098,657 1033 17.38 66,569 
Container ship 805 8.80 577,092 501 8.43 29,879 
Fishing vessel 64 0.70 59,630 21 0.35 235 
Tugboat 40 0.44 57,679 24 0.40 379 
Passenger ship 35 0.38 15,946 20 0.34 628 
Ground-effect ship 14 0.15 7580 7 0.12 592 
Patrol vessel 8 0.09 5203 7 0.12 655 
Dredging vessel 7 0.08 4349 7 0.12 286 
Pilot vessel 5 0.05 1564 4 0.07 214 
Rescue ship 5 0.05 2420 3 0.05 496 
Others 40 0.44 31,113 18 0.30 434 
All 9148 1 6,931,737 5944 1 288,045  

Table 4 
The dataset information in the CJP water area.  

Date Dataset Number of ships Number of points Boundary points Longitude (◦) Latitude (◦) 

March 2018 Original 9148 6,931,737 Left top  122.58  37.16 
After cleaning 5944 288,045 Right bottom  123.17  37.76  
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5.5. Ship classification analysis 

5.5.1. Pattern extraction result and verification for cargo ship 
The number of cargo ships accounts for 72.33% of the ship trajectory dataset. The features of cargo ship trajectories are extracted 

based on the proposed AADTW method. The 2D and 3D visualization results are displayed in Fig. 13, revealing that the difference in 
similarity between the trajectories is evident. 

The number of clustering centers is obtained after the similarity feature extraction is calculated based on Eq. (15). The optimal k is 
10 from the function. The patterns of cargo ships are discerned based on the proposed SCAF method, shown in Fig. 14. There are ten 
patterns in the cargo ship trajectories. Although the ten patterns are included in the eleven patterns in the whole dataset, the features of 
the ten patterns are not the same as those in the eleven patterns. The essence of the difference is determined by the inherent navigation 
characteristic. The results also demonstrate the necessity of ship classification analysis, which provides more accurate route planning 
results for different types of ships. 

The detailed pattern descriptions are listed in Table 8. The number and percentage of each cluster are compared to show the 
difference in different patterns. Table 8 depicts the moving characteristics and directions of cargo ships in the investigated CJP area. 
The first four patterns are 6, 10, 7, and 9, illustrating that the main navigation areas of cargo ships are between the southeast and south 
areas of the investigated waters. 

Furthermore, the Gaussian mixture model based on AADTW is applied to fit the similarity distribution within each cluster, which 

Fig. 11. Visualization of 2D and 3D results of original DTW and the proposed AADTW feature extraction method, (a) the results of the original 
feature extraction method by DTW, and (b) the results of the new feature extraction method by the proposed AADTW. 

H. Li and Z. Yang                                                                                                                                                                                                     



Transportation Research Part E 176 (2023) 103171

23

enables the exploration of the within-cluster characteristics. The fitting results of the three indexes in the different patterns are shown 
in Table 9, indicating that the three evaluation indexes further verify the effectiveness of clustering results. 

5.5.2. Pattern extraction result and verification for tanker 
The number of tankers accounts for 17.38% of the dataset. Similarly to the analysis of cargo ships in Section 5.5.1, the 2D and 3D 

feature visualization results of tanker trajectories are illustrated in Fig. 15. The features are better extracted to aid the pattern 
extraction. 

The optimal number of clustering centers is calculated as 9 based on Eq. (15). The pattern extraction results of tankers are displayed 
in Fig. 16, and the nine patterns also show differences from the patterns in the whole dataset. The pattern extraction results of tankers 
can help make route planning more accurate according to the inherent navigation characteristic. Therefore, the pattern extraction 
based on the ship classification is useful for planning routes for MASS with different purposes. As shown in Table 10, patterns 2, 3, and 
8 occupy the top three seats, accounting for more than 15% of the tanker trajectories. The results of the pattern extraction and their 
corresponding descriptions reveal that the well-established routes lie in the west, southeast, and south areas of the investigated waters, 
as shown in Fig. 16 and Table 10. These findings are useful for providing references for planning routes, managing traffic, and guiding 
the voyage. 

