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Abstract

The lattice Boltzmann method (LBM) has proven to be an effective numerical

technique for computational fluid dynamics (CFD). It has numerous advantages over

traditional computational methods such as finite element and finite difference

approaches. The method’s simplicity, easy treatment of boundary conditions, and

parallel programming features make it ideal for solving large-scale real-world problems.

In this thesis, the development and use of a lattice Boltzmann model for both steady

and unsteady two-dimensional axisymmetric flows are presented. Three-dimensional

(3D) Navier-Stokes equations describe axisymmetric flows, which can be solved using

the three-dimensional (3D) lattice Boltzmann method. Such 3D equations become 2D

axisymmetric flow equations when cylindrical coordinates are used. The cavity flow

benchmark has been used in our study to verify the axisymmetric lattice Boltzmann

revised model(AxLAB®) for more complex axisymmetric flows in a cylindrical

container. Also, systematic research on vortex breakdown has been done in a closed

cylindrical container with one or two rotating lids. Furthermore, an investigation was

carried out into unsteady-periodic flow in the cavity to see how the flow behaviour can

be predicted. To the author’s knowledge, this is the first numerical study to determine

the periodicity of such flows. The formation of vortex breakdowns, their frequency, and

the locations of stagnation points as the flow pattern enlarges are all explained in

depth. In addition, the second-order bounce-back technique is introduced to the model

for no-slip boundary conditions to increase the accuracy of the AxLAB®. The

magnitude of the maximum axial velocities along the cylinder axis, their locations, and

the locations of stagnation points have all been analysed to demonstrate the advantages
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of the described method. The most recent experimental and numerical approaches are

then used to compare the results, indicating that the new method provides more

accurate results in detail. Also, a more advanced version of AxLAB® is developed to

model turbulent flows. By incorporating the conventional subgrid-scale stress (SGS)

model into the axisymmetric lattice Boltzmann equation in a way that is consistent

with lattice gas dynamics, the turbulent flow is effectively and naturally represented. By

using the model to simulate two common engineering scenarios, (i) pipe flow through an

abrupt axisymmetric constriction, and (ii) axisymmetric separated-reattached flow, the

model is proven to be accurate. Analysis of the axial velocity profile and the

reattachment length reveals how much more comparable the outcomes are to other

experimental and computational methods, particularly in the region close to the wall

domain, as a result of using the second-order bounce back method for the wall boundary

conditions. The result demonstrates that the second-order bounce-back method in the

upgraded AxLAB® is straightforward and has a higher level of accuracy than

AxLAB® in its ability to predict axisymmetric turbulent flows as well as laminar flows.
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Chapter 1

Introduction

Simulating fluid flows with basic arithmetic computations rather than intricate flow

equations is no longer a pipe dream, but a reality [1]. This is the fundamental concept

behind the lattice Boltzmann technique, which is distinguished by its straightforward

approach, parallel process, and simple and efficient treatment of boundary conditions

[2]. The development of the lattice Boltzmann method (LBM) continues rapidly, as its

numerous potential capabilities continue to be realized and demonstrated in different

areas[3]. It has become a very successful computational method in interdisciplinary

subjects, far beyond the original intention of simulating fluid flows described by the

Navier-Stokes equations. Numerous computing methods are available to solve the

Navier-Stokes equations, including the finite difference scheme, finite element method,

finite volumes, spectral methods, Boundary Element Method (BEM)and lattice

Boltzmann methods. To simulate complicated problems, these techniques require a long

execution time, especially when dealing with complex boundary conditions. All of the

aforementioned characteristics give the lattice Boltzmann approach a significant

advantage over other numerical methods. Although originally designed to mimic fluid

flows represented by the Navier-Stokes equations, LBM has since been enhanced and

expanded to cover a wide range of flow issues. Swift et al. [4] used the lattice

Boltzmann technique to model nonideal fluids, for example. The Brinkman equation

was solved by Spaid and Phelan, Jr. [5] using the lattice Boltzmann technique. Zhou
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created lattice Boltzmann models for shallow and groundwater flows[6, 7]. In practice,

axisymmetric flows represent a variety of essential flow challenges. The

three-dimensional lattice Boltzmann technique has been used to simulate 3D

axisymmetric flows using cubic lattices and curved boundary treatment. This indicates

that one or more dimensional lattices are required for the modelling of such flows,

reducing efficiency. 3D axisymmetric flows are fundamentally 2D issues in a cylindrical

coordinate system. In order to take advantage of this property, Halliday et al.[8]

initially investigated the lattice Boltzmann technique for axisymmetric flows in 2001.

Halliday et al. incorporated two source terms and retrieved the macroscopic equations

for axisymmetric flow. Halliday et al.’s solution has since been successfully applied to a

number of axisymmetric flow problems. However, one term (uxur

r
) within the momentum

equation associated with radial speed is overlooked in their formulation, where ux and

ur are axial velocity and radial velocity components consecutively and r is the radius of

the pipe. Lee et al.[9] observed that this mistake results in large errors for axisymmetric

flows with considerable radial velocities in non-straight pipes. This mistake was

corrected by Lee at al. who demonstrated an accurate solution for flows in which the

radial velocity components cannot be overlooked. In addition, the method of Halliday

et al.[8] has been extended to multiphase flow by Premnath and Abrahamand [10] and

two-phase flow with a large density ratio by Shiladitya and Abraham [11]. Recently,

Reis and Phillips[12] expressed the source terms in Halliday et al.’ equation without the

error made by Halliday et al. Despite this, the second source term involves velocity

gradients, which may introduce additional errors and causes numerical instability. A

complete lattice Boltzmann model for axisymmetric flows without or with swirling

within the framework of the lattice Boltzmann approach is provided by Guo et al[13].

Later, Li et al.[14] gave an improved axisymmetric lattice Boltzmann scheme including

the rotational effect. The key drawbacks of these methods are that: (a) the source or

force terms are more complicated than those in the original governing equations, (b)

due to the elimination of implicitness in the schemes, the equations for computing

macroscopic variables, such as velocities, acquire complex forms rather than the typical
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simple sum of the distribution functions, complicating the algorithm, and (c) They gave

their own expression for the viscosity that differs from the conventional definition in

lattice Boltzmann dynamics. . In addition, Zhou[15] extended an axisymmetric lattice

Boltzmann method without swirl. The force term introduced in this method contains

velocity gradients, which is its only disadvantage. Therefore, Zhou[2] reformulated the

original axisymmetric lattice Boltzmann approach to eliminate the requirement for

calculations of the velocity gradients, while all the advantages of the original model are

maintained. Compared to the Navier-Stokes equations, the source terms are identical to

those in the governing equations with the exception of the velocity gradients, thus

enabling straightforward consideration of more physical phenomena. Also, the standard

calculations for density and velocity used in the conventional lattice Boltzmann method

for fluid flows are preserved, unlike other existing simplified models. Also, one more

distribution function is formulated for the solution of the azimuthal velocity Fig. 1.1 to

boost the revised model with similar characteristics for generic axisymmetric flows

involving swirling. This new method has been applied to simulate the vortex breakdown

phenomenon for steady and unsteady cylindrical cavity flows and the results are

compared with analytical solutions, demonstrating its accuracy and applicability. In

Fig. 1.1, the θ direction typically refers to the circumferential direction. Cylindrical

coordinates are defined using three coordinates: (r, θ, z), where r is the radial distance

from the z -axis, θ is the azimuthal angle, and z is the vertical distance along the z -axis.

Figure 1.1: Sketch of the azimuthal and radial velocity profiles
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1.1 Problem Definition

In the present work, vortex breakdowns in swirling flow are further investigated, and

simulations of the flow in cylindrical containers with rotating endwalls are performed.

Two parameters govern the flow behaviour in a cylindrical container: the

height-to-radius ratio (Aspect ratio) A = H
R

and the rotation Reynolds number Re=

ΩR2

ν
, where Ω is the constant angular velocity, R is the radius, H is the cylinder height,

and ν is the kinematic viscosity. The rotating endwall of a closed container functions as

a pump, and the spiraling motion of the flow inside the cylinder increases the swirl

velocity, resulting in the vortex breakdown phenomena. The velocity profile and the

reattachment length for turbulent flows are also investigated. Two engineering

applications Are simulated using the novel code created for turbulent flows to

demonstrate its capabilities. In the first case study, turbulent flow through an abrupt

axisymmetric contraction is examined. A numerical analysis of turbulent flow in an

axisymmetric separated and reattached flow through a longitudinal blunt circular

cylinder is conducted as a case study.

1.2 Importance of the Problem

Swirling flows are frequently observed in nature such as tornadoes and typhoons, and

have been employed for decades in technological applications including aeronautics, heat

exchange, spray drying, separation, combustion, chemical mixing, etc. Swirling flows are

created by a uniformly rotating infinitely long plane disk and vortex breakdown occurs

in swirling flow when there is a drastic change in flow structure. In order to achieve

flame geometries and heat release rates suitable for a particular production application,

swirling flows have been used to improve and control the mixing rate between fuel and

oxidant streams in combustion systems, such as in gas turbine engines, diesel engines,

industrial burners, and boilers [16]. When there is enough swirl, an internal

recirculation zone is created, allowing rapid heat release as the recirculated combustion

products ignite the incoming fuel/oxidant streams. This creates a steady, compact
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flame [17] that performs well with challenging carboneous materials and poor gases [18].

In Figs. 1.2, 1.3, 1.4 and 1.5 a few industrial application of swirl flows are shown.

Figure 1.2: The swirling motion of flow in the combustion chamber of a diesel engine
Swirl

Figure 1.3: Horizontal plug flow bioreactor design with inoculum recirculation
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Figure 1.4: Chemical Process Mixing

Figure 1.5: Continuous Stirred Tank Reactor (CSTR)

There is a need for further study of the vortex breakdown phenomenon to improve the

performance of industrial machines and enhance their efficiency [19]. Moreover, the

majority of flows, whether created naturally or artificially, are turbulent, a most

important challenge in classical physics. When laminar flow transforms to turbulent

flow, industrial machinery uses more fuel and operates less effectively due to the fluid’s

increased friction and resistance. In order to solve this problem and improve the

efficiency of industrial equipment that contain turbulent flows, we must first use very

accurate numerical algorithms to anticipate the flow behaviour as exactly as possible,
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leading to a better understanding of the flow characteristics. These improvements

decrease greenhouse gas emissions and achieve low-level economic power generation

which is one of the most important issues the world struggles with these days[20].

1.3 Outline of the Thesis

In Chapter 1, the research background, the research gaps, importance of the project

and various numerical methods for solving the Navier-Stokes equations are introduced,

a brief summary of the development and application of LBM in recent years is given,

and the purpose and goals of this thesis are outlined.

The literature review in Chapter 2, discusses how and why the lattice Boltzmann

method has evolved into one of the most effective methods for resolving the

Navier-Stokes equations. To solve the Lattice Boltzmann Equation (LBE) a few models

are also briefly explored, and also some details are provided about rotating flow and

turbulent flow.

In Chapter 3, the governing N-S equations and their axisymmetric flow equations for

laminar flow and turbulent flow, are briefly discussed.

The fundamentals of lattice Boltzmann techniques are introduced in Chapter 4. Two

models are developed to simulate axisymmetric flows with or without swirl, and the

derivation and theory for the axisymmetric lattice Boltzmann model are also presented.

An overview of the recovery process for the axisymmetric flow equations is provided.

The initial and boundary conditions used in the lattice Boltzmann method are

discussed in Chapter 5. No-slip, semi-slip, and slip boundary conditions are discussed in

this chapter.

Chapter 6 briefly describes the subgrid-scale (SGS) stress model and how to combine it

with AxLAB® for turbulence modelling. This chapter also contains the recovery

procedure.

Several steady and unsteady flows in cylindrical containers with rotating end walls were

simulated and analysed in Chapter 7. The process of determining the flow period for an
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unsteady-periodic flow is also described.

In Chapter 8, the second-order bounce-back method is used for no-slip boundary

conditions in cylindrical containers, and the results are compared to other numerical

and experimental studies. The results obtained from AxLAB and the new code are

compared, demonstrating the consequence improvements in accuracy.

Chapter 9 describes two turbulent axisymmetric LBM simulations. The accuracy of the

turbulence model with the second-order bounce-back method for no-slip boundary

conditions is ascertained by comparison between the results of the previous and new

code.

Conclusions and recommendations for future work are presented in Chapter 10.
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Chapter 2

Literature Review

2.1 Background

Water flowing down rivers, air moving through the atmosphere, ocean currents, and

blood flowing through the human body are all examples of fluid flow phenomena that

are prevalent in nature. Fluid flows are subject to laws of conservation of mass and

momentum. These conservation principles may be used to create a set of differential

equations that reflect such flows. The Navier-Stokes (N-S) momentum equations and

the continuity equation were developed in the middle of the nineteenth century to

represent flow characteristics. Ongoing to the nonlinearity of the Navier-Stokes

equations no analytical solution exists for the general governing equations, except for a

few simple cases. Numerical solutions of the Navier-Stokes equations have been

developed using computational fluid dynamics (CFD) methods such as the finite

difference method (FDM), finite volume method (FVM), finite element method (FEM)

and etc. Each has their own list of benefits. The Finite Difference Method (FDM) is

non-conservative but easy to code. the Finite Element Method (FEM) is conservative

but more difficult to code. The Finite Volume Method (FVM) combines the advantages

of both FDM and FEM [21]. All the foregoing can be implemented on unstructured

grids. The axisymmetric flow equations are frequently solved using the FVM, which can

straightforwardly handle complicated geometries using unstructured meshes [22].
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Murthy and Mathur used unstructured polyhedral meshes to extend the FVM to

compute radiation in axisymmetric geometries [23]. The node-centred FVM employing

an edge-based data structure, introduced by Lyra et al. [24], is very adaptable in

handling control volumes of various shape connected to generic unstructured meshes.

The N-S equations may be directly solved using these CFD techniques, and recovering

the independent variables, velocity and pressure in space and time. These traditional

CFD techniques rely on macroscopic level discretization of macroscopic continuum

equations. At the microscopic level, the fluid contains atoms and molecules, and its

behaviour of a fluid can be predicted by simulating molecular interactions and

individual molecule movements. However, given that so many molecular movements

must be computed, this microscopic calculation approach takes significantly longer than

the conventional CFD method at the macroscopic level, a flaw in this approach. The

mesoscopic scale, which lies halfway between these two computation scales, may be

utilised to mimic the fluid system as well as other physical processes. Compared to the

molecular dynamics approach, this theory takes into account a significantly smaller

number of fluid ”particles”. A fluid ”particle” is, in other words, a sizable collection of

molecules. Even so, the size of the fluid’ particle’ is much smaller than the macroscopic

simulation’s smallest length scale for the macroscopic physical properties. In the late

1940s, Ulam, von Neumann, and Zuse created a cellular automata model at mesoscale

[25]. Since then, the cellular automata approach it has undergone additional

development and evolved into a highly potent instrument for modelling a variety of

scientific issues [26, 27]. In a monograph, Zuse put forward a hypothesis regarding the

numerous physical issues that cellular automata (CA) may solve [28]. The HPP (Hardy,

de Pazzis, and Pomeau) lattice gas cellular automata were first proposed by Hardy et

al. in 1973 [29]. Since then, research has been done on both one- and two-dimensional

CA. Examples are Fredkin’s game and Wolfram’s four universal classes CA. Conway

invented the well-known two-dimensional ”Game of Life” in the 1970s [30]. This

exemplifies the CA’s key characteristic, which is that it can imitate very challenging

physical issues in the actual world using just a few basic principles. In fact, several
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applications have demonstrated that CA is very straightforward to apply to a range of

challenging phenomena [25, 31].

2.2 Lattice Gas Automata

Lattice gas automata (LGA) is a subtype of cellular automata. It is based on regular

lattices of microscopic space, time, and particle velocitY[6]. Each such particle travels at

its own speed and direction from one lattice unit to another. Collisions between two or

more incoming particles are possible. The explicit conservation of mass and momentum,

which is a key component in replicating actual physical issues, is a key characteristic of

LGA. In fact, the Navier-Stokes equation for incompressible flow is asymptotically equal

to summations of the micro-dynamic mass and momentum equations [32].

Hardy et al.[29]’s HPP model, the simplest LGA model for two-dimensional flows, was

the first totally discrete model of a fluid. However, the N-S equations cannot be derived

from this model using the HPP approach because of inadequate lattice symmetry.

Instead, the N-S equations can be recovered by the corrected lattice gas automaton

(FHP model) that Frisch et al. [33] presented.

LGA typically involves two sequential steps: a collision phase and a streaming step.

Each particle moves at its own velocity to the nearest node along the streamwise

directions, during the streaming step. Subsequently, when the particle velocity

components at a given node are altered in accordance with the presumed rules, a

collision occurs. At the macroscopic level in physics, these two stages replicate

convection and diffusion, respectively.

Numerous issues arise with the LGA for the Navier-Stokes equations, including the

nonisotropic advection component, fictitious invariants, numerical noise, etc. [34]. The

lattice Boltzmann model was therefore created in response to this need.
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2.3 Lattice Boltzmann Methods

The Lattice Boltzmann Method (LBM) was first hypothesized to deal with the

deficiency of the Lattice Gas Automata (LGA) and to improve lattice gas cellular

automata (LGCA) modelling [34], which used Boolean logic to simulate the flow by

tracing the movement of particles on a discrete lattice. The lattice Boltzmann equation

can be written by [35]:

fα(x+ eα, t+ 1) = fα(x, t) + Ωα[f(x, t)] α = 0, 1, · · · ,M, (2.1)

where fα is the distribution function of particles; t is the time; eα is the local constant

particle velocity; x is the space vector; Ωα is the collision operator, and M is the

number of directions of the particle velocity components at each node. The fluid density

ρ and velocity ui can be calculated from

ρ =
∑
α

fα, (2.2)

ui =
1

ρ

∑
α

eαifα. (2.3)

By providing an indirect solution to the incompressible Navier-Stokes (N-S) equations,

the lattice Boltzmann method (LBM) is a relatively recent numerical technique for

modelling complicated flows [35, 36]. LBM is established upon the microscopic kinetic

equation for the particle distribution function (PDF), in contrast to classical CFD

methods (such FDM and FVM), and the PDF defines the macroscopic variables. The

LBM has a number of benefits: it is easy to program. The non-linear macroscopic

advection terms are recovered in the streaming step and collision step, hence a single

tow-stage loop is sufficient in LBM systems. Furthermore, when simulating the

incompressible flow, the pressure in LBM satisfies a straightforward equation of state.

Therefore, while simulating incompressible flow, it is not essential to solve the Poisson

equation using iteration or relaxation methods, unlike conventional CFD methods. The

numerical approach is simple to parallelize since LBM is explicit and non-iterative [37].
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LBM, like other CFD techniques, has certain drawbacks notably the majority of

calculations for the current LBM are for low-velocity flows; for more complicated flows,

such as multiphase flows and porous flows, additional calculation terms must be

included. Also, LBM has more disadvantages and limits, such as Accuracy for Complex

Flows, Boundary Conditions, and Limited Numerical Stability.

