

Lehmann, F., Bader, J., Thamsen, L. and Leser, U. (2023) The Common Workflow
Scheduler Interface: Status Quo and Future Plans. Workshop on Workflows in
Support of Large-Scale Science (WORKS23),The International Conference on
High Performance Computing, Network, Storage, and Analysis, New York, USA,
12-17 Nov 2023. ISBN 9798400707858 .

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

© 2023 Copyright held by the owner/author(s). This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in SC-W '23: Proceedings of the SC '23
Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis. https://doi.org/10.1145/3624062.3626283

http://eprints.gla.ac.uk/310071/

Deposited on: 29 November 2023

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1145/3624062.3626283
http://eprints.gla.ac.uk/310071/
http://eprints.gla.ac.uk/310071/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

The CommonWorkflow Scheduler Interface:
StatusQuo and Future Plans

Fabian Lehmann
fabian.lehmann@informatik.hu-berlin.de

Humboldt-Universität zu Berlin
Berlin, Germany

Jonathan Bader
jonathan.bader@tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Lauritz Thamsen
lauritz.thamsen@glasgow.ac.uk

University of Glasgow
Glasgow, United Kingdom

Ulf Leser
leser@informatik.hu-berlin.de
Humboldt-Universität zu Berlin

Berlin, Germany

ABSTRACT
Nowadays, many scientific workflows from different domains, such
as Remote Sensing, Astronomy, and Bioinformatics, are executed
on large computing infrastructures managed by resource managers.
Scientific workflow management systems (SWMS) support the
workflow execution and communicate with the infrastructures’
resource managers. However, the communication between SWMS
and resource managers is complicated by a) inconsistent interfaces
between SMWS and resource managers and b) the lack of support
for workflow dependencies and workflow-specific properties.

To tackle these issues, we developed the Common Workflow
Scheduler Interface (CWSI), a simple yet powerful interface to
exchange workflow-related information between a SWMS and a
resource manager, making the resource manager workflow-aware.
The first prototype implementations show that the CWSI can reduce
the makespan already with simple but workflow-aware strategies
up to 25%. In this paper, we show how existing workflow resource
management research can be integrated into the CWSI.

KEYWORDS
Scientific Workflow, Scheduling, Workflow Management System,
Cluster Resource Management, Common Workflow Scheduler

ACM Reference Format:
Fabian Lehmann, Jonathan Bader, Lauritz Thamsen, and Ulf Leser. 2023.
The Common Workflow Scheduler Interface: Status Quo and Future Plans.
In Proceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis (SC-W ’23),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3624062.3626283

This work was presented at the 18th Workshop on Workflows in Sup-
port of Large-Scale Science (WORKS 2023) and was published as part
of the workshop paper “Novel Approaches Toward Scalable Compos-
able Workflows in Hyper-Heterogeneous Computing Environments” in

SC-W ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the SC ’23 Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (SC-W ’23), November 12–17, 2023, Denver, CO, USA,
https://doi.org/10.1145/3624062.3626283.

the Proceedings of the SC ’23 Workshops of The International Confer-
ence on High Performance Computing, Network, Storage, and Analysis
(SC-W ’23) https://doi.org/10.1145/3624062.3626283

1 INTRODUCTION
Analyzing large datasets is the daily business of many scientists [13,
17, 21, 22, 29]. The data analysis often involves multiple dependent
steps, which can be organized as a workflow [16]. As these work-
flows are becoming increasingly complex and datasets easily exceed
hundreds of gigabytes or even terabytes [1, 17], scientists use sci-
entific workflow management systems (SWMS), such as Nextflow,
Airflow, or Argo, and computer clusters. One essential feature of
SMWSs is communication with a resource manager, such as SLURM,
Kubernetes, or OpenPBS. Therefore, the SWMS submits ready-to-
run tasks to the resource manager, and the resource manager takes
over the responsibility for assigning these tasks to a node that exe-
cutes them. This simplifies the workflow execution on large-scale
computing infrastructures and hides the complexity from the sci-
entist. However, as with SWMS, there is also a variety of resource
managers available, and different clusters may use a different one.
In a worst-case scenario, the SWMS preferred by the scientist does
not support the cluster’s resource manager at all. Even if the SWMS
supports a given resource manager, features beyond submitting
tasks and awaiting their completion are frequently not supported.