Fig. 12. The results of movement pattern extraction in the investigated CJP water area.  

Table 6 
Pattern description in the whole AIS dataset.  

No. Pattern description Number Percentage (%) No. Pattern description Number Percentage (%) 

1 Southeast-Northwest 281 4.73 7 South-North-West 1505 25.32 
2 South-North-Northwest (right) 161 2.71 8 Northwest-Southeast-South (middle) 215 3.62 
3 East-West 15 0.25 9 Northwest-Southeast-South (right) 17 0.29 
4 South-North-Northwest (middle) 836 14.06 10 Northwest-Southeast 425 7.15 
5 Northwest-Southeast-South (left) 147 2.47 11 West-Southeast-South 2031 34.17 
6 Northwest-Southeast (center) 311 5.23      

Table 7 
The fitting performance evaluation.  

No. R2 Adjusted R2 RMSE No. R2 Adjusted R2 RMSE 

1  0.9980  0.9980 76.94 7  0.9998  0.9998 838.70 
2  0.9939  0.9938 69.18 8  0.9996  0.9996 34.39 
3  0.9913  0.9803 5.74 9  0.9988  0.9983 1.96 
4  0.9801  0.9830 377 10  0.9998  0.9998 114.90 
5  0.9795  0.9793 37.89 11  0.9999  0.9999 881.10 
6  0.9999  0.9999 36.31      
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The within-cluster similarity distribution is further analyzed to discover the intrinsic rules and verify the accuracy of pattern 
extraction. The proposed AADTW algorithm is applied to calculate the similarity matrix in each cluster, and then the Gaussian mixture 
model is used to fit the similarity distribution. Table 11 displays the results of three evaluation indexes in each cluster. The results of 
both R2 and Adjusted R2 in six clusters are close to 1, while the RMSE values are close to 0. The results therefore verify the effectiveness 

Fig. 13. Visualization of 2D and 3D results of the AADTW feature extraction method.  

Fig. 14. The results of movement pattern extraction of cargo ships.  

Table 8 
Pattern description of cargo ship trajectories.  

No. Pattern description Number Percentage (%) No. Pattern description Number Percentage (%) 

1 Northwest-Southeast-South (right) 30  0.70 6 West-Southeast-South 1214  28.24 
2 Northwest-Southeast-South (middle) 144  3.35 7 South-North-Northwest (middle) 673  15.65 
3 Northwest-Southeast (center) 195  4.54 8 Northwest-Southeast 252  5.86 
4 South-North-Northwest (right) 106  2.47 9 Northwest-Southeast-South (left) 478  11.12 
5 Southeast-Northwest 187  4.35 10 South-North-West 1020  23.73  
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of pattern extraction based on the SCAF method. 

5.5.3. Pattern extraction result and verification for container ship 
The container ship is one of the important ship types in the dataset, accounting for 8.43% of the total. The 2D and 3D feature 

visualization results of container ship trajectories are shown in Fig. 17 based on the proposed AADTW algorithm. It is evident that the 
features are more obvious to aid the pattern extraction. 

Table 9 
The fitting performance evaluation.  

No. R2 Adjusted R2 RMSE No. R2 Adjusted R2 RMSE 

1 0.9993 0.9991 4.27 6  0.981  0.9808 2099 
2 1 1 1.30 7  0.9932  0.9931 175.10 
3 1 1 2.84 8  0.9997  0.9997 28.07 
4 0.9892 0.989 37.01 9  0.9685  0.9682 448.10 
5 0.9893 0.9891 77.41 10  0.987  0.9869 739.90  

Fig. 15. Visualization of 2D and 3D results of the AADTW feature extraction method.  

Fig. 16. The results of movement pattern extraction of tankers.  

H. Li and Z. Yang                                                                                                                                                                                                     



Transportation Research Part E 176 (2023) 103171

26

Table 10 
Pattern description of tanker trajectories.  

