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Abstract 
Cognitive flexibility enables individuals to respond adaptively to an ever-changing world. 

Neurally, flexibility is underpinned by involvement from across the cerebrum, and there is evidence 

from animal and human neuroscience suggesting that integration of cortical and thalamic signals 

in the striatum is necessary for appropriate behavioural control. A commonly used assay of 

flexibility is reversal learning, an associative learning task with high inter-species translatability. 

Evidence from animal literature has clearly defined the importance of the striatal cholinergic 

system in regulating striatal activity and output from the basal ganglia, and there is nascent evidence 

suggesting this system operates in a similar way in humans. However, there is a need to further 

disentangle the role of cortical, striatal, and thalamic regions during reversal learning in humans to 

better understand how the system works, and whether it has heterogeneous functionality in different 

contexts. Furthermore, as studying these processes is not trivial, further methodological work is 

required to enable us to understand the system.  

In chapter two we systematically assess an automated parcellation technique for identifying specific 

thalamic nuclei. Despite generally being treated as a homologous structure in neuroimaging work, 

nuclei within the thalamus have dissociable roles, and have diverse contributions to cognitive 

functioning, including reversal learning. We found mixed efficacy for segmentations across the 

thalamus, with some regions being more accurately defined relative to a “gold standard” atlas than 

others. Crucially, we find that the centromedian and parafascicular nuclei, which have an important 

role in reversal learning, are clearly defined and have little overlap with contiguous regions. These 

results show we can use this automated parcellation technique to identify specific thalamic nuclei 

that are relevant for cognitive flexibility and use these parcellations to study functionally relevant 

processes.  

Recent work has demonstrated that the functional relevance of the striatal cholinergic system can 

be studied in vivo using magnetic resonance spectroscopy by separating the peaks of different 

metabolites. But this non-conventional approach has not yet been widely adopted, and work is 

needed to determine its reliability. Chapter three presents test-retest reliability data on the use of 

magnetic resonance spectroscopy to study cholinergic activity in the striatum and cortex. We find 

measures of choline containing compounds are highly correlated when peaks are separated and 

when they are not. Across time we find that choline concentrations are relatively inconsistent, and 

that this was due to changes in the functionally relevant metabolite choline. Conversely, 

metabolites that we think are not functionally relevant were stable over time. We believe these 
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differences may underly differences in acetylcholine function over time and may explain some 

intra-individual behavioural variability.  

In chapter four we use functional magnetic resonance imaging and psychophysiological interaction 

analysis to study corticostriatal and thalamostriatal connectivity during serial reversal learning. 

Functional connectivity between the centromedian-parafascicular nuclei of the thalamus and the 

associative dorsal striatum, and between the lateral-orbitofrontal cortex and the associative dorsal 

striatum was related to processing feedback during reversal learning. Specifically, thalamostriatal 

connectivity was found across the task, and may reflect a general error signal used to identify 

potential changes in context. Conversely, corticostriatal connectivity was found to be specific to 

when behaviour changed and suggests this may be a mechanism for the implementing adaptive 

change. We also show findings from exploratory work that may explain further how the cortex 

supports flexibility during reversal learning.  

Lastly, we used magnetic resonance spectroscopy to investigate whether the state of the cholinergic 

system at rest is related to reversal learning performance and latent measures of behaviour using 

computational modelling. Choline concentrations at rest showed significant functional relevance 

to our measures of reversal learning. More specifically, we found that errors during reversal 

learning, and learning rates for positive and negative prediction errors, explained significant 

variance in choline. However, the relationship between choline levels and task performance 

presented here differ from previous work which instead used a multi-alternative reversal learning 

task, and suggests that the striatal cholinergic system may have dissociable roles in different 

contexts.  

Overall, we show that the striatum, its cholinergic interneuron system, and its afferent projections 

from the cortex and thalamus, are associated with performance during serial reversal learning. 

Moreover, these findings suggest that the system may operate in separable ways in different 

contexts which may be dependent on internal representations of task structure.   
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Cognitive flexibility 

Flexibility is essential for goal-directed behaviour, as it enables an individual to adjust and respond 

to a non-stationary environment. This ability is an emergent property of executive function and 

enables an individual to maintain a given goal whilst altering the necessary actions to reach that 

goal (Dajani & Uddin, 2015). Furthermore, flexibility is not merely whether an individual is more 

disposed to switching or not, but is argued to encompass an ability to identify, choose, and execute 

an optimal response strategy (Yu et al., 2019). The production of this flexible response requires 

two overlapping yet distinct processes, namely cognitive flexibility and behavioural flexibility. 

Broadly defined, cognitive flexibility is the mental capacity required to produce flexible 

computations, while behavioural flexibility is the phenotypic response of an individual to a 

changing environment (Uddin, 2021). Thus, cognitive flexibility without behavioural flexibility is 

intractable, whilst behavioural flexibility without cognition is impossible. Within this thesis the 

term cognitive flexibility will be used interchangeably to describe both the underlying computation, 

and the behaviour that arises from it.  

Executive function and flexibility 

The main features of executive functioning underlying cognitive flexibility are working memory, 

attention and salience detection, inhibition, and switching (Dajani & Uddin, 2015). Working 

memory is important for caching information in mind that is not perceptually accessible and for 

performing mental operations on it. This storage and processing of relevant information is like the 

central processing unit of a computer, which stores and performs calculations on relatively small 

chunks of information and generates output that can be acted upon, discarded, or stored in longer 

term memory. The processes underlying working memory in the brain are thought to rely on the 

dorsolateral prefrontal cortex (D’Esposito et al., 1999). Working memory also reciprocally 

supports inhibitory control (Diamond, 2013). Inhibitory control is the ability for an individual to 

voluntarily manage sensory, cognitive, and behavioural information and responses that are 

irrelevant for goal directed behaviour (Tiego et al., 2018). This includes the suppression of 

prepotent habitual or reflexive thoughts and responses in favour of more relevant goal-directed 

actions or assigning attentional control to process only relevant sensory stimuli. Inhibitory control 

is important for cognitive flexibility, as changes in an environment require the reorientation of 

behaviour to maintain goal-directed action. Response inhibition is thought to be supported by the 

ventrolateral prefrontal cortex and subthalamic nucleus for motor inhibition and the inferior frontal 

junction for the detection of behaviourally relevant stimuli (Aron & Poldrack, 2006; Levy & 

Wagner, 2011; Verbruggen & Logan, 2008). Insular activity is associated with both inhibition and 



 

Page | 5  

 

salience detection, and forms part of the salience network alongside the anterior cingulate cortex 

(Menon & Uddin, 2010). The salience of a stimulus is dependent on its importance, intensity, and 

detectability (APA, 2020). Salience is important for flexibility, as stimuli signalling a change in 

context need to be identified and processed to determine whether a change in response is needed to 

maintain goal-directed action (Dajani & Uddin, 2015). If salient information is not correctly 

identified, then behaviour can quickly become maladaptive following a change in environment if 

an individual does not correctly identify that they need a switch in behaviour. Two types of 

switching paradigms are frequently used for measuring cognitive flexibility. In set shifting 

paradigms participants learn a set of rules that are relevant in different contexts and can be used to 

achieve a specific goal. Task switching involves participants switching between completing more 

than one type of task. In set shifting tasks participants learn through feedback how to flexibly 

respond in different contexts, while task switching involves flexibly using different explicit rules 

to guide behaviour (Kehagia et al., 2010). 

Disorders of flexibility 

Numerous neurological and mental health conditions are characterised by impaired executive 

functioning and aberrant cognitive flexibility. These disorders include neurodegenerative diseases 

such as Parkinson’s and Huntington’s disease, neurodevelopmental disorders such as Attention 

Deficit Hyperactivity Disorder and Autism Spectrum Disorder, trait anxiety and depression, 

schizophrenia and Obsessive Compulsive Disorder (Itami & Uno, 2002; Nickchen et al., 2017; 

Peterson et al., 2009; Remijnse et al., 2009; Schlagenhauf et al., 2014; South et al., 2012; C. G. 

Wilson et al., 2018). Impaired flexibility in these disorders is related to inattentiveness, cognitive 

rigidity, restrictive and recurrent thoughts and behaviours, and negative thinking (Uddin, 2021). 

Individuals with Autism Spectrum Disorder show a general impairment across several domains of 

executive functioning throughout childhood, adolescence and adulthood (Demetriou et al., 2018).  

Individuals with Autism Spectrum Disorder are able to set-shift in cognitive flexibility tasks, but 

show impairments in the maintenance of set shifting, relative to non-autistic individuals (Miller et 

al., 2015). Moreover, this impairment in set-shifting maintenance is positively associated with the 

severity of repetitive and restrictive behaviour, a hallmark of Autism Spectrum Disorder (Lopez et 

al., 2005; Miller et al., 2015). Impaired cognitive flexibility is also seen in Obsessive Compulsive 

Disorder. Obsessive Compulsive Disorder is characterised by intrusive and compulsive thoughts 

or feelings to repetitively perform actions that are maladaptive (Uddin, 2021). Executive 

functioning is impaired in Obsessive Compulsive Disorder (Penadés et al., 2005) and is associated 
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with increased distractibility, excessive error monitoring and elevated inflexibility in tests of 

executive function, and cognitive flexibility (Veale et al., 1996).  

Neurodegeneration in Parkinson’s and Huntington’s disease is accompanied by deficits in 

cognition, including impaired flexibility (Brown & Tait, 2016). Parkinson’s disease is characterised 

by neuronal loss in the dopaminergic midbrain and substantia nigra, which results in stereotypical 

Parkinsonian tremor, muscle rigidity and reduced movement (Alexi et al., 2000). Parkinson’s is 

also associated with reduced cognitive and executive functioning independent from dementia 

(Watson & Leverenz, 2010), with a loss of dopaminergic input to the prefrontal cortex and striatum 

thought to reduce the balance between stability and flexibility, resulting in increased inflexibility 

in Parkinson’s disease (Cools & D’Esposito, 2011). Huntington’s disease is a genetic 

neurodegenerative disease caused by an increased number of CAG nucleotide repeats in the DNA 

sequence of the gene encoding the Huntingtin protein (MacDonald et al., 1993). This expanded 

CAG repeat region causes aggregation of the Huntingtin protein, and leads to degeneration in the 

striatum and cortex of affected individuals (DiFiglia et al., 1997), which is positively associated 

with impairments in cognitive flexibility (Lawrence et al., 1999; Nickchen et al., 2017).  

 

Development and flexibility 

Executive functioning develops as children transition into adolescence and then adulthood. These 

changes show a general trend where executive functioning improves, and is accompanied by the 

maturation of the cerebral cortex into an individual’s early twenties (Gogtay et al., 2004; 

Thompson-Schill et al., 2009). However, unlike executive functions which show an increase over 

development, there is some evidence suggesting cognitive flexibility does not follow the same 

developmental trajectory (Gopnik et al., 2015; Johnson & Wilbrecht, 2011; Lucas et al., 2014). For 

instance, Gopnik et al. (2017) tested how pre-schoolers (4 years old (y/o)), younger school aged 

children (6-7 y/o), older pre-adolescent children (9-11 y/o), young adolescents (12-14 y/o) and 

adults use evidence to guide decision making and whether prior knowledge can be flexibly used in 

novel situations. Participants were told that “Blickets” are required to make a machine work (Figure 

1). Participants then received training showing Blickets have 1. a conjunctive relationship, meaning 

two objects are required to activate the machine, 2. A disjunctive relationship, meaning one was 

required to activate the machine, or 3. received no training (Figure 1). Participants who received 

conjunctive training were more likely to correctly identify a Blicket from a novel set as conjunctive 

than those who received disjunctive or no training. However, of those who received conjunctive 
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training, pre-schoolers were significantly more likely to correctly label a novel object with a 

conjunctive relationship as a Blicket than school age pre-adolescents (6-7 & 9-11 y/o), and school 

age pre-adolescents were significantly more likely to label this object as a Blicket than young 

adolescents and adults. The proportion of adolescents judging the object as a Blicket did not differ 

significantly when compared to adults. Pre-schoolers were also more likely to use multiple objects 

than young school aged children when asked to activate the machine themselves, suggesting the 

use of the conjunctive rule to activate the machine. School age pre-adolescents, young adolescents 

and adults did not significantly differ with respect to the number of objects they used to activate 

the machine. The findings of Gopnik et al. (2017) show that the flexible implementation of the 

more unusual, yet correct, conjunctive rule decreases across development, with transitionary 

periods seen in middle childhood and adolescence. Further, these findings illustrate how changes 

in flexibility are related to changes in experience, executive function and plasticity. Younger 

individuals lack life experience and mature executive function but can rely on plasticity to use what 

they have learned to infer the conjunctive rule. Conversely, increases in life experience and 

executive function plus decreases in plasticity across development result in the conjunctive rule 

being used more infrequently, with an increased reliance on prior knowledge. 
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Figure 1 (Upper) Overview of disjunctive and conjunctive training. Disjunctive 

training taught participants that whether an object is a Blicket, and therefore will 

activate the machine, is not dependent on other Blickets. Conjunctive training 

taught that two Blickets are required to activate the machine. During the test 

phase object D was a Blicket, and participants were asked whether they thought 

object D was a Blicket or not. (Lower) Proportion of participants in each age 

group across conditions defining object D as a Blicket. Figure reproduced from 

Gopnik et al. (2017). 

The development of the human brain from childhood to adulthood is characterised by regional 

variation in maturational trajectories, with phylogenetically older and lower-order areas reaching 

maturity before newer and high-order regions (Gogtay et al., 2004). Development is also 

characterised by changes in connectivity when learning from experience (van den Bos et al., 2012), 

with regions involved in reward and punishment processing (e.g. ventral striatum, medial and 

dorsolateral prefrontal cortices, and insula) showing age-related differences across development 

(Bolenz et al., 2017). These developmental trajectories are associated with changes in risk taking 
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behaviour (Christakou et al., 2013), and tolerance for ambiguity (van den Bos & Hertwig, 2017) 

during adolescence. However, although adolescents do not appear to be different from adults in 

adapting their rate of learning to environmental change, they appear to make decisions with less 

certainty than adults (Javadi et al., 2014), and overestimate environmental volatility (Jepma et al., 

2020). This may explain why adolescents learn at different rates to adults (Hauser et al., 2015; 

Palminteri et al., 2016) and make choices that are based less on expected value (Christakou et al., 

2013). By contrast, adults appear more strategic in their exploration (Somerville et al., 2017), and 

better able to maximise reward than adolescents or children (Burnett et al., 2010; Plate et al., 2018). 

These differences may be underpinned by changes in reward-processing mechanisms across 

development. 

One way to examine this possibility is through computational modelling. For instance, Crawley et 

al. (2020) assessed how mechanisms underlying cognitive flexibility change across development. 

Children (6-11 y/o), adolescents (12-17 y/o) and adults (18-30 y/o) completed a probabilistic 

reversal learning task, and three computational models were fit to their behaviour. All three models 

varied in how information was used to update expected values. A counterfactual update model 

updated expected values for both the chosen and unchosen choice on each trial using a single 

learning rate, and the inverse outcome was used to update expected value of the unchosen option. 

A dual-learning rate model had separate learning rates for positive and negative prediction errors 

but did not update the expected value for unchosen options. Lastly, an experience-weighted 

attraction-dynamic learning rate model was used; this model enables dynamic updating of expected 

values, based on prior knowledge. In children, adolescents, and adults, behaviour in the task was 

best explained by the counterfactual, dual-learning rate, and experience-weighted models, 

respectively. These results suggest changes in value computation exist across development, with 

mechanisms becoming more elaborate with age. Furthermore, changes in cognitive flexibility and 

its underlying computations are likely to be related to biological changes across an individual’s 

journey to adulthood, which means that operationalising appropriate tests of these competences 

becomes very important in developmental work.  

Operationalising cognitive flexibility - the reversal learning task 

The reversal learning task is a commonly used set-shifting paradigm for measuring cognitive 

flexibility (Izquierdo et al., 2017). In the standard version of the reversal learning task (for example 

in Fellows & Farah, (2003)) a participant is trained to discriminate between two visual stimuli. One 

of these stimuli is the correct choice and is consistently associated with a positive or rewarding 

outcome, whilst the other is incorrect and is associated with a negative or non-rewarding outcome. 
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The aim of the task is to select the correct choice to maximise positive outcomes. Stimulus-outcome 

associations are learned through experience, and after selecting the correct choice a predetermined 

number of times the participant reaches the learning criterion and the outcomes associated with 

each stimulus are switched. Therefore, the stimulus that was correct is now incorrect and vice versa. 

Following reversal, the participant needs to switch from selecting the previously correct response 

in order to maintain task performance. This type of reversal learning task is known as deterministic 

reversal learning, since a stimulus is always either correct or incorrect. A major benefit of this 

paradigm is that its relative simplicity means that is can be easily translated across species. For 

instance, rodent studies of reversal learning adapt the task by using mazes and lever press tasks 

(e.g. Palencia & Ragozzino, 2004; Panayi & Killcross, 2018), while primate and human studies 

often use visual object discrimination (e.g. Cools et al., 2002; Rygula et al., 2010). This 

translational viability means techniques from across animal and human neuroscience can be used 

to understand how flexible behaviour is supported by neural activation, and how aberrant 

functioning at the biological level leads to disorders of flexibility.  

In the standard reversal learning task described above, the contingencies between stimuli and 

outcome are deterministic, meaning they faithfully predict whether a stimulus is the correct choice 

or not. However deterministic reversal learning is relatively straightforward for humans to 

complete because there is no ambiguity between the mapping of stimulus-outcome contingencies 

(Einhorn & Hogarth, 1985; Frisch & Baron, 1988). Probabilistic reversal learning tasks can be used 

to minimise the use of simple strategies to achieve reversal learning (Izquierdo et al., 2017). In 

probabilistic reversal learning, outcomes only partially predict whether a stimulus is the correct 

choice or not; for instance, selection of the correct choice may only be rewarded 80% of the time. 

Distinct neural responses during outcome processing, especially in the case of negative outcomes, 

are seen between deterministic and probabilistic reversal learning (Habiby Alaoui et al., 2021), and 

suggests differences in task complexity means the brain processes deterministic and probabilistic 

learning in separable ways. Habiby Alaoui et al. (2021) show negative prediction errors during 

deterministic but not probabilistic reversal learning produce an early frontal event related potential 

that is predictive of behaviour. Furthermore, event related potentials were generally associated with 

prediction error and surprise in both tasks, but only with behaviour during deterministic reversal 

learning. Lastly they show using source localisation, that the absence of expected outcomes 

generated differential, and more extensive activation for probabilistic than deterministic reversal 

learning.  

Using probabilistic feedback is also interesting because it means reversal learning can be used to 

study how people respond to unexpected errors. Because feedback is only probabilistic, sometimes 
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people will make a choice and receive feedback that is incongruent, i.e. negative feedback for 

correct choices, and vice versa; these are known as probabilistic errors. Probabilistic errors could 

lead to a change in behaviour even though contingencies have not changed (Yaple & Yu, 2019). 