2.4 Single Relaxation Time (SRT)

The Lattice Bhatnagar-Groos-Krook (LBGK) equation, based on the Single Relaxation

Time (LBM-SRT) approximation, is the most basic LBE [38]. The LBGK equation is

the most often used Lattice Boltzmann equation due to its remarkable simplicity. This

approach, nevertheless, has several disadvantages. Stability issues can occur at a

limiting value, for instance, in flow simulation at high Reynolds numbers, a key

component of the LBM-SRT [39]. Given that the inherent Mach number of the model

must be maintained as low as possible, incompressible flows are constrained in their

flow velocities. The collision frequency is pushed toward the stability limit as a result of

the decreased kinematic viscosity needed to achieve high Reynolds numbers for flow

past certain body shape. By shrinking the size of the lattices, the collision frequency

may be increased, but more computing power is required [40]. Alternatively, employing

LBM-MRT raises the stability limit.

2.5 Two-Relaxation Time (TRT)

Ginzburg [41] suggested that the distribution function may be divided into symmetric

and antisymmetric portions to address difficulties arising from advection-diffusion,

timing, and stability. Servan-Camas and Tsai [42] used a similar approach for the

advection-diffusion equation and attained second-order accuracy and decreased

third-order numerical errors while maintaining the solution inside the linear stability

zone.
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2.6 Multi-Relaxation Time (MRT)

In the previous section, a single relaxation method was used to address several issues.

There is evidence indicating that multi-relaxation systems offer greater accuracy and

stability than a single relaxation scheme [43]. LBM initial matrix formulations serve as

the foundation for Multiple Relaxation Times (MRTs), which shorten the computing

time [44]. Additionally, MRT outperforms SRT in higher Reynolds number flow

simulations, particularly in terms of numerical stability [45]. As a result, the

distribution functions are linearly transformed to the velocity moments, allowing the

collision term to be represented by a n x n matrix, where n is the number of lattice

velocity components. This approach permits more latitude with the macroscopic

quantities, enabling the moment of the equations to exert additional control [46]. The

MRT has improved symmetry for the lid-driven cavity and can model flows of lower

viscosity [47].

2.7 Axisymmetric Lattice Boltzmann Model

Numerous fluid problems with axial symmetry are encountered in practice. Examples

include the collision of two binary droplets head-on [48], the continuous rise of a bubble

[49], and the movement of shallow water and groundwater [7]. To model 3D

axisymmetric flows utilising cubic lattices with a curved boundary condition, the

three-dimensional (3D) lattice Boltzmann technique was created [50, 51, 52].

Theoretically, a cylindrical polar system can be used to reduce the 3D Navier Stokes

(N-S) equations for axisymmetric flows to 2D flow equations. As a result, it is

conceivable to create a lattice Boltzmann technique for 3D axisymmetric flows that is

less complicated and will take much less time to compute. A source term in the

Navier-Stokes equations may be incorporated into the LBE in order to fully utilise this

capacity and model axisymmetric flow. Multiple spatial and velocity-dependent source

components have been proposed for inclusion in the common lattice Boltzmann

equation to imitate the extra axisymmetric contributions to 2D Navier-Stokes equations
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in cylindrical dimensions [53, 54, 55]. However, it’s critical to recognise and emphasise

the assumption’s limitations, especially when working with flows that are essentially

three-dimensional in nature. Flows in complex geometries, turbulent flows, and those

involving swirling or vortical motion, for example, cannot always be accurately

represented using a purely axisymmetric or asymmetric assumption. Researchers must

evaluate the special characteristics of the flow, the simulation’s aims, and the

computational capabilities available. When considering whether to employ an

asymmetry assumption in their simulations, engineers and researchers should carefully

assess the consequences of choosing between computing expense and accuracy. Compare

the simulation results to the experimental data or known analytical solutions whenever

possible, and conduct the grid-independent test help researchers to understand the

reliability of research findings.

The majority of axisymmetric lattice Boltzmann techniques, however, are documented

in the literature for laminar axisymmetric flow equations in the absence of turbulence.

However, these approaches are not immediately applicable because the majority of

real-world natural flows are turbulent. In general, flow turbulence is modelled as a

closure problem using k − ϵ model [56], where k is turbulent kinetic energy and ϵ is

turbulent dissipation rate, which provides time-averaged characteristics. For turbulent

flows, Teixeira [57] first proposed the lattice Boltzmann method, which transforms the

single relaxation time into a variable relaxation time governed by resolving two

differential equations, namely the k − ϵ equations. Employment of space-filtered

governing equations with a subgrid-scale (SGS) stress model for the unresolved scale

stress allows the large eddy simulation to effectively reproduce vertical structures that

are larger than a prescribed scale. The Smagorinsky [58] subgrid-scale is typically used

in space-filtered governing equations to model flow turbulence because it is the most

straightforward and accurate method representing flow included turbulence. The

space-filtered flow equations are utilised in the current study because, in accordance

with Tutar and Hold’s research [59], they are more precise than the time-averaged

counterpart for calculating turbulent flows. The lattice Boltzmann approach for
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simulating turbulence may integrate the conventional Smagorinsky SGS stress model, as

demonstrated by Hou et al. [60] who changed the single relaxation time into a variable

relaxation time that is directly connected to the distribution function thus eliminating

the need to carry out any derivative computations. A lattice Boltzmann model for the

shallow water equations with turbulence modelling (LABSWETM) was created by Zhou

[61] following Hou et al.[60], who determined its effectiveness and applicability for

turbulence modelling [62].

2.8 Study of Rotational Flows

Axisymmetric flows with swirl or rotation are often encountered in engineering practice

[63, 64]. However, axisymmetric flow with swirl exhibit more complicated features than

axisymmetric flow without swirl. For many years, both computational and experimental

studies of the flow in a closed cylindrical container with a rotating lid have been

conducted. In 1968, Vogel [65] conducted an initial set of trials. The flow created in a

cylindrical container by a spinning end wall was observed in studies by Ronnenberg [66]

and Escudier [67], who discovered the development of a concentrated vortex core along

the centre axis. Numerous experimental and numerical investigations have since been

conducted as a result of the studies of Ronnenberg and Escudier. The existence of

vortex breakdown bubbles in steady-state flow was experimentally investigated by

Spohn et al. [68]in a closed cylindrical container with a rotating bottom. The

electrolytic precipitation method was utilised to depict flow features, and a particle

tracking method was employed to describe the overall flow field. Later, Sotiropoulos et

al. [69] performed preliminary experiments that confirmed their early numerical

findings of the occurrence of chaotic behaviour in Lagrangian transport with

vortex-breakdown bubbles in steady flows. In order to study axisymmetric vortex

breakdown, Lopez [63, 70, 71] published three studies between 1990 and 1992. In 2001,

the three-dimensional structure of restricted whirling flows with vortex breakdown was

investigated by Sotiropoulos et al. [72, 73]. In addition to one-sided rotation, experts
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[74] believe two-sided rotation can offer fresh perspectives on these issues and provide

new suggestions on how to manage the vortexes.

Experimental research on the effects of co- and counter-rotation of the end wall of a

cylinder on vortex breakdown was conducted by Bar-Yoseph et al. [75], Gautier et al.

[76], and Fujimura et al. [77]. Co-rotating end walls with the same angular velocity

were examined in calculations by Valentine and Jahnke [78] and Lopez [79] for both

steady and turbulent swirl flow. The lattice Boltzmann approach has recently drawn

considerable interest from non-Newtonian fluid dynamics researchers. Based on the

LBM, Yoshino et al. [80] suggested a numerical model for non-Newtonian fluid flow and

addressed two test case problems: non-Newtonian fluid flow in a three-dimensional

porous structure and power-law fluid flow in a radial corner geometry. Their computer

simulations showed that LBM can be effective for simulating real-world non-Newtonian

fluid flows. LBM was utilised by Wang and Bernsdorf [81] to analyse blood flow using

the Carreau Yasuda model. Non-Newtonian and Newtonian flows were compared in

their study in a three-dimensional (3D) generic stenosis.

Later, utilising LBM, many researchers created their own models to analyse

axisymmetric flows. Halliday et al.’s model [8] was extended by Niu et al. [82], who

incorporated the azimuthal rotation effect with the rotation terms regarded as inertia

forces. Halliday’s technique was attended to axisymmetric thermal systems by Peng et

al. [83]. The azimuthal velocity component and temperature were estimated using finite

differences in addition to the radial and axial velocity components solved by the lattice

Boltzmann formulation. A revised version of the D2Q9 model proposed by He and Luo

[84] was also suggested by Huang et al. [85, 86, 87], which had better numerical

stability and a less compressibility impact. With the inner cylinder rotating, Huang et

al. created a hybrid lattice Boltzmann system for axisymmetric flows. Azimuthal

velocity and temperature equations were discretized using the finite difference approach,

whereas the axial and radial velocities were solved using the two-dimensional lattice

Boltzmann equation with source terms. A newer axisymmetric approach, appropriate

for all axisymmetric flows, was devised by Zhou [15], in which the force and source/sink
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components were naturally incorporated into the lattice Boltzmann (LB) equation. An

updated axisymmetric lattice Boltzmann approach was reported in 2011 by the same

author [2]. The axisymmetric lattice Boltzmann model for cylindrical Couette flows for

non-Newtonian fluid was later analytically solved by An et al. [88]. A more reliable

incompressible axisymmetric D2Q9 model still needs to be constructed in order to

increase numerical stability and remove the compressibility impact of ordinary LBM.

2.9 Study of Turbulent Flows

It is important to be able to examine turbulent flow from both perspectives. Using the

Navier-Stokes equations and the continuity equation, it is theoretically possible to

model such flows. However, a vast number of scales are encountered in turbulent flow

and it is difficult to use typical approach to get the same results as experimentally.

Direct numerical simulation (DNS) is the most conceptually obvious method of solving

the Navier-Stokes equations. At present, the Reynolds (Re) numbers seen in most

industrial applications and the corresponding time resolution meshes make the DNS

technique computationally unfeasible except for tiny domain [89]. There are two main

alternatives to the direct numerical simulation method for addressing turbulent flows.

First, through time-averaging, the Reynolds-Averaged Navier-Stokes (RANS) theory

avoids a complete resolution of the time and space history of turbulence. The second

option is large-eddy simulation (LES) based on The idea of convolution with a spatial

filter. Only these scales determined by the diameter of the filter are to be computed

using LES. The PDE system of laws is subjected to a filtering process, producing a set

of space-filtered Navier-Stokes equations. Joseph Smagorinsky was the first to present

the Large Eddy Simulation concept [58]. According to Tennekes and Lumley [90],

turbulent flow has the following characteristics:

• Turbulent flow has a spectrum of eddy sizes and is irregular, random, and chaotic.

• As the Reynolds number Re rises, the diffusivity in turbulent flow also rises. This

implies that momentum exchange increases.
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• Turbulent flow relates to high Reynolds numbers. As an illustration, turbulent

axisymmetric pipe flow usually occurs when Re > 4000 [91], where Re = uD/ν.

• There are always three dimensions to turbulent flow. However, such flows can

exhibit two-dimensional properties and exists in practice as a two-dimensional flow

issue when the governing equations are time-averaged or space-filtered [90].

• Turbulent flow is dissipative because the kinetic energy of tiny eddies is converted

into internal energy by bigger eddies. The energy is extracted from the mean flow

by the greatest eddies. This type of procedure is known as a cascade process [90].

• Despite the presence of eddies of various magnitude, the flow should still be thought

of as a continuum.

Unresolved small-scale impacts on big-scale dynamics must be incorporated when

utilising the LBM to solve a high Reynolds number flow; otherwise, the outcomes

will be unstable. According to Sterling and Chen [92], the LBM may be thought

of as an explicit second-order finite-difference discretization approach. Two ap-

proaches have been suggested to extend the LBM to the small-scale dynamics of

turbulent flows. Hou et al. [60] claimed that the LBM can be used to model

large-scale motions and the lattice gas technique will simulate small-scale dynam-

ics noting that LBM originated from the LGA method and lattice gas dynamics

comprises tiny scale fluctuations. The other approach is significantly more straight-

forward and enables the LBM to be used in conjunction with a conventional subgrid

model. This strategy was used by Benzi et al. [93] and Qian et al. [94], who both

obtained acceptable results. The conventional Smagorinsky model [95], which em-

ploys positive eddy viscosity to simulate small-scale energy damping, is one of the

most basic subgrid models. Hou et al. [60] discussed the conventional subgrid model

and included its natural incorporation into the LBM’s framework. Following the

same principle as Hou et al.[60], Zhou [61] has created a lattice Boltzmann model

for the shallow water equations with turbulence modelling (LABSWETM). Zhou

also demonstrated the model’s effectiveness and applicability for turbulence mod-
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elling [62]. Meanwhile, several alternative approaches to flow turbulence modelling

have been proposed. Krafczyk et al. [96] created a large eddy simulation for the

Navier-Stokes equations using a multiple-relaxation-time (MRT) lattice Boltzmann

model. Similar research has been undertaken by Yu et al. [97] using the MRT

lattice Boltzmann model to simulate the flow of a turbulent square jet.

2.10 Study of Vortex Breakdown Phenomenon

According to Benjamin [98], vortex breakdown involves an abrupt and extreme change

in velocity structure that occasionally takes place in a whirling flow. However, despite

decades of study, the physical process that causes vortex breakdown is still poorly

understood. In the first kind of breakdown, the core expands quickly and creates a

bubble-like shape that is almost axisymmetric. In the second type of breakdown, the

vortex centerline spirals outward without appreciable core size expansion. The axial

flow, which is required for vortex breakdown, decelerates along the vortex axis- an

important feature of vortex breakdown. The general direction of axial flow is typically

reversed inside the bubble. Peckham and Atkinson [99], Elle [100], and Lambourne and

Bryer [101] all provide descriptions of early experimental work on vortex breakdown. In

these experiments, spiral and bubble types of breakdown were observed, with one or

more stagnation points appearing on or near the axis of the vortex. Michaud provided

schematics showing breakdowns observed in tornadoes and waterspouts at various

stages of their lifecycle [102]. Vortex breakdown appears as the ’eye’ in hurricanes,

which is a silent region with little known about the formation process and

characterization of the eye. Sharma and Sameen [103] recently demonstrated that

axisymmetric vortex breakdown prevents mixing by acting as a barrier to fluid

transport. Vogel-Escudier [65, 67] flow is created by generating bubble-type vortex

breakdown inside a circular cylinder with a rotating top lid.
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2.11 Research Gaps

There is a lack of numerical studies of the vortex breakdown phenomenon and

systematic simulations of unsteady-periodic cavity flows to find out the periodic time

where the flow repeats itself. Furthermore, there is a shortage of high-accuracy

numerical methods to simulate turbulent flows with complex boundary conditions. To

fill research gaps, there is a need for systematic simulation of vortex breakdown for

1002 < Re < 3061 and 2 < A < 3.5, giving a solution for determining the flow

periodicity, implementing the 2nd order BC to provide more precise results, and

incorporating flow turbulence.

2.12 Aim and Objectives

The aim of this thesis is to utilise an enhanced version of the axisymmetric lattice

Boltzmann method called AxLAB® to solve the axisymmetric equations of motion for

a cylindrical container with a rotating wall. The overall objectives are

• To systematically simulate vortex breakdowns for 1002 < Re < 3061 and 2 < A

< 3.5, compare the results to experimental data and determine the axial velocity

component of the flow along the cylinder axis.

• To identify the period of vortex breakdown for A specific kind of unsteady-periodic

flow with Re = 2765 and A = 2.5. The maximum axial velocity components of this

flow along the cylinder axis will be used to calculate the absolute error and relative

error between two patterns and hence estimate the period time. Knowledge of the

period time enables us to predict and control the behaviour of unsteady-periodic

flow aims improving industrial machine performance.

• To apply the new bounce back boundary method [104] for the axisymmetric lattice

Boltzmann revised method. This method is of second-order accuracy enabling us to

improve the accuracy of AxLAB® for boundary conditions concerning the flow in

a cylindrical container with rotating top and bottom walls. ResultS obtained from
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AxLAB® and the new code will be compared to demonstrate the improvements in

accuracy.

• We will also incorporate flow turbulence into the new model to simulate complex

flows such as turbulent pipe flow through an abrupt axisymmetric constriction and

axisymmetric separated and reattached flows. Velocity components, reattachment

length and streamlines will be examined, and numerical and experimental test cases

used to validate the code. The results from AxLAB® and the new code will again

be compared to demonstrate that the second-order bounce back method, when used

in conjunction with AxLAB® for turbulent flows, yields more accurate results.
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Governing Equations for

Axisymmetric Flows

3.1 Introduction

The laws of momentum and mass conservation apply to fluid flows. A set of differential

equations are developed to represent the physical movement of a fluid flow based on

these conservation rules. The Navier-Stokes (N-S) momentum equations and the

continuity equation make up a common set of governing flow equations. Axisymmetric

flow equations with and without turbulence terms, the governing equations in

axisymmetric flows, and the continuity of N-S equations are all discussed in this chapter.

3.2 The Navier-Stokes Equations

The three-dimensional continuity and Navier-Stokes (N-S) equations, which are

respectively derived from the principle of mass conservation and Newton’s second law of

motion, are the governing equations for general incompressible flows. In Cartesian

coordinates; the continuity equation of an incompressible fluid may written

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.1)
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The Navier-Stokes momentum equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
)− 1

ρ

∂p

∂x
+ fx (3.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
)− 1

ρ

∂p

∂y
+ fy (3.3)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= ν(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
)− 1

ρ

∂p

∂z
+ fz (3.4)

where x, y and z are Cartesian coordinates; u, v and w are the corresponding velocity

components; fx, fy and fz are the body force components per unit mass; ν is the

kinematic viscosity; p is the pressure; ρ is the fluid density; and t is the time. Another

way to express the above equations in tensor form is as follows:

∂uj

∂xj

= 0, (3.5)

∂ui

∂t
+ uj

∂ui

∂xj

= fi −
1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

, (3.6)

where i and j are space direction indices; and fi is the body force per unit mass acting

on the fluid in the i direction. The left side of Eq. 3.6 represents inertia, with the

second term on the left representing convection. The three terms listed in order on the

right-hand side are the body force term, the pressure gradient term, and the viscous

diffusion term. The N-S equations have no analytical solution except for a few very

simple cases. It is increasingly feasible to obtain numerical solutions to the continuity

and N-S equations as computing power grows. In order to solve flow issues in

engineering, numerical approaches are becoming increasingly routine.