In this paper, we first give an overview of the CommonWorkflow
Scheduler (CWS) and the Common Workflow Scheduler Interface
(CWSI) which we both first presented in [15]. The CWSI is used to
exchange workflow-related information between SWMSs and re-
source managers. Second, we present prior results, showing promis-
ing outcomes when using the CWSI with workflow-aware resource
management methods. Moving on, we outline SWMS, where we
started to implement CWSI support and demonstrate how the CWS
can serve as a central point for provenance. Last, we illustrate how
the CWS can be extended with new scheduling, resource allocation,
and runtime prediction methods.

2 COMMONWORKFLOW SCHEDULER
In the present landscape, each resource manager has its own unique
way of handling task submissions. For example, a task’s definition
significantly differs between SLURM and Kubernetes.While SLURM
supports task dependencies, Kubernetes lacks this feature. To ad-
dress the challenge that resourcemanagers schedule workflow tasks

https://orcid.org/0000-0003-0520-0792
https://orcid.org/0000-0003-0391-728X
https://orcid.org/0000-0003-3755-1503
https://orcid.org/0000-0003-2166-9582
https://doi.org/10.1145/3624062.3626283
https://doi.org/10.1145/3624062.3626283
https://doi.org/10.1145/3624062.3626283

SC-W ’23, November 12–17, 2023, Denver, CO, USA Lehmann et al.

without workflow awareness, we developed the CommonWorkflow
Scheduler (CWS) [15]. The CWS allows for the transfer of essen-
tial information, such as input files, CPU, and memory requests,
along with task-specific parameters using the Common Workflow
Scheduler Interface (CWSI). Task-specific parameters vary for each
task invocation and are passed on to the utilized tools. For further
details on the interface, we refer to our previous paper [15].

In Figure 1, we provide an architectural overview for a single
resource manager, in this case, for Kubernetes. The CWS runs as
a component in the resource manager and exposes the CWSI. A
resource manager has to implement the CWSwith its interface once.
Conversely, a workflow engine needs to implement support for
CWSI to work with all resource managers already offering CWSI.
SWMSs such as Airflow, Nextflow, or Argo send their requests,
which are then kept in memory of CWS. From this storage, the
CWS can fetch the workflow graph and task dependencies and use
this information for scheduling. This storage can further be used for
provenance to trace the workflow execution; we elaborate on this in
Section 4. The CWS can be extended with task runtime and resource
predictors that read task information from the storage and learn
characteristics. Such learned characteristics can then be used to
predict the demands for upcoming tasks, which is helpful for better
scheduling. We provide examples for such prediction strategies
in Section 5. Notably, workflow engines with CWSI support do
not need their own scheduler component. Instead, all ready-to-run
tasks are submitted to the resource manager and the scheduling
happens there.

We have implemented a plugin1 for the SWMS Nextflow to com-
municate with the CWSI and the CWS for the resource manager
Kubernetes2. Figure 2 shows the results from running nf-core work-
flows with the original Nextflow-Kubernetes interaction (Original
strategy) and the Rank (Min) Round Robin scheduling algorithm.
nf-core is a collection of best-practice Nextflow workflows which
all come with small test sets. The Rank (Min) Round Robin, on av-
erage, outperformed other strategies tested with a median runtime
improvement of up to 24.8% and an average reduction of 10.8%
compared to the original strategy [15].

3 SWMS SUPPORT
We started by implementing the CWSI for a resource manager, Ku-
bernetes, and a SWMS, Nextflow. We are now actively working
to extend our project to support other popular SWMSs, namely
Airflow and Argo, to further explore and demonstrate the benefits
of the CWSI. Below, we describe these three SWMSs and discuss
the integration of the CWSI.

Nextflow is a workflow engine initially designed for bioinformatics
but getting uptake also in different domains and is used by more
than 1,000 organizations [12, 16, 24]. One of the main advantages
of Nextflow is its support for, at the time of writing, 20 different re-
source managers. The large support makes it easy to port Nextflow
workflows between environments. The support is achieved by ab-
stracting the resource manager from the scientist but also from the
internal Nextflow logic. Accordingly, Nextflow only supports the

1https://github.com/CommonWorkflowScheduler/nf-cws
2https://github.com/CommonWorkflowScheduler/KubernetesScheduler

Common Workflow Scheduler

CWSI

(Provenance) Storage

Scheduler

Task Runtime
Predictor

Task Resource
Predictor

Resource Manager

Figure 1: Architecture overview: The Common Workflow
Scheduler with its interface and task runtime and task re-
source predictor component for Kubernetes as an exemplary
resource manager.

basic features of resource managers. For example, on SLURM, the
task dependency feature is not used. Thus, Nextflow can profit from
providing additional workflow context to the resource manager.

