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ABSTRACT
Nowadays, many scientific workflows from different domains, such
as Remote Sensing, Astronomy, and Bioinformatics, are executed
on large computing infrastructures managed by resource managers.
Scientific workflow management systems (SWMS) support the
workflow execution and communicate with the infrastructures’
resource managers. However, the communication between SWMS
and resource managers is complicated by a) inconsistent interfaces
between SMWS and resource managers and b) the lack of support
for workflow dependencies and workflow-specific properties.

To tackle these issues, we developed the Common Workflow
Scheduler Interface (CWSI), a simple yet powerful interface to
exchange workflow-related information between a SWMS and a
resource manager, making the resource manager workflow-aware.
The first prototype implementations show that the CWSI can reduce
the makespan already with simple but workflow-aware strategies
up to 25%. In this paper, we show how existing workflow resource
management research can be integrated into the CWSI.
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1 INTRODUCTION
Analyzing large datasets is the daily business of many scientists [13,
17, 21, 22, 29]. The data analysis often involves multiple dependent
steps, which can be organized as a workflow [16]. As these work-
flows are becoming increasingly complex and datasets easily exceed
hundreds of gigabytes or even terabytes [1, 17], scientists use sci-
entific workflow management systems (SWMS), such as Nextflow,
Airflow, or Argo, and computer clusters. One essential feature of
SMWSs is communication with a resource manager, such as SLURM,
Kubernetes, or OpenPBS. Therefore, the SWMS submits ready-to-
run tasks to the resource manager, and the resource manager takes
over the responsibility for assigning these tasks to a node that exe-
cutes them. This simplifies the workflow execution on large-scale
computing infrastructures and hides the complexity from the sci-
entist. However, as with SWMS, there is also a variety of resource
managers available, and different clusters may use a different one.
In a worst-case scenario, the SWMS preferred by the scientist does
not support the cluster’s resource manager at all. Even if the SWMS
supports a given resource manager, features beyond submitting
tasks and awaiting their completion are frequently not supported.

In this paper, we first give an overview of the CommonWorkflow
Scheduler (CWS) and the Common Workflow Scheduler Interface
(CWSI) which we both first presented in [15]. The CWSI is used to
exchange workflow-related information between SWMSs and re-
source managers. Second, we present prior results, showing promis-
ing outcomes when using the CWSI with workflow-aware resource
management methods. Moving on, we outline SWMS, where we
started to implement CWSI support and demonstrate how the CWS
can serve as a central point for provenance. Last, we illustrate how
the CWS can be extended with new scheduling, resource allocation,
and runtime prediction methods.

2 COMMONWORKFLOW SCHEDULER
In the present landscape, each resource manager has its own unique
way of handling task submissions. For example, a task’s definition
significantly differs between SLURM and Kubernetes.While SLURM
supports task dependencies, Kubernetes lacks this feature. To ad-
dress the challenge that resourcemanagers schedule workflow tasks
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without workflow awareness, we developed the CommonWorkflow
Scheduler (CWS) [15]. The CWS allows for the transfer of essen-
tial information, such as input files, CPU, and memory requests,
along with task-specific parameters using the Common Workflow
Scheduler Interface (CWSI). Task-specific parameters vary for each
task invocation and are passed on to the utilized tools. For further
details on the interface, we refer to our previous paper [15].

In Figure 1, we provide an architectural overview for a single
resource manager, in this case, for Kubernetes. The CWS runs as
a component in the resource manager and exposes the CWSI. A
resource manager has to implement the CWSwith its interface once.
Conversely, a workflow engine needs to implement support for
CWSI to work with all resource managers already offering CWSI.
SWMSs such as Airflow, Nextflow, or Argo send their requests,
which are then kept in memory of CWS. From this storage, the
CWS can fetch the workflow graph and task dependencies and use
this information for scheduling. This storage can further be used for
provenance to trace the workflow execution; we elaborate on this in
Section 4. The CWS can be extended with task runtime and resource
predictors that read task information from the storage and learn
characteristics. Such learned characteristics can then be used to
predict the demands for upcoming tasks, which is helpful for better
scheduling. We provide examples for such prediction strategies
in Section 5. Notably, workflow engines with CWSI support do
not need their own scheduler component. Instead, all ready-to-run
tasks are submitted to the resource manager and the scheduling
happens there.