3.3 Governing Equations in Axisymmetric Flows

3.3.1 Laminar Flow

Consider the movement of an isotropic, incompressible fluid through a

three-dimensional tube. The conventional orthonormal unit vectors er, eϕ and ez define
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a cylindrical coordinate system:

er = (
x

r
,
y

r
, 0), (3.7)

eϕ = (
y

r
,−x

r
, 0), (3.8)

ez = (0, 0, 1). (3.9)

in which case ϕ is the azimuth, r =
√

x2 + y2, x = rcosϕ and y = rsinϕ. If the solution

to the Navier-Stokes equations has the form

u = ur(r, z)er + uz(r, z)ez, (3.10)

the flow is said to be axisymmetric (without swirl) as the velocity field uis independent

of ϕ. In cylindrical coordinates, the continuity equation is

∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0, (3.11)

and the N-S momentum equations are:

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
= −1

ρ

∂p

∂r
+ ν(

∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2
+

∂2ur

∂z2
), (3.12)

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
+ ν(

∂2uz

∂r2
+

1

r

∂uz

∂r
+

∂2uz

∂z2
). (3.13)

The tensor form representation of the governing equations for incompressible

axisymmetric flow in a cylindrical coordinate system is as follows:

∂uj

∂xj

= −ur

r
(3.14)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xj

+ ν
∂2ui

∂2xj

+
ν

r

∂ui

∂r
− νui

r2
δir, (3.15)

where ρ is the density; p is the pressure; r and x are the coordinates in radial and axial

directions, respectively; i is the index standing for r or x; ui is the component of
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velocity in the i direction; ν is the kinematic viscosity; t is time; δij is the Kronecker δ

function defined by

δ =


0, i ̸= j,

1, i = j,

(3.16)

and repeated indexes imply summation over space coordinates, known as the Einstein

summation convention. Substitution of the continuity Eq. 3.14 into Eq. 3.15 results in

[14]

∂ui

∂t
+
∂(uiuj)

∂xj

= −1

ρ

∂p

∂xj

+ν
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+
ν

r

(
∂ui

∂r
+

∂ur

∂xi

)
−uiur

r
−2νui

r2
δir. (3.17)

3.3.2 Turbulent Flow

Concepts for Space Filtering

Large eddy simulation (LES) computes only the scales determined by the filter’s

diameter, in contrast to DNS, which resolves all scales in the flow. The main function of

LES is low-pass filtering, which involves retaining scales associated with low frequencies

while filtering out scales related with high frequencies. Thus, the flow parameters that

characterise the flow (such as velocity, pressure, etc.) are divided into the resolved

scales and the resulting unresolved scales. The space-filtered Navier-Stokes equation can

yield greater accurate solutions to turbulent flows and can reveal precise properties of

flow turbulence, while being more expensive to utilise than the time-averaged Reynolds

equations, according to a large body of research [54]. Therefore, turbulent flows in this

work are simulated using LES. The convolution process in traditional LES defines the

resolved larger-scale motion. The space-filtered conservation equations are created by

convolving the conservation principles with a spatial filter function during the filtering

operation. A generalised filter is described by Leonard [105] as a convolution integral,

ũi(X, t) =

∫
G(X − ξ)ui(ξ, t)dξ, (3.18)
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where the integration is conducted over the full domain, ξ is a variable in domain, and

the filter G, is normalised by requiring that

∫
G(X − ξ)dξ = 1. (3.19)

The residual field is defined by the difference between the space-filtered quantity,

ũi(X, t), and the actual solution, ui(X, t), given by

új(X, t) = ui(X, t)− ũi(X, t). (3.20)

By adding a space-filtered quantity to the continuity equation (Eq. 3.5) and momentum

equation (3.6), the flow equations for the large eddy simulation may be constructed.

The Navier-Stokes equation and space-filtered continuity are represented as:

∂ũi

∂xj

= 0, (3.21)

∂ũi

∂t
+

∂(ũiũj)

∂xj

= fi −
1

ρ

∂p

∂xi

+ ν
∂2ũi

∂xj∂xj

− ∂τij
∂xj

, (3.22)

The subgrid-scale stress, abbreviated τij, measures the interaction between the resolved

and unresolved scales, i.e.

τij = uiuj − ũiũj. (3.23)

Concepts for Time-Averaged Model

In general, the Navier-Stokes equations, the Reynolds equations, space-filtered

Navier-Stokes equations, large eddy simulation, or Direct Numerical Simulation (DNS)

may all be used to explain turbulent flows. In DNS of turbulent flow, there is no need

for closure models because DNS explicitly solves the Navier-Stokes equations for all

scales of turbulence [106]. The variables in turbulent flows are split into two categories

in time-averaged models: the perturbation category and the category that represents
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the time-averaged variation. Consider the velocity, which is

uj = ūj + új, (3.24)

where uj is the universal variable, új is the perturbation part and ūj is the

time-averaged part, which can be calculated from

ūj =
1

T

∫ t+T

t

ujdt. (3.25)

By incorporating of Eq. 3.25 into N-S equations Eq. 3.5 and Eq. 3.6 we have

∂ūj

∂xj

= 0, (3.26)

∂ūi

∂t
+

∂(ūiūj)

∂xj

= fi −
1

ρ

∂p

∂xi

+ ν
∂2ūi

∂xj∂xj

+
1

ρ

∂τij
∂xj

, (3.27)

where the new term τij = −ρúiúj is called the Reynolds stress, which may be

represented in terms of the mean strain rate using the Boussinesq approximation [107],

τij = −ρúiúj = −ρνt(
∂ui

∂xj

+
∂uj

∂xi

). (3.28)

.

There are several degrees of approximation that may be used to close the set of

governing equations Eq. 3.26 and Eq. 3.27 as discussed below.

1. Models using zero equations. Eddy viscosity in this model is determined by a

straightforward algebraic relation as follow

νt = lm(lm
dU

dy
), (3.29)

the mixing length of turbulence motion lm is calculated experimentally [108].

2. One-equation models. Typically, these models solve the transport equation for a
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specific turbulent quantity, such as turbulence kinetic energy κ, and then derive a

second turbulent quantity using an algebraic formula [109].

νt = Cµ

√
κlm. (3.30)

∂κ

∂t
+ Uj

∂κ

∂xj

=
1

ρ
τij

∂Ui

∂xj

− ε+
∂

∂xj

[
1

ρ
(µ+

µt

σκ

)
∂κ

∂xj

]
(3.31)

Cµ is a constant established by Launder and Spalding [108] using basic benchmark

tests and ε is the rate of turbulent dissipation.

3. Models with two equations. Two partial differential equations are used in this model

to explain two transport scalars. The commonly used k-ε model is an example of a

typical two-equation model [110],

νt = Cµ
k2

ε
(3.32)

ρuj
∂k

∂xj

= ρτij
∂ui

∂xj

+
∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
−

[
ρε+ 2µ

(
∂k

1

2

∂xj

)2]
, (3.33)

ρuj
∂ε

∂xj

= C1
ε

k
τij

∂ui

∂xj

+
∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
− C2

ρε2

k
+

2µµt

ρ

(
∂2u

∂x2
2

)2

. (3.34)

where ε is the rate of turbulent dissipation and κ is the kinetic energy of turbulent

flow.

4. Reynolds-Average Navier-Stoke (RANS) model. For the Reynolds stress τij =

−ρúiúj, a transport equation is obtained. The Reynolds stresses are then utilised

to close the Reynolds-averaged momentum equation [111]. The RANS transport

equation is expressed as

∂ρúiúj

∂t
+

∂ρukúiúj

∂xk

= − ∂

∂xk

[
ρúiújúk + p(δkjúi + δikúi)− µ

∂

∂xk

(úiúj)

]

+ Pij +Gij + Φij + εij,

(3.35)
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where

Pij = −ρ

(
úiúk

∂uj

∂xk

+ újúk
∂uj

∂xk

)
, (3.36)

Gij = −ρβ(gjújθ − gjújiθ), (3.37)

Φij = P

(
∂úi

∂xj

+
∂új

∂xi

)
, (3.38)

εij = −2µ
∂úi

∂xk

∂új

∂xk

. (3.39)

Finding the turbulent diffusion, the pressure-strain correlation, and the turbulent

dissipation rate are the three main goals of this model.

The subgrid-scale (SGS) stress with an SGS eddy viscosity νe was further expressed

as the following by adhering to the Boussinesq assumption for turbulent stress:

τij = −νe

(
∂ũi

∂xj

+
∂ũj

∂xi

)
. (3.40)

The following momentum equation is produced by substituting Eq. 3.40 into Eq.

3.22:

∂ũi

∂t
+

∂(ũiũi)

∂xj

= fi −
1

ρ

∂p

∂xi

+ νt
∂2ũi

∂xj∂xj

, (3.41)

where νt = ν + νe is the total viscosity, ν is the kinematic viscosity, and νe is the

eddy viscosity, expressed by

νe = (Csls)
2
√

SijSij, (3.42)

where Sij is the size of the large scale strain-rate tensor, ls is the characteristic

length scale, and Cs is the Smagorinsky constant [58].

Sij =
1

2ρ

[
∂(ρũi)

∂xj

+
∂(ρũj)

∂xi

]
. (3.43)

Fewer unresolved scale eddies occur in the subgrid-scale (SGS) stress model with

finer grid sizes. A direct numerical simulation of the SGS model is possible if
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the grid size is small enough. It is believed that including a subgrid-stress model

into the lattice Boltzmann technique would result in a more accurate solution for

turbulent flows given that the lattice spacing and mesh size are often significantly

smaller than those utilised in a classical computing approach [112]. The following

momentum equation is produced by substituting Eq. 3.23 into Eq. 3.22:

∂ũi

∂t
+

∂(ũiũi)

∂xj

= fi −
1

ρ

∂p

∂xi

+ (ν + νe)
∂2ũi

∂xj∂xj

− úiúj, (3.44)

It can be seen from the equation above that a new term úiúj, called the Reynolds

stress, appears.

In order to make things easier, the hats of ui and uj are dropped in the following

equations, which are of an identical form to the generic turbulent axisymmetric

flow equations. However, corresponding symbols indicate space-filtered variables.

It is possible to express the governing equations for incompressible axisymmetric

turbulent flow in a cylinder-coordinate system as follows:

∂uj

∂xj

+
ur

r
= 0, (3.45)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xj

+ νt
∂2ui

∂2xj

+
νt
r

∂ui

∂r
− νtui

r2
δir, (3.46)

where νt is the total viscosity in a turbulent flow, νt = ν + νe.
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Lattice Boltzmann Method

4.1 Introduction

The lattice Boltzmann method (LBM), a discrete computing technique, evolved from

lattice gas cellular automata (LGCA), a fictional and simplified molecular model. In

general, LBM comprises three parts: (1) the local equilibrium distribution function

which determines which flow equations, such as the axisymmetric flow equations, are

recovered by the lattice Boltzmann model; (2) the lattice Boltzmann equation which

regulates the transport of the particle distribution function from one lattice to the

nearby lattice; and (3) a lattice pattern that represents the grid nodes and controls the

movement of the particles (Figs. 4.1,4.2 and 4.3).

4.2 Lattice Boltzmann Equation

The two basic phases that make up the LBM in lattice Boltzmann theory are streaming

and collision. During the streaming step particles are controlled by the following factors

as they migrate in the direction of their closest neighbours:

fα(X+ eα∆t, t+∆t)− f́α(X, t) =
∆t

κe2
eαiFi, (4.1)
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where fα is the distribution function of particles; f́α represents the value prior to

streaming; ∆t is the time step; X is the space vector, i.e., X = (r, x); e = ∆x/∆t; ∆x is

the lattice size; eαi is the component of eα , which is the velocity vector of a particle in

the α link; Fi is the force term and κ is a constant determined from

κ =
1

e2

∑
α

eαxeαx =
1

e2

∑
α

eαyeαy. (4.2)

The particles arrive at the collision step, interact with one another, with each modifying

its velocity components and direction in accordance with the scattering law, given by:

f́α(X, t) = fα(X, t) + Ωα[f(X, t)], (4.3)

where the collision operator ”Ωα” regulates the rate of change in fα during a collision.

The collision operator, which takes the form of a matrix, may be found in kinetic

theory. Higuera and Jimenez [36] nonetheless provided a fundamentally essential notion

of simplifying the collision operator in response to the complexity of the analytical

solutions. The collision operator was linearized around its immediate equilibrium state.

The equilibrium value of this collision operator is then enlarged. The operator is as

follows, with reference to Noble et al. [113]:

Ωα(f) = Ωα(f
eq) +

∂Ωα(f
eq)

∂fβ
(fβ − f eq

β ) +O

[
(fβ − f eq

β )2

]
, (4.4)

where the f eq
α is the local equilibrium distribution function and fβ is the distribution

function.

A linearized collision operator (Eq. 4.5) is produced when high-order components in Eq.

4.4 are ignored such that Ωα(f
eq) = 0:

Ωα(f) ≈
∂Ωα(f

eq)

∂fβ
(fβ − f eq

β ). (4.5)

The local particle distribution reaches equilibrium over a single relaxation time τ
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[114, 115],

∂Ωα(f
eq)

∂fβ
= −1

τ
δαβ, (4.6)

where δαβ is the Kronecker delta function defined as:

δαβ =


0, α ̸= β,

1, α = β.

(4.7)

Then, Eq. 4.5 can be expressed as:

Ωα(f) = −1

τ
δαβ(fβ − f eq

β ), (4.8)

the lattice BGK collision operator [110] is produced using the aforementioned Eq. 4.8,

Ωα(f) = −1

τ
(fα − f eq

α ), (4.9)

where τ stands for a single relaxation time. The most well-known lattice Boltzmann

equation, or the so-called single relaxation time lattice Boltzmann equation, may be

written as follows by changing the collision operator 4.9 into 4.3 [116]:

fα(X+ eα∆t, t+∆t)− fα(X, t) = −1

τ
(fα − f eq

α ) +
∆t

κe2
eαiFi(X, t). (4.10)

4.3 Connectivity to the Continuum Boltzmann

Equation

The continuous Boltzmann equation (CBE) may also be used to generate the lattice

Boltzmann equation (4.10), which historically developed from the LGCA. The BGK
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approximation appears in the CBE, which reads [115]:

∂f

∂t
+ e.∇f = −1

ζ
(f − f eq), (4.11)

where f = (X, e, t) represents the single-particle distribution in continuum phase space

(X, e); e is the velocity of the particle; ζ is the relaxation time; ∇ = i
∂

∂x
+ j

∂

∂y
is called

gradient operator; and f eq is the Maxwell-Boltzmann equilibrium distribution function,

which is given by:

f eq =
ρ√

(2π/3)D
exp

[
− 3

2
(e− V )2

]
, (4.12)

Where the fluid velocity V and particle velocity e are normalised by
√
3RT in which R

is the ideal gas constant, T is temperature results in sound speed of Us = 1/
√
3 [3] and

D is the spatial dimension. Hence, the fluid’s velocity and density are estimated using

the distribution function.

ρ =

∫
f de, (4.13)

ρV =

∫
ef de. (4.14)

The equilibrium distribution function provided by Eq. 4.12 may be extended in the

following manner to second-order accuracy [117], provided the fluid velocity V is small

in relation to the speed of sound,

f eq =
ρ√

(2π/3)D
exp

(
− 3

2
e2

)[
1 + 3(eV ) +

9

2
(eV )2 − 3

2
V 2

]
. (4.15)

A small collection of velocities and related distribution functions are constructed rather

than the whole Boltzmann distribution in order to establish a discrete Boltzmann

model.

fα = f(X, eα, t), (4.16)
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f eq
α = f eq(X, eα, t), (4.17)

They satisfy Eq. 4.11

∂fα
∂t

+ e.∇fα = −1

ζ
(fα − f eq

α ) + Sα, (4.18)

where for the D2Q9 square lattice (Fig. 4.1),

Sα =
1

6e2
eαiFi, (4.19)

Eq. 4.18 is discretized by

fα(X, t+∆t)− fα(X, t)

∆t
+ eαx

fα(X+∆x, t+∆t)− fα(X, t+∆t)

∆x

= −1

ζ
(fα − f eq

α ) + Sα,
(4.20)

or

fα(X, t+∆t)− fα(X, t) + eαx
∆t

∆x
[fα(X+∆x, t+∆t)− fα(X, t+∆t)]

= − 1

ζ/∆t
(fα − f eq

α ) + Sα∆t.
(4.21)

Lagrangian behaviour is then produced by selecting ∆x/∆t = eαx and cancelling the

fα(X, t+∆t) terms, resulting in

fα(X, t+∆t)− fα(X, t) = −1

τ
(fα − f eq

α ) + Sα∆t, (4.22)

where τ =
ζ

∆t
and should be referred to as a single dimensionless relaxation time.
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4.4 Lattice Pattern

Figure 4.1: Nine-velocity square lattice(D2Q9).

Figure 4.2: Seven-velocity hexagonal lattice(D2Q7).

Figure 4.3: Four-velocity lattice(D2Q4).
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The grid points are built up in a conventional manner using a lattice design. In the

lattice Boltzmann technique, the grid is used for calculating particle movements and

serving as a microscopic model for molecular dynamics. The lattice pattern controls the

constant κ in the lattice Boltzmann equation Eq. 4.10. There are many regular lattice

patterns to choose from in two dimensions, and the LBM may be expressed in a

straightforward, explicit form for each of them [117]. Square and hexagonal lattices are

the most popular of these lattice forms. According to Qian’s notation [118],

two-dimensional four or nine-velocity lattices are referred to in this thesis as D2Q4 and

D2Q9, respectively.

Not all of these lattice arrangements, nevertheless, have sufficient symmetry, which is

vital for recovering the proper flow equations [33]. Both the D2Q9 and D2Q7 lattices

exhibit this feature, as shown by theoretical analysis and numerical experiments [119],

and perform satisfactorily in these simulations. Fietz [120] reported that models built

on the D2Q9 lattice typically yield more accurate findings than those built on the D2Q7

lattice. Additionally, the square lattice provides a simple method for implementing

various boundary conditions [121], correlates the force term with a gradient, and

computes the boundary conditions quickly and precisely. The D2Q9 lattice is therefore

selected there.

Each particle in the nine-speed square lattice (D2Q9) shown in Fig. 4.1 travels one

lattice unit along the eight connections denoted by the numbers 1 through 8, or remains

at rest with zero speed at connection 0. Particle velocities are determined by:

eα =


(0, 0), α = 0

λαe[cos
(α−1)π

4
, sin (α−1)π

4
], α ̸= 0

(4.23)

The 9-speed square lattice is shown to have the following fundamental characteristics.

∑
α

eαi =
∑
α

eαieαjeαk = 0, (4.24)
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∑
α

eαieαj = 6e2δij, (4.25)

∑
α

eαi =
∑
α

eαieαjeαkeαl = 4e4(σijσkl + σikσjl + σilσjk)− 6e4∆ijkl, (4.26)

where

∆ijkl =


1, i = j = k = l,

0, otherwise.

(4.27)

Substituting Eq. 4.23 into Eq. 4.2, we obtain

κ =
1

e2

∑
α

eαxeαx =
1

e2

∑
α

eαyeαy = 6. (4.28)

The most typical version of a lattice Boltzmann model with a D2Q9 lattice may be

derived by combining Eq. 4.28 and Eq. 4.10,

fα(X+ eα∆t, t+∆t)− fα(X, t) = −1

τ
(fα − f eq

α ) +
∆t

6e2
eαiFi(X, t). (4.29)

4.5 Local Equilibrium Distribution Function

The lattice Boltzmann technique relies heavily on the local equilibrium distribution

function, which determines the flow equations to be solved by the lattice Boltzmann

model. If the two-dimensional axisymmetric flow equations 3.14 and 3.15 are solved

using the lattice Boltzmann equation Eq. 4.29, then an appropriate local equilibrium

distribution functionf eq
α must be obtained. The Fermi-Dirac distribution, which is

frequently extended as a Taylor series in macroscopic velocity to its second-order [33], is

considered an equilibrium function in lattice gas cellular automata (LGCA) theory. The

equilibrium distribution function for retrieving the Navier-Stokes equations using the

lattice Boltzmann technique may be obtained [84] by applying a Taylor expansion to

the Maxwell-Boltzmann distribution. These techniques, however, cannot be used to

create axisymmetric flow equations. Thus, the correct formula for the local equilibrium
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distribution function is found using an alternate and effective technique known as the

Ansatz approach [122]. An equilibrium function in the Ansatz technique may be

thought of as a power series in macroscopic velocity [123].

f eq
α = Aα +Bαeαiui + Cαeαieαjuiuj +Dαuiuj, (4.30)

Due to this underlying premise, the procedure may be effectively applied to a variety of

flow problems. Numerous studies have validated and illustrated the accuracy and

adaptability of the technique [124, 125, 126]. The equilibrium function and the lattice

have the same symmetry, and so

A1 = A3 = A5 = A7 = Ȧ, (4.31)

A2 = A4 = A6 = A8 = Ä, (4.32)

with similar expressions for Bα, Cα and Dα. Eq. 4.30 is conveniently stated as

f eq
α =


A0 +D0uiui, α = 0,

Ȧ+ Ḃeαiui + Ċeαieαjuiuj + Ḋuiuj, , α = 1, 3, 5, 7,

Ä+ B̈eαiui + C̈eαieαjuiuj + D̈ui, α = 2, 4, 6, 8.