Probabilistic reversal learning can also be used to study perseverative and regressive errors (Hill et 

al., 2015), which can be informative about the processes involved in reversal behaviours. Following 

the reversal of outcome contingencies, the continued use of the previously correct response strategy 

is known as response perseveration, referring to the number of times the previously correct choice 

is selected before a switch in behaviour, namely the number of perseverative errors. Conversely, 

regressive errors are made when an individual returns to using the previously, but no longer, correct 

response after they had identified the reversal of reward contingencies and changed to the newly 

correct rule. 

Another way the reversal learning task can vary is the number of options that are included in the 

task. Increasing choices from two to three or four options makes it easier to distinguish between 

perseverative and regressive errors, and for investigating variability in exploratory and exploitative 

choice strategies (Izquierdo et al., 2017). Activation when feedback was unexpectedly omitted was 

found to be significantly greater in several regions including the ventral striatum, cingulate cortex, 

thalamus and midbrain in four choice reversal learning compared to two choice reversal learning 

(D’Cruz et al., 2011), and suggests that increased uncertainty in the four choice task increases 

computational demand. This, demand may, in part, be provided by the orbitofrontal cortex. For 

example, Kim & Ragozzino, (2005) found that chemical inactivation of the rat orbitofrontal cortex 

impairs reversal learning; increased perseveration following inactivation was observed in two 

choice reversal learning, however four choice reversal learning saw increases in both perseverative 

and regressive errors.  

The neural computations underpinning reversal learning in humans require the recruitment of 

several regions across the brain. Studies of patients with damage to the frontal lobe have found that 

this damage is associated with impaired performance during reversal learning, that may be 

associated with a loss of cognitive function (Daum et al., 1991; Rolls et al., 1994; Verin et al., 

1993). In particular, lesions to the orbitofrontal cortex in humans appear to have a negative effect 

on reversal learning performance, where an increased number of errors following the reversal of 

outcome contingencies is seen, relative to individuals with lesions of the dorsolateral prefrontal 

cortex and also control participants (Bechara et al., 1994; Fellows & Farah, 2003, 2005). The effects 

of orbitofrontal and dorsolateral prefrontal lesions on reversal learning were further studied by 

Hornak et al. (2004), who found performance during reversal learning to be impaired for patients 

with bilateral orbitofrontal lesions, but not those with unilateral lesions. Moreover, lesions to the 
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dorsolateral prefrontal cortex negatively impaired performance, but only in participants who did 

not attend to feedback; all patients with lesions to the orbitofrontal cortex paid attention to 

feedback, but this did not ameliorate the effect of lesions on reversal learning performance. This 

suggests the orbitofrontal cortex is important for monitoring changes in reward value and using 

these values to guide adaptive behaviour, while the dorsolateral prefrontal cortex is important for 

identifying the relevance of information for guiding behaviour. This perspective is supported by 

more recent lesion work, with Tsuchida et al. (2010) finding lesions to the orbitofrontal cortex 

increased both the number of errors made during initial and reversal learning, and that participants 

chose alternative options after receiving positive feedback more frequently than the control 

subjects. 

Lesions of the basal ganglia have also been associated with impaired reversal learning performance. 

For instance, Bellebaum et al. (2008) found patients with basal ganglia lesion were not impaired 

during initial learning, but did show reduced performance during reversal relative to control 

participants; in particular, the most impaired reversal learning performance was observed in 

patients who had lesions of the dorsal striatum. The reversal learning performance of patients with 

bilateral lesions of the amygdala, caused by Urbach–Wiethe disease, has also been studied by 

Hampton et al. (2007). Hampton and colleagues found that patients with amygdala lesions showed 

an increased tendency to switch to the alternative option, regardless of whether they received a 

reward. However, both amygdala lesion participants performed better than chance, suggesting these 

lesions only made them more insensitive to using reward to guide behaviour. Furthermore, patients 

with amygdala lesions did not show impairments in other metrics of performance, such as initial 

learning and response perseveration.  When comparing switch with stay trials, Hampton et al. 

(2007) also showed amygdala lesion patients had clusters in the bilateral anterior insula/lateral 

orbitofrontal cortex, and anterior cingulate cortex where activation was significantly reduced, 

relative to control participants. Amygdala lesion participants also had significantly reduced 

activation relating to the estimation of expected value in the medial prefrontal cortex. Lastly, 

amygdala lesion patients showed no difference in responses to positive and negative outcomes in 

comparison to controls. These results suggest amygdala lesions may impair the calculation of 

expected value, and the use of these values to guide adaptive behaviour during reversal learning, 

leading to behaviour that is increasingly stochastic. This is in line with proposals by Schoenbaum 

et al. (2007), who suggest the role of the orbitofrontal cortex in flexibility is to encode expected 

value and facilitate changes in associative encoding in downstream regions such as the striatum 

and amygdala when expected and actual outcomes are incongruent. This is likely to include the 

striatal cholinergic system, where orbitofrontal cortex neurons are reported to be necessary for the 
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representation of the current environmental state by cholinergic interneurons (Stalnaker et al., 

2016). 

However, although lesion studies are important for understanding structure-function relationships 

in humans, they are nonetheless restricted. Firstly, patients with lesions are relatively rare. Lesions 

may be due to genetic or environmental factors leading to tissue atrophy, or a clinical condition 

requiring the ablation of problematic brain tissue, such as in epilepsy. The scarcity of lesion patients 

makes it relatively impractical to conduct research within these populations, and comorbid 

conditions may make the interpretation of results difficult. Secondly, the heterogeneity of lesion 

location is also problematic, and this also makes interpreting findings difficult. Furthermore, lesion 

studies generally make the implicit assumption that functional losses due to lesions mean that 

function must be localised within the region that is lost. However, it is more likely that lesions 

affect not only the site of the lesion but also other interconnected parts of the brain, given the brain 

is not a modular organ, with specific cognitive functions restricted to discrete regions.  

Functional magnetic resonance imaging overcomes the limitations of lesions studies, by enabling 

the non-invasive study of structure-function relationships in both normative and clinical 

populations. In line with findings from lesion studies, functional magnetic resonance imaging work 

has consistently shown orbitofrontal cortex activation during reversal learning (Ghahremani et al., 

2010; Hampshire et al., 2012; Kringelbach & Rolls, 2003; Morris et al., 2016; O’Doherty et al., 

2001; Remijnse et al., 2005; Ruge & Wolfensteller, 2016). Wilson et al. (2014) propose that the 

role of the orbitofrontal cortex is to produce representations of task space, that act as an internal 

model of an individual’s environment. These representations are particularly useful in uncertain 

and volatile environments, where the orbitofrontal cortex can integrate information about task state 

with information from other cortical and subcortical regions to generate expectations to guide 

adaptive behaviour (Howard & Kahnt, 2018). For instance, if sensory information violates 

expectations in the orbitofrontal cortex then flexible change in downstream regions, including the 

frontal pole, insula, striatum, amygdala, hippocampus, and thalamus can be produced (Heather Hsu 

et al., 2020; Wilson et al., 2014). The medial and lateral divisions of the orbitofrontal cortex have 

purportedly distinct yet complementary roles that may be important for flexibility in downstream 

regions. The medial orbitofrontal cortex is thought to be involved in the evaluation of outcomes, 

while the lateral orbitofrontal cortex is associated with the representation of the current state which 

includes the associated contingencies for action-outcome associations (Hampshire et al., 2012; 

Hervig et al., 2020; Noonan et al., 2017; Ruge & Wolfensteller, 2016). If evaluated outcomes are 

incongruent with expectations for the current state, then this may lead to preparation for a change 

in behaviour. This perspective that the orbitofrontal cortex produces a map of task space is 
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consistent with the idea of “model-based” reinforcement learning. In “model-based” learning, goal-

directed behaviour arises from the use of internal representations of state to make predictions about 

future value and guide behaviour in environments that are only partially observable (Daw et al., 

2005; Dayan & Berridge, 2014). 

The anterior cingulate and insular cortices are the cortical hubs for the salience network, a group 

of brain regions that are involved in the identification and filtering of behaviourally relevant stimuli 

(Seeley, 2019). The identification of behaviourally relevant stimuli determines how attentional and 

processing resources are allocated and is important for cognitive flexibility (Dajani & Uddin, 

2015). A recent meta-analysis of the reversal learning paradigm found consistent activity in the 

salience network during reversal learning and suggests the function of the salience network to 

provide long term stable performance, maintaining cognitive control during error processing and 

the formation of new associations (Yaple & Yu, 2019). In particular, the anterior cingulate is 

thought to be important for using information about reward to sustain choice behaviour, and to 

switch behaviour when the outcome of an action suggests that change is favourable (Behrens et al., 

2007; Chudasama et al., 2013; Liu et al., 2015; Waegeman et al., 2014). Furthermore, the anterior 

cingulate is thought to encode multiple distinct representations of value across the region that are 

relevant over different time intervals, and that the distribution of these representations can change 

depending on the volatility of the environment (Mohr et al., 2018). Concurrent shorter- and longer-

term representations of expected value supports flexible behaviour because multiple expected 

values can be used and weighted to make decisions. Additionally, being able to adjust the 

distribution of these representations in response to volatility supports flexibility as in more volatile 

environments it is better to dedicate resources to shorter term evidence, while optimal behaviour in 

more stable environments is more likely to be guided by long term estimates of expected value. 

Studies have also reported activation within the striatum during reversal learning (Cools et al., 

2002; Meder et al., 2016; Remijnse et al., 2005). Activity in the ventral striatum is associated with 

the encoding of prediction errors (Li et al., 2011; Meder et al., 2016). Prediction error signals are 

thought to originate from midbrain dopaminergic neurons within the ventral tegmental area and the 

substantia nigra which project to both the dorsal and ventral striatum (Schultz, 1998; Schultz et al., 

1997). Dopaminergic activity and reward prediction errors are commonly associated with “model-

free” reinforcement learning, where the expected value for an action is based on its reward history 

and behaviour is driven by actions with the highest cached value; following action cached values 

are updated using prediction errors (Averbeck & O’Doherty, 2021). However, evidence suggests 

that prediction error signals are reflective of both “model-free” and “model-based” learning (Daw 

et al., 2011; Deserno et al., 2015), with Deserno et al. (2015) finding presynaptic dopamine levels 
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in the ventral striatal dopamine are positively correlated with the “model-based” learning signals 

in the lateral prefrontal cortex. Therefore, prediction error signals in the ventral striatum during 

reversal learning appear to balance innervation from cortical and subcortical inputs, and between 

“model-based” and “model-free” like learning signals to guide behaviour.  

Previous findings have also shown that the dorsal striatum is involved in reversal learning in 

humans (D’Cruz et al., 2016; Gläscher et al., 2009; Hampshire et al., 2012; Mitchell et al., 2008; 

Morris et al., 2016; Robinson et al., 2010; Waegeman et al., 2014), though not all studies 

consistently find dorsal striatal activity (Yaple & Yu, 2019). One proposed role for the dorsal 

striatum during reversal learning is the expression of stimulus-outcome associations. Xue et al. 

(2008) trained participants to learn whether novel Japanese Hiragana symbols were associated with 

male or female names, and whether either a left of a right key press was the appropriate response 

to categorise the symbols as male and female; because of this design the authors could distinguish 

between stimulus-outcome and stimulus-response learning processes, respectively. After a period 

of initial learning, either stimulus-outcome (correct gender) and/or stimulus-response (correct 

keypress) associations could change, or both associations could stay the same. Participants were 

not informed about the reversal of these associations, and so they had to learn the new associations 

through trial and error. During reversal learning, striatal activation was significantly increased 

when participants correctly responded to symbols with reversed stimulus-outcome associations, 

relative to symbols where was no change in associations. Moreover, striatal activity was also 

significantly greater when participants correctly responded to symbols with reversed stimulus-

outcome associations than symbols with reversed stimulus-response associations. Dorsal striatum 

activation was also reported by Ruge & Wolfensteller, (2016), who found that activity within the 

caudate nucleus was associated with the encoding of rules during instructed reversal learning. 

Furthermore, caudate nucleus activity was negatively associated with the cost of reversal, indexed 

as the difference in reaction time between initial and reversal learning. Together, these results 

suggest that flexible encoding of stimulus-outcome associations in the dorsal striatum is important 

for promoting adaptive goal-directed behaviour and flexibility that is required for reversal learning. 

This function may also explain why not all reversal learning studies report dorsal striatal activity, 

as its dynamic activity may not be appropriately described by simple contrasts (Waegeman et al., 

2014). 

Summary 

Cognitive flexibility is an emergent property of executive functioning that is important for adaptive 

goal-directed behaviour in environments that are non-stationary or volatile. It is supported by 
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several executive functions including working memory, inhibition, attention and salience detection, 

and switching. However, unlike executive functions that show a general increase across 

development, flexibility may not follow the same trend, with adults relatively less flexible due to 

an increased reliability on prior knowledge instead of learning to guide behaviour. Impairments in 

cognitive flexibility are seen in developmental, mood, and mental disorders and in 

neurodegeneration. The reversal learning task is a commonly used paradigm for studying cognitive 

flexibility, and neuroimaging studies suggest the involvement of multiple brain regions in 

flexibility. This includes the orbitofrontal cortex which is thought to generate internal 

representations of task state based on cortical and subcortical input and uses this information to 

guide flexibility via its efferent connectivity. The anterior cingulate cortex is associated with the 

representation of value across multiple timescales and using reward information to determine 

whether to switch or sustain current choice behaviour. The ventral striatum is associated with 

prediction error which signals the difference in expected and actual outcomes. The dorsal striatum 

is thought to be important for the encoding of stimulus-outcome associations, and the flexible 

encoding of these associations are important for cognitive flexibility.  
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Reversal learning, the striatum, and acetylcholine 

Acetylcholine is a chemical messenger found throughout the nervous system. Within the peripheral 

nervous system acetylcholine acts as a neurotransmitter controlling the action of muscles and 

autonomic ganglia; in the central nervous system acetylcholine acts primarily as a neuromodulator,  

meaning acetylcholine is not directly involved in excitatory or inhibitory neurotransmission, but 

instead changes the responsivity of other neurons to stimulation (Picciotto et al., 2012). Two 

regions of the brain have cholinergic neurons that project to the cerebral cortex and thalamus, 

namely the basal forebrain, and the pedunculopontine nucleus (Perry et al., 1999). The primary 

source of cholinergic input to the cerebral cortex are the nucleus basalis and the medial septal 

nucleus in the basal forebrain, which have efferent projections that innervate all of cerebral cortex 

(Mesulam, 2004). Aside from projection neurons, cholinergic interneurons are also found in the 

striatum. These neurons are tonically active, are identifiable by their expression of the enzyme 

choline acetyltransferase, and are responsive to conditioned sensory stimuli (Aosaki et al., 1995). 

The following sections will describe the structural characteristics of basal ganglia circuitry and its 

role in cognitive flexibility, with a focus on the relevance of striatal cholinergic interneurons for 

flexibility. 

 

Figure 2 Cholinergic projection and interneuron systems in the brain. Figure 

reproduced from (Hopper et al., 2016)  
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Striatal architecture 

The striatum, acting as in the input to the basal ganglia, is involved in sensory, motor, associative, 

and limbic processes. Glutamatergic and dopaminergic neurons provide the main input to the 

striatum; glutamatergic inputs originate from the cortex, thalamus and limbic regions, while 

dopaminergic inputs are received from the ventral tegmental area and the substantia nigra (Burke 

et al., 2017). Most of these inputs synapse onto medium spiny neurons, which are the primary cell 

type of the striatum. In rodents, medium spiny neurons account for approximately 95% of all 

neuronal cells within the striatum while in primates and humans it is thought that around 75% of 

striatal neurons are medium spiny neurons (Bernácer et al., 2007; Graveland & Difiglia, 1985). 

Striatal medium spiny neurons have projections to the rest of the basal ganglia and are defined as 

direct or indirect pathway neurons based on neuropeptide and gene expression. Striatonigral 

medium spiny neurons are part of the direct pathway and express the dopamine D1a receptor, the 

genes Tac1, Pdyn, and Isl1, and the neuropeptides dynorphin and substance P; the direct pathway 

of the striatum projects directly to the globus pallidus interna and the substantia nigra pars reticulata  

from the striatum (Ehrman et al., 2013; Heiman et al., 2008; Williams, 2018; Yager et al., 2015). 

Striatopallidal medium spiny neurons form part of the indirect pathway, and express the dopamine 

receptor D2, the genes Adora2a¸and Penk, and the neuropeptide enkephalin; they have indirect 

connectivity from the striatum to the globus pallidus interna and the substantia nigra pars reticulata 

via the globus pallidus externa and the subthalamic nucleus, which itself receives input from the 

globus pallidus externa (Heiman et al., 2008; Williams, 2018; Yager et al., 2015)1. 

 

 
1 A subset of medium spiny neurons in rodents and primates express D1-D2 heteromers, but at a lower level than 

D1 or D2 expressing neurons (Hasbi et al., 2020) 
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Figure 3 Connectivity in the basal ganglia with projection neurons from the 

cerebral cortex and thalamus. Excitatory glutamatergic connections are clear, 

inhibitory GABAergic connections are black. GPe: globus pallidus externa, GPi: 

globus pallidus interna, HBN: lateral habenular nucleus, PPN: pedunculopontine 

nucleus, RF: parvicellular reticular formation, SC: superior colliculus, SNc: 

substantia nigra pars compacta, SNr: substantia nigra pars reticulata, STN: 

subthalamic nucleus, Thal: thalamus. Figure reproduced from (Smith et al., 1998) 

The remaining neuronal cells in the striatum are interneurons that have a modulatory effect on the 

output of the striatum. These interneurons are gamma-Aminobutyric acid (GABAergic) and 

acetylcholine (cholinergic) releasing interneurons and are identifiable based on protein expression. 

The three canonical subgroups of GABAergic interneurons are fast-spiking, low threshold spiking, 

and calretinin expressing interneurons, which express either parvalbumin, or somatostatin & nitric 
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oxide synthase & neuropeptide Y, or calretinin, respectively (Burke et al., 2017). Cholinergic 

interneurons are identifiable based on the expression of choline acetyltransferase, and estimates 

suggest they account for between 1-2% to up to 20% of the striatal neuronal population in humans 

(Bernácer et al., 2007; Prado et al., 2017). Cholinergic interneurons primarily receive input via 

glutamatergic projections from the thalamus, and have broad dendritic arborisations allowing them 

to innervate much of the striatum (Kawaguchi et al., 1995).  

Cholinergic interneurons are tonically active, with an irregular firing rate of 3-10Hz on average in 

anaesthetised rats (Wilson et al., 1990). This tonic activation is intrinsically driven and independent 

of synaptic input (Bennett et al., 2000), and is important for modulating ion channels on medium 

spiny neurons, plasticity of glutamatergic afferents, GABA release from GABAergic interneurons, 

and the tonic release of dopamine from dopaminergic neurons (Wilson, 2005). Cholinergic 

interneurons also show a transient pause in firing followed by a rebound in activity to conditioned 

stimuli associated with reward, which reduces as the conditioned association is extinguished 

(Aosaki et al., 1994; Kimura et al., 1984). This pause and rebound response was initially thought 

to be important for associating conditioned stimuli and responses, however more recent evidence 

suggests cholinergic interneurons respond not only to conditioned stimuli, but that they integrate 

contextual information from cortical, thalamic and midbrain dopaminergic inputs to flexibly 

generate appropriate actions for a given context (Apicella, 2007, 2017). For instance Deffains et al. 