We have implemented a plugin1 for the SWMS Nextflow to com-
municate with the CWSI and the CWS for the resource manager
Kubernetes2. Figure 2 shows the results from running nf-core work-
flows with the original Nextflow-Kubernetes interaction (Original
strategy) and the Rank (Min) Round Robin scheduling algorithm.
nf-core is a collection of best-practice Nextflow workflows which
all come with small test sets. The Rank (Min) Round Robin, on av-
erage, outperformed other strategies tested with a median runtime
improvement of up to 24.8% and an average reduction of 10.8%
compared to the original strategy [15].

3 SWMS SUPPORT
We started by implementing the CWSI for a resource manager, Ku-
bernetes, and a SWMS, Nextflow. We are now actively working
to extend our project to support other popular SWMSs, namely
Airflow and Argo, to further explore and demonstrate the benefits
of the CWSI. Below, we describe these three SWMSs and discuss
the integration of the CWSI.

Nextflow is a workflow engine initially designed for bioinformatics
but getting uptake also in different domains and is used by more
than 1,000 organizations [12, 16, 24]. One of the main advantages
of Nextflow is its support for, at the time of writing, 20 different re-
source managers. The large support makes it easy to port Nextflow
workflows between environments. The support is achieved by ab-
stracting the resource manager from the scientist but also from the
internal Nextflow logic. Accordingly, Nextflow only supports the

1https://github.com/CommonWorkflowScheduler/nf-cws
2https://github.com/CommonWorkflowScheduler/KubernetesScheduler
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Figure 1: Architecture overview: The Common Workflow
Scheduler with its interface and task runtime and task re-
source predictor component for Kubernetes as an exemplary
resource manager.

basic features of resource managers. For example, on SLURM, the
task dependency feature is not used. Thus, Nextflow can profit from
providing additional workflow context to the resource manager.

Airflow is an Apache Incubator project designed for workflow man-
agement. Similar to Nextflow, Airflow supports Kubernetes as a
resource manager and is also not exclusively tied to it. Airflow sup-
ports workflow-aware scheduling for Kubernetes through a tailor-
made strategy exclusively implemented for the Airflow-Kubernetes
interplay. Therefore, Airflow starts a big worker on every node for
the whole workflow execution and assigns tasks into these worker
pods bypassing Kubernetes’ task assignment logic. However, this
strategy has a significant drawback: the big containers will request
resources for the entire workflow execution time regardless of the
actual load. As many workflows have a merge point somewhere,
where the entire execution is waiting for one particular task, this
strategy leads to substantial resource wastage. By integrating the
CWSI into Airflow, we aim to retain its workflow-aware schedul-
ing capabilities while preventing unnecessary resource requests
throughout the runtime. This optimization ensures more efficient
utilization of resources and minimizes wastage on a large scale. One
big difference to our already existing Nextflow interaction is the
knowledge of the physical DAG in Airflow. While this was foreseen
in the development of the CWSI, we have to make use of it in our
CWS implementation.

Argo is a SWMS designed exclusively for Kubernetes. However,
since Kubernetes lacks support for task dependencies, Argo also
submits each task individually, and Kubernetes then schedules them
in a FIFO manner. This is comparable to the strategy of Nextflow
and, thus, makes Argo an ideal candidate to support our CWSI. Just
like Nextflow, Argo is expected to benefit in a similar way. We are
currently working on developing an Argo extension to achieve this.

4 PROVENANCEWITH THE CWSI
Workflow provenance is one aspect that needs to be addressed in
all SWMS [1, 4, 11]. Since the CWSI takes a central role in workflow
execution, possessing comprehensive knowledge of the resource
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Figure 2: The runtime difference between the original runs’ median and the Rank (Min) Round Robin scheduling for the nine
most popular nf-core workflows.

manager and the SWMS, it emerges as the most suitable entity for
the management of provenance data.

All SWMS represent provenance differently, so it is very het-
erogeneous [8]. Further, resource managers and SWMSs are only
designed to gather a portion of the available data, each focusing on
collecting data in its own scope [4]. Accordingly, the resource man-
ager traces the node states while the SWMS collects task-related
metrics. The CWSI is particularly implemented for each resource
manager and can support a resource manager’s specific APIs to
collect traces while it has knowledge about the workflow. By gath-
ering and storing all metrics and task dependencies in a centralized
manner, provenance becomes more streamlined and manageable.

Another significant advantage of using the CWSI for provenance
is that the data will be available across different SWMS, even if a
particular SWMS does not yet provide built-in provenance data.
This interoperability ensures that provenance information can be
maintained consistently and comprehensively, enhancing workflow
traceability and reproducibility. In turn, researchers and scientists
can have greater confidence in the reliability and trustworthiness
of their results.