Airflow is an Apache Incubator project designed for workflow man-
agement. Similar to Nextflow, Airflow supports Kubernetes as a
resource manager and is also not exclusively tied to it. Airflow sup-
ports workflow-aware scheduling for Kubernetes through a tailor-
made strategy exclusively implemented for the Airflow-Kubernetes
interplay. Therefore, Airflow starts a big worker on every node for
the whole workflow execution and assigns tasks into these worker
pods bypassing Kubernetes’ task assignment logic. However, this
strategy has a significant drawback: the big containers will request
resources for the entire workflow execution time regardless of the
actual load. As many workflows have a merge point somewhere,
where the entire execution is waiting for one particular task, this
strategy leads to substantial resource wastage. By integrating the
CWSI into Airflow, we aim to retain its workflow-aware schedul-
ing capabilities while preventing unnecessary resource requests
throughout the runtime. This optimization ensures more efficient
utilization of resources and minimizes wastage on a large scale. One
big difference to our already existing Nextflow interaction is the
knowledge of the physical DAG in Airflow. While this was foreseen
in the development of the CWSI, we have to make use of it in our
CWS implementation.

Argo is a SWMS designed exclusively for Kubernetes. However,
since Kubernetes lacks support for task dependencies, Argo also
submits each task individually, and Kubernetes then schedules them
in a FIFO manner. This is comparable to the strategy of Nextflow
and, thus, makes Argo an ideal candidate to support our CWSI. Just
like Nextflow, Argo is expected to benefit in a similar way. We are
currently working on developing an Argo extension to achieve this.

4 PROVENANCEWITH THE CWSI
Workflow provenance is one aspect that needs to be addressed in
all SWMS [1, 4, 11]. Since the CWSI takes a central role in workflow
execution, possessing comprehensive knowledge of the resource

https://github.com/CommonWorkflowScheduler/nf-cws
https://github.com/CommonWorkflowScheduler/KubernetesScheduler

The Common Workflow Scheduler Interface: StatusQuo and Future Plans SC-W ’23, November 12–17, 2023, Denver, CO, USA

AmpliSeq ATAC-Seq ChiP-Seq Eager MAG NanoSeq RNA-Seq Sarek Viralrecon
Workflow

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

D
iff

er
en

ce
 to

 O
rig

in
al

 R
un

tim
e

Strategy
Original Strategy
Rank (Min) Round Robin

Figure 2: The runtime difference between the original runs’ median and the Rank (Min) Round Robin scheduling for the nine
most popular nf-core workflows.

manager and the SWMS, it emerges as the most suitable entity for
the management of provenance data.

All SWMS represent provenance differently, so it is very het-
erogeneous [8]. Further, resource managers and SWMSs are only
designed to gather a portion of the available data, each focusing on
collecting data in its own scope [4]. Accordingly, the resource man-
ager traces the node states while the SWMS collects task-related
metrics. The CWSI is particularly implemented for each resource
manager and can support a resource manager’s specific APIs to
collect traces while it has knowledge about the workflow. By gath-
ering and storing all metrics and task dependencies in a centralized
manner, provenance becomes more streamlined and manageable.

Another significant advantage of using the CWSI for provenance
is that the data will be available across different SWMS, even if a
particular SWMS does not yet provide built-in provenance data.
This interoperability ensures that provenance information can be
maintained consistently and comprehensively, enhancing workflow
traceability and reproducibility. In turn, researchers and scientists
can have greater confidence in the reliability and trustworthiness
of their results.

5 ADVANCED RESOURCE MANAGEMENT
WITH THE CWSI

As we saw in the previous section, the CWS provides information
about task executions and performance metrics. Using this informa-
tion allows possible interface extensions to derive task characteris-
tics from it. Task characteristics can be predicted runtime, CPU or
memory usage, which can be used for scheduling and fed back to
the SWMS. Many scheduling strategies, such as HEFT [25], require
knowledge of this.

In the following, we will show how the CWSI can be used to
implement approaches for task resource prediction, task runtime
prediction, and scheduling with real workflow systems.