(4.33)

The conservation relations, such as mass and momentum conservation, are employed as

constraints on the equilibrium distribution function to calculate the coefficients in the

equations above. The local equilibrium distribution function (Eq. 4.33) for the

axisymmetric flow equations must meet the following three requirements:

∑
α

f eq
α = ρ, (4.34)

∑
α

eαif
eq
α = ρui, (4.35)

∑
α

eαieαjf
eq
α = Pδij + ρuiuj. (4.36)
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Computation of the lattice Boltzmann equation (4.29) based on the aforementioned

restrictions then facilitates the solution of the two-dimensional axisymmetric flow

equations (3.14) and (3.15). The friction force and wind shear stress, which are

examples of source terms in the axisymmetric flow equations, are not taken into account

in this process because they will be cancelled out. Substituting Eq. 4.33 into Eq. 4.34;

A0 −D0uiui

+ 4Ȧ+
∑

α=1,3,5,7

Ḃeαiui +
∑

α=1,3,5,7

Ċeαieαjuiuj − 4Ḋuiui

+ 4Ä+
∑

α=1,3,5,7

B̈eαiui +
∑

α=2,4,6,8

C̈eαieαjuiuj − 4D̈uiui

= ρ.

(4.37)

Eq. 4.23, which evaluates the coefficients of ρ and uiui, is then substituted into the Eq.

4.37, giving

A0 + 4Ȧ+ 4A = ρ (4.38)

D0 + 2e2Ċ + 4e2C̈ + 4Ḋ + 4D̈ = 0. (4.39)

Likewise, applying Eq. 4.33 to Eq. 4.35 results in

A0eαi −D0eαiujuj

+
∑

α=1,3,5,7

(
Ȧeαi + Ḃeαieαjui + Ċeαieαjeαkuiuj − Ḋeαieαjuiui

)

+
∑

α=2,4,6,8

(
Äeαi + B̈eαieαjui + C̈eαieαjeαkuiuj − D̈eαieαjuiui

)
= ρui.

(4.40)

Assuming the coefficients of ui to be equal, leads to

2e2Ḃ + 4e2B̈ = ρ. (4.41)
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Adding Eq. 4.33 once more to the third restriction, Eq. 4.35 produces

∑
α=1,3,5,7

(
Ȧeαieαj + Ḃeαieαjeαkujuk + Ċeαieαjeαkeαlukul − Ḋeαieαjukuk

)

+
∑

α=2,4,6,8

(
Äeαieαj + B̈eαieαjeαkujuk + C̈eαieαjeαkeαlukul − D̈eαieαjukuk

)

= Pδij + ρuiuj.

(4.42)

Inserting Eq. 4.23 into the preceding equation yields

2Ȧe2δij + 2Ċe4uiui + 2Ḋe2uiui + 4Äe2δij

+ 8C̈e2uiuj + 4C̈e4uiui + 4C̈e2uiui = Pδij + ρuiui.

(4.43)

Hence, four more relationships may be derived,

2e2Ȧ+ 4e2Ä = p, (4.44)

8e2C̈ = ρ, (4.45)

2e2Ċ = ρ, (4.46)

2e2Ḋ + 4e2D̈ + 4e4C̈ = 0. (4.47)

Eqs. 4.45 and 4.46 may be combined to obtain

4C̈ = Ċ. (4.48)

Because of symmetry, three extra relations may be assumed with regard to Eq 4.48.

4Ä = Ȧ, (4.49)

4B̈ = Ḃ, (4.50)

4D̈ = Ḋ. (4.51)
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Therefore, Eqs. (4.38), (4.39), (4.41) and (4.44)-(4.51) are available to determine the

coefficients as follow:

A0 =
4

9
ρ, B0 = − 2ρ

3e2
(4.52)

Ȧ =
ρ

9
, Ḃ =

ρ

3e2
, Ċ =

ρ

2e4
, Ḋ = − ρ

6e4
, (4.53)

Ä =
ρ

36
, B̈ =

ρ

12e2
, C̈ =

ρ

8e2
, D̈ = − ρ

24e2
. (4.54)

As a result, the local equilibrium distribution function is obtained by substituting Eqs.

4.52, 4.53, and 4.54 into Eq. 4.33:

f eq
α = ωαρ(1 + 3

eαiui

e2
+

9

2

eαieαjuiuj

e4
− 3

2

uiui

e2
), (4.55)

where

ωα =



4
9
, α = 0,

1
9
, α = 1, 3, 5, 7,

1
36
, α = 2, 4, 6, 8;

(4.56)

The lattice Boltzmann equation is then utilised to solve the axisymmetric flow

equations using this local equilibrium distribution function.

4.6 Lattice Boltzmann Equation for Axisymmetric

Flow

4.6.1 Axisymmetric Flow without Swirl

On the nine-speed square lattice depicted in Fig. 4.1, the AxLAB® discretisation reads

fα(X+ eα∆t, t+∆t)− fα(X, t) = −τα(fα− f eq
α ) + ωαθ∆t+

∆t

κe2
eαiFi (4.57)
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where fα is the distribution function of particles; f eq
α is the local equilibrium

distribution function; ∆t is the time step; X is the space vector, i.e.,

X = (r, x); e = ∆x/∆t; ∆x is the lattice size; ωα is the weight given by Eq. 4.56 When

using the nine-speed lattice pattern; θ is the source or sink term,

θ = −ρur

r
, (4.58)

Fi is the force term defined by

Fi = −ρuiur

r
− 2ρνui

r2
δir. (4.59)

where δij denotes the Kronecker function in Eq. 4.59; eαi is the component of eα ,

which is the velocity vector of a particle in the α link defined by

eα =


(0, 0), α = 0

λαe[cos
(α−1)π

4
, sin (α−1)π

4
], α ̸= 0

(4.60)

where λα is

λα =


1, α = 1, 3, 5, 7,

√
2, α = 2, 4, 6, 8.

(4.61)

The constant κ is determined from

κ =
1

e2

∑
α

eαxeαx =
1

e2

∑
α

eαreαr. (4.62)

With Eq. 4.62 we have κ = 6. τα is the relaxation time and is expressed as

τα =


1
τ
, r = 0

1
τ

[
1 +

(2τ − 1)eαr∆t

2r

]
, r ̸= 0.

(4.63)
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The fluid kinematic viscosity ν and constant relaxation time τ are related as follows:

ν =
e2∆t

6
(2τ − 1). (4.64)

The fluid density ρ and velocity ui, are determined as

ρ =
∑
α

fα, ui =
1

ρ

∑
α

eαifα. (4.65)

4.6.2 Recovery of the Axisymmetric Flow Equations without

Swirl

The Chapman-Enskog analysis is used to demonstrate how the lattice Boltzmann

equation can be used to derive the macroscopic equations (3.14) and (3.17) from Eq.

4.57. The presumption is that t is small and equal to ε,

∆t = ε. (4.66)

Inputting the aforementioned equation into Eq. 4.57 results in

fα(X+ eαε, t+ ε)− fα(X, t)

= −1

τ
(fα− f eq

α )− (2τ − 1)

2τr
eαrε(fα− f eq

α ) + ωαθε+
ε

6e2
eαiFi.

(4.67)

By applying a Taylor expansion at the point(X, t) of Eq. 4.67 in time and space,

ε

(
∂

∂t
+ eαj

∂

∂xj

)
fα +

1

2
ε2

(
∂

∂t
+ eαj

∂

∂xj

)2

fα +O(ε3)

= −1

τ
(fα − f eq

α )− (2τ − 1)

2τr
eαrε(fα − f eq

α ) + ωαθε+
ε

6e2
eαiFi.

(4.68)

The Chapman-Enskog extension states that fα may be expressed as a series of ε,

fα = f (0)
α + εf (1)

α + ε2f (2)
α +O(ε3). (4.69)
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Both the source term θ and the force term Fi are calculated using the centred scheme

[127] as

θ = θ

(
X+

1

2
eαε, t+

1

2
ε

)
(4.70)

and

Fi = Fi

(
X+

1

2
eαε, t+

1

2
ε

)
(4.71)

which, after Taylor expansion, may be expressed as

θ

(
X+

1

2
eαε, t+

1

2
ε

)
= θ(X, t) +

1

2
ε

(
∂

∂t
+ eαj

∂

∂xj

)
θ(X, t) +O(ε2) (4.72)

and

Fi

(
X+

1

2
eαε, t+

1

2
ε

)
= Fi(X, t) +

1

2
ε

(
∂

∂t
+ eαj

∂

∂xj

)
Fi(X, t) +O(ε2). (4.73)

Eq. 4.68 is changed by substituting Eq. 4.69, 4.72, and 4.73. An equation to the order

of ε0 is thus obtained. Here, the expansion

f (0)
α = f eq

α , (4.74)

to the order of ε is

(
∂

∂t
+ eαj

∂

∂xj

)
f (0)
α = −f

(1)
α

τ
+ ωαθ +

1

6e2
eαiFi, (4.75)

and the order of ε2 is

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)
α +

1

2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)
α = −f

(2)
α

τ
− (2τ − 1)

2τr
eαrf

(1)
α

+
1

2

(
∂

∂t
+ eαj

∂

∂xj

)
(ωαθ) +

1

12e2

(
∂

∂t
+ eαj

∂

∂xj

)
(eαiFi).

(4.76)
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Using Eq. 4.75, Eq. 4.76 may be expressed:

(2τ − 1)

2τ

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)
α = −f

(2)
α

τ
− (2τ − 1)

2τ
eαrf

(1)
α . (4.77)

by applying Eq. (4.75)+ε×Eq. (4.77),

(
∂

∂t
+ eαj

∂

∂xj

)
f (0)
α +

(2τ − 1)ε

2τ

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)
α

=
1

τ
(f (1)

α − εf (2)
α )− (2τ − 1)ε

2τ
eαrf

(1)
α + ωαθ +

1

6e2
eαiFi.

(4.78)

The sum of the above equations over α yields

∂

∂t

∑
α

f (0)
α +

∂

∂xj

∑
α

eαjf
(0)
α = θ. (4.79)

If the variation in density is small enough to be overlooked, then taking∑
(Eq.(4.75) + ε× Eq.4.77) results in

∂

∂t

∑
α

eαif
(0)
α +

∂Π
(0)
ij

∂xj

=
∂Λij

∂xj

+
Λij

r
+ Fi, (4.80)

where the following formulae represent the zero-order momentum flux tensor:

Π
(0)
ij =

∑
α

eαieαjf
(0)
α , (4.81)

Λij = − ε

2τ
(2τ − 1)

∑
α

eαieαjf
(1)
α , (4.82)

Λij = − ε

2τ
(2τ − 1)

∑
α

eαieαrf
(1)
α , (4.83)

Reviewing the terms in Eq. 4.81 using Eq. 4.55,

Π
(0)
ij = Pδij + ρuiuj, (4.84)
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where P = ρe2/3 is the pressure, resulting in a speed of sound Cs = e/
√
3. Substituting

Eq. 4.84 into Eq. 4.80, the result is

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

= −∂P

∂xi

+
∂Λij

j

+
Λir

r
+ Fi. (4.85)

Eq. 4.82 may be rewritten using Eq. 4.75 as:

Λij = Π
(1)
ij − ε

2
(2τ − 1)

∑
α

eαieαrωαθ, (4.86)

where the first-order momentum flux tensor Π
(1)
ij , is given by

Π
(1)
ij =

ε

2
(2τ − 1)

∑
α

eαieαr

(
∂

∂t
+ eαk

∂

∂xk

)
f (0)
α , (4.87)

Using Eq. 4.81, we obtain:

Π
(1)
ij =

ε

2
(2τ − 1)

∂

∂t
Π

(0)
ij +

ε

2
(2τ − 1)

∂

∂xk

∑
α

eαieαreαkf
(0)
α , (4.88)

combining Eqs. 4.55, 4.74 and 4.81 leads to

∂

∂xk

∑
α

eαieαreαkf
(0)
α =

e2

3

∂

∂xk

(ρuiδjk + ρujδki + ρukδij). (4.89)

For characteristic velocity Uc, characteristic length Lc and characteristic time tc, the

term
∂

∂t
Π

(0)
ij is of the order of ρU2

c /tc, and the term
∂

∂xk

∑
α eαieαreαkf

(0)
α is of the order

of ρe2U2
c /Lc. Using this information, we determine that the ratio of the former to the

latter terms is of the order

O

( ∂

∂t
Π

(0)
ij

∂

∂xk

∑
α eαieαreαkf

(0)
α

)
=O

(
ρU2

c /tc
ρe2U2

c /Lc

)
=

O

(
Uc

e

)2

= O

(
Uc

Cs

)2

= O

(
M 2

) (4.90)
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in which M = Uc/Cs is the Mach number. The first term in Eq. 4.88 is negligible in

comparison to the second term if M << 1. This is in accordance with lattice

Boltzmann dynamics. As a result, when Eq. 4.89 is substituted into Eq. 4.88 we obtain;

Π
(1)
ij =

e2ε

6
(2τ − 1)

∂

∂xk

(ρuiδjk + ρujδki + ρukδij), (4.91)

or

Π
(1)
ij = ν

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

+
∂(ρuk)

∂xk

δij

]
, (4.92)

in which ν is the kinematic viscosity, expresses by Eq. 4.64.

Eq. 4.92 is inserted into Eq. 4.86 and the remaining terms are evaluated, resulting in

Λij = ν

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

+
∂(ρuk)

∂xk

δij

]
− νθδij. (4.93)

After solving the aforementioned problem using θ = −ur/r and imposing continuity Eq.

3.14, gives

Λij = ν

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

]
, (4.94)

and

Λir = ν

[
∂(ρui)

∂xr

+
∂(ρur)

∂xi

]
. (4.95)

Eq. 4.59, Eq. 4.94, and Eq. 4.95 combined with Eq. 4.85, yield

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

=− ∂P

∂xi

+ ν
∂

∂xj

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

]

+
ν

r

[
∂(ρui)

∂xr

+
∂(ρur)

∂xi

]
− ρuiur

r
− 2ρνui

r2
δij.

(4.96)

Eq. 4.94 is essentially the momentum equation assuming sufficient small density
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variation.

4.6.3 Axisymmetric Flow with Swirl

The governing equation for the azimuthal velocity component in a cylindrical

coordinate system subject to axisymmetric rotating flow is [15]:

∂uϕ

∂t
+

∂(ujuϕ)

∂xj

= ν
∂2uϕ

∂x2
j

+
ν

r

∂uϕ

∂r
− 2uruϕ

r
− νuϕ

r2
. (4.97)

By adding another term to the force term F in Eq. 4.59, the extra impact of solid on

the flow field is taken into consideration,

Fi = −ρuiur

r
− 2ρυui

r2
δir +

ρu2
ϕ

r
δir. (4.98)

In practice, a D2Q4 or D2Q5 lattice Boltzmann model may be used to precisely and

quickly solve the advection-diffusion Eq. 4.59 [128, 129, 130]. The rotating lattice

Boltzmann equation is solved as follows using D2Q4 lattice:

f̄α(X+ ēα∆t, t+∆t)− f̄α(X, t) = −τ̄α(f̄α− f̄ eq
α ) +

Sϕ∆t

4
, (4.99)

where f̄α is the distribution function; f̄ eq
α ; is the local equilibrium distribution function;

Sϕ is the source or sink term given by

Sϕ = −2ρuruϕ

r
− ρνuϕ

r2
; (4.100)

f̄ eq
α is defined by [131]

f̄ eq
α =

(
1 +

2ēαjuj

e2

)
ρuϕ

4
, α = 1, 2, 3, 4, (4.101)
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in which ēαj is the component of ēα which is the velocity vector of a particle on the

D2Q4,

ēαj = e

[
cos

(α− 1)π

4
, sin

(α− 1)π

4

]
, α = 1, 2, 3, 4; (4.102)

and τ̄α is an effective relaxation time linked with the single relaxation time τ̄ ;

τ̄α =


1
τ̄
, r = 0

1
τ̄

[
1 +

(2τ̄ − 1)ēαr∆t

2r

]
, r ̸= 0.

(4.103)

The azimuthal velocity uϕ is calculated as

uϕ =
1

ρ

∑
α

f̄α. (4.104)

It can be shown that the Eq.4.101 has the following properties:

∑
α

f̄ eq
α = ρuϕ, (4.105)

∑
α

ēαif̄
eq
α = ρuiuϕ, (4.106)

and

∑
α

ēαiēαj f̄
eq
α = ρe2uϕδij/2. (4.107)

4.6.4 Recovery of Axisymmetric Lattice Boltzmann Equation

with Swirl

Using a similar Chapman-Enskog analysis to that provided in Sec. 4.6.2 and a Taylor

expansion of the lattice Boltzmann equation (4.99) in time and space at point x. Eq.
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4.97 may be reconstructed from Eq. 4.99. We have,

ε

(
∂

∂t
+ ēαj

∂

∂xj

)
f̄α +

1

2
ε2

(
∂

∂t
+ ēαj

∂

∂xj

)2

ēα +O(ε3)

= −1

τ
(f̄α − f̄ eq

α )− (2τ̄ − 1)

2τ̄ r
ēαrε(f̄α − f̄ eq

α ) +
Sϕ

4
ε.

(4.108)

For the term Sϕ, a centred method is once more applied.

Sϕ = Sϕ

(
X+

1

2
ēαε, t+

1

2
ε

)
. (4.109)

It is expanded by the Taylor series to read as follows:

Sϕ

(
X+

1

2
ēαε, t+

1

2
ε

)
= Sϕ(X, t) +

1

2
ε

(
∂

∂t
+ ēαj

∂

∂xj

)
Sϕ(X, t) +O(ε3) (4.110)

Eq. 4.108 to the order of ε0 is obtained by combining Eqs. 4.69 and 4.110 into Eq.