(2010) recorded the response of striatal cholinergic interneurons in monkeys while they completed 

a reaching task. The monkeys are presented with three illuminating buttons and at the start of each 

trial the central button is illuminated, signalling the start of the trial. This button is then 

extinguished, and one of the three buttons is illuminated; this button is the trigger, and correctly 

pressing the trigger button leads to the delivery of reward. In one condition triggers are illuminated 

in a repeating pattern from left to right across trials, while in another the illuminated trigger is 

pseudorandom. In the repeating condition, cholinergic interneurons either responded to both the 

cue and the trigger, selectively to either the cue or trigger or showed no response. Following a 

change from the repeated to the random condition, 51% of cholinergic interneurons changed their 

response pattern to the cue and trigger, which was accompanied by a change in the level of 

activation of a subset of medium spiny neurons between conditions. These results suggest 

cholinergic interneurons are sensitive to changes in task context requiring a change in behavioural 

response, and that this may be achieved by modulating the level of activation in a sub-population 

of medium spiny neurons. 

The direct effect of acetylcholine on medium spiny neurons in the striatum are mainly driven by 

the activation of muscarinic M1 and M4 receptor subtypes (Kljakic et al., 2017). Cholinergic 
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interneurons primarily synapse onto the dendritic spines of medium spiny neurons (Abudukeyoumu 

et al., 2019), where muscarinic M1 receptors are expressed by direct (D1) and indirect (D2) 

pathway medium spiny neurons and have an excitatory effect on medium spiny neurons (Assous, 

2021). M4 muscarinic receptors are also expressed by medium spiny neurons, but at a much higher 

level in direct pathway than indirect pathway neurons;  M4 muscarinic receptors decrease the 

activity of medium spiny neurons (Assous, 2021; Kreitzer, 2009). Cholinergic interneurons express 

M2 and M4 muscarinic receptors, which are thought to function as autoreceptors inhibiting their 

own activation (Kljakic et al., 2017; Kreitzer, 2009). Acetylcholine can also have an indirect effect 

on medium spiny neurons via the expression of acetylcholine receptors on glutamatergic inputs 

from the cortex and thalamus, dopaminergic inputs from the midbrain and substantia nigra, and 

local GABAergic interneurons in the striatum (Kljakic et al., 2017). For instance, cholinergic 

interneurons can indirectly inhibit medium spiny neuron activity via nicotinic acetylcholine 

receptor activation of GABAergic interneurons (English et al., 2012) and reducing input from 

glutamatergic projection neurons via activation of M2 muscarinic receptors (Ding et al., 2010).  

Cholinergic interneurons can also facilitate the activation of medium spiny neurons by activating 

M1 receptors on projection neurons (Ding et al., 2010), and nicotinic receptors on dopaminergic 

neurons (Threlfell et al., 2012). In addition to releasing acetylcholine, cholinergic interneurons also 

express the vesicular glutamate transporter 3 which enables cholinergic interneurons to co-release 

glutamate and produces a glutamatergic-dependent response in striatal medium spiny neurons 

(Higley et al., 2011).2 

 
2 This section provides an overview of the important interactions of cholinergic interneurons with glutamatergic 

and dopaminergic projection neurons, GABAergic interneurons, and medium spiny neurons. A comprehensive 

review of these interactions is beyond the scope of this section but has been produced by Abudukeyoumu et al. 

(2019). 
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Figure 4 Cholinergic, glutamatergic, dopaminergic and GABAergic receptor 

expression by the major cell types found in the striatum. Figure reproduced from 

Kljakic et al. (2017)  

Striatal acetylcholine and reversal learning in rodents 

Numerous experiments studying the role of the striatum in flexible behaviour have used the reversal 

learning task as a behavioural assay due to its high translational value across rodents, non-human 

primates and humans. In particular, chemical inactivation and lesion studies in rodents have shown 

the importance of the striatal cholinergic system in the dorsomedial striatum for cognitive 

flexibility. For instance, inactivation of the rodent dorsomedial striatum using anaesthetic has been 

found to impair reversal learning, and increase regressive errors relative to control animals 

(Ragozzino et al., 2002; Ragozzino & Choi, 2004). To localise the effects of chemical inactivation 

to cholinergic interneurons Ragozzino et al. (2009) used the M2 receptor agonist oxotremorine 

sesquifumurate and the M2 antagonist AF-DX-116 to investigate their effects reversal learning. 

Chemical inactivation of cholinergic interneurons via M2 auto-receptor agonism did not impair 

initial learning but did significantly impair reversal learning performance relative to control 

animals. Furthermore, reductions in reversal learning performance were accompanied with 

significant decreases in acetylcholine efflux from cholinergic interneurons. Co-administration of 

the M2 receptor agonist and antagonist recovered cholinergic interneuron activity and ameliorated 

the effects of inactivation on reversal learning performance and acetylcholine efflux, such that there 
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were no differences with controls. These results replicate the findings of chemical inactivation of 

the whole dorsomedial striatum and support the functional involvement of cholinergic interneurons 

for reversal learning.  

The effects of striatal acetylcholine on reversal learning may be specific to the modulation of 

medium spiny neurons. In the striatum nicotinic acetylcholine receptors are mainly expressed by 

glutamatergic inputs from the cortex and thalamus, dopaminergic inputs, and GABAergic 

interneurons, while muscarinic receptors are mainly expressed by medium spiny neurons (Kljakic 

et al., 2017). Tzavos et al. (2004), for example, demonstrated that M1 muscarinic, but not nicotinic 

receptor inactivation in the dorsomedial striatum impaired reversal but not initial learning, and 

increased the number of regressive errors that animals made. Furthermore, the role of muscarinic 

receptors in reversal learning is thought to be specific to M1, rather than M4 receptors, with 

McCool et al. (2008) showing that the antagonism of M1 but not M4 muscarinic receptors produces 

the same impairments in reversal learning as other previous inactivation studies. Yet, despite the 

apparent causative role of acetylcholine for flexible behaviour, these effects may themselves be 

dependent on glutamate, which is co-released with acetylcholine by cholinergic interneurons 

(Higley et al., 2011). Palencia & Ragozzino, (2004) used the glutamatergic NMDA receptor 

antagonist AP-5 to impair glutamatergic activity in the dorsomedial striatum. Similar to the 

inactivation of cholinergic interneurons and M1 receptors, the blockade of NMDA receptors led to 

impairments in reversal learning, but not initial learning, and increased the number of regressive 

errors that rodents made. This blockade of NMDA receptors was shown to reduce the release of 

acetylcholine from cholinergic interneurons both at rest and during reversal learning.  

Although cholinergic interneurons appear to have a modulatory effect that precipitates flexible 

output from the striatum, the effects of cholinergic interneurons are themselves dependent on 

afferent connectivity. The primary source of thalamostriatal connections are the intralaminar nuclei 

of the thalamus, which provide glutamatergic input to the striatum from the centromedian-

parafascicular nuclei in primates, and the homologous parafascicular nucleus3 in rodents (Girasole 

& Nelson, 2015). Anterograde tracing of neurons from the centromedian-parafascicular of rodents 

and primates have shown these neurons have projections that preferentially terminate in the 

striatum (Deschênes et al., 1996; Sadikot, Parent, & François, 1992), and these terminations are in 

regions of the striatum coincide with high co-expression of choline acetyltransferase (Lapper & 

Bolam, 1992; Sadikot, Parent, Smith, et al., 1992). These thalamostriatal connections also appear 

to mediate the expression of flexible behaviour. For instance, Brown et al. (2010) showed that 

 
3  Herein, description and discussion of rodent parafascicular nucleus with the primate centromedian-

parafascicular shall refer to these analogous regions as the centromedian-parafascicular nuclei for clarity.  
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inactivation of the rodent parafascicular nucleus using GABA agonists leads to impairments in 

reversal, but not initial learning, and increases regressive errors. These behavioural changes are 

paralleled by changes in acetylcholine efflux in the dorsomedial striatum, with GABAergic 

inactivation of the parafascicular nucleus preventing an increase in acetylcholine efflux following 

the reversal of contingencies. These findings are consistent cholinergic interneuron inactivation 

studies (Ragozzino et al., 2009) and suggest that the output of cholinergic inputs are at least 

partially mediated by connectivity with the thalamus.  

In a series of experiments Bradfield et al. (2013) also investigated the role of thalamostriatal 

connections between the centromedian-parafascicular nucleus and the striatal cholinergic system 

in goal directed, flexible behaviour. First, rats received either excitotoxic lesions of the 

parafascicular nucleus of the thalamus, or sham lesions. These rats then underwent training to learn 

to associate pressing one of two leavers with the receipt of either food pellets or sucrose as an 

outcome. A devaluation procedure was then used to reduce the subjective value of one outcome 

relative to the other by providing the rats with unrestricted access to either the food pellets or the 

sucrose, allowing them to become sated in the absence of the test levers. Following outcome 

devaluation, the rats were presented with the same two leavers they had learned were associated 

with either food or sucrose, but now their lever presses did not result in the delivery of either of the 

outcomes. During this period, both the rats with excitotoxic and sham lesions of the parafascicular 

nucleus responded preferentially to the leaver associated with the outcome that had not been 

devalued, showing the parafascicular nucleus was not necessary for initial discrimination learning. 

After this test of initial learning, one of the outcome contingencies was degraded by making it 

equally likely that one outcome would be delivered whether the lever was pressed or not pressed. 

During outcome degradation, rats with sham lesions showed a decrease in lever presses for the 

lever associated with the degraded outcome, however, rats with lesions of the parafascicular did 

not show a decrease in responsivity to the degraded lever. Following degradation, the associations 

between levers and food pellets or sucrose were reversed, such that the lever that was initially 

associated with food pellets was now associated with sucrose, and vice versa. Rats were then given 

time to learn these new contingencies, before another devaluation test was used to see whether the 

rats had learned the new action-outcome associations. Additionally, a reinstatement test was used 

to test outcome-related changes in behaviour. During reinstatement, at first neither lever leads to 

the delivery of outcome. Then, one lever press leads to the delivery of the associated outcome. 

Lever presses for the associated or not-associated lever before and after outcome delivery are then 

measured. Rats who received excitotoxic lesions of the parafascicular nucleus showed non-specific 

responsivity to both levers following outcome devaluation and showed equal responsivity to both 
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levers following outcome delivery during the reinstatement test. Sham lesioned rats preferentially 

responded to the non-devalued leaver during outcome devaluation, and to the lever specifically 

associated with the delivered outcome during outcome devaluation. These results show that lesions 

of the parafascicular nucleus of the thalamus impairs the learning of outcome contingencies during 

reversal learning, but that the initial learning of outcome contingencies are spared.  

To confirm the specificity of these results to connectivity between the parafascicular nucleus and 

cholinergic interneurons in the posterior dorsomedial striatum, the previously described 

experiments were repeated by Bradfield et al. (2013). The first repetition set included rats who 

received lesions in the parafascicular nucleus of the thalamus and the posterior dorsomedial 

striatum. These lesions were either sham lesions, ipsilateral lesions which one set of thalamostriatal 

connections, or contralateral which spared no thalamostriatal connections. As parafascicular 

neurons project to the ipsilateral hemisphere of the brain, this lesion approach enabled the authors 

to study the effects of partial or complete abolition of thalamostriatal connections on reversal 

learning. In the second repetition, rats received unilateral lesions of the of the parafascicular 

nucleus, and had either the M2 receptor agonist oxotremorine sesquifumurate, or a control infusion 

in the dorsomedial striatum contralateral to the parafascicular lesion. Like the previous contralateral 

lesion approach, this strategy enabled the study of partial or complete disconnection of connections, 

but with specificity for the striatal cholinergic system. Rats who received contralateral lesions of 

the parafascicular nucleus and the posterior dorsomedial striatum, and those who received 

unilateral parafascicular lesions with contralateral oxotremorine sesquifumurate infusion showed 

deficits in learning that were in line with rats who received the previously described bilateral 

parafascicular lesions. More specifically, these animals did not show impairments in initial 

learning, but did show impairments during reversal learning, with non-discriminant selection of the 

devalued and non-devalued leavers during outcome devaluation, and of the associated and non-

associated lever during contingency reinstatement following the reversal of outcome contingencies. 

Conversely, ipsilateral and sham lesions, and unilateral parafascicular lesions with contralateral 

control infusions showed no impairments during initial or reversal learning, as was seen in rats with 

bilateral sham lesions of the parafascicular nucleus.  These results again show the importance of 

thalamostriatal connections for reversal learning, and specifically implicate the striatal cholinergic 

system in flexible behaviour. Moreover, they suggest the striatal cholinergic system may have a 

modulatory effect on the striatum whereby cholinergic neurons reduce interference between 

existing and new learning, thereby enabling flexible behaviour, and that this modulation is driven 

by input from the parafascicular nucleus of the thalamus.  
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Striatal acetylcholine and reversal learning in humans 

It is likely the dynamic role played by the dorsal striatum during reversal learning in humans is at 

least partially modulated by the activity of the striatal cholinergic system as in animal studies 

(Bradfield et al., 2013; Brown et al., 2010; Ragozzino et al., 2009), with several studies from Bell 

and colleagues suggesting this is the case. Magnetic resonance spectroscopy is a non-invasive 

neuroimaging technique for studying neurochemistry in-vivo4, and has been used by Bell, Lindner, 

et al. (2018) to study the functional relevance of the dorsal striatal cholinergic system for reversal 

learning. In this study participants completed a four choice multi-alternative probabilistic reversal 

learning task while quantitative measures of choline containing metabolites were acquired in the 

dorsal striatum. The multi-alternative reversal learning task closely mimics the setup of animal 

studies of reversal learning. It has a protracted period of initial and reversal learning, with an 

uninstructed reversal of outcome contingencies. Therefore, participants learn contingencies for the 

initial and reversal contexts through trial and error, with no prior knowledge of the task outline. 

This is distinct from serial reversal learning tasks, where internal representations of task context 

are readily acquired. During serial reversal learning, once an “if not A, then B” heuristic for correct 

and incorrect choices exists, no additional information is relevant for representing task structure. 

Therefore, task representation in serial reversal learning may be considered as “saturated”. 

However, task representations for the multi-alternative task can be considered as “unsaturated”, 

since participants are not instructed on the structure of the task and only compile mature task 

representations following both the protracted initial and reversal learning periods. 

In the multi-alternative task used by Bell, Lindner, et al. (2018), two choices were initially assigned 

as the correct choices, and the other two were initially incorrect. Reward probabilities for correct 

choices were 75% and 60%, and 40% and 25% for the incorrect choices. Participants had to reach 

a learning criterion which was the selection of the correct choice on 80% of 20 consecutive trials. 

After reaching criterion, a stability phase equal to 60% of trials to criterion preceded the unsigned 

reversal of contingencies. Participants then had to re-reach criterion during the reversal learning 

phase, which was followed by a second stability phase.  

Functional changes in choline are thought to be a viable indirect measure of acetylcholine activity 

(Lindner et al., 2017), therefore Bell, Lindner, et al. (2018) aimed to use this approach to study the 

functional relevance of the human striatal cholinergic system for adaptive behaviour. No change in 

dorsal striatal choline concentrations were seen during initial learning yet following the reversal of 

 
4 A methodological overview of magnetic resonance spectroscopy is presented in “Proton magnetic resonance 

spectroscopy” 
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reward contingencies a significant decrease in choline was seen, relative to initial learning. This 

decrease in choline is in line with previous descriptions of choline kinetics during the stimulation 

of cholinergic interneurons (Löffelholz, 1998), and suggests a significant increase in the activity of 

dorsal striatal cholinergic interneurons following the reversal of reward contingencies. 

Additionally, no functional changes in the concentrations of other choline containing compounds 

(glycerophosphocholine and phosphocholine) were observed, suggesting this result is specific to 

choline, which is the precursor and rate limiting factor in acetylcholine synthesis (Taylor & Brown, 

1999).  Lower levels of striatal choline at rest were also seen in participants who learned and 

reached criterion during initial and reversal learning than in participants who only reached criterion 

during initial learning.  

The state of the striatal cholinergic system and its association with reversal learning performance 

was further investigated by Bell et al. (2019). In this study, participants completed the same multi-

alternative reversal learning task as in Bell, Lindner, et al. (2018)5, and metabolite spectra were 

then acquired in the dorsal and ventral striatum, and also in the cerebellum while at rest. Incorrect 

choices during reversal learning were classified as perseverative errors, while incorrect choices 

during the stability phase following reversal were classified as regressive errors. Choices during 

initial learning, reversal learning, and both stability phases were separately fitted to a temporal 

difference reinforcement learning model with separate learning rates for positive and negative 

prediction errors. Spectroscopy data were fitted, quantifying separate concentrations of choline, 

and glycerophosphocholine plus phosphocholine.  

Choline concentrations in the dorsal striatum were associated with performance during reversal but 

not initial learning. Dorsal striatal choline concentrations were negatively correlated with the 

learning rate for negative prediction errors during reversal learning and positively correlated with 

the number of perseverative errors. Moreover, dorsal striatal choline concentrations significantly 

increased the explained variance in perseveration compared to negative prediction errors during 

reversal and trait impulsivity. Cerebellum, and ventral striatal choline concentrations were not 

associated with reversal learning performance, demonstrating the specificity of these results to the 

dorsal striatal choline. These findings suggest that the efficiency of reversal learning performance 

is associated with levels of dorsal striatal choline at rest, enabling participants to adapt to a change 

in outcome contingencies more quickly than those with higher levels of dorsal striatal choline. Bell 

et al. (2019) suggest choline concentrations at rest may influence reversal learning efficiency by 

increasing the contrast in acetylcholine concentration between rest and reversal learning, or may 

 
5 Except the learning criterion was set as the correct choice 80% of the time over 10 consecutive trials. 
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reflect a more efficient re-uptake of choline and conversion into acetylcholine by cholinergic 

interneurons.  