Task resource prediction: Predicting the resources a task instance
will utilize enables workflow performance optimization by reducing
resource wastage and increasing performance [26]. Several research
approaches tackle this challenge by analytic methods, regression
models, or reinforcement learning and achieve a significant reduc-
tion in resource wastage [5, 20, 26–28]. A key challenge is to avoid

underprovisioning of resources, as this leads to task failures while
overprovisioning leads to high resource wastage [26]. These ap-
proaches frequently assume a relationship between input data size
and a task’s resource usage to predict peak memory consumption,
i.e., a task’s memory usage increases with bigger inputs. Further,
many of these approaches conduct a form of online learning, incor-
porating monitoring data from task executions as feedback.

The CWSI provides information to train such models, e.g., the
number of file inputs, input sizes, or peak memory, which are re-
trieved and stored from monitoring. As these metrics are constantly
gathered and updated, also online learning approaches are applica-
ble. Therefore, we plan to integrate existing task resource prediction
methods in our CWSI prototype to a) increase workflow perfor-
mance and b) evaluate them under real-world conditions.

Task Runtime Prediction: Predicting task runtimes is essential as
many resource management techniques, such as scheduling, rely
on accurate runtime estimates beforehand. To this end, many exist-
ing research approaches rely on historical data to build prediction
models [14, 18, 19]. Many of them build on machine-learning mod-
els like neural networks, clustering methods, or regression meth-
ods [9, 10, 14, 18, 19]. While, especially complex models, showed to
achieve low prediction errors, they also require a lot of training data.
As an alternative, we recently presented Lotaru [2], an online ap-
proach that can cope with cold-start problems and is able to predict
task runtimes without historical traces. To do this, Lotaru executes
microbenchmarks and quickly runs the workflow with reduced
input data locally. Next, it predicts a task’s execution time using a
Bayesian linear regression based on the data points collected from
the local workflow profiling and the microbenchmarks.

Since Lotaru and other research approaches that support het-
erogeneous infrastructures require machine characteristics, we are
extending our CWSI to store such information and extend the pro-
totype to gather these metrics with Kubestone3. We are currently
incorporating Lotaru into the CWSI prototype to handle unknown
workflows or workflows with a lack of historical data. Further, we
plan to implement other research methods that perform better with
more training data provided by the provenance store of CWSI.

3kubestone.io

kubestone.io

SC-W ’23, November 12–17, 2023, Denver, CO, USA Lehmann et al.

Workflow Task Scheduling: Applying sophisticated scheduling
algorithms helps to achieve optimization objectives such as a make-
span reduction, cost reduction, or energy reduction. Although ex-
tensive research in this field exists, many approaches are missing
uptake in real-world scenarios. For instance, Yarn schedules tasks
in a fair manner [23], while Kubernetes applies a Round-robin-
like strategy [7]. Due to the dynamic nature of workflows and
infrastructures, in practice, only dynamic scheduling approaches
should be considered, i.e., approaches that can adjust their execution
plans or react to failures in the infrastructure. Some of these dy-
namic approaches [6, 30] are based on the static heuristic HEFT [25]
and require knowledge about task runtimes and communication
times between the nodes. Our own prior work Tarema [3], does
not require such metrics but dynamically classifies incoming tasks
according to their resource usage to select the best-fitting node.

The CWSI, together with task runtime and resource prediction,
provides additional information to apply more sophisticated sched-
uling techniques. We are currently implementing the Tarema strat-
egy into our CWSI prototype and plan other more sophisticated
approaches enabled through the additional data provided by the
CWSI and their plugins.

6 CONCLUSION
In this paper, we presented the status quo of the CommonWorkflow
Scheduler Interface and described the available plugin for Nextflow
and the integration into Kubernetes. Further, we have demonstrated
that by implementing the CWSI alongside basic scheduling ap-
proaches like rank and file size, we achieve an average runtime
reduction of 10.8%. Next, we outlined upcoming support for the
workflow engines Airflow and Argo and how to extend the storage
to become the central place for workflow provenance. Additionally,
we presented our next steps to implement resource allocation, run-
time prediction, and new scheduling methods. We assume that the
planned workflow algorithms that consider cluster heterogeneity
and task runtime, as we outlined in this paper, will further improve
resource efficiency.

ACKNOWLEDGMENTS
This work was funded by the German Research Foundation (DFG),
CRC 1404: "FONDA: Foundations of Workflows for Large-Scale
Scientific Data Analysis."

REFERENCES
[1] Khairul Alam and Banani Roy. 2022. Challenges of Provenance in Scientific

Workflow Management Systems. In 2022 IEEE/ACM Workshop on Workflows in
Support of Large-Scale Science (WORKS). IEEE.