5 ADVANCED RESOURCE MANAGEMENT
WITH THE CWSI

As we saw in the previous section, the CWS provides information
about task executions and performance metrics. Using this informa-
tion allows possible interface extensions to derive task characteris-
tics from it. Task characteristics can be predicted runtime, CPU or
memory usage, which can be used for scheduling and fed back to
the SWMS. Many scheduling strategies, such as HEFT [25], require
knowledge of this.

In the following, we will show how the CWSI can be used to
implement approaches for task resource prediction, task runtime
prediction, and scheduling with real workflow systems.

Task resource prediction: Predicting the resources a task instance
will utilize enables workflow performance optimization by reducing
resource wastage and increasing performance [26]. Several research
approaches tackle this challenge by analytic methods, regression
models, or reinforcement learning and achieve a significant reduc-
tion in resource wastage [5, 20, 26–28]. A key challenge is to avoid

underprovisioning of resources, as this leads to task failures while
overprovisioning leads to high resource wastage [26]. These ap-
proaches frequently assume a relationship between input data size
and a task’s resource usage to predict peak memory consumption,
i.e., a task’s memory usage increases with bigger inputs. Further,
many of these approaches conduct a form of online learning, incor-
porating monitoring data from task executions as feedback.

The CWSI provides information to train such models, e.g., the
number of file inputs, input sizes, or peak memory, which are re-
trieved and stored from monitoring. As these metrics are constantly
gathered and updated, also online learning approaches are applica-
ble. Therefore, we plan to integrate existing task resource prediction
methods in our CWSI prototype to a) increase workflow perfor-
mance and b) evaluate them under real-world conditions.

Task Runtime Prediction: Predicting task runtimes is essential as
many resource management techniques, such as scheduling, rely
on accurate runtime estimates beforehand. To this end, many exist-
ing research approaches rely on historical data to build prediction
models [14, 18, 19]. Many of them build on machine-learning mod-
els like neural networks, clustering methods, or regression meth-
ods [9, 10, 14, 18, 19]. While, especially complex models, showed to
achieve low prediction errors, they also require a lot of training data.
As an alternative, we recently presented Lotaru [2], an online ap-
proach that can cope with cold-start problems and is able to predict
task runtimes without historical traces. To do this, Lotaru executes
microbenchmarks and quickly runs the workflow with reduced
input data locally. Next, it predicts a task’s execution time using a
Bayesian linear regression based on the data points collected from
the local workflow profiling and the microbenchmarks.

Since Lotaru and other research approaches that support het-
erogeneous infrastructures require machine characteristics, we are
extending our CWSI to store such information and extend the pro-
totype to gather these metrics with Kubestone3. We are currently
incorporating Lotaru into the CWSI prototype to handle unknown
workflows or workflows with a lack of historical data. Further, we
plan to implement other research methods that perform better with
more training data provided by the provenance store of CWSI.

3kubestone.io

kubestone.io
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Workflow Task Scheduling: Applying sophisticated scheduling
algorithms helps to achieve optimization objectives such as a make-
span reduction, cost reduction, or energy reduction. Although ex-
tensive research in this field exists, many approaches are missing
uptake in real-world scenarios. For instance, Yarn schedules tasks
in a fair manner [23], while Kubernetes applies a Round-robin-
like strategy [7]. Due to the dynamic nature of workflows and
infrastructures, in practice, only dynamic scheduling approaches
should be considered, i.e., approaches that can adjust their execution
plans or react to failures in the infrastructure. Some of these dy-
namic approaches [6, 30] are based on the static heuristic HEFT [25]
and require knowledge about task runtimes and communication
times between the nodes. Our own prior work Tarema [3], does
not require such metrics but dynamically classifies incoming tasks
according to their resource usage to select the best-fitting node.

The CWSI, together with task runtime and resource prediction,
provides additional information to apply more sophisticated sched-
uling techniques. We are currently implementing the Tarema strat-
egy into our CWSI prototype and plan other more sophisticated
approaches enabled through the additional data provided by the
CWSI and their plugins.

6 CONCLUSION
In this paper, we presented the status quo of the CommonWorkflow
Scheduler Interface and described the available plugin for Nextflow
and the integration into Kubernetes. Further, we have demonstrated
that by implementing the CWSI alongside basic scheduling ap-
proaches like rank and file size, we achieve an average runtime
reduction of 10.8%. Next, we outlined upcoming support for the
workflow engines Airflow and Argo and how to extend the storage
to become the central place for workflow provenance. Additionally,
we presented our next steps to implement resource allocation, run-
time prediction, and new scheduling methods. We assume that the
planned workflow algorithms that consider cluster heterogeneity
and task runtime, as we outlined in this paper, will further improve
resource efficiency.
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