4.108 hence,

f̄ (0)
α = f̄ eq

α , (4.111)

to the order of ε is

(
∂

∂t
+ ēαj

∂

∂xj

)
f̄ (0)
α = − f̄

(1)
α

τ̄
+

Sϕ

4
, (4.112)

and to the order of ε2 is

(
∂

∂t
+ ēαj

∂

∂xj

)
f̄ (1)
α +

1

2

(
∂

∂t
+ ēαj

∂

∂xj

)2

f̄ (0)
α = − f̄

(2)
α

τ̄
− (2τ̄ − 1)

2τ̄ r
ēαrf̄

(1)
α

+
1

2

(
∂

∂t
+ ēαj

∂

∂xj

)
Sϕ

4
.

(4.113)

Equation (4.112) is substituted into Eq. 4.113 to produce

(2τ̄ − 1)

2τ̄ r

(
∂

∂t
+ ēαj

∂

∂xj

)
f̄ (1)
α = − f̄

(2)
α

τ̄
− (2τ̄ − 1)

2τ̄ r
ēαrf̄

(1)
α . (4.114)
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Taking
∑

(Eq.(4.112) + ε× Eq.4.114) above α results in

∂

∂t

∑
α

f̄ (0)
α +

∂

∂xi

∑
α

ēαj f̄
(0)
α =

∂Γi

∂xi

+
Γr

r
+ Sϕ, (4.115)

where

Γi = − ε

2τ̄
(2τ̄ − 1)

∑
α

ēαif̄
(1)
α , (4.116)

and

Γr = − ε

2τ̄
(2τ̄ − 1)

∑
α

ēαrf̄
(1)
α , (4.117)

combining Eq. 4.112 with Eq. 4.116 results in

Γi =
ε

2
(2τ̄ − 1)

∑
α

ēαi

(
∂

∂t
+ ēαj

∂

∂xj

)
f̄ (0)
α , (4.118)

combining Eq. 4.112 with Eq. 4.116,

Γi =
ε

2
(2τ̄ − 1)

(
∂

∂t

∑
α

ēαif̄
(0)
α +

∂

∂xj

∑
α

ēαiēαj f̄
(0)
α

)
. (4.119)

The term
∂

∂t
ēαiēαj f̄

(0) is of the order of ρU2
c /tc from Eq. 4.106 and the term

∂

∂xj

∑
α ēαiēαjeαkf̄

(0)
α is of the order of ρe2U2

c /Lc from Eq. 4.107. Using this

information, we determine that the ratio of the former to the latter terms is of the order

O

( ∂

∂t
Π

(0)
ij

∂

∂xk

∑
α eαieαreαkf

(0)
α

)
=O

(
ρU2

c /tc
ρe2U2

c /Lc

)
=

O

(
Uc

e

)2

= O

(
Uc

Cs

)2

= O

(
M 2

) (4.120)

in which M = Uc/Cs is the Mach number. The first term in Eq. 4.119 is negligible by

comparison to the second term provided M << 1. This is consistent with the dynamics
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of the lattice Boltzmann method. As a result, Eq. 4.119 can be written as:

Γi =
ε

2
(2τ̄ − 1)

∂

∂xj

∑
α

ēαiēαj f̄
(0)
α , (4.121)

Inserting the Eq. 4.107 into the Eq. 4.121,

Γi = ν̄
∂(ρuϕ)

∂xi

(4.122)

where the kinematic viscosity ν̄ is indicated by

ν̄ =
e2∆t

4
(2τ̄ − 1). (4.123)

Similarly

Γr = ν̄
∂(ρuϕ)

∂r
(4.124)

Eq. 4.104, Eq. 4.105, Eq. 4.122, and Eq. 4.124 are substituted into Eq. 4.115. If one

assumes that the density variation is sufficiently small, we obtain the governing

equation (4.97). The same kinematic viscosity, ν̄ = ν, is required for hydrodynamic

consistency, leading to

ν̄ =
1

2
+

1

3
(2τ − 1). (4.125)

As can be seen from the above formulae, the technique does not include any calculation

involving a velocity gradient, and the additional source/sink term that is added is

identical to that in the governing equation without the velocity gradient.

4.7 Stability Conditions

As with all CFD approaches, the lattice Boltzmann equation method can also suffer

from numerical instability. Theoretically, the stability criteria of LBM are unknown.
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In practice, diffusion is present, given that the lattice Boltzmann equation models

actual water flow. This means that the kinematic viscosity ν must be positive [124], as

shown by :

ν =
e2∆t

6
(2τ − 1) > 0. (4.126)

As a result, an apparent restriction on the relaxation time is:

τ >
1

2
. (4.127)

It should be noted that these criteria are readily met by selecting appropriate relaxation

time values. In addition, the time step should follow

∆t =
∆x

e
. (4.128)

Normally, the lattice velocity magnitude e should not be set to be considerably larger

than the flow speed. This criterion ensures that the axisymmetric lattice Boltzmann

technique is stable.
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Initial and Boundary Conditions

5.1 Introduction

The proper selection of boundary conditions is critical in numerical fluid dynamics when

solving the governing equation. Several commonly used boundary conditions, such as

no-slip, slip, and semi-slip, are discussed in this chapter. It is well known that boundary

conditions significantly impact the accuracy and stability of simulation outcomes [123].

References [113, 132, 133, 134] are desirable and relevant studies. In the contact of

LMB, Research on the importance of boundary and initial conditions on conventional

CFD simulation has also received a lot of attention [?, 135, 136]. Succi [137]

distinguished two types of boundary conditions in fluid dynamics: simple boundary

conditions, which refer to conditions at a boundary that are relatively straightforward to

apply and complex boundary conditions involve more intricate or challenging conditions

to implement. The following are brief explanations of several sorts of boundaries.
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5.2 Solid Boundary Conditions

5.2.1 No-slip Boundary Condition

Standard bounce back scheme

Lattice gas cellular automata LGCA boundary conditions, which are simple and

frequently utilised in constructing wall boundary conditions, were used to generate the

conventional bounce-back scheme [138, 139]. During the streaming stage, the

post-collision distributions function in the lattice Boltzmann equation (4.29) from a

solid node xb to a fluid node xf is unknown. The bounce-back approach is used to solve

unknown distribution functions in the lattice Boltzmann equation [140]. To put it

another way, the distribution function for a particle fα(xf , t) arriving at the wall

boundary is reflected back into the fluid (see Figure 5.1).

Figure 5.1: Layout of no-slip boundary conditions.

The bounce-back approach for a stationary wall is similar to establishing the
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distribution function as follows [140]:

f2 = f6, (5.1)

f3 = f7, (5.2)

f4 = f8. (5.3)

Zero momentum of the particle near the solid wall is calculated using the above

equations, resulting in a first-order no-slip boundary condition [140]. To attain

second-order precision, the wall must be positioned in the centre of the lattice nodes,

e.g. x = 1/2 with an extra staircase boundary method adjustment [113, 141].

Second-order bounce-back condition

For particles at the non-slip interface boundary, the lattice Boltzmann technique has

historically been utilised with a bounce-back boundary condition. The bounce-back

approach involves particles travelling toward a solid wall, then reflecting back into the

fluid zone in the opposite direction while maintaining their velocity. For example,

consider particles at the bottom boundary. A unit cell at the bottom boundary is

depicted in Fig. 5.2. Let us start with the assumption that the fluid-solid interface

boundary is on line A. The fluid is represented by the lattice sites 2, 3, 4 above the

border, whereas the solid is represented by the lattice sites 6, 7, and 8 below the

boundary. The lattice locations 1, 0, and 5 are on the edge. At time t, a given particle

is at node 0 with location X. A particle at (X, t) travelling into the solid area in the

directions e6, e7, e8 reflectS back from boundary into the location X, changing to the

opposite directions e2, e3, e4 at the following time step t+1. The reflection form is,

f2(X, t+ 1) = f6(X, t)− 1

τ
(f6(X, t)− f eq

6 (X, t)) , (5.4)
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f3(X, t+ 1) = f7(X, t)− 1

τ
(f7(X, t)− f eq

7 (X, t)) , (5.5)

f4(X, t+ 1) = f8(X, t)− 1

τ
(f8(X, t)− f eq

8 (X, t)) . (5.6)

Figure 5.2: Unit cell for a particle in a two-dimensional square lattice. Line B is located
midway between line A and the line linking lattice sites 6 and 8. Line C is located midway
between lines A and B.

Distribution functions in directions other than e6, e7, e8 are calculated by the LBGK

equation [38]

fi(X+ ei, t+ 1) = fi(X, t)− 1

τ
(fi(X, t)− f eq

i (X, t)) , i = 0, 1, 2, 3, 4, 5. (5.7)
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This bounce-back method is first-order accurate. Kim [104] applied an interpolation

parameter ω to the particles travelling in the e6, e7 and e8 directions. The particle

distributions are calculated by

f2(X, t+ 1) = f6(X, t)− ω

τ
(f6(X, t)− f eq

6 (X, t)) , (5.8)

f3(X, t+ 1) = f7(X, t)− ω

τ
(f7(X, t)− f eq

7 (X, t)) , (5.9)

,

f4(X, t+ 1) = f8(X, t)− ω

τ
(f8(X, t)− f eq

8 (X, t)) . (5.10)

Allowing ω = 0 causes the reflection to occur at location X of line A in Fig. 5.2, and

ω = 1 causes the reflection to occur at X+ 1
2
e7 of line B. Allowing 0 < ω < 1 will cause

the reflection to occur in between. Selecting of ω = 1
2
, for example, causes the reflection

to occur at the location X+ 1
4
e7 on the boundary represented by the line C in Fig. 5.2.

The LBGK solution by the above bounce-back method of Eqs. 5.7 - 5.10 is second-order

accurate where ω = 1
2
is chosen [104]. The line C in the picture is separated from the

normal lattice sites by one-fourth of the mesh size.

5.2.2 Slip Boundary Condition

A slip boundary condition, which is shown in Fig. 6.2, should be used when the

boundary is smooth and has negligible friction. Fluid flow of the wall should achieve

tangential momentum equilibrium in this situation. Along the tangential direction,

there is no momentum transfer to the wall. The other unknown distribution functions

f2, f3 and f4 are given by

f2 = f8, (5.11)

f3 = f7, (5.12)
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f4 = f6. (5.13)

Figure 5.3: Slip boundary condition layout.

5.2.3 Semi-slip Boundary Condition

Wall shear stress, which occurs when fluid flows over a stationary frictional surface,

causes the fluid in contact with the surface to come to rest [3, 142]. Due to friction,

some fluid particles flow over the surface while others bounce back into the mainstream.

At the microscopic scale, a thin layer of fluid travels tangentially along the surface;

hence, a combination of no-slip and slip boundary conditions appears optimal results.

There is no motion normal to the surface. To create a semi-slip boundary condition,

Zhou [143] argued that it is necessary to take wall shear stress into account. An

expression for the wall shear stress vector τf caused by wall friction is:

τf = −ρν
∂V τ

∂n∗ = −ρCf | Vτ | Vτ , (5.14)
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where Cf is the friction factor at the wall, n∗ is the outward coordinate normal to the

wall, and Vτ is the velocity vector parallel to the wall. The Manning roughness nf may

be used to determine the wall friction factor as follows

Cf =
gn2

f

r1/3
, (5.15)

where Cf is the Manning coefficient. If the slip boundary condition is implemented at a

boundary node, the fluid velocity vector relative to the wall leads to zero, and so

Vτ = v. (5.16)

The tensor form of wall shear stress can be written as

τfi = −ρCfui
√
uiuj. (5.17)

As a result, at a boundary node, a semi-slip boundary condition may be applied by

incorporating wall shear stress τfi in the force component Fi in the lattice Boltzmann

equation (4.10) together with the slip boundary condition.

5.3 Inflow and Outflow Conditions

Proper inlet and outlet boundary conditions are critical for obtaining realistic

simulation results because they act as limits to maintain consistency with the

neighbouring flow conditions. Indeed, many flow characteristics (such as velocity and

pressure) near the boundary must accurately reflect the condition.

It is typical in older numerical approaches to impose a particular fluid velocity at the

outflow while assigning a predetermined velocity profile at the inlet [3]. It has been

demonstrated that using zero gradients for these physical variables in the computational

analysis of LBM yields adequate results [121]. As an illustration, in Fig. 5.4 the
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unknown f1, f2 and f8 are easily determined after streaming by:

fα(1, j) = fα(2, j), α = 1, 2, 8. (5.18)

Similarly, the unknown distribution functions f4, f5 and f6 for the outflow have the

same relations:

fα(Nx, j) = fα(Nx − 1, j), α = 4, 5, 6. (5.19)

where Nx denotes the total number of lattices in the x direction. All of the distribution

functions can be adjusted to their respective local equilibrium distribution functions,

fα = f eq
α and fα = f

eq

α , for axisymmetric flow with a swirl. This method was suggested

by Zhou [14] and shown to yield precise solutions for rotating axisymmetric flows. The

following chapters demonstrate how this might lead to precise solutions to the issue,

even if an actual individual distribution function may differ from the local equilibrium

distribution function. It should be emphasised that other methods, such as the

non-equilibrium extrapolation method by Guo et al. [54], may be used to obtain correct

solutions for flows with large non-equilibrium effects.

Figure 5.4: Sketch of inflow and outflow boundaries.
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5.4 Periodic Boundary Condition

Periodic boundary conditions are utilised for a variety of reasons and in a variety of

scenarios in computational fluid dynamics and other numerical simulations. They are

used when it is acceptable to simulate a bounded region that repeats on a regular basis,

allowing the simulation of a wider domain while using fewer computer resources.

Examples are tidal flow and oscillating U-tube, Shear Flow and turbulence, repetitive

geometries, and flow in channels and pipes. When the input and outflow borders of the

computation are connected, the computational domain effectively becomes closed. The

unknown f1, f2 and f8 at the inflow boundary after streaming must be specified as equal

to their counterparts at the outflow boundary in order to obtain a periodic boundary

condition (see Fig. 5.5).

Figure 5.5: Sketch of the Periodic Boundary Condition

In this case,

fα(1, j) = fα(Lx, j), α = 1, 2, 8. (5.20)

The unknown f4, f5, and f6 at the outflow boundary are equivalent to their

counterparts at the inflow boundary, such that

fα(Lx, j) = fα(1, j), α = 4, 5, 6, (5.21)
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where, Lx is the last node in the x direction inside the computational domain. A similar

periodic boundary condition applies in the y direction.

5.5 Initial Condition

The flow field at the beginning of the simulation at t = 0s is the initial condition. The

distribution function must have a starting condition before being calculated. The

starting condition in the lattice Boltzmann technique can be specified in one of two

ways [15]. For the distribution function, one option is to enter a random number

between 0 and 1. The alternative is first to establish a flow field with presupposed fluid

velocity and density, and then to evaluate the local equilibrium distribution function, or

f eq
α , and use it as a starting point for fα. The definition of a macroscopic value is

typically simpler than a microscopic one. Thus, in actual computations, the second

method—which is employed in the present model—is selected.

5.6 Solution Procedure

AxLAB® and AxLAB® with turbulence have fairly straightforward solution

procedure consistency of the following actions and requiring explicit calculations:

1. Precall initial fluid density and flow velocity field.

2. Calculate f eq
α .

3. Calculate fα from the lattice Boltzmann equation.

4. Refresh fluid’s density and flow velocity field.

5. Return to step 2 and repeat the procedure until a solution is reached.

The LBM calculating technique is depicted in the flow chart given in Fig. 5.6.
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Figure 5.6: Flow chart for the LBM computation process
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Chapter 6

Large Eddy Simulation of Turbulent

Flow

6.1 Introduction

Axisymmetric lattice Boltzmann approaches have been documented for the vast

majority of laminar axisymmetric flow equations without flow turbulence in the

literature [144]. These techniques cannot be used for real-world natural flows because of

the procedure of turbulence. The general rule is that flow turbulence may be described

by adding another scheme, with the model utilising modified governing flow equations

such as time-averaged or space-filtered flow. Teixeira [57] first proposed a lattice

Boltzmann method for turbulent flows; which involved transforming the single

relaxation time into a variable relaxation time governed by the solution of two

differential equations, the k − ε equations, where k is turbulent Kinetic Energy and ε

stands for turbulent Dissipation Rate. Large eddy simulation (LES) successfully

represents vorticity larger than a defined scale when space-filtered governing equations

are utilised with an SGS stress model of the unresolved scale stress. The most

straightforward and precise model in this class was developed by Smagorinsky [58], who

used the eddy viscosity and a large-scale strain tensor to describe the Reynolds stress

67



Chapter 6. Large Eddy Simulation of Turbulent Flow

tensor. Following prior research [59], space-filtered flow equations are used in the

present thesis because they are more accurate for turbulent flows. The lattice

Boltzmann approach for simulating turbulence may integrate the conventional

Smagorinsky SGS stress model, as demonstrated by Hou et al. [60]. In this case, the

single relaxation time is changed to a variable relaxation time that is directly connected

to the distribution function and eliminates the need for any derivative computations. A

similar concept is used in this chapter to create an axisymmetric LBM for modelling

turbulence. The chapter first presents a brief overview of generic modelling techniques

for turbulent flows. The turbulent axisymmetric stress subgrid-scale model is then

discussed. Finally, the axisymmetric flow governing equations are used to reconstruct

the AxLAB® with turbulence.

6.2 AxLAB® with the Subgrid-Scale Stress Model

(SGS)

With present computer technology, the majority of real-world, high-Reynolds-number

flows in nature are too complex to be properly recreated. It is very difficult to forecast

the behaviour of extremely turbulent flows without explicitly reproducing all motion

scales. A useful method to overcome this constraint is a large eddy simulation based on

a subgrid-scale stress model. Smagorinsky [58] created the simplest and most often used

approach in this field by expressing the Reynolds stress tensor using the eddy viscosity

and a large-scale strain tensor. Space-filtered flow equations, which are utilised in the

present work, are thought to be more precise than time-averaged flow equations for the

computation of turbulent flows, according to Tutar and Hold [59].

AxLAB®, which is described in Chapter 4 is an axisymmetric lattice Boltzmann model

based on the axisymmetric flow equations without turbulence modelling. In the present

thesis, AxLAB® is extended to modelling including turbulence [145]. It can be shown

that the sole distinction between the axisymmetric flow equations (3.14) and (3.15) and

the turbulent axisymmetric equations (3.45) and (3.46) is due to viscous factors. Unlike
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the conventional laminar axisymmetric flow equations, the turbulent axisymmetric flow

equations incorporate additional viscosity that mimics the behaviour of turbulent eddies

in the viscous factor. The only factor used to define the kinematic viscosity ν is the

relaxation time from Eq. 4.64. Using eddy viscosity in the turbulence modelling,

νe = τe.
e2∆t

3
, (6.1)

an updated relaxation time τ is given as:

τt = τα + τe, (6.2)

The definition of a total viscosity, νt, is

νt = ν + νe. (6.3)

So, the lattice Boltzmann equation with total relaxation time τt may be expressed as

follows:

fα(X+ eα∆t, t+∆t)− fα(X, t) = −ταt(fα− f eq
α ) + ωαθ∆t+

∆t

κe2
eαiFi (6.4)

where

ταt =


1
τt
, r = 0

1
τt

[
1 +

(2τt − 1)eαr∆t

2r

]
, r ̸= 0,

(6.5)

and

Fi = −ρuiur

r
− 2ρνtui

r2
δir. (6.6)

This equation, along with Eqs. 3.45 and 3.46, can be used to find the solution of the

turbulent axisymmetric flow equations. The lattice Boltzmann approach and a
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subgrid-scale stress model were presented by Hou et al. [60] using this as its

fundamental premise. In this method, the standard version of the lattice Boltzmann

equations was used to simply and effectively represent flow turbulence.