Centromedian-parafascicular nuclei of the thalamus and flexibility in 

humans 

Animal studies suggest that striatal cholinergic system involvement in flexibility is at least partially 

driven by input from the centromedian-parafascicular nuclei (Bradfield et al., 2013; Brown et al., 

2010). Furthermore, there is also research pointing to the importance of this system for goal-direct 

behaviour in humans. Schepers et al. (2017) used deep brain stimulation electrodes to record 

activity in the centromedian-parafascicular nuclei of six individuals being treated for chronic pain 

while they completed a three-class auditory oddball task, and a multi-speaker paradigm. In the 

auditory oddball task participants were presented with three different tones. One task was 

frequently presented, while two were infrequently presented. One of the infrequent tones was a 

target tone that participants needed to respond, while the other was a deviant tone requiring no 

response. The frequently presented tone also did not require a response. In the multi-speaker 

paradigm participants were concurrently presented with two streams of speech. Each stream 

contained a target word (name) that indicated which voice they had to pay attention to, and two 

task words (a colour and number) which they had to listen out for. Each trial began with participants 

being told the target word and ended with a target image indicating they needed to report the task 

words from the target stream. Centromedian-parafascicular nuclei neurons showed a transient 

increase in activity for target tones compared to frequent and deviant tones in the auditory oddball 

task, and the target word compared to task words in the multi-speaker paradigm. Additionally, 

increased activity for the target tone in the auditory oddball task was seen regardless of whether a 

motor response was made. In the multi-speaker paradigm, a transient response in centromedian-

parafascicular activity to the target image was also seen in two of the six participants. These results 

show that task-relevant sensory stimuli requiring either a covert or overt change in behaviour for 

goal-directed action cause a transient increase in centromedian-parafascicular nuclei activity, and 

suggest this region is as important for promoting flexibility in humans as in non-human animals.  

Thalamic stroke is reported to account for 2.8% and 3.1% of haemorrhagic and ischemic stroke 

cases respectively (del Mar Sáez de Ocariz et al., 1996), and are useful cases for assessing the 

importance of the thalamus in cognitive processes. In a study recent study by Liebermann et al. 

(2013), the cognitive functioning of nineteen patients with thalamic stroke lesions was assessed. A 

subset of eight patients showed particularly impaired performance on the Wisconsin Card Sorting 

Test, commonly used as an assay for cognitive flexibility. All eight patients had scores at least two 



 

Page | 29  

 

standard deviations away from the group mean on one measure of performance, and five were 

impaired on three of the four performance measures. Comparing the localisation of thalamic lesions 

in the impaired versus non-impaired groups showed that impairment in the Wisconsin Card Sorting 

Test was associated with lesions in the ventro-medial thalamus mainly encompassing the 

centromedian-parafascicular nuclei, while focal lesions of the centromedian-parafascicular were 

not found in patients with unimpaired task performance.  

Preliminary evidence also suggests connectivity between the centromedian-parafascicular nuclei 

and the dorsal striatum is involved in reversal learning in humans. Using functional magnetic 

resonance imaging Bell, Langdon, et al. (2019) concurrently acquired whole-brain imaging data 

while participants completed the same multi-alternative reversal learning task as in Bell et al. 

(2018) and Bell, Lindner, et al. (2019). Functional connectivity between the centromedian-

parafascicular nuclei orbitofrontal cortex with the striatum was assess using psychophysiological 

interaction analysis, and a reinforcement learning model was fit to behaviour to infer latent 

variables describing behaviour. Functional connectivity between the centromedian-parafascicular 

nuclei and the dorsal striatum was significantly greater during reversal learning than initial learning, 

and the strength of functional connectivity was inversely correlated with the number of regressive 

errors after the reversal of reward contingencies. Moreover, the relationship between 

thalamostriatal connectivity and regressive errors was found to be significantly mediated by the 

inverse temperature parameter from the reinforcement learning model. This parameter weighs how 

much choice behaviour is driven by expected value, and suggests thalamostriatal connectivity 

reduces regressive errors by promoting new learning during the reversal period and forming stable 

task representations. This is in line with findings from animal literature suggesting this 

thalamostriatal connectivity is important for combining new and existing learning (Bradfield et al., 

2013), and that lesions result in increased regressive errors in reversal learning following the loss 

of centromedian-parafascicular input to the dorsal striatum (Brown et al., 2010). Similarly, Bell, 

Langdon, et al. (2019) found functional connectivity between the lateral orbitofrontal cortex and 

the dorsal striatum was significantly increased during reversal learning compared to initial learning. 

Corticostriatal functional connectivity was found to negatively correlate with the number of the 

number of trials taken to research criterion during. This relationship was significantly mediated by 

the learning rate for positive prediction errors during reversal learning, and suggests corticostriatal 

connectivity may be important for instigating a change in behaviour, reducing the number of trials 

taken to reach criterion during the reversal phase by promoting learning from unexpected positive 

outcomes which reduces response perseveration by continuing with previously correct choices.  
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Summary 

As the input node to the basal ganglia the striatum receives many afferent projections including 

glutamatergic inputs from the cerebral cortex and thalamus, and dopaminergic inputs from the 

ventral tegmental area and substantia nigra. The striatum contains two sets of interneurons, namely 

GABAergic and cholinergic interneurons which modulate local activity within the striatum. The 

modulation of local striatal systems by dorsal striatal cholinergic interneurons is important for 

flexibility, with chemical inactivation studies in rodents demonstrating the loss of cholinergic 

activity impairs reversal learning. Cholinergic involvement in reversal learning is supported by 

input from the centromedian-parafascicular nuclei of the thalamus to cholinergic interneurons. The 

functional role of the striatal cholinergic system and centromedian-parafascicular nuclei in 

cognitive flexibility is also supported by evidence from human neuroscience using a combination 

of stroke studies, functional magnetic resonance imaging, and magnetic resonance spectroscopy. It 

is thought the thalamostriatal system is important for promoting new learning and forming stable 

task representations during reversal learning and reducing regressive errors following a change in 

behaviour. Corticostriatal connectivity between the lateral orbitofrontal cortex and the dorsal 

striatum is also thought to be important for reversal learning, but this system is thought to be 

important in promoting a change in behaviour following the reversal of reward contingencies and 

reducing response perseveration.  



 

Page | 31  

 

Neuroimaging techniques for studying flexibility 

Proton magnetic resonance spectroscopy 

Magnetic resonance spectroscopy is an analytical tool that uses the principles of magnetic 

resonance to non-invasively study biochemistry in vivo. It can be used to measure metabolites and 

macromolecules in biological tissue, including in the brain. Proton magnetic resonance 

spectroscopy (1H-MRS) is the most used application of magnetic resonance spectroscopy in human 

neuroimaging research. In 1H-MRS metabolites and macromolecules are characterised by the 

chemical shifts and spin-spin coupling of protons. 

The most common isotope of hydrogen is formed from a single proton, electron, and no neutrons. 

Its nucleus is equivalent to a positively charged hydrogen ion, also known as a proton. This proton 

has a natural spin, and the spin of this proton (also known as procession) generates a magnetic 

moment; this means a proton can behave like a magnet. When placed in an induced magnetic field 

this proton can either processes parallel (a lower energy state) or anti-parallel (a higher energy 

state) to the magnetic field. These states are known as α- and β-spin states, respectively. Most 

protons will process in the α-spin state as it is a lower energy state. The frequency of procession is 

known as the Larmour frequency, and is proportional to the strength of the magnetic field; given 

this, chemical shift is used to make measures comparable across field strengths and is expressed in 

parts per million. When a proton is exposed to a radiofrequency pulse that matches its Larmour 

frequency, it can flip from the lower energy α-spin state to the higher energy β-spin state. This 

Larmour frequency is equal to the energy difference between the α-spin and β-spin state. Excitation 

using radiofrequency pulses causes net magnetisation to shift away from the induced magnetic field 

due to more protons entering the β-spin state. As protons return to the lower energy α-spin state, 

net magnetisation realigns with the induced magnetic field and energy is released; this is called 

relaxation. 

Organic compounds are chemical molecules containing covalently bonded hydrogen and carbon 

atoms. When a hydrocarbon (an organic compound formed only of carbon and hydrogen atoms) is 

placed in an induced magnetic field, the valence electrons of carbon (electrons in the outer shell of 

an atom) also generate an electric field, which slightly shields protons from the induced magnetic 

field. This effect, known as local diamagnetic shielding, reduces effect of the magnetic field on the 

proton, and the more shielded a proton is the less energy is required to shift the net magnetisation. 

The actual strength of the magnetic field for a proton after accounting for diamagnetic shielding is 

called the effective field. However, not all organic molecules are hydrocarbons, and the presence 
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of other elements can influence the shielding of protons in a compound. Elements that are more 

electronegative than carbon have a deshielding effect on protons as they attract the valence 

electrons of carbon, decreasing its electron density. In a static magnetic field, a proton with more 

deshielding has a higher chemical shift value because a higher radiofrequency pulse is required to 

flip it proton into a higher energy state.  

As the structure of a given organic compound is immutable, known information about the shielding 

of protons can be used to determine the readout of a given molecule on a metabolite spectrum. The 

number of peaks for a given compound is dependent upon two factors. Firstly, the number of peaks 

is equal to the number of unique proton shielding configurations, with the amount of shielding 

determining where on the spectrum this peak will appear. Secondly each peak could be split into 

sub-peaks depending on spin-spin coupling. Neighbouring protons that have non-equivalent 

shielding will cause a peak to be separated into N+1 sub-peaks. The example in Figure 5 below 

explains this relationship. Ha and Hb are not equivalently shielded, since the carbon that Ha has 

covalent bonds with is also bonded to one chlorine atom, which is more electronegative than 

carbon. The carbon that Hb is bonded to has two bonded to two choline atoms, therefore, Hb is more 

deshielded than Ha and appears at a higher chemical shift value. The two Ha protons have spin-spin 

coupling with one Hb proton, therefore the peak for the two Ha protons is split into a doublet. 

Conversely, the one Hb proton has spin-spin coupling with two Ha protons, therefore, its peak is a 

triplet (Libretexts, 2014a).  

 

Figure 5 An example of protons producing two different peaks on the metabolite 

spectra. These peaks appear at different ppm due to differences in shielding, and 

have a different number of sub-peaks due to differences in spin-spin coupling. 

(Libretexts, 2014b)  
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Unlike other neuroimaging approaches that typically acquire data from the whole brain, magnetic 

resonance spectroscopy is often used for studying a single area of the brain (although magnetic 

resonance spectroscopic imaging can be used for whole brain acquisition) (Juchem & Rothman, 

2014). Point RESolved Spetroscopy (PRESS) is a popular sequence used for acquiring single-voxel 

spectroscopy data. Data acquisition using PRESS uses three slice selective pulses to acquire data 

from a given voxel. Firstly, acquisition is localised to a given slice using a single 90 degree 

radiofrequency pulse in one plane, followed by two slice selective 180 degree refocusing pulses in 

the other two planes. Only spins that are excited by all three pulses should echo during acquisition; 

spoiler gradients can be used to suppress unwanted signal (Lei et al., 2014). Water is the most 

abundant molecules found in many types of biological tissue, including the brain. Water 

concentrations in the brain are approximately 103-104 times greater than other metabolites in the 

brain that are detectable using 1H-MRS, and water suppression methods are useful for aiding the 

detection of these more sparsely concentrated compounds (Juchem & Rothman, 2014). CHEmical 

Shift-Selective water suppression is commonly used to suppress water signals by using a 

radiofrequency pulse to excite then dephase water to minimise its effect on net magnetisation (Lei 

et al., 2014). Nevertheless, acquiring water-unsuppressed spectra alongside water suppressed 

spectra has the additional benefit that the water suppressed spectrum can be used to calculate 

absolute metabolite concentrations from the metabolite spectrum, rather than calculating the ratios 

of one metabolite against another (Barker & Lin, 2006).  

The synthesis of acetylcholine from acetylcholine coenzyme A and choline is catalysed by the 

enzyme choline acetyltransferase. To produce acetylcholine the body is required to source choline, 

and this is done in two ways. Firstly, choline can be obtained via dietary intake, with both choline 

and its esterified forms (phosphocholine, glycerophosphocholine, phosphatidylcholine, and 

sphingomyelin) found in foods with cell membranes; secondly, choline is synthesised de novo by 

phosphatidylethanolamine N-methyltransferase in the liver, which converts 

phosphatidylethanolamine to phosphatidylcholine (Zeisel, 2006). After synthesis, acetylcholine is 

packaged into vesicles near synaptic boutons. The propagation of an action potentials causes 

cholinergic neurons to release acetylcholine into the synaptic cleft, where it can bind to muscarinic 

and nicotinic acetylcholine receptors and be broken down into choline by acetylcholinesterase. 

Cholinergic neurons contain high-affinity proteins for the reuptake of choline, and the reuptake of 

choline is thought to be the rate-limiting factor in acetylcholine synthesis (Taylor & Brown, 1999). 

Most intracellular choline is phosphorylated into phosphocholine by choline kinase (Li & Vance, 

2008), and phosphocholine is then either converted back to choline, or is converted into cytidine 

diphosphocholine. Cytidine diphosphocholine is then converted into the phospholipid 
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phosphatidylcholine by diacylglycerol cholinephosphotransferase, and is a key component of cell 

membranes. Phosphatidylcholine can be broken down into lyso-phosphatidylcholine and then into 

glycerophosphocholine by phospholipase and lysophospholipase, respectively. Finally, 

glycerophosphocholine is converted into phosphocholine by glycerophosphocholine lipase. 

The use of magnetic resonance spectroscopy to quantify choline containing compounds show they 

have a peak at around 3.2ppm on the metabolite spectrum. This peak is thought to be due to choline 

containing compounds freely available in the cytoplasm, as membrane bound choline metabolites 

are thought to not visible on the metabolite spectrum (Lin & Gant, 2014). Indeed, concentrations 

of choline, glycerophosphocholine, and phosphocholine are associated with the concentrations 

measured using magnetic resonance spectroscopy, while phosphatidylcholine concentrations are 

not (Miller et al., 1996). The choline containing compounds, namely choline, phosphocholine, and 

glycerophosphocholine resonate at 3.19ppm, 3.22ppm, and 3.23ppm respectively; acetylcholine is 

also identifiable using magnetic resonance spectroscopy, however its concentrations are much 

lower than the other choline containing metabolites, and therefore its signal is masked (Katz-Brull 

et al., 2005). Choline containing compounds are often quantified as a single peak on the metabolite 

spectra due to their proximity to each other, however doing so masks the relationship between 

choline and acetylcholine. For instance, synthesis of acetylcholine is limited by choline 

concentrations (Taylor & Brown, 1999) and concentrations of choline are associated with 

cholinergic interneuron activity (Löffelholz, 1998). 

In a series of experiments Lindner et al., (2017) provided evidence that suggested that choline could 

be measured and quantified separately from the other choline containing compounds, and that 

functional changes in choline concentration were in line with previous findings describing the role 

of acetylcholine in visuospatial attention. By simulating a series of metabolite spectra at three tesla 

with varying concentrations of choline, and a combined peak for phosphocholine and 

glycerophosphocholine, Lindner et al., (2017) demonstrated that spectral quantitation could 

recapture the initial concentrations for each peak independently from the concentration of the other 

peak. Additionally, Lindner et al., (2017) showed that changes in choline concentration in the 

parieto-occipital cortex were related to changes in visuospatial attention, and that these functional 

changes were in line with the expected role of acetylcholine. This same approach quantifying a 

separate peak for choline to phosphocholine and glycerophosphocholine was also used by (Bell et 

al., 2018; Bell, Lindner, et al., 2019) to study the role of the striatal cholinergic system in reversal 

learning6. This quantitation approach thus provides a method for using magnetic resonance 

 
6 See “Striatal acetylcholine and reversal learning in humans” for further details. 
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spectroscopy to non-invasively study acetylcholine indirectly in vivo by using choline 

concentration as a proxy for acetylcholine action. 

Automated segmentation 

The thalamus is a grey matter structure located in the diencephalon and has a vast number of 

afferent and efferent projections across the cerebral cortex and subcortical regions of the brain. 

Traditionally, the thalamus is thought of as an information relay for sensory-motor signals – 

however, the thalamus also has an integral role in cognitive processes, and this includes cognitive 

flexibility (Wolff & Vann, 2019). Moreover, there is an increasing appreciation for the role of the 

thalamus in cognition within the human neuroimaging literature (Geier et al., 2020; Huang et al., 

2019; Schepers et al., 2017). However, a major hurdle for studying the role of individual thalamic 

nuclei in cognitive processes using magnetic resonance imaging is the delineation of nuclei 

boundaries. Pulse sequences that are commonly used in human neuroimaging studies to produce 

high-resolution structural images of the brain have low image contrast in the thalamus, meaning 

the thalamus appears as a largely homogeneous structure. Therefore, the delineation of functional 

and anatomical subdivisions of the thalamus can be problematic, given that structural boundaries 

are not visually present, and because a high level of anatomical knowledge would be required to 

produce manual segmentations by inferring the location of individual nuclei.  

An issue related to the parcellation of individual thalamic nuclei is the nomenclature used for 

nuclei. Variability in neuroanatomy across the lifespan and individuals, and a lack of consensus on 

organisation between experts means inconsistencies are seen between thalamic atlases (Buren & 

Borke, 1972; Ding et al., 2016; Feremutsch & Simma, 1971; Hassler, 1977; Hassler et al., 1979; 

Ilinsky et al., 2018; Mai & Majtanik, 2017; Morel, 2007; Percheron, 2004), and recent efforts have 

aimed to harmonise these perspectives (Donkelaar et al., 2017; Mai & Majtanik, 2019). One 

commonly used definition for the thalamus is the Morel atlas (Morel, 2007; Morel et al., 1997) and 

is defined based on the cyto- and myeloarchitecture, and functional significance of the thalamus.  

The Morel atlas is also considered a “gold-standard” definition of the thalamus (Hale et al., 2015), 

and has also been digitised in MNI space (Krauth et al., 2010), meaning it is also useful for 

neuroimaging research. However, given this atlas is in MNI space, it cannot be used to infer 

individual variability in thalamic architecture based on underlying neuroanatomy.  

To address the previously described limitations in thalamic contrast, a number of different 

approaches have been taken. For example, increasing the contrast within the thalamus on 

anatomical images can be achieved by using specially developed sequences such as cortex 
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attenuated inversion recovery and white-matter nulled magnetization-prepared rapid gradient-echo 

(WMn MPRAGE) sequence, or by combining 3D gradient echo phase data with optimised 

MPRAGE images (Bender et al., 2017; Magnotta et al., 2000; Tourdias et al., 2014). These images 

can then be used to more accurately define nuclei because there is an increased number of visible 

anatomical boundaries. However, unless automated supplementary segmentation algorithms are 

developed (as is the case for WMn MPRAGE, see Su et al. (2019)), specialist expertise in 

neuroanatomy and neuroradiology are also required to accurately identify thalamic nuclei. 

Therefore, automated parcellation routines using diffusion weighted, resting state, and anatomical 

images have been developed for segmenting thalamic nuclei. 

Early attempts to provide automated segmentations of the thalamus used diffusion weighted 

imaging. For instance, Behrens et al. (2003) demonstrated that probabilistic tractography between 

the thalamus and seven cortical grey matter regions, defined based on their connectivity with the 

thalamus in non-human primates, could segment the thalamus into seven regions that corresponded 

with boundaries in the Morel atlas (Morel, 2007; Morel et al., 1997). Diffusion imaging has also 

been used by Wiegell et al. (2003), who used the local diffusion properties of the thalamus to 

produce parcellations for fourteen distinct nuclei. These local diffusion properties were most likely 

resultant from myelinated connections between the thalamus and the cortex, rather than 

unmyelinated connectivity with the striatum and brainstem or local connectivity in the thalamus. 