No. Pattern description Number Percentage (%) No. Pattern description Number Percentage (%) 

1 Southeast-Northwest 48  4.65 6 Northwest-Southeast-South (middle) 20  1.94 
2 West-Southeast-South 401  38.82 7 Northwest-Southeast-South (right) 4  0.39 
3 South-North-West 256  24.78 8 South-North-Northwest (middle) 173  16.75 
4 South-North-Northwest (right) 14  1.36 9 Northwest-Southeast 42  4.07 
5 Northwest-Southeast 75  7.26      

Table 11 
The fitting performance evaluation.  

No. R2 Adjusted R2 RMSE No. R2 Adjusted R2 RMSE 

1 1 1  1.200 6 0.9994 0.9991  2.641 
2 1 1  37.140 7 1 1  0.001 
3 1 1  13.890 8 0.9999 0.9999  10.460 
4 0.9938 0.986  1.950 9 1 1  0.914 
5 1 1  4.679      

Fig. 17. Visualization of 2D and 3D results of the AADTW feature extraction method.  

Fig. 18. The results of movement pattern extraction of container ships.  

Table 12 
Pattern description of container ship trajectories.  

No. Pattern description Number Percentage (%) No. Pattern description Number Percentage (%) 

1 South-North-Northwest (middle) 136  27.15 5 Northwest-Southeast 76  15.17 
2 Southeast-Northwest 48  9.58 6 Northwest-Southeast (Reader) 37  7.39 
3 Northwest-Southeast-South (left) 126  25.15 7 South-North-Northwest (right) 34  6.79 
4 Northwest-Southeast-South (middle) 44  8.78      
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The number of clustering centers in container ship trajectories is defined as 7 by Eq. (15). The pattern extraction results are 
illustrated in Fig. 18 to visualize the distribution of the moving features. The detailed pattern descriptions are listed in Table 12, 
revealing that patterns 1, 3, and 5 (which account for more than 15%) are at the top of the list in the container ship trajectories. The 
best-fit historical routes in container ship trajectories are Northwest-South, South-Northwest, and Northwest-Southeast. The com-
parison results among Figs. 14, 16, and 18 show that different types of ships have distinct navigation characteristics and preferred 
routes. Therefore, it is necessary and indispensable to conduct pattern extraction based on ship classification for the route planning of 
MASS with different purposes. 

The intrinsic rules of within-cluster distribution are explored to verify the accuracy of pattern extraction based on the proposed 
AADTW algorithm and the Gaussian mixture model. The fitting performance evaluation index results are presented in Table 13, 
demonstrating the effectiveness of pattern extraction based on the SCAF method. 

5.5.4. Pattern comparison 
The comparison results of different ship types, including cargo ships, tankers, and container ships, are displayed in Fig. 19, 

revealing their historical trajectory patterns. Cargo ships display the main patterns in clusters 6, 7, 8, and 10, while tankers belong to 
clusters 2, 3, and 8, and container ships belong to clusters 1, 3, and 5. It is noteworthy that the patterns used for different ship types are 
significantly different. The patterns are labeled with clusters 1–11, and the movement patterns and customary routes vary across 
different ship types. Therefore, route planning based on the results of pattern mining is proved to be a rational and effective approach 
to managing MASS with different purposes. 

5.6. Route planning for MASS 

The route planning function for MASS is solved from a new data-driven perspective by the AADTW algorithm among the different 
movement patterns, as described in Section 4.2. A globally optimal solution is found by identifying the similar features in each pattern. 
The final patterns and the planning routes in the target CJP area are presented in Fig. 20. All the patterns are discovered by the SCAF 
method from historical AIS trajectory data, as shown in Fig. 20 (a) – (d). The route planning results of different types of ships in the 
investigated waters are displayed in Fig. 20 (e) – (h). The whole dataset includes 11 different routes in the target area based on different 
trading routes, which can provide multiple selections for the autonomous navigation of MASS. Different types of ships have different 
navigational characteristics and modes. Therefore, it is vital to conduct trajectory classification research for the knowledge discovery 
to support route planning of MASS with different purposes. 