The total relaxation time τt is now determined. The strain-rate tensor Sij requires the

computation of derivatives, which are problematic to apply, as stated in Eq. 3.43. It

makes sense have to calculate Sij in terms of the distribution function to maintain

consistency with the lattice gas dynamics. The strain-rate tensor Sij is readily

calculated by utilising the Chapman-Enskog expansion given that it is connected to the

non-equilibrium momentum flux tensor as follows:

Sij = − 3

2e2ρτt∆t

∑
α

eαieαj
(
fα − f eq

α

)
. (6.7)

Assuming that νt and τt also meet the relation Eq. 4.64, we have

τt =
1

2
+

3νt
e2∆t

. (6.8)

Eqs. 6.2 and 6.3 are substituted into Eq. 6.8 to produce

τe + τ =
1

2
+

3(νe + ν)

e2∆t
. (6.9)

When Eq. 4.64 is substituted into the above equation, the result is

τe =
3

e2∆t
νe. (6.10)

Eq. 3.42 is substituted into the previous equation to obtain

τe =
3

e2∆t
(Csls)

2
√

SijSij. (6.11)

Eq. 6.7 may be inserted into Eq. 6.11 to give

τe =
3

e2∆t
(Csls)

2 3

2e2ρτt∆t

√
ΠijΠij, (6.12)
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where

Πij =
∑
α

eαieαj
(
fα − f eq

α

)
. (6.13)

Letting ls = ∆t and replacing to Eq. 6.2, hence Eq. 6.12 becomes

τe =
9C2

s

2e2ρ(τ + τe)

√
ΠijΠij, (6.14)

Finally, the eddy relaxation time may be calculated by solving Eq. 6.14 and

disregarding the negative value of τe,

τe =
−τ +

√
τ 2 + 18C2

s/(e
2ρ)
√

ΠijΠij

2
, (6.15)

As a result, Eq. 6.2 gives the total relaxation time τt as

τt =
τ +

√
τ 2 + 18C2

s/(e
2ρ)
√
ΠijΠij

2
. (6.16)

Flow turbulence may be simply and intuitively described in the basic lattice Boltzmann

equation with total relaxation time τt which includes the eddy relaxation time τe form

Eq. 5.2. The 2D incompressible axisymmetric turbulent flow equations Eqs. 3.14 and

5.17 may be retrieved from the lattice Boltzmann equation 4.57 via Chapman-Enskog

analysis,

∂ui

∂t
+

∂(uiuj)

∂xj

= −1

ρ

∂p

∂xj

+ νt
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

νt
r

(
∂ui

∂r
+

∂ur

∂xi

)
− uiur

r
− 2νtui

r2
δij.

(6.17)

6.3 Recovery of the AxLAB® with Turbulence

This section explains how the lattice Boltzmann equation (6.4) was used to extract the

turbulent axisymmetric flow equations (3.45) and (3.46). Assuming that ∆t is small

71



Chapter 6. Large Eddy Simulation of Turbulent Flow

and equal to ε,

∆t = ε. (6.18)

Substituting the aforementioned equation into Eq. 6.4, using Eq. 6.5, yields

fα(X+ eαε, t+ ε)− fα(X, t) = − 1

τt
(fα− f eq

α )− (2τt − 1)

2τtr
eαrε(fα− f eq

α )

+ ωαθε+
ε

6e2
eαiFi.

(6.19)

By applying a Taylor expansion to Eq. 6.19, at point (x, t), in time and space,

ε

(
∂

∂t
+ eαj

∂

∂xj

)
+

1

2
ε2

(
∂

∂t
+ eαj

∂

∂xj

)2

fα +O(ε3)

= − 1

τt
(fα − f eq

α )− (2τt − 1)

2τtr
eαrε(fα − f eq

α ) + ωαθε+
ε

6e2
eαiFi.

(6.20)

The Chapman-Enskog extension states that fα may be expressed as a series of ε,

fα = f (0)
α + εf (1)

α + ε2f (2)
α +O(ε3) (6.21)

For the source term and force term Fi, the centred scheme is employed as

θ = θ

(
X+

1

2
eαε, t+

1

2
ε

)
(6.22)

and

Fi = Fi

(
X+

1

2
eαε, t+

1

2
ε

)
(6.23)

which, after Taylor expansion, may be expressed as

θ

(
X+

1

2
eαε, t+

1

2
ε

)
= θ(X, t) +

1

2
ε

(
∂

∂t
+ eαj

∂

∂xj

)
θ(X, t) +O(ε2) (6.24)
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and

Fi

(
X+

1

2
eαε, t+

1

2
ε

)
= Fi(X, t) +

1

2
ε

(
∂

∂t
+ eαj

∂

∂xj

)
Fi(X, t) +O(ε2). (6.25)

After substituting Eqs. 6.21, 6.24, and 6.25 into Eq. 6.20, the following equations are

obtained to order ε(0)

f (0)
α = f eq

α , (6.26)

to order ε

(
∂

∂t
+ eαj

∂

∂xj

)
f (0)
α = −f

(1)
α

τt
+ ωαθ +

1

6e2
eαiFi, (6.27)

and to order ε2 is

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)
α +

1

2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)
α = −f

(2)
α

τt
− (2τt − 1)

2τtr
eαrf

(1)
α

+
1

2

(
∂

∂t
+ eαj

∂

∂xj

)
(ωαθ) +

1

12e2

(
∂

∂t
+ eαj

∂

∂xj

)
(eαiFi).

(6.28)

Using Eq. 6.27, Eq. 6.28 becomes:

(2τt − 1)

2τt

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)
α = −f

(2)
α

τt
− (2τt − 1)

2τt
eαrf

(1)
α . (6.29)

By applying Eq. (6.27)+ε×Eq. (6.29),

(
∂

∂t
+ eαj

∂

∂xj

)
f (0)
α +

(2τt − 1)ε

2τt

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)
α

=
1

τt
(f (1)

α − εf (2)
α )− (2τt − 1)ε

2τt
eαrf

(1)
α + ωαθ +

1

6e2
eαiFi.

(6.30)

The sum of the foregoing equation (6.28) over α yields

∂

∂t

∑
α

f (0)
α +

∂

∂xj

∑
α

eαjf
(0)
α = θ. (6.31)
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The continuity equation is reestablished by applying Eq. 6.26 and substituting Eqs.

4.64and 4.65 into the Eq. 3.14 provided the density fluctuation is and small enough to

be negligible.

Taking
∑

(Eq.(6.27) + ε× Eq.6.29) for each α results in

∂

∂t

∑
α

eαif
(0)
α +

∂Π
(0)
ij

∂xj

=
∂Λij

∂xj

+
Λij

r
+ Fi, (6.32)

where the following formulae represent the zero-order momentum flux tensor:

Π
(0)
ij =

∑
α

eαieαjf
(0)
α , (6.33)

Λij = − ε

2τt
(2τt − 1)

∑
α

eαieαjf
(1)
α , (6.34)

Λij = − ε

2τt
(2τt − 1)

∑
α

eαieαrf
(1)
α , (6.35)

By reviewing the terms in Eq. 6.33 using Eq. 4.55,

Π
(0)
ij = Pδij + ρuiuj, (6.36)

where P = ρe2/3 is the pressure, resulting in a speed of sound Cs = e/
√
3. Substituting

Eq. 6.36 into Eq. 6.32, the result is

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

= −∂P

∂xi

+
∂Λij

j

+
Λir

r
+ Fi. (6.37)

Eq. 6.34 may be rewritten using Eq. 6.27 as:

Λij = Π
(1)
ij − ε

2
(2τt − 1)

∑
α

eαieαrωαθ. (6.38)

Using the first-order momentum flux tensor Π
(1)
ij , which is described by

Π
(1)
ij =

ε

2
(2τt − 1)

∑
α

eαieαr

(
∂

∂t
+ eαk

∂

∂xk

)
f (0)
α , (6.39)
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then, using Eq. 6.33, we obtain:

Π
(1)
ij =

ε

2
(2τt − 1)

∂

∂t
Π

(0)
ij +

ε

2
(2τt − 1)

∂

∂xk

∑
α

eαieαreαkf
(0)
α , (6.40)

With Eqs. 4.55, 6.37 and 6.26, the second term in Eq. 6.40 may be expressed:

∂

∂xk

∑
α

eαieαreαkf
(0)
α =

e2

3

∂

∂xk

(ρuiδjk + ρujδki + ρukδij). (6.41)

For a characteristic velocity Uc, characteristic length Lc and characteristic time tc, the

term
∂

∂t
Π

(0)
ij is of order ρU2

c /tc, and the term
∂

∂xk

∑
α eαieαreαkf

(0)
α is of order ρe2U2

c /Lc.

Using this information, we determine that the ratio of the former to the latter terms is

of order

O

( ∂

∂t
Π

(0)
ij

∂

∂xk

∑
α eαieαreαkf

(0)
α

)
=O

(
ρU2

c /tc
ρe2U2

c /Lc

)
=

O

(
Uc

e

)2

= O

(
Uc

Cs

)2

= O

(
M 2

) (6.42)

in which M = Uc/Cs is the Mach number. The first term in Eq. 6.41 is negligible by

comparison to the second term for M << 1. This is in accordance with lattice

Boltzmann dynamics. As a result, when Eq. 6.42 is substituted into Eq. 6.41, the new

equation becomes

Π
(1)
ij =

e2ε

6
(2τt − 1)

∂

∂xk

(ρuiδjk + ρujδki + ρukδij), (6.43)

or

Π
(1)
ij = νt

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

+
∂(ρuk)

∂xk

δij

]
, (6.44)
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where νt is the kinematic viscosity, given by

νt =
e2∆t

6
(2τt − 1). (6.45)

By inserting Eq. 6.44 into Eq. 6.38 and evaluating the remaining terms we obtain

Λij = νt

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

+
∂(ρuk)

∂xk

δij

]
− νtθδij. (6.46)

Solving the aforementioned problem using θ = −ur/r and continuity Eq. 3.14, gives

Λij = νt

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

]
, (6.47)

and

Λir = νt

[
∂(ρui)

∂xr

+
∂(ρur)

∂xi

]
. (6.48)

Eq. 6.6, Eq. 6.47, Eq. 6.48 and Eq. 6.37, yield

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj

=− ∂P

∂xi

+ νt
∂

∂xj

[
∂(ρui)

∂xj

+
∂(ρuj)

∂xi

]

+
νt
r

[
∂(ρui)

∂xr

+
∂(ρur)

∂xi

]
− ρuiur

r
− 2ρνtui

r2
δij.

(6.49)

The above reduces to the momentum equation so the density variation approaches zero,

∂uj

∂xj

+
ur

r
= 0, (6.50)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xj

+ νt
∂2ui

∂2xj

+
νt
r

∂ui

∂r
− νtui

r2
δij. (6.51)
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Chapter 7

Numerical study of vortex

breakdown phenomena

7.1 Introduction

Swirling flows are often employed in engineering applications in aeronautics, heat

exchange, spray drying, separation, combustion, etc. They occur in natural flows such

as tornadoes and typhoons. Such flows are fascinating because of their significance and

intricacy. For combustion systems, such as gas turbine engines, industrial burners,

boilers, and diesel engines, swirling flows were initially employed to enhance and

regulate the mixing rate in order to create flames, between fuel and oxidant streams

[16]. In practice, an internal recirculation zone is created at a suitable level of swirl,

facilitating a high rate of heat release when the combustion products are recirculated

and igniting the incoming fuel/oxidant streams. This produces a steady, compact flame

[17] that performs well with challenging carboneous materials and substandard gases

[18]. It has been demonstrated that swirl has significant influence on the flow field at

large scale [146]. Swirl represents the ratio of the radial velocity component to the axial

(tangential) velocity component. When swirl is added to a turbulent jet, the rate of

entrainment, decay, and jet expansion all accelerate. As the swirl intensity rises, these
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properties are, also enhanced.

In whirling flows, a severe and drastic transformation of the flow structure can occur,

called vortex breakdown [98]. Harvey [147] conducted tests on turbulent flows inside a

tube, and discovered that the breakdown was a transitional state between weakly

swirling flows that do not exhibit flow reversals and rapidly swirling flows with

columnar flow reversals by adjusting the swirl level. Knowledge of vortex breakdown

can lead to improved overall efficiency of industrial machinery and its enhanced

performance [19]. A such improvements increase low-level financial energy generation

while reducing each greenhouse gas output, and hence may help mitigate the global

climate change [20]. Peckham and Atkinson [?], Elle [100], and Lambourne and Bryer

[101] carried out the earliest experimental studies on vortex breakdown.

Flow in an enclosed cylinder with a rotating top or bottom endwall can be interpreted

in terms of vortex breakdown when stagnation points occur near the axis of rotation,

resulting in one or more separation bubbles [148]. Escudier [67] enlarged Vogel’s region

for up to three vortex breakdowns and further characterised the region for unstable

flows. Vogel [65] was the first to map the region of one vortex breakdown in flow in a

cylindrical container with one rotating end wall in Reynolds number-aspect ratio space.

The flow created in a cylinder with a revolving endwall was studied by Lugt and

Abboud [149], who also explained how thermal gradients might affect the Boussinesq

approximation. Computational analyses of rotating front wall problems by Lopez [63],

Brown and Lopez [70], and Lopez and Perry [71] highlighted the mechanisms of vortex

breakdown, periodic internal separation, and bubble coalescence. Tsitverblit later

discovered that increasing the Reynolds number over the critical value for an aspect

ratio A = 2.5 resulted in unstable flow. Yalagach and Salih [150] solved the

three-dimensional Navier-Stokes equations for three aspect ratios (A= 1.5, 2,, and 2, 5)

and compared to axisymmetric solutions, which the flow fluctuations altering from

axisymmetric to three-dimensional observed at higher Reynolds numbers.

The axisymmetric lattice Boltzmann revised approach is used in the present work to

model incompressible rotating cavity flows, demonstrating the tool’s capacity to
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anticipate the occurrence of a vortex breakdown. In addition, systematic simulations of

vortex breakdown for 1002 < Re < 3061 and 2 < A < 3.5 were run, and the results

compared to experimental data. An unsteady-periodic scenario (A=2.5, Re=2765) was

also simulated with the highest axial velocity of the flow along the cylinder axis utilised

to determine the flow periodicity.

7.2 Problem Definition and Solution

In this chapter, we use the axisymmetric lattice Boltzmann approach to investigate

vortex breakdowns in swirling flows and flow in cylindrical containers with rotating

endwalls. Figure 7.1 illustrates cylindrical cavity flow. Two non-dimensional

parameters, the height-to-radius ratio (Aspect ratio) A = H
R

and the rotation Reynolds

number Re= ΩR2

ν
govern the flow behaviour in a cylindrical container, where Ω is the

constant angular velocity, R is the radius, H is the height of the cylinder, and ν is the

constant kinematic viscosity. The rotating endwall of a closed container functions as a

pump, and the spiralling motion of the flow inside the cylinder increases the swirl

velocity. As a result of this, the vortex breakdown phenomenon occurs. According to

Brown and Lopez [70], who discussed the circumstances in which vortex breakdown

takes place, the creation of negative azimuthal vorticity is a necessary component of

vortex breakdown. The aspect ratio of the cylinder and the Reynolds number of flow

both affect how many breakdown bubbles form. In the A-Re plane, the quantity of

vortex breakdown bubbles was depicted on a map by Vogel [65]. Fig. 7.3 shows an

extended version of the map produced by Escudier [67] for a variety of combinations of

A and Re, covering steady and unsteady regimes and different numbers of breakdown

bubbles. In the present work, the LBM results are compared to published experimental

data and alternative numerical solutions. In numerical computations, all dimensional

physical variables are given in the International System (SI) of units. All of the

distribution functions in this simulation are set to their respective local equilibrium

functions, fα = f eq
α and f̄α = f̄ eq

α , at the boundaries. In the simulations, R = 1, ρ = 1,
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Figure 7.1: Schematic diagram of flow in a cylindrical container with a rotating endwall

and τ = 0.55 are implemented and the boundary conditions(BC) are


ux = ur = uϕ = 0, x = 0,

ux = ur = uϕ = 0, r = ±R,

ux = ur = 0, uϕ = rΩ, x = H.

(7.1)

As this is a complex flow involving vortex breakdown, different lattices in the r and x

directions, i.e., 100× 75, 150× 112, 200× 150, and 400× 300, were used to establish

solution independence from lattice size and convergence order. The findings are given in

Fig. 7.2, revealing that if more than 150× 112 lattices are utilised, solutions are

independent of the choice of lattice number. Based on the findings, a lattice size of

∆x = 0.01 that corresponds to 200× 150 with A = 1.5 and Re = 1290 is expected to

produce correct solutions and employed in all situations.
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Figure 7.2: Lattice number effect on case with A = 1.5 and Re = 1290

7.3 Numerical Results

7.3.1 Steady Cylindrical Flows

Steady cylindrical flows with various aspect ratios and Reynolds numbers are considered

in validating the updated axisymmetric lattice Boltzmann scheme. The flow pattern is

examined in order to demonstrate the vortex breakdown phenomena. Furthermore,

plots of the axial velocity components along the cylinder axis are created to determine

the influence of Reynolds number changes on the minimum and maximum values of

axial velocity components.

Steady flows forA=2, Re=1002, 1449, 1492 and 1854

The first set of simulations was performed for an aspect ratio of A = 2 and four distinct

Reynolds numbers: Re = 1002, 1449, 1492, and 1854. The flow structure exhibits a basic

pattern with no vortex breakdown for Re = 1002 and A = 2, as seen in Fig. 7.4.
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Figure 7.3: Stability boundaries for vortex breakdowns, as well as the border between
unsteady and steady flow in the (A, Re) plane (Escudier, 1984).

Figure 7.3 shows that Vogel’s stability limit confirms our simulation by proving the

absence of a vortex breakdown. For this scenario, Bertela and Gori [151] observed a

central viscous core that expands in size with distance from the revolving endwall. For

(Re = 1002) in Fig.7.4 there is no vortex breakdown. The axial velocity profile for this

case is shown in Fig.7.5. In Fig.7.6, an hour-glass structure is found in the streamlines

for Re = 1449 and the axial velocity profile can be seen in Fig.7.7 . When the rotation

rate is increased (Re = 1449), the form of the vortices changes, and there is a tiny

difference in the recirculation zone near the wall with Re=1492 in Fig. 7.8. In both

circumstances, however, there is a visible vortex breakdown. Fig.7.9 shows that the

maximum axial velocity has been increased. For Re=1854, the initial bubble expands

and a second bubble emerges independently. The second bubble is extremely small in
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Fig. 7.10 because it is near to the limit of one-breakdown and two-breakdown areas

inside the stability diagram (Fig. 7.3). Furthermore, investigating the axial velocity

along the cylinder axis reveals that as Re increases, the minimum and maximum axial

velocities along the cylinder axis decrease for fixed aspect ratio A = 2 (Figs. 7.5, 7.7,

7.9 and 7.11) but the vortex breakdown patterns remain axisymmetric with respect to

the cylinder axis.