More recently, combining local diffusion properties and machine learning for segmenting the 

thalamus has been shown to produce segmentations of the thalamus that more faithfully correspond 

with histological atlases and are more reproducible (Battistella et al., 2017). Nevertheless, 

diffusion-based methods are limited in that the connectivity patterns are likely reflective of only 

connectivity between the thalamus and cortex as other thalamic connections are unmyelinated 

(Wiegell et al., 2003). Further limitations of using diffusion imaging for thalamic segmentation 

include spatial resolution and trade-offs between signal-noise and b-value in diffusion imaging 

(Sotiropoulos et al., 2013). 

Resting state functional magnetic resonance imaging has also been used for producing 

segmentations of the thalamus. Like early reports using diffusion-weighted imaging, initial 

investigations using resting state data quantified functional connectivity between regions of the 

cortex and the thalamus. For instance, Zhang et al. (2008) used bilateral prefrontal, parietal and 

occipital, temporal, motor and premotor, and somatosensory regions as cortical seed regions for 

resting stated-based segmentation with voxels being classified based on the cortical seed they had 

the strongest positive correlation with. Independent component analysis has also been used to 

produce segmentations of the thalamus. The main tenet of this approach is that identifying distinct 
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patterns of spontaneous activity should reveal clusters of voxels that can be structurally 

decomposed from one-another based on differences in functionally relevant signal. This 

independent component analysis was used by Kim et al. (2013) to identify thirty-one components 

in the basal ganglia and thalamus. Instantaneous connectivity parcellation, developed by van Oort 

et al. (2018) is an extension of the independent component approach that uses temporal unfolding 

to improve the signal to noise ratio of transient events. This improves the identification of 

components, relative to standard independent component analysis. Using their extended 

independent component analysis, van Oort et al. (2018) segmented thirty thalamic nuclei. Yet, 

thalamus segmentation using resting state data is restricted by some of the same limitations as using 

diffusion data. For instance, spatial resolution using high field, relative to ultra-high field magnetic 

resonance imaging is somewhat restrictive for identifying smaller thalamic nuclei. An additional 

issue using resting state data for segmentation is that inferences about structure are made based 

upon functional relationships. Moreover, resting state data uses blood-oxygen level dependent 

signal as an imaging contrast, which is only an indirect measure of neuronal activity. Inter-

individual variability in haemodynamic response function shape across individuals and regions of 

the thalamus may result in spurious correlations. Furthermore, because the relationships used to 

produce segmentations using resting state analyses and independent component analysis are purely 

statistical in nature, significant relationships may be identified that are not reflective of the 

underlying anatomy; indeed Zhang et al. (2008) found that using only unilateral seed regions 

produced segmentations in the contralateral thalamus despite connectivity between the cortex and 

thalamus being mostly ipsilateral.  

Thalamic parcellation using structural imaging overcomes several issues using diffusion weighted 

and resting state data for segmentation, including imaging resolution and limitations in inferring 

the underlying biological structure. As seen in diffusion weighted approaches, machine learning 

has also been used for segmenting the thalamus (Amini et al., 2004) and its nuclei (Deoni et al., 

2007; Yovel & Assaf, 2007) from structural images. For instance Yovel & Assaf (2007) propose a 

multi-contrast approach using T1 and T2-weighted, magnetisation transfer, T2*, and proton density 

imaging to segment the thalamus into seven nuclei, while (Deoni et al., 2007) describe the 

segmentation of the thalamus into fifteen nuclei using differences between T1 and T2-weighted 

images. WMn MPRAGE imaging improves the intra-thalamic contrast during image acquisition 

and juxtaposes intra-nuclei myelination with surrounding grey matter regions to improve the 

delineation of individual nuclei (Tourdias et al., 2014). An automated parcellation routines has been 

developed for WMn MPRAGE (Su et al., 2019). However, the WMn MPRAGE imaging is not 

conventionally used in neuroimaging studies, and furthermore the usefulness of this approach is 
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restrictive when analysing existing datasets that do not contain WMn MPRAGE data. A recent 

approach for parcellating the thalamus using T1 weighted is described by Iglesias et al. (2018). 

This method uses Bayesian inference to fit a probabilistic atlas of the thalamus to T1-weighted 

images. The boundary between the mediodorsal and pulvinar nuclei with the other nuclei of the 

thalamus7, and the shape of the whole thalamus are used during fitting of the probabilistic atlas. 

This probabilistic atlas is generated from high-resolution ex-vivo magnetic resonance imaging with 

a voxel size of 0.25mm isotropic and histological analysis using Nissl staining. Individual nuclei 

were segmented using the Nissl-stained sections, and blockface photos were used to merge 

magnetic resonance and histology data. Thalamic nuclei were digitally reconstructed, and the 

probabilistic atlas was formed as a tetrahedral mesh which is adaptable to individual variability in 

anatomy. This parcellation method is advantageous as it combines histological methods used to 

define thalamic architecture at the cellular level with magnetic resonance imaging at the macro 

level and means inferences are based on underlying neuroanatomy. Furthermore, this approach 

does not require the use of non-conventional imaging sequences such as WMn MPRAGE imaging 

and is therefore more readily applicable. Lastly, structural images have a higher spatial resolution 

than diffusion or functional images and therefore smaller thalamic nuclei can be delineated using 

structural approaches.  

 
7 The boundary between the mediodorsal and pulvinar nuclei with other thalamic nuclei is faint, but visible on 

T1-weighted images. 



 

Page | 39  

 

Aims and hypotheses 

In this thesis I have three main goals. Firstly, I aim to systematically assess the segmentations of 

thalamic nuclei produced by the approach described by Iglesias et al. (2018). Secondly, I aim to 

assess variability in choline containing compound concentrations when using magnetic resonance 

spectroscopy. Lastly, I aim to extend our understanding of the involvement of the cortical, striatal, 

and thalamic regions in flexible behaviour during serial reversal learning. To do this I use a 

combination of magnetic resonance spectroscopy to study the striatal cholinergic system, and 

functional magnetic resonance imaging to study corticostriatal and thalamostriatal functional 

connectivity. 

This thesis aims to answer the following questions: 

1. Can we use automated segmentation to faithfully delineate thalamic nuclei? 

In chapter two we use T1-weighted anatomical data from the Human Connectome Project (Van 

Essen et al., 2013) to generate subject-space segmentations of thalamic nuclei using the approach 

described by Iglesias et al. (2018). We then compare these segmentations to a digitised version of 

the Morel stereotaxic atlas (Krauth et al., 2010; Morel, 2007; Morel et al., 1997) to assess the 

effectiveness of this automated segmentation approach for delineating individual thalamic nuclei 

using quantitative measures of dissimilarity and overlap. We do this to determine whether the 

automated segmentation approach described by Iglesias et al. (2018) produces segmentations of 

the centromedian and parafascicular nuclei of the thalamus that faithfully correspond to the Morel 

stereotaxic atlas, given the importance of their specification in our working model of the system.  

2. How variable are choline containing compound concentrations over time? 

We have previously demonstrated that quantifying choline containing compound concentrations 

using magnetic resonance spectroscopy can be used as an indirect and non-invasive method for 

studying acetylcholine in vivo (Bell, Lindner, et al., 2019; Lindner et al., 2017), and that functional 

changes in choline appear in line with the underlying dynamics of acetylcholine (Bell et al., 2018; 

Lindner et al., 2017). However, we do not know how quantified concentrations of choline 

containing compounds vary with the number of transients averaged in a single session (i.e. with the 

density of the acquired data), nor how these concentrations vary across time. Yet, variability due 

to different measurement approaches is important to understand if we wish to use choline as a proxy 

for studying acetylcholine. Furthermore, it is useful to know how concentrations may vary over 

time, since this may explain some variance in differences in flexibility within individuals. This 
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variability in choline containing compounds will be explored in chapter three and informs the future 

development of the study of the system’s functional neurochemistry. 

3. Is corticostriatal and thalamostriatal functional connectivity observed during serial reversal 

learning? 

Functional magnetic resonance imaging data acquired during serial reversal learning is presented 

in chapter four. Here, we use psychophysiological interaction analysis to investigate corticostriatal, 

and thalamostriatal functional connectivity during serial reversal learning. Furthermore, the 

functional relevance of connectivity is contrasted with previous findings from Bell, Langdon, et al. 

(2019) which described the importance of these connections for flexibility during multi-alternative 

reversal learning. We explain how contrasting these behavioural contexts provides insight about 

the way in which these systems engage in separable aspects of flexible behaviour.  

4. Is variability in choline associated with serial reversal learning performance? 

Lastly, we use magnetic resonance spectroscopy to measure choline in the dorsal striatum and 

examine how variability in choline is associated with reversal learning behaviour. Previous work 

has shown that choline concentrations at rest are related to performance during multi-alternative 

reversal learning (Bell, Lindner, et al., 2019), and here we ask whether this is also the case during 

serial reversal learning. We quantify reversal learning performance by the number of reversals 

participants complete and the errors they make. We also quantify latent variables describing 

behaviour using computational modelling and relate this to choline concentrations. 
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Abstract 

The thalamus is a brain region formed from functionally distinct nuclei, which contribute in 

important ways to various cognitive processes. Yet, much of the human neuroscience literature 

treats the thalamus as homologous region, and consequently the unique contribution of specific 

nuclei to behaviour remains underappreciated. This is likely due in part to the technical challenge 

of dissociating nuclei using conventional structural imaging approaches. Yet, multiple algorithms 

exist in the neuroimaging literature for the automated segmentation of thalamic nuclei. One 

recent approach developed by Iglesias and colleagues (2018) generates segmentations by 

applying a probabilistic atlas to subject-space anatomical images using the FreeSurfer software. 

Here, we systematically validate the efficacy of this segmentation approach in delineating 

thalamic nuclei using Human Connectome Project data. We provide several metrics quantifying 

the quality of segmentations against the Morel stereotaxic atlas, a widely accepted anatomical 

atlas based on cyto- and myeloarchitecture. The automated segmentation approach generated 

clear boundaries between groups of nuclei in the anterior, lateral, posterior, and medial portions 

of the thalamus. Segmentation efficacy, as measured by metrics of dissimilarity (Average 

Hausdorff Distance) and overlap (DICE coefficient) within groups was mixed, with regions more 

clearly delineated in anterior, lateral and medial thalamus compared to the posterior thalamus.  
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Introduction 

Understanding how the brain contributes to cognitive processes is a main goal of human 

neuroimaging research. Much neuroimaging work has been confined to studying regions within the 

cerebrum, while the thalamus is traditionally understudied by comparison. However, an increased 

appreciation for the contribution of the thalamus in cognition is emerging in the neuroscientific 

literature (Figure 6), and is echoed by recent publications challenging the notion that the thalamus 

acts simply as a sensory-motor relay, by detailing its influence and modulatory effects on cognition 

(Wolff & Vann, 2019; Yang et al., 2020). Part of the challenge in studying the activity of the 

thalamus is due to the small size of its nuclei, relative to the spatial resolution of high-field (3 Tesla) 

magnetic resonance imaging (MRI). A related issue is delineating the functional and anatomical 

subdivisions of the thalamus, as the structure appears as largely homogenous when imaged using 

standard T1-weighted and T2 weighted images, meaning any attempts at manual segmentation 

would require a high level of anatomical knowledge. To more accurately define the different nuclei 

by enhancing the visibility of anatomical their boundaries image contrast in the thalamus can be 

increased by using specially developed sequences, such as cortex attenuated inversion recovery 

and white-matter-nulled magnetization prepared rapid gradient echo (WMn MP-RAGE), or by 

combining 3D GRE phase data with optimised MPRAGE images (Bender et al., 2017; Magnotta 

et al., 2000; Tourdias et al., 2014). However, unless automated supplementary segmentation 

algorithms are additionally developed (as for WMn MPRAGE, see Su et al, (2019)), specialist 

expertise in neuroanatomy and neuroradiology is still required to accurately identify thalamic 

nuclei. Furthermore, the efficacy of these pulse sequences for increasing image contrast are 

attenuated at typical MRI field strengths (3 Tesla) relative to ultra-high field (7+ Tesla) MRI 

(Saranathan et al., 2015). 
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Figure 6 Percentage of neuroimaging papers mentioning the thalamus in their title 

or abstract as indexed using PubMed (search: 15/03/2021). Search terms: 

Neuroimaging papers “("MRI"[Title/Abstract] OR "fMRI"[Title/Abstract])”, 

neuroimaging papers mentioning the thalamus “("thalam*"[Title/Abstract]) 

AND ("MRI"[Title/Abstract] OR "fMRI"[Title/Abstract])”. 

Recent studies have used MNI space parcellations (Krauth et al., 2010) to study the functional roles 

for different thalamic nuclei. For instance, Geier et al, (2020) describe different roles for  

mediodorsal and anterior thalamic nuclei in distinct associative memory processes, while Huang et 

al, (2019) show how differences in cognitive demand produce dissociable modulatory responses in 

the mediodorsal nucleus and its functional connectivity with the prefrontal cortex, while also 

demonstrating that this dissociation is aberrant in schizophrenia. 

In both studies, the MNI space thalamic parcellations created by Krauth et al, (2010) are derived 

from the Morel stereotaxic atlas (Morel, 2007; Morel et al., 1997), a widely used atlas of the 

thalamus defined on the basis of cytoarchitecture, myeloarchitecture, and functional relevance. This 

atlas was developed using immunohistochemical staining of the calcium binding proteins 

parvalbumin, calbindin D-28k, and calretinin to identify anatomical boundaries in five postmortem 

brain specimens (Figure 7). The Morel atlas thus provides a description of the anatomical structure 

of the thalamus that is not possible to acquire in vivo using magnetic resonance. Yet, the existence 

of this atlas in MNI space does not allow neuroscientists to infer subject-specific architecture, as it 

is based on the average of multiple individuals.  

 

Figure 7 Hierarchical structure of thalamic nuclei as defined by the Morel 

stereotaxic atlas based on cytoarchitecture, myeloarchitecture, and functional 

relevance. Figure reproduced from (Lambert et al., 2017). 
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Numerous methods are described in the neuroimaging literature for defining the anatomical 

structure of thalamic nuclei using diffusion weighted, resting state, and anatomical data. Automated 

segmentation techniques first appear just after the turn of the century, initially relying on 

anatomical (Amini et al., 2004; Deoni et al., 2007) and diffusion data (Behrens et al., 2003; 

Johansen-Berg et al., 2005; Wiegell et al., 2003), and later on resting state functional data (Kim et 

al., 2013; Zhang et al., 2008). Parcellation methods have used prior knowledge of distinct cortico-

thalamic connectivity to estimate structural boundaries within the thalamus using tractography 

(Behrens et al., 2003; Johansen-Berg et al., 2005), functional connectivity (Zhang et al., 2008) and 

machine learning approaches, such as clustering algorithms (Amini et al., 2004; Deoni et al., 2007; 

Wiegell et al., 2003) or independent component analysis (Kim et al., 2013). 

A recent approach was developed by Iglesias et al. (2018), and uses FreeSurfer to provide 

automated segmentations for thalamic nuclei using anatomical images. This approach involves the 

application of a probabilistic atlas to anatomical images in subject space using Bayesian inference. 

This probabilistic atlas is in the form of a tetrahedral mesh that can adapt to changes in subject-

specific differences in anatomy. The mesh was formed from a combination of ex-vivo MR images, 

histological staining, blockface photography, and in-vivo MRI. This approach is favourable relative 

to techniques using resting state and diffusion data because it is able to delineate more nuclei within 

the thalamus, and is easier to apply. Additionally, this approach does not require the acquisition of 

data using specialist sequences, such as WMn MP-RAGE, meaning it is applicable to a wide range 

of existing and future datasets. 

Having good subject-specific parcellation techniques for thalamic nuclei is important for both 

clinical practice, and empirical research. For instance, these techniques can be used to guide 

surgeons when implanting deep brain stimulation electrodes to treat Parkinson’s disease (Whiting 

et al., 2018). These techniques can also be used by researchers who may be interested in the role 

of different thalamic nuclei in functional processes, or the role of anatomical differences in health, 

development and disease. Nevertheless, the effectiveness of segmentation approaches must first be 

validated before inferences can be made based on their output. The original publication Iglesias et 

al. (2018) provides volumetric comparisons between six segmented nuclei and their corresponding 

regions in the Morel atlas, yet these volumes are not statistically compared to each other, nor is the 

spatial specificity of segmentations quantified. 

Here, we aim to systematically compare the segmentation approach described by Iglesias et al. 

(2018) to regions in the Morel atlas. We provide volumetric, overlap, and isometric comparisons 

between all segmented regions and portions of the Morel atlas. These insights will allow clinicians 
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and researchers to make informed decisions about the applicability of this segmentation approach 

for identifying specific thalamic nuclei in individuals. 
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Methods 

Data acquisition 

Anatomical data were sourced from the publicly available dataset of the Human Connectome 

Project (HCP) 1200 Subjects Data Release (https://www.humanconnectome.org/study/hcp-young-

adult/document/1200-subjects-data-release). The following description of data acquisition and 

preprocessing steps from the HCP project follow reporting guidelines from Horien et al. (2021) on 

the use of secondary neuroimaging datasets. 

HCP data were acquired using a custom Siemens 3T Connectome Skyra scanner with a 32 channel 

receiver head coil and custom body transmission coil. Data were acquired over four separate 

scanning sessions; each session was approximately one hour in length. The structural data were 

acquired during one of those sessions. Two T1 weighted anatomical images were acquired using a 

3D magnetization-prepared rapid gradient-echo (MP-RAGE) sequence with GeneRalized 

Autocalibrating Partially Parallel Acquisitions (GRAPPA) (R = 2) [TR = 2400ms; TE = 2.14ms; 

TI = 1000ms; slices = 256; voxel volume = 0.7mm3; slice thickness = 0.7mm; distance factor = 

50%; slice oversampling = 0.0%; FOV = 224 x 224mm; matrix = 320 x 320; flip angle = 8°; phase 

encoding direction = A → P; interleaved acquisition; echo spacing = 7.6ms].  

Preprocessing 

Data were preprocessed using the HCP minimal preprocessing pipelines (Glasser et al., 2013; 

Smith et al., 2013; Sotiropoulos et al., 2013). Firstly, T1 images were corrected for gradient 

distortions using a customised version of gradient_nonlin_unwarp in FreeSurfer, then each 

subject’s two T1 scans were aligned using FSL FLIRT and averaged. The averaged T1 image was 

then registered to MNI space using a 12 DOF affine registration with FLIRT, and a subset of 6 

DOF transforms were used to align the anterior commissure, the anterior commissure – posterior 

commissure line, and the inter-hemispheric plane, while preserving the size and shape of the brain 

in native space. The skull was removed by inverting linear (FLIRT) and non-linear (FNIRT) warps 

from anatomical to MNI space, applying the warp to the MNI space brain mask, and then applying 

the mask to the averaged T1 image. Finally, the image was corrected for readout distortion and 

biases in B1 and B1+ fields. 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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Participants 

One hundred participants were pseudorandomly selected for inclusion in analysis. First, 

participants were filtered on the HCP database to include only subjects with complete anatomical, 

diffusion, and resting state acquisitions. Then subject IDs were sorted in ascending order and 

shuffled in MATLAB (2017b) using the seed 03112020 (the date of shuffling). The first one 

hundred subject IDs were chosen from this list for inclusion in analysis. 