From the route planning comparison results in Fig. 20 (e) – (h), cargo ships are the main type of ships in the investigated CJP water 
area. There are ten patterns in the whole dataset, which can provide references for the manned ships, the mixture of manned and 
unmanned ships, and MASS. Tankers present the second main type in the CJP waters, and the nine routes are derived from the 
movement patterns and provide plans based on a ship’s original and destination ports. Container ships have seven alternative routes in 
this area. The results can be used to develop an automatic system to guide MASS depending on the pair of original and destination 
ports. Meantime, the seven routes provide sufficient resilient alternatives for tackling the occurrence of any unexpected accident in this 
area that influences the initially planned route. 

Traditional route planning is to design the routes between different ports for ships to find the shortest and/or the lowest-cost routes. 
The proposed method aids in planning different routes for MASS in the same water according to their best-established navigation 
behavior and navigation purposes. All these results help build a foundation to support the realization of MASS navigation. 

6. Conclusion 

In this paper, an AIS data-based machine learning method is developed to conduct feature extraction and unsupervised route 
planning for MASS using the AADTW, SCAF, and a new route optimization algorithm. Unlike classical ship route planning methods, the 
newly developed data-driven machine learning method simulates the best-established shipping routes for different types of ships in 
waters of complex traffic. These routes can then be used to guide both MASS and/or manned ships separately or jointly. The proposed 
method makes significant contributions to route planning involving real-time collision avoidance in the sense that key hotspots of 
intersections of the developed routes will be paid more safety attention from a temporal analysis perspective. The proposed AADTW 
method can extract valuable and accurate features to aid pattern mining, while the unsupervised machine learning method SCAF helps 
obtain the movement patterns without parameter intervention and address an optimal local problem that existing methods fail to 
solve. Historical AIS data-based analysis and mining can further discover actual navigation routes and aid route planning for MASS 
effectively. 

Table 13 
The fitting performance evaluation.  

No. R2 Adjusted R2 RMSE No. R2 Adjusted R2 RMSE 

1  0.9999  0.9999 5.829 5 1 1  3.275 
2  0.9999  0.9999 3.115 6 1 1  0.785 
3  0.9992  0.9992 7.991 7 0.9996 0.9994  3.777 
4  0.9979  0.9971 11.540      
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Fig. 19. The comparison result of trajectory data flow.  

Fig. 20. The final pattern libraries and the route planning results, (a) the pattern results in the investigated waters, (b) the pattern results of cargo 
ships, (c) the pattern results of tankers, (d) the pattern results of container ships, (e) the planned routes in the investigated waters, (f) the planned 
routes for cargo ships, (g) the planned routes for tankers, and (h) the planned routes for container ships. 
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The trajectory classification results provide support for different types of MASS. Due to the joint impact of multiple factors 
influencing safe navigation in complex waters, the trajectory classification-based route planning method in this study reveals a few 
advantages over the state-of-the-art methods. For instance, it can effectively solve the local-level optimal problem by integrating the 
movement patterns from historical AIS data and features obtained by the proposed AADTW method into route planning. Furthermore, 
the proposed method can find different routes for different types of MASS in the same water to best fit their navigation purposes. 
Traditional collision avoidance routing methods require setting assumptions due to the high number of influential factors, such as the 
target ship’s tentative behaviors. The newly proposed method can make effective route recommendations based on big data, inherently 
taking into account the impact of the hidden factors. 

The proposed method has significant managerial implications and benefits, including the provision of safe routes in specific areas 
for MASS to ensure the safety of hybrid traffic, guiding different ship types to navigate through areas of complicated traffic safely, 
hence reducing the burdens for port management officers. Moreover, the generated safe routes for MASS can provide references for 
crews in manned ships to guarantee the safety of mixed traffic in the near future. The findings of the route planning for MASS can also 
reduce human intention and improve the reliability of MASS remote controllers. Finally, the proposed methodology allows MASS 
system software engineers to embed more parameters influencing safe routing into their design and manufacturing. 

Future work could focus on the combination of route prediction, route planning, and GPU-accelerated ensemble algorithms for 
MASS realization. Meanwhile, the feature extraction of deep clustering without parameters is another promising research direction to 
provide seamless support for the route design and update for MASS. 
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