Figure 7.4: Comparison between computed streamlines and experimental flow visual-
isation (Escudier, 1984) of steady, axisymmetric flow in a cylindrical container, A=2,
Re=1002
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Figure 7.5: Axial velocity profile along the cylinder axis for A=2, Re=1002

Figure 7.6: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow in a cylindrical container for A=2,
Re=1449
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Figure 7.7: Axial velocity profile along the cylinder axis for A=2, Re=1449

Figure 7.8: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow in a cylindrical container for A=2,
Re=1492
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Figure 7.9: Axial velocity profile along the cylinder axis for A=2, Re=1492

Figure 7.10: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow in a cylindrical container for A=2,
Re=1854

86



Chapter 7. Numerical study of vortex breakdown phenomena

Figure 7.11: Axial velocity profile along the cylinder axis for A=2, Re=1854

Steady flows for A=2.5, Re=2126 and 2494

A second set of simulations was undertaken for A=2.5 and Re=2126 and Re=2494.

Figs. 7.12 and 7.14 show the flow patterns and the fluctuation of the axial velocity

components along the cylinder axis. There is just one stagnation point with two unique

recirculation zones in both situations because the downstream stagnation point emerges

first and moves upstream. As observed in Fig. 7.12, two entirely distinct bubbles

develop for Re=2126. However, for Re=2494, downstream vortex breakdown initially

manifests, and the subsequent vortex breakdown zone is fed by the low magnitude

interior velocity field. As a consequence, a single bubble with two distinct vortex

breakdown zones is created by merging two vortex breakdowns (Fig. 7.14). By

comparing the minimum and maximum axial velocities along the cylinder axis in Figs.

7.13 and 7.15, it is found that as the Reynolds numbers rise, both the minimum and

maximum axial speeds drop. Additionally, for the examples mentioned above, the

symmetry of vortex breakdown with respect to the cylinder axis is evident and is

consistent with Escudier’s findings [67].
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Figure 7.13: Axial velocity profile along the cylinder axis for A=2.5, Re=2126

Figure 7.12: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=2.5, Re=2126
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Figure 7.14: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=2.5, Re=2494

Figure 7.15: Axial velocity profile along the cylinder axis for A=2.5, Re=2494
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Steady flows for A=3.25, Re=2752, 2819 and 2947

Three different spatial Reynolds numbers, Re = 2752, 2819, and 2947, are considered in

the third set of simulations. Figs. 7.16 to 7.21, show the results. Here, three vortex

breaks are seen. Once more, the downstream vortex breakdown emerges first, followed

by two upstream vortex breakdowns that have higher axial length but smaller diameter

than the first vortex breakdown. The two vortex breakdowns in the upstream region

combine to form a single bubble with two distinct vortex breakdowns but remain

independent of the downstream vortex breakdown. The two upstream vortexes may be

observed to mix more as the Reynolds number rises. Additionally, it is discovered that,

in contrast to other cases, the lowest and maximum axial velocities along the cylinder

axis rise as the rotation rate increases as shown in Figs. 7.17, 7.19, 7.21. For this

collection of simulations, the symmetry of vortex breakdown is once again plainly

discernible.

Figure 7.16: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=3.25, Re=2752
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Figure 7.17: Axial velocity profile along the cylinder axis for A=3.25, Re=2752

Figure 7.18: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=3.25, Re=2819
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Figure 7.19: Axial velocity profile along the cylinder axis for A=3.25, Re=2819

Figure 7.20: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=3.25, Re=2947
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Figure 7.21: Axial velocity profile along the cylinder axis for A=3.25, Re=2947

Steady flows for A=3.5, Re=3023, 3042 and 3061

For the final set, three examples with Re=3023, 3042, and 3061 are simulated at the

largest A=3.5, and three distinct vortex breakdown zones with a well-defined internal

structure are seen in Figs. 7.22, 7.24, and 7.26. Whereas the centre vortex breakdown

never combines with the upstream vortex breakdown, the downstream vortex

breakdown initially occurs and extends away from the axis in a circular manner. The

axial length and width of the central vortex breakdown grow as the Reynolds number

increase. Between the two downstream vortexes and the two upstream vortexes, a single

bubble was created. Additionally, it can be shown that the minimum and maximum

axial velocity along the cylinder axis reduce as the Reynolds number increase as evident

in Figs. 7.23, 7.25 and 7.27. Once more, the flow pattern and experimental observations

are in excellent agreement, and the symmetry of the vortex pattern is clearly evident.
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Figure 7.22: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=3.5, Re=3023

Figure 7.23: Axial velocity profile along the cylinder axis for A=3.5, Re=3023

94



Chapter 7. Numerical study of vortex breakdown phenomena

Figure 7.24: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=3.5, Re=3042

Figure 7.25: Axial velocity profile along the cylinder axis for A=3.5, Re=3042
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Figure 7.26: Comparison between computed streamlines and experimental flow visuali-
sation (Escudier, 1984) of steady, axisymmetric flow produced in a cylindrical container
for A=3.5, Re=3061
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Figure 7.27: Axial velocity profile along the cylinder axis for A=3.5, Re=3061

In two case studies (A, Re) = (2.5, 2126) and (A, Re) = (3.25, 2752) the predicted

location of stagnation points are compared with those obtained experimental and by the

alternative numerical scheme. The results listed in Tables 9.1 and 8.2 indicate good

agreement.

Table 7.1: Locations of stagnation points for (A, Re) = (2.5, 2126). (UB: upper bubble,
LB: lower bubble.)

Above UB Below UB Above LB Below LB
Present X=1.955 X=1.695 X=1.325 X=0.925

Experiment [67] X=2 X=1.76 X=1.37 X=0.95
Yamada and Suzuki[152] X=1.98 X=1.75 X=1.36 X=0.95

Table 7.2: Locations of stagnation points for (A, Re) = (3.25, 2752). (UB: upper bubble,
LB: lower bubble.)

Above UB Below UB Above LB Below LB
Present X=2.625 X=2.575 X=1.898 X=1.085

Experiment [67] X=2.65 X=2.51 X=1.84 X=1.04
Yamada and Suzuki[152] X=2.64 X=2.49 X=1.83 X=1.05
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7.3.2 An Unsteady-Periodic Flow

This section identifies the period of the specific unsteady-periodic flow for Re=2765 and

A=2.5. The flow behaviour is examined in terms of frequency of vortex breakdown and

the position of stagnation points. To the author’s best knowledge, this work provides

the first numerical analysis of the peresent flow configuration. The axial velocity profile

of this flow along the cylinder axis is analysed and the maximum axial velocity chosen

to calculate the absolute error and relative error between two flow patterns at two

different time steps (t1andt2). This is key to finding out the period when the unique

flow pattern appears again. Knowing the flow periodicity allows us to predict and

control the behaviour of this flow.

Figs. 7.28 to 7.30 display the findings from the examination of three distinct cases are

displayed where the estimated duration is around 350.2 seconds (19k time steps). This

period, however, can occasionally be larger or shorter than 350.2s because of numerical

inaccuracy. For the first scenario, the time period between 9511.6s and 9548.5s is

chosen, and the axial velocity profile of this flow along the cylinder axis are compared.

Letting the maximum velocity for ux be used to calculate the absolute error between

t1 = 9176.1s and t2 = 9526.3s in Fig. 7.28, the absolute error calculated using

Er =| ut1,max − ut2,max | is 0.00019 and the relative error calculated using

| ut1,max − ut2,max

ut1,max

| is 0.04.
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Figure 7.28: Comparison between axial velocity profiles along the cylinder axis at two
time instants, t1 = 9176.1s and t2 = 9526.3s

In the second instance, the time range between 14372.5s and 14403.8s is examined, and

the findings are compared against the outcome at t = 14746.6s. The absolute error

between the profiles at t1 = 14396.4s and t2 = 14746.6s, shown in Fig. 7.29, is 0.00003,

and the relative error is 0.006. The results of the last examination, which took place at

times t1 = 20267.4s and t2 = 20617.6s, are displayed in Fig. 7.30. The relative error is

0.02, and the absolute error is 0.00012.
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Figure 7.29: Comparison between axial velocity profile along the cylinder axis at two
time instantst1 = 14396.4s and t2 = 14746.6s

Figure 7.30: Comparison between axial velocity profile along the cylinder axis at two
time instants t1 = 20267.4s and t2 = 20617.6s

The results indicate that, over a sufficient length of time, the first bubble manifests

with a clearly defined vortex breakdown. There are two stagnation points; the higher at
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x = 1.34 and the lower at x = 0.29. The second vortex breakdown then begins to

emerge in the same bubble as it grows in size along the axis of the cylinder, evolving

until there are two distinct bubbles with four stagnation points. For the upstream

vortex breakdown, the top stagnation point is at x = 1.40, whereas the lower stagnation

point is at x = 0.65. Additionally, the downstream vortex breakdown has an upper

stagnation point at x = 0.45, whereas the lower stagnation point is at x = 0.31. Then

the upstream and downstream bubbles begin to collide, creating a single bubble with

two vortex breakdowns before reducing to just one breakdown as before. This process

takes 350.2s.

7.4 Conclusion

To show the potential of the approach for forecasting intricate vortex breakdowns, the

revised axisymmetric lattice Boltzmann method has been applied to rotating

axisymmetric flows. To validate the precision and effectiveness of the procedure, the

findings of the current study were compared to the research by Escudier and the

stability limitations determined by Vogel. In the end, the strategy has provided new

knowledge of the behaviour of the axial velocity component along a cylinder axis. The

numerical tests have demonstrated that the flow pattern in each case is consistent with

that seen during experimental research. Throughout all simulations, the locations of the

stability limits determined by Vogel [65] correspond strongly with the total number of

vortex breaks. Escudier and Keller [153]’s assertion that a vortex breakdown is

fundamentally axisymmetric is supported by the fact that the symmetry of vortex

breakdown along a cylinder axis is readily apparent regardless of whether the rotation

rate is lowered or increased. The strength of the method suggested here, relies upon the

realisation that it is unnecessary to compute velocity gradients. This reduces the

amount of processing required and simplifies and streamlines the simulation process. It

has been demonstrated that exact solutions in complex cylindrical cavity flows may be

obtained by employing local equilibrium distribution functions as boundary conditions.
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It has been demonstrated how the outstanding characteristics of the revised scheme

may result in changes in the minimum and maximum axial velocity components as the

rotation speed increases. We can determine the period using the capacity of this scheme

to model unsteady-periodic flows. This aids in the prediction and management of flow

behaviour and could have engineering impact through improving the efficiency and

productivity of industrial machinery.
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Chapter 8

2nd order bounce-back method for

AxLAB®

8.1 Steady Flow inside a cylindrical cavity with

rotating endwalls

The second-order bounce-back scheme improves the accuracy and efficiency of the

revised axisymmetric lattice Boltzmann method when applied to problems

incorporating solid wall boundaries. This enhanced technique benefits any arbitrary

geometry with a non-slip boundary condition. The bounce-back approach involves

particles travelling toward a solid wall and reflecting into the fluid zone in the opposite

direction while maintaining their velocity. This method is second-order accurate. In this

chapter, steady flow inside a cylindrical cavity with rotating is validated for the

second-order axisymmetric lattice Boltzmann revised scheme. The maximum value of

the axial velocity component, the position of its occurrence, and the location of

stagnation points are investigated and the results compared with published

experimental data [77], and alternative numerical predictions by the numerical GITT

method [154], the 3D lattice Boltzmann method (LBM) and the finite volume method

solution of the Navier-Stokes equations [155]. Comparison of the relative errors between
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the 2nd order AxLAB® and the original AxLAB® [2] demonstrates the considerable

improvements of the new scheme. Furthermore, the new technique delivers additional

information and more accurate results with lower error, generating a more symmetrical

and detailed flow pattern.

8.1.1 Problem description

The flow problem is illustrated in Fig. 8.1 and is known to have varied complicated

topologies depending on the aspect ratio A = H
R

and Reynolds number Re= ΩR2

ν
[2],

where Ω is the constant angular velocity of the base (Ωb) or top (Ωu) walls, R is the

radius of the cylinder, H is the height of the cylinder, and ν is the fluid kinematic

viscosity. In a closed container, the rotating endwalls act as a pump, and the spiralling

motion of the flow inside the cylinder increases the swirl velocity. This can result in

vortex breakdown. Different cases with parameters of (A, Re) are used to validate the

improved Axisymmetric Lattice Boltzmann Method. In the simulations, R = 1, ρ = 1

and τ = 0.55. The boundary conditions (BC) are


ux = ur = 0, uϕ = rΩb, x = 0,

ux = ur = uϕ = 0, r = R,

ux = ur = 0, uϕ = rΩu, x = H.

(8.1)
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Figure 8.1: Schematic diagram of flow in a cylindrical container with rotating endwalls

8.2 Numerical results

8.2.1 Flow in a cylindrical container with two rotating

endwalls

The first set of simulations was carried out for four different Reynolds numbers and

aspect ratios as follows: (A, Re) = (3,300), (2,500), (3,750) and (4,1200). Fig. 8.2

shows the flow regime for (A, Re) = (3,300) for numerical results extracted from the

work of Sørensen et al. [156] and predicted by the present 2nd order AxLAB® method.

The flow has a simple structure and vortex breakdown does not occur. The results for

(2,500), (3,750) and (4,1200) are shown in Figs. 8.3, 8.4 and 8.5 respectively. The

results show cases in which re-circulating bubbles are generated and the vortex

breakdown patterns are axisymmetric with respect to the cylinder axis. There is

excellent agreement between the 2nd order AxLAB® and other work in each case. The

present improved scheme produces further details of the fluid behaviour inside the

vortices, the location of the stagnation points, and the length of the vortices.
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(a) (b)

Figure 8.2: Steady flow in a cylindrical container with two co-rotating end plates for
forA=3, Re=300: (a) stream surface contours (Sørensen et al., 2005); and (b) computed
streamlines.

(a) (b)

Figure 8.3: Steady flow in a cylindrical container with two co-rotating end plates for
A=2, Re=500: (a) stream surface contours (Sørensen et al., 2005); and (b) computed
streamlines.
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(a) (b)

Figure 8.4: Steady flow in a cylindrical container with two co-rotating end plates for
A=3, Re=750: (a) stream surface contours (Sørensen et al., 2005); and (b) computed
streamlines.

(a) (b)

Figure 8.5: Steady flow in a cylindrical container with two co-rotating end plates for
A=4, Re=1200: (a) stream surface contours (Sørensen et al., 2005); and (b) computed
streamlines.
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8.2.2 Steady flows in a cylindrical container with one rotating

(top) endwall

In this section, Ωb = 0 is chosen, indicating that the bottom endwall is stationary while

the top endwall rotates. Figs. 8.6 to 8.8 show the produced flow pattern in an enclosed

cylindrical container with a rotating endwall for (A, Re) = (1.5,1290), (3.25,2819), and

(3.5,3061) respectively. The flow pattern seen in Fig. 8.6 is characterised by a single

vortex breakdown. As a consequence, the expected findings from the current simulation

are compatible with the numerical results obtained by GITT simulation [154], Bhaumik

and Lakshmisha [155] and Escudier’s regime diagram [67]. The present results provide

more detail than the GITT simulation owing to the accuracy and improvements of the

present revised LBM results. For example, details of the flow structure within the

vortices are visible, highlighting the advantage of the present approach. Three vortex

breakdown structures can be seen in Fig. 8.7, two connected in the central region and a

separated one further below, as also found in the GITT simulation [154] and Escudier’s

experimental data [67]. Again, the present method provides more detail such as the flow

pattern inside the bubbles, the location of stagnation points, and the length of the

bubbles, which cannot be discerned in the GITT work. Fig. 8.8 illustrates three vortex

breakdowns, two in the middle zone and one close to the bottom endwall, consistent

with the results obtained by GITT [154] and Escudier’s study [67]. Additional detail is

provided on the bubble structure, concerning the flow pattern and the length of

vortices, which cannot be determined from the GITT results.
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Figure 8.6: Steady flow in a cylindrical container with one rotating (top) end plate for
A=1.5, and Re=1290 : (Left) computed streamlines using the present method and
(Right) streamline counter by GITT method (Quaresma et al., 2021).

Figure 8.7: Steady flow in a cylindrical container with one rotating (top) end plate for
A=3.25, Re=2819 : (Left) computed streamlines using the present method and (Right)
streamline counter by GITT method (Quaresma et al., 2021).
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Figure 8.8: Steady flow in a cylindrical container with one rotating (top) end plate for
A=3.5, Re=3061 : (Left) computed streamlines using the present method and (Right)
streamline counter by GITT method (Quaresma et al., 2021).

8.3 Discussion

A computer code was created in FORTRAN that coupled the second order Bounce back

method with the axisymmetric lattice Boltzmann revised method for flows involving

solid wall boundary conditions. Fig. 8.9 shows steady flow in a cylindrical container

with a rotating bottom endwall for (A, Re) = (2.5, 2126) and (A, Re) = (3.25, 2752).

Tables 8.1 and 8.2 compare the locations of stagnation points predicted by the present

scheme and previously published experimental data and alternative accessible numerical

prediction. The results confirm the capability of the new code. The location of the

stagnation points is in good agreement with the experimental and numerical results. It

also proves that the code modifications can produce results that are more accurate.

Table 8.3 compares the predicted maximum axial velocity at r=0 and its axial position

against previous numerical and experimental results, again conforming the precision of

the new code.
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(a) (b)

Figure 8.9: Computed streamlines for steady flow in a cylindrical container with one
rotating (bottom) end plate: (a) (A, Re) = (2.5, 2126); and (b) (A, Re) = (3.25, 2752)

Table 8.1: Locations of stagnation points for steady flow in a cylindrical container with
rotating bottom endplate when (A, Re) = (2.5, 2126). (UB: upper bubble, LB: lower
bubble.)

Above UB Below UB Above LB Below LB

Present X=1.985 X=1.745 X=1.385 X=0.945

AxLAB® X=1.955 X=1.695 X=1.325 X=0.925

Experimental [67] X=2 X=1.76 X=1.37 X=0.95

Yamada and Suzuki[152] X=1.98 X=1.75 X=1.36 X=0.95
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Table 8.2: Locations of stagnation points for steady flow in a cylindrical container with
rotating bottom end plate when (A, Re) = (3.25, 2752). (UB: upper bubble, LB: lower
bubble.)

Above UB Below UB Above LB Below LB

Present X=2.647 X=2.505 X=1.855 X=1.038

AxLAB® X=2.625 X=2.575 X=1.898 X=1.085

Experiment [67] X=2.65 X=2.51 X=1.84 X=1.04

Yamada and Suzuki[152] X=2.64 X=2.49 X=1.83 X=1.05

The predicted value of the maximum axial velocity component (ux,max) and its axial

position hmax/H are listed in Table. 8.3 for (A, Re) = (1.5, 990),(1.5, 1290), and (2.5,

1010) at r=0, and the solutions are compared with corresponding result from AxLAB®

[2], GITT [154], 3D lattice Boltzmann method (LBM) and physical test data [77]. The

relative error was computed using the formula | ux,num − ux,exp

ux,exp

|. The accuracy of the

new axisymmetric lattice Boltzmann revised method has been improved, as shown in

Table. 8.3 and Table. 8.4. For example, the relative error between the present model

and experimental results for Re=990 is 1.65%, which is less than that of the previous

method (2.27%), 0.49% for Re=1010 compared to 1.94% for AxLAB®, and 3.38% for

Re=1290, which is less than the AxLAB® result (3.82%). Table. 8.3 confirms that the

present method successfully predicts the location of maximum axial velocity. Table. 8.4

indicates that the relative error between the present model and 3D LBM [155] is greater

than obtained for other numerical methods. The differences can be explained by the

fact that 3D LBM is constructed using compressible flow equations in the

incompressible limit; as a result, there will be some errors related to changes in spatial

density when simulating incompressible flows with a finite, nonzero Mach number [155].