Analysis 

Data were processed following the method previously described by Iglesias et al., 2018. Data 

processing was run using a Nipype pipeline integrating FSL (version 6.0.4) and FreeSurfer (version 

7.1.1) on Ubuntu 18.04.2. Output files from Nipype nodes were used as analytic checkpoints to 

confirm each step in the analysis ran as expected. Anatomical T1 images were first processed and 

parcellated using recon-all in FreeSurfer; the output of recon-all was used to initialise the 

parcellation of thalamic nuclei for anatomical data using the algorithm described by Iglesias et al. 

(2018).  

Comparison to Morel thalamic atlas 

The parcellation of structural data were completed in subject space before being transformed into 

MNI space. Linear rigid and affine transformations and non-linear warps were generated using the 

Advanced Normalization Tools (ANTs) package (Version 2.3.5, Ecphorella) script 

antsRegistrationSyN.sh (Avants et al., 2008). The ANTs package was selected due to its superior 

performance in registering skull-stripped images compared to other algorithms (Ou et al., 2014). 

Linear transformations and non-linear warps were then used to convert subject-level parcellations 

into MNI space. Group-level probabilistic atlases were created by calculating a mean probability 

map for each parcellation in MNI space (described previously by Najdenovska et al. (2018)). These 

segmentations were then compared to the Morel probabilistic atlas, which was used as ground truth 

(Krauth et al., 2010). Each parcellation was compared separately to individual nuclei in the Morel 

atlas using the EvaluateSegmentation toolbox (Taha & Hanbury, 2015), a threshold of  > 0.25 was 

set for specificity metrics that do not accept non-binary input. The following metrics from the 

EvaluateSegmentation toolbox were used to assess each parcellation approach. 

The DICE coefficient was used as a measure of overlap between segmentations and ground truth; 

it is a widely used measure in imaging processing for assessing the overlap between segmentation 

approaches. The DICE coefficient is defined as: 
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𝐷𝐼𝐶𝐸(𝑆𝑥, 𝑆𝑦) =  
2|𝑆𝑥 ∩ 𝑆𝑦|

|𝑆𝑥| + |𝑆𝑦|
 

Where |𝑆𝑥 ∩ 𝑆𝑦|is the cardinality of the intersection between the segmentation and ground truth 

(this is equal to the number of true positives, or overlapping voxels), divided by the sum of the 

cardinality of the ground truth |𝑆𝑥| and the segmentation |𝑆𝑦| (equal to the sum of true positives, 

false positives, and false negatives). Because the DICE coefficient is a measure of overlap, it is 

expressed in terms of the relationship between true positives, false positives, and false negatives, 

but not the number of true negatives. This is an important consideration when comparing 

segmentation approaches, since it is necessary that a good segmentation overlap with ground truth, 

yet overlap is not sufficient for determining the best approach as it cannot account for isometry. 

The Average Hausdorff Distance is used as a measure of dissimilarity. Distance based metrics are 

advantageous, relative to overlap metrics in situations where segmentations are small, because 

overlap-based metrics disproportionately penalise errors in smaller than larger segmentations (Taha 

& Hanbury, 2015) as is the case with thalamic nuclei. Importantly, the Average Hausdorff Distance 

is sensitive to the position of false positives in a segmentation relative to ground truth, and therefore 

is a useful metric when considering the boundary of a segmentation, and can account for isometry. 

In relation to image segmentation, the Hausdorff Distance can be defined as the minimum number 

of voxels (or distance in millimetres) between a point in segmentation X and a point in 

segmentation Y. Therefore, the Average Hausdorff Distance is the average minimum distance 

between all points in segmentation A and segmentation B. The Average Hausdorff Distance is 

defined as: 

Average Hausdorff Distance(𝐴, 𝐵) = max(𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)) 

𝑑(𝐴, 𝐵) =
1

𝑁
∑ 𝑚𝑖𝑛

𝑏∈𝐵
‖𝑎 − 𝑏‖

𝑎∈𝐴

  

Where 𝑑(𝐴, 𝐵) is the average minimum distance (𝑚𝑖𝑛‖𝑎 − 𝑏‖) from voxels in the ground truth 

(𝐴) to the segmentation (𝐵), 𝑑(𝐵, 𝐴) is the average minimum distance (𝑚𝑖𝑛‖𝑎 − 𝑏‖) from voxels 

in the segmentation (𝐵) to the ground truth (𝐴). The Average Hausdorff Distance is then the 

maximum of either of these two average distance measures.  

As part of the volumetric comparison in Table 1, and Figure 10 the following nuclei from the Morel 

atlas were combined to make them comparable with the segmentations: LGN = (LGNmc + 

LGNpc), VA = (VAmc + VApc), VLp = (VLpd + VLpv), VPL = (VPLa + VPLp). 
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Results 

Segmentation overlap 

DICE coefficients between the Morel atlas and the segmentations of the left and right thalamus are 

summarised in Figure 8 and Figure 9, respectively. On the x-axis are the thalamic nuclei from the 

Morel atlas; the segmented regions are displayed along the y-axis. A list of abbreviations used is 

presented in Table 2; the dendrograms presented above and adjacent to each heatmap show the 

hierarchical structure of the thalamus as defined by (Morel et al., 1997) and the relative position of 

each nucleus within that hierarchy. Cells where groups of nuclei are equivalent between the Morel 

atlas and the segmentation are highlighted. Here, when interpreting DICE coefficients, we use the 

following terminology, DICE = 0 no agreement, 0 < DICE < 0.2 slight agreement, 0.2 ≤ DICE < 

0.4 fair agreement, 0.4 ≤ DICE < 0.6 moderate agreement, 0.6 ≤ DICE < 0.8 substantial agreement, 

0.8 ≤ DICE ≤ 1 almost perfect agreement; these values have been used previously by (Pajula et al., 

2012) for comparing Nifti images, and are a widely used convention for interpretating DICE 

coefficients. 

DICE coefficients were similar between the left and right thalamus (Wilcoxon Signed-Ranks Test, 

Z = 9536, p = 0.531). Figure 8 and Figure 9 show that for the anterior nuclei, the AV had higher 

overlap than the LD. Overlap for anterior, lateral, medial, and posterolateral divisions of the lateral 

thalamus generally showed moderate to substantial overlap with nuclei from the same subregion, 

and mostly only slight overlap between subregions. Posterior thalamic nuclei had overlap values 

that were generally higher between subregions of the posterior thalamus than for other nuclear 

groups, and were the only set of nuclei to show greater than slight agreement with nuclei from other 

nuclear groups. Of the midline nuclei in the medial thalamus, only the CeM was segmented, 

showing fair and moderate overlap in left and right hemispheres, respectively. For the intralaminar 

nuclei (CL, CM, Pf) the CM and Pf had higher overlap than the CL, which showed overlap with 

anterior and posterior at the upper end of slight agreement. Subregions of the mediodorsal thalamus 

(MDm and MDl) showed slight to moderate overlap with corresponding regions in the Morel atlas, 

and fair overlap with the CL in the left hemisphere. 
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Figure 8 DICE coefficient between segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the left thalamus. 

Higher DICE coefficients show there is greater overlap between segmented regions and volumes in the Morel atlas. Dendrograms show the 

hierarchical structure of nuclei within the thalamus. DICE coefficients within BOLD boxes along the diagonal are regions that are part of 

the same nuclear group or sub-group. 
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Figure 9 DICE coefficient between segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the right thalamus. 

Higher DICE coefficients show there is greater overlap between segmented regions and volumes in the Morel atlas. Dendrograms show the 

hierarchical structure of nuclei within the thalamus. DICE coefficients within BOLD boxes along the diagonal are regions that are part of 

the same nuclear group or sub-group. 
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Segmentation volume 

Although nuclei volumes in the segmentation and the atlas were correlated (t(42) = 5.869, r = 0.671, 

p < 0.001; Figure 10), one sample t-tests showed that the volumes were significantly different for 

all nuclei (Table 1). Most volumes were smaller in the segmentation, except LGN, MDm, PuA, 

PuI, VLa, and VPL which bilaterally were larger in the segmentation than the equivalent volumes 

in the Morel atlas. 

Bilaterally, the Average Hausdorff Distance (measured in voxels) between segmentations and the 

Morel atlas was lower along the diagonal (part of the same nuclear subgroup), and larger for nuclei 

off the diagonal, particularly for nuclei that were part of different nuclear groups (Table 2, Figure 

11, Figure 12). Nuclei from the Morel atlas with the lowest Average Hausdorff Distance for each 

segmentation are summarised in Table 3, and segmented nuclei with the lowest Average Hausdorff 

Distance for each nuclei in the Morel atlas are summarised in Table 4. 

 

Nucleus 

Mean 

volume 

(mm3) 

Standard 

deviation 

Minimum 

(mm3) 

Maximum 

(mm3) t-statistic p-value N 

Morel 

volume 

(mm3) 
Left-AV 124.0254 18.205 84.035 174.93 -91.8059 1.3E-97 100 292 

Left-CeM 72.74344 12.21982 49.735 109.417 -66.1624 9.34E-84 100 154 

Left-CL 13.86406 9.645825 3.43 85.06399 -897.564 2.1E-195 100 884 

Left-CM 255.2572 40.31033 173.558 417.431 -13.0186 3.57E-23 100 308 

Left-LD 20.6143 8.264449 4.459 45.276 -172.627 1.4E-124 100 164 

Left-LGN 285.1942 35.49029 199.969 382.445 6.502605 3.23E-09 100 262 

Left-LP 123.0787 19.20904 89.18 180.075 -168.302 1.7E-123 100 448 

Left-L-Sg 13.16777 9.164186 2.401 51.793 -49.7616 7.24E-72 100 59 

Left-MDl 259.3183 26.47553 213.346 348.831 -291.512 4.6E-147 100 1035 

Left-MDm 809.2776 79.1976 643.811 1083.88 75.66626 2.05E-89 100 207 

Left-MGN 61.21521 17.20899 22.295 114.562 -87.7587 1.07E-95 100 213 

Left-Pf 51.42599 12.4969 28.469 99.46999 -107.942 1.7E-104 100 187 

Left-PuA 214.5877 24.80664 169.785 299.096 19.08727 5.98E-35 100 167 

Left-PuI 246.9909 41.16957 170.814 355.691 45.43368 4.07E-68 100 59 

Left-PuL 180.394 32.57992 125.881 320.019 -63.4027 5.76E-82 100 388 

Left-PuM 1158.129 124.1217 906.892 1485.876 -54.019 2.85E-75 100 1832 

Left-VA 394.7553 44.87643 293.951 497.693 -54.1532 2.25E-75 100 639 

Left-VAmc 7.56658 2.362381 2.401 14.063 -279.804 2.6E-145 100 74 

Left-VLa 561.9369 66.39361 411.943 770.0349 36.40699 3.95E-59 100 319 

Left-VLp 891.0797 106.9382 662.3329 1262.24 -56.935 1.84E-77 100 1503 

Left-VM 1.615819 1.311282 0.343 7.546 -1066.14 1.3E-171 83 156 

Left-VPL 926.8751 123.0254 703.4929 1350.734 20.77518 7.15E-38 100 670 
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Nucleus 

Mean 

volume 

(mm3) 

Standard 

deviation 

Minimum 

(mm3) 

Maximum 

(mm3) t-statistic p-value N 

Morel 

volume 

(mm3) 
Right-AV 134.823 21.67799 82.32 182.476 -69.847 4.88E-86 100 287 

Right-CeM 70.77805 11.77168 43.561 102.214 -86.4019 4.91E-95 100 173 

Right-CL 11.92611 6.871285 3.087 61.74 -1222.25 1.1E-208 100 856 

Right-CM 256.931 41.84041 184.534 423.262 -11.1933 2.79E-19 100 304 

Right-LD 20.16154 7.981011 5.488 44.59 -179.322 3.2E-126 100 164 

Right-LGN 275.8269 32.54821 202.37 360.493 5.449611 3.7E-07 100 258 

Right-LP 117.0282 18.69873 74.088 163.611 -294.777 1.5E-147 100 671 

Right-L-Sg 9.85782 6.783707 0.686 45.276 -70.6116 1.7E-86 100 58 

Right-MDl 258.207 26.152 196.882 336.483 -295.541 1.2E-147 100 1035 

Right-MDm 821.7388 79.12425 615.685 1072.561 77.0519 3.49E-90 100 209 

Right-MGN 73.36427 19.29477 25.725 138.229 -71.4913 5.1E-87 100 212 

Right-Pf 58.81078 13.84271 37.387 111.475 -96.4526 1E-99 100 193 

Right-PuA 206.3351 23.58036 152.978 277.144 15.75376 1E-28 100 169 

Right-PuI 219.0329 38.44851 140.973 320.705 40.63767 1.46E-63 100 62 

Right-PuL 166.8009 31.07548 108.388 275.429 -73.7061 2.63E-88 100 397 

Right-PuM 1145.116 119.2232 811.1949 1488.277 -57.408 8.29E-78 100 1833 

Right-VA 403.9922 49.41994 299.096 566.9789 -48.5229 7.97E-71 100 645 

Right-

VAmc 

9.02776 2.463819 4.459 15.778 -270.46 7.6E-144 100 76 

Right-VLa 602.6201 77.34003 443.156 891.114 35.33016 6.25E-58 100 328 

Right-VLp 887.7903 111.1463 639.6949 1288.651 -55.8796 1.11E-76 100 1512 

Right-VM 1.437333 1.090426 0.343 5.145 -925.229 3.45E-90 42 159 

Right-VPL 891.2992 118.3106 647.241 1254.008 19.78856 3.5E-36 100 656 

Table 1 Descriptive statistics for segmented thalamic volumes and regions within 

the Morel atlas. Mean, standard deviation and range are provided for each 

segmentation bilaterally. Additionally, the number of participants where this 

nuclei was delineated is specified. The following regions within the Morel atlas 

are combined for the purpose of statistical analysis (LGN = (LGNmc + LGNpc), 

VA = (VAmc + VApc), VLp = (VLpd + VLpv), VPL = (VPLa + VPLp). 
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Figure 10 Spearman’s correlation between segmentation volumes and volumes 

from the Morel atlas. A significant moderate correlation was found between 

segmented volumes and volumes in the Morel atlas (r = 0.671, p < 0.001). The 

following regions within the Morel atlas are combined for the purpose of 

statistical analysis (LGN = (LGNmc + LGNpc), VA = (VAmc + VApc), VLp = 

(VLpd + VLpv), VPL = (VPLa + VPLp). 

Nucleus Group Morel  Segmentation  

Anterodorsal  

Anterior 

AD  

Anteromedial AM  

Anteroventral AV AV 

Lateral dorsal LD LD 

Ventral anterior, magnocellular 

division 

Lateral 

Ventral anterior 

VAmc 

VA 

VAmc 

Ventral anterior, parvocellular 

division 
VApc  

Ventral lateral anterior 

Ventral lateral 

VLa VLa 

Ventral lateral posterior, dorsal 

division 
VLpd 

VLp 
Ventral lateral posterior, ventral 

division 
VLpv 

Ventral medial  VM VM 

Ventral posterior inferior 

Ventroposterior 

complex 

VPI  

Ventral posterior lateral, anterior 

division 
VPLa 

VPL 
Ventral posterior lateral, posterior 

division 
VPLp 

Ventral posterior medial VPM  

Lateral geniculate, magnocellular 

division 

Posterior 

Geniculate 

LGNmc 

LGN 
Lateral geniculate, parvocellular 

division 
LGNpc 

Medial geniculate MGN MGN 

Posterior 
Posterior complex 

Po  

Suprageniculate SG L-Sg 
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Lateral posterior  LP LP 

Anterior pulvinar 

Pulvinar 

PuA PuA 

Inferior pulvinar PuI PuI 

Lateral pulvinar PuL PuL 

Medial pulvinar PuM PuM 

Habenula 

Medial 

 Hb  

Central medial 

Midline 

CeM CeM 

Medioventral MV  

Paraventricular Pv  

Central lateral 

Intralaminar 

CL CL 

Centromedian CM CM 

Parafascicular Pf Pf 

Subparafascicular  sPf  

Mediodorsal, magnocellular 

division Mediodorsal 
MDmc MDm 

Mediodorsal, parvocellular division MDpc MDl 

Paratenial   
Pt 

Table 2 Definitions of thalamic nuclei as in the Morel atlas. Nuclei are ordered 

into their relevant anatomical groups and sub-groups. Abbreviations used in text 

and in figures to segmented regions and volumes in Morel atlas are also given. 
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Figure 11 Average Hausdorff Distance between segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the left 

thalamus. Higher Average Hausdorff Distances shows there is greater dissimilarity and that segmented regions and volumes in the Morel 

atlas are less isometric. Dendrograms show the hierarchical structure of nuclei within the thalamus. Average Hausdorff Distances within 

BOLD boxes along the diagonal are show regions that are part of the same nuclear group or sub-group. 
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Figure 12 Average Hausdorff Distance between segmented (vertical axis) regions and volumes in the Morel atlas (horizontal axis) in the 

right thalamus. Higher Average Hausdorff Distances shows there is greater dissimilarity and that segmented regions and volumes in the 

Morel atlas are less isometric. Dendrograms show the hierarchical structure of nuclei within the thalamus. Average Hausdorff Distances 

within BOLD boxes along the diagonal are show regions that are part of the same nuclear group or sub-group.
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Segmentation Morel Distance (voxels) Segmentation Morel Distance (voxels) 

Left Right 

VA VApc 0.332751 VA VApc 0.431525 

CM CM 0.460216 CM CM 0.437139 

AV AV 0.63198 AV AV 0.515158 

PuM PuM 0.659518 CeM CeM 0.542475 

MDm MDpc 0.735318 PuL LP 0.66192 

VPL VPLp 0.782243 VPL VPLp 0.663946 

MDl MDpc 0.873007 MDl MDpc 0.709001 

PuL LP 0.878453 PuM PuM 0.74441 

CeM CeM 1.00372 MDm MDpc 1.047935 

LGN PuI 1.130774 LP LD 1.163396 

VLa VLpv 1.19992 MGN SG 1.354912 

LP LD 1.255153 VLa VLa 1.363725 

MGN MGN 1.334352 VLp VLpv 1.453629 

VLp VLpv 1.364389 LGN PuI 1.493237 

PuA PuA 1.666463 PuI PuM 1.843849 

Pt AD 1.684479 VAmc CeM 1.864043 

LD LD 1.743449 PuA PuA 1.943745 

VAmc VM 2.13865 CL AD 2.583181 

PuI PuM 2.371877 LD LD 2.850019 

CL CL 2.379825 Pt AM 2.938476 

Pf Pf 3.431893 Pf Pf 3.263468 

VM VPLa 3.63583 VM VPLp 3.556207 

L-Sg PuM 4.061324 L-Sg PuM 4.555451 

Table 3 Lowest Average Hausdorff Distance between each segmentation and its 

corresponding volume within the Morel atlas. Higher Average Hausdorff 

Distances shows there is greater dissimilarity and that segmented regions and 

volumes in the Morel atlas are less isometric. 
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Segmentation Morel Distance (voxels) Segmentation Morel Distance (voxels) 