[2] Jonathan Bader, Fabian Lehmann, Lauritz Thamsen, Ulf Leser, and Odej Kao. 2024.
Lotaru: Locally predicting workflow task runtimes for resource management on
heterogeneous infrastructures. Future Generation Computer Systems 150 (2024).

[3] Jonathan Bader, Lauritz Thamsen, Svetlana Kulagina, Jonathan Will, Henning
Meyerhenke, and Odej Kao. 2021. Tarema: Adaptive Resource Allocation for Scal-
able Scientific Workflows in Heterogeneous Clusters. In 2021 IEEE International
Conference on Big Data (Big Data).

[4] Jonathan Bader, Joel Witzke, Soeren Becker, Ansgar Lößer, Fabian Lehmann,
Leon Doehler, Anh Duc Vu, and Odej Kao. 2022. Towards Advanced Monitoring
for Scientific Workflows. In 2022 IEEE International Conference on Big Data (Big
Data).

[5] Jonathan Bader, Nicolas Zunker, Soeren Becker, and Odej Kao. 2022. Leveraging
Reinforcement Learning for Task Resource Allocation in Scientific Workflows.
In 2022 IEEE International Conference on Big Data (Big Data).

[6] Jorge G Barbosa and Belmiro Moreira. 2011. Dynamic scheduling of a batch of
parallel task jobs on heterogeneous clusters. Parallel computing 37, 8 (2011).

[7] Carmen Carrión. 2022. Kubernetes Scheduling: Taxonomy, ongoing issues and
challenges. ACM Computing Surveys (CSUR) (2022).

[8] Sérgio Manuel Serra da Cruz, Maria Luiza M. Campos, and Marta Mattoso. 2009.
Towards a Taxonomy of Provenance in ScientificWorkflowManagement Systems.
In 2009 Congress on Services - I.

[9] Rafael Ferreira da Silva, Gideon Juve, Ewa Deelman, Tristan Glatard, Frédéric
Desprez, Douglas Thain, Benjamin Tovar, and Miron Livny. 2013. Toward Fine-
Grained Online Task Characteristics Estimation in Scientific Workflows. In Pro-
ceedings of the 8th Workshop on Workflows in Support of Large-Scale Science
(WORKS ’13). Association for Computing Machinery, New York, NY, USA.

[10] Rafael Ferreira Da Silva, Gideon Juve, Mats Rynge, Ewa Deelman, and Miron
Livny. 2015. Online task resource consumption prediction for scientific workflows.
Parallel Processing Letters 25, 03 (2015).

[11] Susan B. Davidson and Juliana Freire. 2008. Provenance and Scientific Work-
flows: Challenges and Opportunities. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’08). Association for
Computing Machinery, New York, NY, USA.

[12] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature Biotechnology 35, 4 (2017).

[13] Maxime Garcia, Szilveszter Juhos, Malin Larsson, Pall I. Olason, Marcel Martin,
Jesper Eisfeldt, Sebastian DiLorenzo, Johanna Sandgren, Teresita Díaz De Ståhl,
Philip Ewels, Valtteri Wirta, Monica Nistér, Max Käller, and Björn Nystedt. 2020.
Sarek: A PortableWorkflow forWhole-Genome Sequencing Analysis of Germline
and Somatic Variants. F1000Research 9 (2020).

[14] Muhammad Hafizhuddin Hilman, Maria Alejandra Rodriguez, and Rajkumar
Buyya. 2018. Task runtime prediction in scientific workflows using an online
incremental learning approach. In 2018 IEEE/ACM 11th International Conference
on Utility and Cloud Computing (UCC). IEEE.

[15] Fabian Lehmann, Jonathan Bader, Friedrich Tschirpke, Lauritz Thamsen, and
Ulf Leser. 2023. How Workflow Engines Should Talk to Resource Managers:
A Proposal for a Common Workflow Scheduling Interface. In 2023 IEEE/ACM
23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
Bangalore, India.

[16] Fabian Lehmann, David Frantz, Sören Becker, Ulf Leser, and Patrick Hostert. 2021.
FORCE on Nextflow: Scalable Analysis of Earth Observation Data on Commodity
Clusters. In Proceedings of the CIKM 2021 Workshops (CEURWorkshop Proceedings,
Vol. 3052), Gao Cong and Maya Ramanath (Eds.).

[17] Paul Muir, Shantao Li, Shaoke Lou, Daifeng Wang, Daniel J. Spakowicz, Leonidas
Salichos, Jing Zhang, George M. Weinstock, Farren Isaacs, Joel Rozowsky, and
Mark Gerstein. 2016. The Real Cost of Sequencing: Scaling Computation to Keep
Pace with Data Generation. Genome Biology 17, 1 (2016).