The foregoing results demonstrate the great improvements of the new scheme at all the

Reynolds numbers considered here.
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Table 8.3: Comparison of maximum axial velocity and its location for different Reynolds
numbers and aspect ratios at r = 0, for steady flow in a cylindrical container with rotating
bottom endplate.

Re=990,A=1.5 Re=1010, A=2.5 Re=1290, A=1.5

ux,max/u0 hmax/H ux,max/u0 hmax/H ux,max/u0 hmax/H

Present 0.0986 0.207 0.1035 0.452 0.0703 0.14

AxLAB® [2] 0.0992 0.207 0.105 0.448 0.0706 0.147

GITT [154] 0.0986 0.207 0.103 0.445 0.0704 0.142

Experiment [77] 0.097 0.21 0.103 0.46 0.068 0.14

3D LBM [155] 0.093 0.22 0.102 0.52 0.072 0.16

Table 8.4: Comparison of relative error for (A, Re) = (1.5, 990),(2.5, 1010) and (1.5,
1290), for steady flow in a cylindrical container with a rotating bottom endplate.

Re = 990 Re = 1010 Re = 1290

Present-Exp 1.65% 0.49% 3.38%

AxLAB®-Exp 2.27% 1.94% 3.82%

Peresent-GITT 0% 0.49% 0.14%

AxLAB®-GITT 0.6% 1.9% 0.28%

present-3D LBM 6.0% 1.5 % 2.36 %

AxLAB®-3D LBM 6.67% 2.9% 1.94%

8.4 Conclusions

The traditional axisymmetric lattice Boltzmann revised method produces first-order

behaviour in the solution error due to applying local equilibrium distribution functions

in the boundary conditions. By introducing the second-order bounce-back scheme, the

model for non-slip boundary conditions achieves second-order accurate results. This is
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because the exact lattice geometry of the boundary accords with the boundary equation

in the LBGK simulation using the second-order bounce-back approach. A generalised

bounce-back approach is suggested, in which the precise lattice geometry of the

boundary is adequately taken into account for any arbitrarily irregular lattice geometry

at the boundary. To demonstrate the efficacy of the novel axisymmetric lattice

Boltzmann revised approach, tests were carried out for steady flow in a cavity at

varying Reynolds number and aspect ratio. The resulting improvement has been

demonstrated by considering the maximum axial velocity component and comparing the

relative error, taking experimental data to the benchmark obtained using the

conventional axisymmetric lattice Boltzmann technique with the present scheme.

Moreover, the present technique provides additional information, enabling better insight

into the details of the actual flow structure.
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AxLAB® with 2nd order

bounce-back method for turbulent

flow

9.1 Turbulent pipe flow through an abrupt

axisymmetric constriction

Let us consider a simulation of turbulent flow through an axisymmetric constriction

originally carried out by Nyg̊ard [74]. Fig. 9.1, provides a sketch of the flow geometry.

The computational domain has an axial length of 5D, where D is the diameter of the

cylinder. The shaded region in Fig. 9.1 represents an axisymmetric constriction, and H

and L, respectively, stand for the height and length of the constriction. In this case,

H = 0.5L = 0.25D. According to Nygard and Andersson [74], a laminar Poiseuille flow

is prescribed at the inlet and outflow with random disturbance added to mimic

turbulent transition.

An axial pressure gradient at the entrance to the pipe drives the flow, keeping the bulk

flow constant at Ub. The Reynolds number is 22 000, following Wang [157] who

conducted physical tests. Within the test segment, the long inlet and outflow produced
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Figure 9.1: A schematic representation of the flow geometry.

a well-developed turbulent flow. The top and bottom domain walls have no slip

boundary condition. A Smagorinsky constant of Cs = 0.3 and time-step t 0f 0.2s were

employed in the simulations, which was run on uniformly 500 × 100 lattice. Different

lattices in r -z plane, i.e., 25× 125, 50× 250, 100× 500 and 200× 1000, were used to

check the convergence and stability of the present method. The findings show that if

more than 50× 250 lattices are used, solutions are independent of the choice of lattice

number. A lattice size of ∆x = 0.2 is utilised in present simulation and corresponds to

100× 500. After steady flow was established, the numerical results were acquired, and

compared with the experimental data presented by Wang [157] to prove that the current

model is correct, in which all lengths and velocities are nondimensionalized by D and

Ub, respectively. The end of the shaded rectangle in Fig. 9.1 is chosen as the origin

z/H = 0. Figures 9.2, 9.3, 9.4 compare mean axial velocity profiles downstream of the

constriction at three different locations, with the present model, predictions exhibiting

good agreement with Wang’s experimental data [157]. Further, a comparison between

results from AxLAB® and the present model shows that use of the second-order

bounce-back method for the boundary conditions leads to more precise results not only

for the region close to the wall, but also for the entire computational domain.
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Figure 9.2: Steady turbulent flow through a pipe with axisymmetric constriction: Com-
parison between predicted and measured mean axial velocity profiles at Z/H = 0.04.

Figure 9.3: Steady turbulent flow through a pipe with axisymmetric constriction: Com-
parison between predicted and measured mean axial velocity profiles at Z/H = 2.
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Figure 9.4: Steady turbulent flow through a pipe with axisymmetric constriction: Com-
parison between predicted and measured mean axial velocity profiles at Z/H = 4.

Figs. 9.5-9.8 present The axial velocity histories at two representative locations in the

pipe. It can be seen that the axial velocity component fluctuates around a mean

component over a duration of 1300s. The impact of gradual oscillation amplitude over

time on solution accuracy depends on the specific problem, numerical method, and

physical phenomena [158]. To maintain solution accuracy when dealing with gradually

changing oscillation amplitudes, it is crucial to use adaptive mesh refinement and

validate the results against experimental or analytical data if available to ensure

accuracy. This shows qualitatively that turbulence modelling based on a subgrid-scale

stress model provides further information than a time-average turbulence model such as

the k − ϵ model [61].
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Figure 9.5: Turbulent flow through a pipe with axisymmetric constriction: time history
of centerline longitudinal velocity at Z/H = −1.

Figure 9.6: Turbulent flow through a pipe with axisymmetric constriction: time history
of centerline longitudinal velocity at Z/H = −1.

Figure 9.7: Turbulent flow through a pipe with axisymmetric constriction: time history
of centerline longitudinal velocity at Z/H = 0.
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Figure 9.8: Turbulent flow through a pipe with axisymmetric constriction: time history
of centerline longitudinal velocity at Z/H = 0.

Fig. 9.9 shows a visualisation of the axial velocity at time t = 1200s. Due to the short

pipe domain, the streamwise velocity component decreases in the region from

z = −10H to z = −4H. The constriction has a significant impact on the velocity profile

at 0.5H upstream of the ring. Here, the bulk flow is diverted in the direction of the axis

of the pipe. As the ensuing jet spreads downwind of the constriction, the flow is then

strongly accelerated through the ring before decelerating once more. The expected

separation at the wall is also visible in the streamwise velocity behaviour downstream of

the constriction. In Fig. 9.9, separation can be seen; the blue colour indicates negative

values of axial velocity component, or flow reversal, entirely consistent with the findings

by Nygr̊ad and Anderson [74].

Figure 9.9: Visualization of instantaneous axial velocity at time t = 1200s in the r − z
plane.
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9.2 Axisymmetric turbulent flow pass a truncated

circular cylinder

Rastgou and Saedodin [159] studied axisymmetric detached and reattached turbulent

flow past a truncated circular cylinder, which is used as the second test case for the

present model. Figure 9.10 schematically depicts the computational domain and the

boundary conditions. The cylinder’s radius is R, the domain length is 40R, the domain

radius is 30R from the axis, and the head of the cylinder is located 25R from the inlet.

The computations are performed utilising 800 × 600 lattices with no-slip boundary

conditions applied at the wall. The flow has a Reynolds number of 6000, following

Rastgou and Saedodin [159].

Figure 9.10: Computational domain and boundary conditions for simulation of axisym-
metric turbulent flow pass a truncated circular cylinder, whose axis is oriented in the flow
direction.

Figs.9.11 and 9.12 compare mean velocity profiles predicted by the present scheme with

results from alternative numerical methods. Relatively good agreement is obtained at

the same level of precision, as the other methods. In addition, comparisons against the

experimental findings of Ota [160] with Re = 56200 and Kiya et al. [161] for Re = 105

indicate some slight disagreement in the reverse flow area, which depends on the

Reynolds number.
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Figure 9.11: Axisymmetric turbulent flow pass a truncated circular cylinder whose axis
is oriented in the flow direction: mean velocity profile in the r-direction at a section in
the separation region.

Figure 9.12: Axisymmetric turbulent flow pass a truncated circular cylinder whose axis
is oriented in the flow direction: mean velocity profile in the r-direction at a section out
of the separation region.

Figs.9.11 and 9.12 show that the present predictions agree closely with corresponding

results from experiment and alternative numerical methods, particularly for the region

close to the wall domain due to application of the second-order bounce-back method at

the wall boundaries.

The reattachment length (L.R.), defined as the distance between the separation point

(near the leading edge) and the reattachment point, is one of the leading features of
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flow separation encountered in the present study. The shear stress on the wall is zero at

the separation and reattachment points. This parameter influences the aerodynamic

properties of a circular cylinder with a fixed length-to-diameter ratio, an example being

drag. In the heat transfer literature [162], however, it is commonly expected that the

peak in the local heat transfer coefficient takes place at the reattachment point. The

number of nodes in a structured uniform grid used for calculations is 480000.

Convergence tests were undertaken on different grids, revealing that the results

remained unchanged on finer grids. Table 9.1 lists the reattachment length in relation

to mesh resolution for the present model and AxLAB® models. The results from the

480000 mesh are considered grid independent and are included in this paper because, as

Table 9.1 shows, the reattachment length obtained from the Fine Mesh is identical to

that obtained from the Medium Mesh (with less than 1% difference for the AxLAB®

and present models). According to Ota [160] and Kiya et al. [161]’s experimental

findings, the reattachment length of the turbulent separated shear is independent of

Reynolds number, being roughly 1.6 times the diameter. Figure 9.13 is a streamline

plot which demonstrates that the present model produces a reattachment length of 1.62

times the cylinder diameter, which is 1.51 times that for AxLAB®, suggesting that the

results obtained from the second-order AxLAB® are closer to the SST model [159],

which is superior to the other techniques. The aforementioned results show that the

present model performs well when simulating complex flows in the turbulent boundary

layer.
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Table 9.1: Reattachment length(R.L.) versus the mesh for present model and AxLAB®.

Coarse mesh Medium mesh Fine mesh

Number of nodes 24000 480000 960000
R.L. For Present model 1.6d 1.62d 1.63d

R.L. For the AxLAB® model 1.48d 1.51d 1.51d

Figure 9.13: Streamlines using the second-order AxLAB® with turbulence for an ax-
isymmetric turbulent flow pass a truncated circular cylinder whose axis is oriented in the
flow direction.
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Chapter 10

Conclusions and Future Work

10.1 Introduction

The axisymmetric lattice Boltzmann approachA is modern CFD technique based on the

microscopic resolution of flouid physics which is especially suitable for simulating

complex axisymmetric flows. This thesis examines the performance of AxLAB® in

modelling axisymmetric flows within a cylindrical domain, in a pipe, and past a

truncated cylinder aligned with the flow direction. The primary objectives of this work

are to improve the accuracy of the AxLAB® technique and develop a new code to

model axisymmetric rotating flows and turbulent flows with complex boundary

conditions, and unsteady-periodic flows. This objective was achieved by first reviewing

the development of the lattice Boltzmann method (LBM). LBM theory for the

axisymmetric flow equations (AxLAB®) was then carefully examined. Numerous

typical axisymmetric flow issues, including laminar and turbulent examples, have been

addressed using the numerical approach. Published experimental data and alternative

numerical solutions are used to validate the numerical scheme. Key contributions and

conclusions are listed below.
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10.2 Conclusions

The thesis has described the development of lattice Boltzmann methods AxLAB® for

laminar and turbulent axisymmetric flows. The well-established D2Q9 lattice pattern,

comprising a two-dimensional nine velocities lattice is employed. First-order and

second-order bounce-back techniques are used for solid wall boundary conditions.

Numerical experiments reveal that the second-order bounce-back approach for no-slip

boundary conditions, provides simulation that are more similar to experimental data

than other numerical scheme, demonstrating how the present scheme offers a significant

improvement over exixting. Numerous simulation studies for both laminar and

turbulent flows were conducted for benchmark swirling and benchmark axisymmetric

flow. The subsequent paragraphs list the study’s major accomplishments and findings.

• AxLAB® Application to Complex Laminar Flows

The numerical models were tested for a number of cases for which experimental data

and alternative numerical solution were available. The results demonstrated that

the present model are accurate for steady cylindrical cavity flows and axisymmetric

swirling flows in cylinders with rotating top and bottom endplates. Investigation

into the axial flow velocity component along the cylinder axis revealed that, for a

given aspect ratio, changes in the rotational Reynolds number might either increase

or decrease the maximum axial velocity along the axis of the cylinder. Further re-

search into the vortex breakdown phenomena was carried out using numerical anal-

yses to determine how vortex breakdown occurs and how many vortex breakdowns

there are in each case.

• Application to Unsteady-periodic Flow

To the author’s knowledge, this is the first numerical investigation of unsteady-

periodic flows that has quantified the flow periodicity. The process of creating

the vortex breakdowns for unsteady-periodic flow with Re= 2765 and A = 2.5 is

fully explained and the period of vortex collapse determined after a numerical test

was carried out. The highest axial velocities along the cylinder axis were used to
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determine the absolute error and relative error between two patterns at different

time instants was the key to determining the period time step. knowledge of the

flow periodicity enables better forecasting and management of the behaviour of

unsteady-periodic flow, which could enhance the efficiency of industrial machinery.

The number of stagnation points and their locations were discussed throughout a

flow period.

• Improve model of the accuracy of AxLAB® by incorporation of the second-order

bounce-back method

To increase model accuracy, a modified version of the axisymmetric lattice Boltz-

mann updated method is applied in collaboration with the second-order bounce-

back boundary condition for solid walls. This led to more accurate results than

the other approaches. Several studies, such as flow in a cylindrical container with

rotating top and bottom endplates were simulated to test the modified code. Maxi-

mum axial velocities along the cylinder’s axis, their positions, and stagnation points

were all considered. Results from AxLAB® and the modified code were compared

against existing experimental data and alternative numerical solutions, and it was

found that the modified LBM achieved significant improvement in the results where

the second-order bounce-back scheme was applied at the wall boundary.

• Development of second-order AxLAB® for Turbulent Flows

The second-order AxLAB® was enhanced to mimic turbulent flow. By incorpo-

rating the standard subgrid-scale (SGS) stress model into the axisymmetric lattice

Boltzmann equation in a way that was consistent with the lattice gas dynamics,

the turbulent flow was properly represented. The model was validated for two typ-

ical engineering cases. The flow behaviour, velocity components and reattachment

length were investigated, with the results indicating excellent agreement with ex-

perimental data and alternative numerical solutions. The findings also demonstrate

that incorporating a subgrid-scale stress model and the second order bounce back

method in the AxLAB® for turbulent flows can provide more accurate results

compared with the traditional AxLAB®, specifically while predicting the flow be-
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haviour close to the solid wall.

10.3 Future Research

In future, it is recommended that the model undergo the following improvement.

• Chapters 8 and 9 discussed the enhanced accuracy of the AxLAB® for no-slip

boundary conditions. The model should next be extended for more advanced slip

boundary conditions. This might be accomplished by updating the model to in-

clude more precise slip boundary condition approaches. Incorporating the present

model with a higher accurate scheme for slip wall boundary conditions leads to the

development of the present model application.

• The feature of fluid compressibility in the AxLAB® model has an impact on the

accuracy of the results, particularly for unsteady flows. Further research on incom-

pressible AxLAB® is required to improve the outcomes for unsteady flows.

• The application of AxLAB® will be developed by simulating an actual atmospheric

phenomena, such as an axisymmetric tornado. It is recommended that the link

between vortex structure, intensity, and unsteadiness as functions of diffusion and

rotation be investigated using axisymmetric simulations with constant viscosity.

• GPU technique and parallel computation for AxLAB®. Huge amounts of grid

lattices are required to replicate axisymmetric flows that exist in real situations.

Parallel computing and GPU technology are desirable to improve computational

performance. High-performance graphics and processors designed for parallel com-

putation will make it possible to achieve performance that was previously only

conceivable with parallel supercomputers. The intrinsic capability of parallel com-

putation is one of the lattice Boltzmann method’s most alluring advantages. Future

studies should consider parallel computation for laminar and turbulent flows.
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[24] P. Lyra, R. Lima, C. Guimarães, and D. de Carvalho, “An edge-based unstructured

finite volume procedure for the numerical analysis of heat conduction applications,”

Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26,

pp. 160–169, 2004.

[25] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of Modern

Physics, vol. 55, no. 3, p. 601, 1983.

[26] A. Pires, D. Landau, and H. Herrmann, “Workshop on Computational Physics

And Cellular Automata,” in Workshop on Computational Physics And Cellular

Automata. World Scientific, 1990, pp. 1–207.

[27] D. Campos and V. Méndez, “A lattice-model representation of continuous-time

random walks,” Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 8,

p. 085101, 2008.

131



REFERENCES REFERENCES

[28] K. Zuse, Calculating Space. Massachusetts Institute of Technology, Project MAC

Cambridge, MA, 1970.

[29] J. Hardy, Y. Pomeau, and O. De Pazzis, “Time evolution of a two-dimensional

model system. I. Invariant states and time correlation functions,” Journal of Math-

ematical Physics, vol. 14, no. 12, pp. 1746–1759, 1973.

[30] M. Gardner, “The Fantastic Combinations of John Conway’s New Solitaire Game

Life,” Sc. Am., vol. 223, pp. 20–123, 1970.

[31] S. Wolfram, “Theory and Applications of Cellular Automata,” World Scientific,

1986.

[32] H. Liu, J. G. Zhou, and R. Burrows, “Lattice Boltzmann simulations of the transient

shallow water flows,” Advances in Water Resources, vol. 33, no. 4, pp. 387–396,

2010.

[33] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice Gas Automata for the Navier-

Stokes Equation,” in Lattice Gas Methods for Partial Differential Equations. CRC

Press, 2019, pp. 11–18.

[34] D. A. Wolf-Gladrow, Lattice Gas Cellular Automata and Lattice Boltzmann Models:

an introduction. Springer, 2004.

[35] G. R. McNamara and G. Zanetti, “Use of the Boltzmann equation to simulate

lattice-gas automata,” Physical Review Letters, vol. 61, no. 20, p. 2332, 1988.
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