Left Right 

VA VApc 0.332751 VA VApc 0.431525 

CM CM 0.460216 CM CM 0.437139 

AV AV 0.63198 AV AV 0.515158 

PuM PuM 0.659518 CeM CeM 0.542475 

MDm MDpc 0.735318 PuL LP 0.66192 

VPL VPLp 0.782243 VPL VPLp 0.663946 

PuL LP 0.878453 MDl MDpc 0.709001 

CeM CeM 1.00372 PuM PuM 0.74441 

LGN PuI 1.130774 LP LD 1.163396 

LGN LGNpc 1.19418 VA VAmc 1.270166 

VLa VLpv 1.19992 MGN SG 1.354912 

LP LD 1.255153 VLa VLa 1.363725 

MGN MGN 1.334352 MDm MDmc 1.407938 

VLa VLa 1.379999 VLp VLpv 1.453629 

VA VAmc 1.618183 LGN PuI 1.493237 

CM VPM 1.636273 AV AM 1.636578 

MDm MDmc 1.646026 MGN Po 1.641001 

PuA PuA 1.666463 CM Pf 1.693499 

Pt AD 1.684479 LGN LGNpc 1.762076 

MGN SG 1.757686 VPL VPLa 1.82221 

MDm CL 1.963445 VPL PuA 1.909816 

VPL VPLa 1.971193 VLp VLpd 2.062684 

VLp VLpd 2.128442 MGN MGN 2.08619 

VAmc VM 2.13865 CeM MV 2.137629 

LGN LGNmc 2.169776 CM VPM 2.396707 

CM Pf 2.18454 MDl CL 2.447928 

MGN Po 2.294516 CL AD 2.583181 

LGN PuL 2.330049 LGN PuL 2.668344 

AV AM 2.39251 CM sPf 2.785892 

CeM MV 2.945644 LGN LGNmc 2.818837 

CM sPf 3.005708 VAmc VM 2.924402 

VPL VPI 3.562672 MGN VPI 3.220601 

MDm Hb 4.016412 CeM Pv 3.809648 

CeM Pv 4.120213 Pf Hb 3.843084 

Table 4 Lowest Average Hausdorff Distance between volumes within the Morel 

atlas and its corresponding segmentation. Higher Average Hausdorff Distances 

shows there is greater dissimilarity and that segmented regions and volumes in 

the Morel atlas are less isometric. 
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Lastly, we calculated the Spearman’s correlation coefficient between the volume of segmentations 

and their Average Hausdorff Distance to determine whether segmentation size affected 

dissimilarity and found they were significantly anticorrelated t(42) = -3.4575, r = -0.471, p = 0.001 

(Figure 13). Visually, this trend looked like it was driven by segmentations with volumes at the tail 

end of the plot. Therefore, we performed an exploratory analysis to test what effect removing these 

values had on the relationship. To do this we removed the five smallest nuclei bilaterally (CL, LD, 

L-Sg, VAmc, VM) which all had volumes lower than 21mm3, and used this as a threshold to re-

run the correlation. Removing these values reduced the strength of the relationship, and meant the 

correlation was non-significant t(32) = -1.602, r = -0.273, p = 0.119. 

 

Figure 13 Spearman’s correlation between segmentation volumes and Average 

Hausdorff Distances. A significant weak correlation was found between 

segmented volumes and Average Hausdorff Distances (r = -0.471, p = 0.001). 

This correlation was no longer significant after segmented volumes < 21mm3 

were removed from analysis, suggesting this negative relationship was driven by 

regions that were not properly segmented and as such had very small volumes. 

The following regions within the Morel atlas are combined for the purpose of 

statistical analysis (LGN = (LGNmc + LGNpc), VA = (VAmc + VApc), VLp = 

(VLpd + VLpv), VPL = (VPLa + VPLp).
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Discussion 

The thalamus is known to be important for a wide range of cognitive processes, yet delineating and 

studying the roles of specific nuclei in aspects of cognition is a non-trivial problem in human 

neuroimaging. Here, we systematically compare the segmentation approach developed by Iglesias 

et al. (2018) to the Morel atlas of the thalamus (Krauth et al., 2010; Morel et al., 1997) using data 

from the Human Connectome project. We use DICE coefficients to measure volume overlap, and 

the Average Hausdorff Distance to compare the closeness and how isometric the segmentations are 

relative to the nuclei in the Morel atlas. Firstly, we found mixed levels of overlap across anterior, 

lateral, posterior and medial portions of the thalamus, and at the group level we found the volumes 

for all nuclei were significantly different to the defined regions within the Morel atlas. Nuclei had 

lower Average Hausdorff Distances within groups than across groups, showing segmentations 

clearly discriminated between anterior, lateral, medial and posterior portions of the thalamus. 

We assessed whether there was a systematic effect of geometry on the isometry of segmented nuclei 

relative to the atlas.  We found a significant negative correlation between the size of the segmented 

volume and the Average Hausdorff Distance; this significance did not remain after the five smallest 

nuclei (all with a volume < 21mm3) were removed from the analysis, suggesting this relationship 

was driven by an inability to segment these nuclei with smaller values, rather than changes in 

isometry across nuclei size.  

The segmentation approach developed by Iglesias et al. (2018) showed substantial overlap as 

indexed using the DICE coefficient for one nucleus within each of the anterior, lateral, posterior 

and midline thalamus (AV, VA, PuM, and CM respectively). Conversely, slight overlap between 

segmentations and their corresponding region in the Morel atlas was seen for a single segmentation 

in the anterior thalamus (VAmc), and four regions in the posterior thalamus (LGN, MGN, L-Sg, 

and LP). The geniculate nuclei may be particularly difficult for the algorithm to segment due to 

their location on the exterior of the thalamus, adjacent to the pulvinar. Indeed, we see comparable 

DICE coefficients, particularly for the LGN, between the segmented LGN region and the inferior 

and lateral pulvinar regions as defined by the Morel atlas. The posterior region was also the only 

portion of the thalamus to show greater than slight overlap with nuclei in other regions of the 

thalamus; both the LP and PuA showed fair bilateral overlap with the LD in the anterior thalamus, 

and the CL in the medial thalamus. Therefore, this segmentation approach formed clear anatomical 

boundaries between the anterior, lateral and medial thalamus, but not the posterior thalamus. 

Additionally, the delineation of nuclei within each sub-region of the anterior, lateral, and medial 

thalamus appeared to be more distinct than in the posterior thalamus, as indicated by an increased 
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number of nuclei with only slight overlap and being the only group of nuclei showing greater than 

slight overlap with nuclei from other groups.  

There were significant volumetric differences for all nuclei between the volume as segmented by 

the automated algorithm and the Morel atlas. One potential explanation for this is that the Morel 

atlas, which was converted into MNI space (Krauth et al., 2010) was not corrected for the effects 

of fixation during the preparation of the tissue. Fixation with solutions such as formalin or 

paraformaldehyde is an important step when working with biological specimens as it limits the 

decomposition of biological tissue; yet fixation also causes tissue to shrink. The atlas derived by 

Morel from cyto- and myeloarchitecture was not corrected for shrinkage due to fixation (Bender et 

al., 2011), therefore, the atlas produced by Krauth et al, (2010) may include slight distortions of 

the morphometry of thalamic nuclei in-vivo. Another possible reason for our observed volumetric 

differences between the segmentation and the atlas is that the initial template used to begin 

segmentation is the whole thalamus volume estimated by recon-all in FreeSurfer. Recon-all has 

previously been shown to over-estimate the volume of the thalamus relative to manually derived 

segmentations of the whole thalamus, and in particular for participants with volumes at the lower 

end of the distribution (Makowski et al., 2018). Nevertheless, these explanations cannot fully 

describe why we observed volumetric differences for most nuclei as segmentations were generally 

smaller than those produced by the Morel atlas, with the exceptions being the LGN, MDm, PuA, 

PuI, and VLa. One reason may be that certain nuclei are overestimated, and others are 

underestimated, while the general trend for nuclei volume remains consistent between 

segmentations and the Morel atlas. Our correlational results between segmented and atlas volumes 

suggest this may be the case, as we see a moderate positive correlation between the two sets of 

volumes. Reductions of these volumetric differences may be improved by combining diffusion and 

anatomical data as proposed by (Iglesias et al., 2019), yet there is currently no publicly available 

implementation for the approach they describe. 

In their original paper describing their segmentation algorithm, Iglesias and colleagues do provide 

volumetric comparisons for six regions within the thalamus, namely the AV, LP, CM, MD 

(composite of MDl and MDm), VL (composite of VLa and VLp), and the pulvinar (PuA, PuM, 

PuL, and PuI combined) in 66 subjects. However, their approach involves the transformation of 

the equivalent Morel nuclei into subject space before plotting the distributions for each nucleus. 

Though this provides a visual overview of the relationship between segmented volumes and the 

Morel atlas, no inferential statistics are used to characterise this relationship. Additionally, though 

the authors state these regions were chosen based on their functional and structural connectivity, it 

is unclear why other nuclei were not also selected. Based on our metrics we see these regions appear 
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well segmented at the group level, except for the LP. Here, we systematically show that, although 

there is a positive relationship between segmented volumes and volumes in the Morel atlas, these 

volumes are significantly different across all regions. Furthermore, we also extend upon the work 

of Iglesias et al. (2018) by describing differences in the overlap and isometry between segmented 

nuclei and regions within the Morel atlas, and show that not all regions can be delineated as clearly 

as those selected in the original paper for comparison. These insights are important if this 

segmentation approach is used to make inferences about the role these nuclei play in cognitive 

processes, or how aberrant changes in the thalamus occur in disease (Elvsåshagen et al., 2021; Park 

et al., 2020).  

While it is important to have segmentations that are faithful to their underlying neuroanatomy, it is 

also worth being pragmatic about the limitations of automated segmentations and how we use them. 

At the implementation level it is likely that heterogeneity in segmentation results will be observed 

across and within participants. For example, these differences could be driven by changes in signal, 

intensity, and noise across multiple acquisitions within the same individual (Kiar et al., 2020). 

Other implementation-based sources of variance include differences across operating system and 

software versions. For example, estimates of anatomical volumes is known to be inconsistent across 

versions of FreeSurfer (Gronenschild et al., 2012), while differences if floating point arithmetic 

across operating systems and versions have also been shown to influence analyses (Glatard et al., 

2015). Practical solutions, such as the use of Docker and Singularity containers, enable the 

homogenisation of computational resource, yet they cannot address inherent differences in image 

acquisition. 

More broadly, the biological plausibility of measures should also be considered when applying 

automated segmentation processes to study structure and function. Differences, such as those that 

are clinically relevant or that change across developmental trajectories, should be observed at a 

level that is greater than noise that could be due to within-individual variance or computational set-

up. These differences, even if small should be shown to be at least qualitatively reproducible. 

Additional considerations regarding biological plausibility include the application of automatic 

segmentation tools. As an example, the original pipeline in this study involved the use of FLIRT 

and FNIRT in FSL to convert images from subject space to MNI space. Yet, we found that these 

algorithms were unsuitable in terms of their accuracy for providing transformations within the 

thalamus. We therefore amended our pipeline to use ANTs, rather than FSL for normalisation. 

Additionally, it is worth considering the utility of applying these methods to studying functional 

activation. For instance, the use of these segmentation techniques in studies with typical 3 tesla 
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acquisition and analysis parameters (e.g. 3mm3 voxels, 8mm smoothing kernel) would mean that 

it is likely that functionally relevant signal is not localised to specific thalamic nuclei. Therefore, 

we suggest that those wishing to study the relevance of thalamic nuclei to functional processes 

carefully consider acquisition and processing pipelines with respect to the metrics provided here to 

restrict the integration of signal across regions of the thalamus. For instance, investigators may find 

it beneficial to combine segmentations from regions with high overlap and functional homogeneity, 

such as the subnuclei of the mediodorsal thalamus, to improve the anatomical definition of their 

region of interest. Furthermore, consideration of the size of segmented nuclei in relation to 

acquisition and processing parameters are important to determine whether it could be considered 

feasible to acquire clean signal from a given region.  

In conclusion, this paper aimed to systematically validate the thalamic nuclei segmentation 

approach developed by Iglesias et al. (2018) using Human Connectome Project data and the Morel 

thalamic atlas derived from histological staining post-mortem (Krauth et al., 2010). We show using 

volumetric, overlap, and isometry measures that the automated segmentation approach clearly 

delineates between groups of nuclei across anterior, lateral, posterior and medial portions of the 

thalamus, and that there is mixed segmentation efficacy within groups. Furthermore, although we 

find a positive relationship between segmented nuclei and their equivalent volumes in the Morel 

atlas, we do find that segmentation volumes are significantly different from those defined in the 

atlas. We also suggest important considerations related to the functional relevance of these 

segmentations and describe potential pitfalls researchers may face when using these segmentations 

within their own research.  



 

Page | 87  

 

Acknowledgements: 

The authors would like to thank ETH Zurich and the University of Zurich for the provision of the 

Morel atlas in MNI space as described in (Krauth et al., 2010). 



Page | 88  

 

Appendix: 

Appendix 1: HCP subject IDs used for analysis 

192237 907656 131419 118831 281135 

871762 105923 186545 325129 932554 

180937 814548 660951 486759 371843 

919966 782561 233326 188751 169444 

217126 128127 129634 108828 210415 

180129 809252 108121 305830 441939 

207123 197348 760551 154532 186444 

111413 547046 198451 251833 580650 

189349 657659 103818 581450 156536 

153025 581349 517239 436239 894774 

971160 145834 300719 148335 111211 

209329 102614 250932 146432 217429 

379657 172130 155938 194443 194746 

886674 679568 955465 173940 395251 

633847 192540 179245 448347 570243 

202719 135225 562345 307127 529549 

654552 615744 133928 150928 172332 

318637 611938 127933 180230 167440 

286650 594156 654754 209228 154229 
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161832 576255 133625 917558 220721 
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Abstract 

Typical approaches for studying choline-containing compounds (CCCs) using proton magnetic 

resonance spectroscopy (1H-MRS) treat these metabolites as a single component due to their 

proximity on the metabolite spectra. Nevertheless, previous work has demonstrated that choline 

can be separated from glycerophosphocholine and phosphocholine, and that functionally relevant 

changes in choline are aligned with expected changes in acetylcholine. As no method for non-

invasively studying acetylcholine in humans in vivo currently exists, measuring choline may act as 

an appropriate proxy. The aim for this study was to quantify the reliability of 1H-MRS measures of 

choline-containing compounds in two distinct cholinergic systems, in the striatum and parieto-

occipital cortex, both within and between sessions. Estimates of metabolite concentrations using 

single and separate peaks for CCCs showed good consistency. Greater variability in choline and 

the sum of CCCs were seen within and across sessions than for glycerophosphocholine and 

phosphocholine. However, all metabolite concentrations appear to be relatively stable at the group 

level over time. We predict that some variability in choline is related to its functional relationship 

with acetylcholine.  
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Introduction 

Proton magnetic resonance spectroscopy (1H-MRS) is a technique that is used to non-invasively 

study the chemical composition of biological tissue in vivo. Its application in neuroimaging enables 

the study of more than thirty brain metabolites and macromolecules related to various biological 

processes. These include neuronal activity (such as glutamate, and Gamma Aminobutyric Acid 

(GABA)), brain health (such as N-acetylaspartate (NAA), glutathione, myo-inositol), and energy 

metabolism (such as creatine) (Barker & Lin, 2006; Bittšanský et al., 2012; Zhu & Barker, 2011). 

Included in these metabolites, the choline-containing compounds (CCCs) choline (Cho, 3.19 ppm), 

glycerophosphocholine (GPC, 3.23 ppm) and phosphocholine (PC, 3.22ppm) are also identifiable 

on the MRS spectra (Figure 14). The CCCs form part of a biochemical cycle that is involved in the 

synthesis and hydrolysis of the neurotransmitter acetylcholine (Figure 14). Although acetylcholine 

is also detectable at 3.21ppm using 1H-MRS, its concentrations are much lower than Cho, GPC, 

PC, meaning its peak cannot be distinguished from the other CCCs on the metabolite spectrum in 

vivo. Additionally, spectroscopy studies commonly quantify the CCCs as a single peak on the 

metabolite spectra (tCho), due their closeness on the metabolite spectra (Figure 14). 

Nevertheless, previous work from our lab, using functional magnetic resonance spectroscopy 

(fMRS), has demonstrated that Cho can be separated from the other CCCs (GPC+PC) on the 

metabolite spectra, and that relative differences in the concentrations of these compounds are 

behaviourally relevant. fMRS is an application of standard 1H-MRS and is used to study the 

temporal dynamics of metabolite concentrations, and how these changes are related to concurrent 

behaviour. For instance, fMRS was used by Lindner et al. (2017) to investigate the role of the 

ascending cholinergic system in visuospatial attention in the parieto-occipital cortex (POC). 

Significant changes in Cho were observed following attention shifting in the hemifield contralateral 

to the spectroscopy acquisition, while ipsilateral attention shifting or a control task did not 

significantly change Cho concentrations. These differences were in line with a priori hypotheses 

regarding the laterality of visuospatial attention and provided the first in vivo non-pharmacological 

evidence for the involvement of the human cholinergic system in visuospatial attention shifting. 

Lindner et al. (2017) also showed that modelling Cho as a separate peak from GPC and PC could 

reliably recover metabolite concentrations from simulated data at various spectral noise levels, and 

that the recovered concentrations of Cho and the other CCCs were independent of each other. 

fMRS has also be used to study the involvement of the striatal cholinergic system in cognitive 

flexibility. To do this Bell et al. (2018) had participants complete a multi-alternative probabilistic 

reversal learning task while 1H-MRS spectra were acquired in the dorsal striatum. During this task 
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participants learned associations between multiple stimuli and how frequently they produced 

favourable or unfavourable outcomes. Midway through the task, unbeknownst to the participants, 

these associations reversed so that stimuli that had produced favourable outcomes more frequently 

now produced unfavourable outcomes, and vice versa. Bell et al. (2018) found that there was a 

significant change in the concentration of Cho following the reversal of stimulus-outcome 

associations, even though there was no overall change in the total concentration of CCCs. These 

findings were in line with evidence from animal literature that suggests that the striatal cholinergic 

system is important for reversal learning (Bradfield et al., 2013; Brown et al., 2010; Ragozzino et 

al., 2009). Furthermore, resting levels of Cho were also reported to be associated with performance 

during probabilistic reversal learning (Bell et al., 2019). 

Based on these findings we posit that function-related changes in Cho concentrations may be 

reflective of the multi-scale dynamics of acetylcholine release (Lindner et al., 2017). Following its 

exocytosis from the presynaptic terminal, acetylcholine is hydrolysed into Cho and acetate by 

acetylcholinesterase in the synaptic cleft. There is then rapid reuptake of Cho back into the 

presynaptic neuron, where choline is converted into PC by choline kinase. PC can then either be 

converted into phosphatidylcholine and stored in the cell membrane or converted back into Cho. 