[18] Farrukh Nadeem, Daniyal Alghazzawi, Abdulfattah Mashat, Khalid Fakeeh, Ab-
dullah Almalaise, and Hani Hagras. 2017. Modeling and predicting execution
time of scientific workflows in the grid using radial basis function neural network.
Cluster Computing 20, 3 (2017).

[19] Thanh-Phuong Pham, Juan J Durillo, and Thomas Fahringer. 2017. Predicting
workflow task execution time in the cloud using a two-stage machine learning
approach. IEEE Transactions on Cloud Computing 8, 1 (2017).

[20] Thanh Son Phung, Logan Ward, Kyle Chard, and Douglas Thain. 2021. Not
All Tasks Are Created Equal: Adaptive Resource Allocation for Heterogeneous
Tasks in Dynamic Workflows. In 2021 IEEE Workshop on Workflows in Support of
Large-Scale Science (WORKS). IEEE.

[21] Matthias Schramm, Edzer Pebesma, Milutin Milenković, Luca Foresta, Jeroen
Dries, Alexander Jacob, Wolfgang Wagner, Matthias Mohr, Markus Neteler, Miha
Kadunc, Tomasz Miksa, Pieter Kempeneers, Jan Verbesselt, Bernhard Gößwein,
Claudio Navacchi, Stefaan Lippens, and Johannes Reiche. 2021. The openEO
API–Harmonising the Use of Earth Observation Cloud Services Using Virtual
Data Cube Functionalities. Remote Sensing 13, 6 (2021).

[22] Martin Sudmanns, Dirk Tiede, Hannah Augustin, and Stefan Lang. 2019. Assess-
ing global Sentinel-2 coverage dynamics and data availability for operational
Earth observation (EO) applications using the EO-Compass. International journal
of digital earth 13, 7 (2019).

[23] Shanjiang Tang, Bu-Sung Lee, and Bingsheng He. 2016. Fair resource alloca-
tion for data-intensive computing in the cloud. IEEE Transactions on Services
Computing 11, 1 (2016).

[24] Paolo Di Tommaso. 2022. A quick overview of Nextflow workflow system. https:
//workflows.community/stories/2022/09/28/nextflow/ accessed 18-October-2022.

[25] Haluk Topcuoglu, SalimHariri, andMin-youWu. 2002. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE transactions
on parallel and distributed systems 13, 3 (2002).

[26] Benjamin Tovar, Rafael Ferreira da Silva, Gideon Juve, Ewa Deelman, William
Allcock, Douglas Thain, and Miron Livny. 2017. A job sizing strategy for high-
throughput scientific workflows. IEEE Transactions on Parallel and Distributed
Systems 29, 2 (2017).

https://workflows.community/stories/2022/09/28/nextflow/
https://workflows.community/stories/2022/09/28/nextflow/

The Common Workflow Scheduler Interface: StatusQuo and Future Plans SC-W ’23, November 12–17, 2023, Denver, CO, USA

[27] Ben Tovar, Ben Lyons, Kelci Mohrman, Barry Sly-Delgado, Kevin Lannon, and
Douglas Thain. 2022. Dynamic Task Shaping for High Throughput Data Analysis
Applications in High Energy Physics. In 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE.

[28] Carl Witt, Dennis Wagner, and Ulf Leser. 2019. Feedback-Based Resource Alloca-
tion for Batch Scheduling of Scientific Workflows. In 2019 HPCS. IEEE.

[29] James A Fellows Yates, Thiseas C Lamnidis, Maxime Borry, Aida Andrades
Valtue na, Zandra Fagernäs, Stephen Clayton, Maxime UGarcia, Judith Neukamm,
and Alexander Peltzer. 2021. Reproducible, portable, and efficient ancient genome
reconstruction with nf-core/eager. PeerJ 9 (2021).

[30] Zhifeng Yu and Weisong Shi. 2007. An Adaptive Rescheduling Strategy for
Grid Workflow Applications. In 2007 IEEE International Parallel and Distributed
Processing Symposium. IEEE, Long Beach, CA, USA.

	Enlighten Accepted coversheet (ACM Statement)
	310071
	Abstract
	1 Introduction
	2 Common Workflow Scheduler
	3 SWMS support
	4 Provenance with the CWSI
	5 Advanced Resource Management with the CWSI
	6 Conclusion
	Acknowledgments
	References