Cho is then combined with acetyl coenzyme A (acetyl-CoA) to produce acetylcholine via the 

enzyme choline acetyltransferase. As part of this cycle, Cho is the rate limiting factor in the 

synthesis of acetylcholine by choline acetyltransferase (Cuello, 1993; White & Wu, 1973). 

Therefore, increased exocytosis of acetylcholine from the presynaptic terminal into the synaptic 

cleft would increase demand for acetylcholine biosynthesis, and this would decrease the 

concentration of freely available Cho that is detectable using 1H-MRS (Löffelholz, 1998). Indeed, 

the functional changes we observe are also in-line with phasic changes in Cho seen following the 

stimulation of cholinergic neurons (Löffelholz, 1998). 
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Figure 14 Overview of the acetylcholing cycle (left), and the locations of the 

choline containing metabolites on an MRS spectra. Figures reproduced from 

Lindner et al. (2017).  

A number of previous studies have quantified the reliability of point resolved spectroscopy 

(PRESS) sequences for 1H-MRS. These include studies investigating the relationship between 

metabolite concentration variability and signal-to-noise ratio (Okada et al., 2007), metabolite 

quantitation approaches (Fayed et al., 2009), and inter-scanner differences (Chard et al., 2002). 1H-

MRS imaging was used by (Chard et al., 2002) to study intra-individual and inter-scanner 

variability in metabolite concentrations. By calculating coefficients of variation, a measure of an 

assay’s precision and repeatability, they found that intra-individual differences in tCho were 12.3%, 

while inter scanner (same model, different site) variability was 10.1%, suggesting that intra-

individual differences in tCho concentrations over time are greater than differences due to distinct, 

but equivalent hardware. Differences in striatal metabolite concentrations were investigated by 

Soreni et al. (2006), who quantified time of day and laterality effects on NAA and creatine in the 

striatum; Soreni et al. (2006) found a significant effet of time of day on NAA and NAA/creatine 

ratios, but not on creatine levels. Additionally, no laterality effects were found for either 

metabolites, or the ratio between them. Regional differences in tCho measures in the cerebellum 

were previously reported by Currie et al. (2013), however no previous studies, to the best of our 

knowledge, have investigated regional differences in Cho and GPC+PC separately, nor how 

consistent measures of Cho and GPC+PC are in the dorsal striatum and POC over time. 

Here, we assess within session how consistent estimates of choline metabolites are for spectra that 

are averaged from 128 and 256 transients, and we also quantify whether these metabolite 

concentrations are stable over time by acquiring spectra at two time points, one week apart. We 

aim to describe differences in metabolite concentrations over time, individual differences in 

metabolite estimates for acquisitions over different numbers of transients, and the consistency in 

metabolite estimates when quantifying CCCs as single and separate peaks. These outcomes will 
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help us better understand how to use 1H-MRS to study Cho and its predicted relationship with 

acetylcholine. Furthermore, our findings will inform future work on the functional relevance of 

Cho, including the use of fMRS to study behaviourally relevant changes in neurochemistry.    
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Methods 

Participants 

Twenty-three healthy adult participants (mean age = 24.552 years; SD = 7.442; 16 female) were 

recruited. Exclusion criteria were self-reported regular use of cigarettes, recreational drugs, or 

psychoactive medication, or clinical diagnosis of a neurological or psychiatric condition. Twenty 

participants (mean age = 25.191 years; SD = 7.792, 15 female) returned for the second scanning 

session. The repeat scans of each participant were performed one week apart (mean = 7.1 days; SD 

= 0.447 days), at approximately the same time of day (mean difference = 10.5 minutes; SD = 26.253 

min) to control for diurnal effects on metabolite concentrations (Soreni et al., 2006). All 

participants gave written informed consent before taking part in the study. Participants took part in 

the study on a voluntary basis, or for credit via the Research Panel of the School of Psychology and 

Clinical Language Sciences, University of Reading. The study was approved by the University of 

Reading Research Ethics Committee (ref.: UREC 19/14). 

MRS Data Acquisition 

1H-MRS spectra and MR images were acquired at the Centre for Integrative Neuroscience and 

Neurodynamics, University of Reading, on a 3 Tesla Siemens Magnetom Prisma-fit scanner using 

a single channel transmit-receive head coil. A high-resolution whole-brain T1 structural image was 

acquired using an MPRAGE sequence (TR = 2020 ms; TE = 2.99 ms; FOV = 250 x 250mm; flip 

angle = 9o; voxel = 1 mm isotropic; 192 slices). T2 HASTE images (TR = 1500 ms; TE = 82 ms; 

FOV = 220 x 220mm; flip angle = 150o; voxel = 0.7 x 0.7 x 3 mm; 15 slices) were acquired 

immediately prior to the acquisition of MRS spectra in the striatum and POC, positioning the axial 

plane of the voxel in the isocenter of the magnetic field, optimizing the homogenization of the 

magnetic field using manual shimming. The native scanner PRESS sequence (striatal voxel = 15 x 

10 x 15 mm; POC voxel = 15 x 15 x 15 mm; TR = 2000 ms; TE = 30ms) was used to acquire three 

spectra in the left striatum and left POC of all participants, as in our previous studies (Bell et al., 

2018, 2019; Lindner et al., 2017). The first was a spectrum averaged from 256 transients. The 

second was a water-unsuppressed spectrum, averaged from 15 transients. The third was a spectrum 

averaged from 128 transients. Order of spectral acquisition in the striatum and POC was 

counterbalanced between subjects. MR acquisition sessions were always the first of the day to 

minimize the effects of artifacts due to previous use of the scanner (such as frequency drift) on 

MRS signal acquisition (El-Sharkawy et al., 2006; Harris et al., 2014; Lange et al., 2011). 
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Data Analysis 

Pre-processing and Metabolite Quantitation 

Data preprocessing and metabolite quantitation were performed using java-based Magnetic 

Resonance User Interface software (jMRUI, version 6.0; http://www.jmrui.eu/; (Garcia et al., 2010; 

Naressi et al., 2001; Stefan et al., 2009)). Spectra were phase corrected using the corresponding 

regional water peak and the residual water peak was removed using the Hankel-Lanczos Singular 

Value Decomposition filter tool. Apodization of the spectra was not carried out following recent 

recommendations (Wilson et al., 2019). Metabolite basis sets were generated using the MATLAB 

FID-A toolbox (Simpson et al., 2015). Two basis set models were generated. The first contained a 

single peak for quantifying CCCs. This single peak (tCho1) was the average of the simulated 

phosphocholine (PC) and glycerophosphocholine (GPC) metabolites. The first basis set contained 

fifteen metabolites in total (acetate, aspartate, creatine, gamma‐aminobutyric acid (GABA), 

glucose, glutamate, glutamine, tCho1 (GPC+PC), lactate, myo-inositol, N‐acetyl aspartate 

(NAA), phosphocreatine, scyllo‐inositol, succinate, and taurine). The second basis set contained 

the same metabolites as the first, but also included a separate peak for choline. For the second basis 

set, tCho2 is the sum of Cho and GPC+PC. Metabolites were simulated at a field strength of 3T 

using a PRESS pulse sequence (TE1 = 16.6 ms, TE2 = 13.4 ms, 2048 points, spectral width = 

2399.8Hz, linewidth = 12.684Hz).  

Automatic quantification of metabolites from the spectra were calculated using the jMRUI tool 

Accurate Quantification of Short Echo time domain Signals (AQSES). The NAA peak in the 

spectra was shifted to 2.02 ppm to correct for chemical shift displacement, the metabolite model 

was realigned with the NAA peak in the spectra, and the exact position of the model was refined 

to align with the separate choline peaks. The following settings were used for quantification: equal 

phase for all metabolites; begin fixed timing; delta damping -10 to 40 Hz; delta frequency -10 to 

10 Hz, no background handling; 0 truncated points; 2048 points in AQSES; normalization on. 

Metabolite concentrations were corrected by calculating their amplitude relative to the 

corresponding regional water peak (acquisition correction=1, tissue correction=0.5555). 

MRS voxels were co-registered with high resolution T1 anatomical images using 

CoRegStandAlong in Gannet 3.1 and SPM-12 (Ashburner & Friston, 2005; Edden et al., 2014). 

During registration, the fraction of grey matter, white matter, and cerebrospinal fluid was calculated 

http://www.jmrui.eu/
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for each spectral acquisition. These fractional tissue compositions were used to correct 

concentrations for partial volume and relaxation effects using the MATLAB toolbox 

MRSParVolCo (https://github.com/DrMichaelLindner/MRSParVolCo), based on the formulae 

described by Gasparovic et al. (2006). 

Statistical analysis 

Statistical analyses and data visualisations were performed using the R programming language 

(Bengtsson, 2020; Gamer et al., 2019; Harrell Jr & Dupont, 2020; Lehnert, 2015; Mangiafico, 

2021; Papadakis et al., 2021; Phillips, 2017; R Core Team, 2020; Revelle, 2020; Wickham, 2016; 

Wickham & Bryan, 2019; Wilke, 2020). The Shapiro-Wilk test of normality was used to determine 

whether metabolite concentrations were normally distributed. Equivalent non-parametric tests were 

used for metabolite concentrations found to be non-normally distributed. Pearson’s r correlation 

coefficients were used to measure the strength of association between tCho1 and tCho2, and for 

intra- and inter-session measurements of metabolite concentrations using spectra averaged from 

128 and 256 transients for tCho1, Cho, and GPC+PC in the striatum and POC separately. Paired 

sample t-tests were used to determine whether the difference between concentrations measured 

using spectra averaged from 128 and 256 transients were statistically different at the group level. 

Intraclass-correlation coefficients were used to determine intra and inter-session consistency in 

metabolite concentrations for spectra averaged from 128 and 256 transients. Intraclass-correlation 

coefficients were interpreted as: Poor: ICC < 0.4; moderate: ≤ 0.4 ICC < 0.6; good: 0.6 ≤ ICC < 

0.75; excellent: 0.75 ≥ ICC, following the approach used by Baeshen et al. (2020). Intra-class 

correlation coefficients were calculated separately in the striatum and POC, and for tCho1, Cho and 

GPC+PC. The coefficient of variation (CV) was used as a measure of the intra- and inter-session 

precision and reliability of metabolite concentrations and is the ratio of a measure’s standard 

deviation and mean (𝐶𝑉 =  
𝜎

𝜇
). Bland-Altman plots were used to visualize agreement for within 

and between session measurements.  
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Results 

MRS Voxel Placement 

To localize voxel positioning MRS voxels were co-registered with high resolution T1 anatomical 

images using CoRegStandAlone in Gannet 3.1 (Ashburner & Friston, 2005; Edden et al., 2014). 

Subject space masks of voxel positioning were normalized into standard space and binarized using 

SPM-12. The sum of all standard space binary masks is visualized in Figure 15. 

To calculate the consistency of MRS voxel positioning between sessions within subjects we 

calculated the Hadamard product of the binary masks for sessions one and two in MNI space for 

the POC and Striatum. This gave the conjunction of the voxels included in the MRS volume for 

both sessions. The number of overlapping voxels was then divided by the mean number of voxels 

in the masks for sessions one and two and converted to percentage. Voxel placement consistencies 

were calculated for 19 of the participants who completed two scanning sessions (one participant 

did not have a T1 for co-registration in session one). The average consistency of voxel positioning 

in the striatum was 68.3% (SD = 15.6; range = 32.4 → 90.9), in the POC consistency was 53.8% 

(SD = 23.468; range = 8.0 → 87.2). 

 

 

Figure 15 Heatmap of voxel positioning in the parieto-occipital cortex (top) and 

striatum (bottom) for all participants in standard space. 
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Choline measures using single and separate peaks 

Firstly, we correlated concentrations of tCho1 and tCho2 to quantify the strength of the association 

between CCCs quantified using single and separate choline peaks. We observed strong positive 

correlations between tCho1 and tCho2 concentrations in the striatum for spectra averaged from 128 

and 256 transients in both sessions (p < 0.05 for all correlations; Figure 16). Significant positive 

correlations for tCho1 and tCho2 in the POC were found in session one for spectra averaged from 

256 transients (t(14) = 3.268, p = 0.006, 95% CI [0.241, 0.870], r = 0.657), and in session two for 

spectra averaged from 128 transients (rS(38) = 0.895, p < 0.001) (Figure 17). A summary of the 

number of participants for whom separate peaks for Cho and GPC were quantifiable across 

sessions, regions, and averages is summarised in Table 5.  

 

Figure 16 correlation between tCho1 and tCho2 measures in the striatum 
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Figure 17 correlation between tCho1 and tCho2 measures in the POC 

Session Region Transients N Spectra Acquired N Spectra Quantified 

1 

POC 
128 23 16 

256 23 16 

STR 
128 22 19 

256 22 22 

2 

POC 
128 20 13 

256 20 15 

STR 
128 20 18 

256 20 20 

Table 5 number of spectra acquired for each scan and the number of spectra 

where separate peaks for Cho and GPC+PC were quantified.  

Within Session analysis 

Single choline peak 

Paired sample t-tests were used to determine whether there were significant differences in tCho1 

concentrations in the striatum and POC for spectra averaged from 128 and 256 transients at the 

group level. No significant differences in metabolite concentrations were found in the striatum in 

the first (t(20) = -1.262, p = 0.221, 95% CI [-0.142, 0.035], mean difference = -0.054) or second 
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(t(19) = -0.014, p = 0.989, 95% CI [-0.071, 0.070], mean difference = -0.0005) session; nor were 

differences found in the POC in either session (first session: t(21) = -1.774, p = 0.091, 95% CI [-

0.089, 0.007], mean difference = -0.041; second session: (t(19) = -0.878, p = 0.391, 95% CI [-

0.090, 0.037], mean difference = -0.027). Within session consistency of tCho1 in the striatum for 

spectra averaged from 128 and 256 transients, assessed using intra-class correlation coefficient, 

showed poor consistency (F(20,21) = 1.37, p = 0.241, ICC = 0.156, ICC 95% CI [-0.278, 0.54]) in 

the first session, and poor consistency (F(19,20) = 1.75, p = 0.111, ICC = 0.273, ICC 95% CI [-

0.172, 0.629]) in the second session. POC tCho1 concentrations showed poor consistency (F(21,22) 

= 0.988, p = 0.51, ICC = 0.006, ICC 95% CI [-0.412, 0.406]) in the first session, and poor 

consistency (F(19,20) = 2.23, p = 0.041, ICC = 0.381, ICC 95% CI [-0.053, 0.697]) in the second 

session for spectra averaged from 128 and 256 transients. No significant association between 

spectra averaged from 128 and 256 transients were observed in the striatum or the POC in either 

session (p > 0.05, Figure 18). The coefficient of variance for spectra averaged from 128 and 256 

transients for each participant is summarised in Figure 20. In session one, the mean coefficient of 

variance was 8.529 in the striatum and 6.598 in the POC; in session two the mean coefficient of 

variance in the striatum and POC was 7.459 and 8.316, respectively. One participant had a 

coefficient of variance higher than 20% in the striatum for sessions one and two, and two 

participants had coefficients of variance greater than 20% in the POC in session two; this level has 

previously been used as a threshold below which a measurement is considered to be reliable 

(Baeshen et al., 2020). 
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Figure 18 Correlation between spectra averaged from 128 and 256 transients for 

tCho1 

 

Figure 19 Bland-Altman plot of the difference between spectra averaged from 

128 and 256 transients for tCho1 
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Figure 20 Coefficient of variance for spectra averaged from 128 and 256 

transients (denoted session 1 and 2 respectively) for tCho1 

Separate choline peaks 

No significant correlations in Cho concentrations were found for spectra averaged from 128 and 

256 transients in the striatum and POC in sessions one and two (p > 0.05, Figure 21). A significant 

positive correlation for GPC+PC concentrations were observed in the striatum in session one (t(16) 

= 2.521, p = 0.023, 95% CI [0.088, 0.701], r = 0.533), but not in session two nor in the POC in 

either sessions one or two (p > 0.05, Figure 24). Cho concentrations were not significantly different 

for spectra averaged from 128 and 256 transients at the group level in the striatum (first session: Z 

= -0.131, p = 0.899, 95% CI [-0.111, 0.075], median difference = -0.016, second session: Z = -

1.22, p = 0.229, 95% CI [-0.204, 0.063], median difference = -0.088), or in the POC (first session: 

Z = -0.745, p = 0.470, 95% CI [-0.085, 0.040], median difference = -0.024, second session: Z = -

0.489, p = 0.638, 95% CI [-0.052, 0.015], median difference = -0.004). GPC+PC concentrations 

were also not significantly different for spectra averaged from 128 and 256 transients at the group 

level in the striatum (first session: t(17) = -0.524, p = 0.607, 95% CI [-0.093, 0.056], mean 

difference = -0.019, second session: t(17) = 1.56, p = 0.137, 95% CI [-0.031, 0.205], mean 

difference = 0.087), nor the POC (first session: t(11) = 0.716, p = 0.489, 95% CI [-0.047, 0.092], 

mean difference = 0.023, second session: t(10) = -0.487, p = 0.637, 95% CI [-0.106, 0.068], mean 
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difference = -0.019). Cho concentrations in the striatum had poor consistency between spectra 

averaged from 128 and 256 transients in sessions one and two, as measured using intra-class 

correlation (first session: F(17,18) = 1.53, p = 0.188, ICC = 0.211, ICC 95% CI [-0.261, 0.606], 

second session: F(17,18) = 0.61, p = 0.843, ICC = -0.242, ICC 95% CI [-0.622, 0.236]); POC 

measures had poor consistency in the first session, and good consistency in the second session (first 

session: F(11,12) = 0.589, p = 0.805, ICC = -0.259, ICC 95% CI [-0.699, 0.338], second session: 

F(10,11) = 5.89, p = 0.004, ICC = 0.71, ICC 95% CI [0.251, 0.911]). GPC+PC concentrations had 

moderate consistency in the striatum in session one and the POC in session two (striatum: F(17,18) 

= 3.22, p = 0.009, ICC = 0.526, ICC 95% CI [0.103, 0.79], POC: F(10,11) = 3.01, p = 0.042, ICC 

= 0.502, ICC 95% CI [-0.078, 0.834]); consistency was poor in the POC in session one, and in the 

striatum in session two (POC: F(11,12) = 1.72, p = 0.183, ICC = 0.264, ICC 95% CI [-0.318, 0.71], 

striatum: F(17,18) = 1.18, p = 0.362, ICC = 0.084, ICC 95% CI [-0.377, 0.517]). The mean 

coefficient of variance for Cho in the striatum was 42.564 in session one, and 48.972 in session 

two, four participants in session one and five participants in session two had coefficients lower than 

20%; in the POC the mean coefficient of variance was 52.831 in session one and 26.227 in session 

two, three participants in session one and five in session two had values below 20% (Figure 23). 

GPC+PC measures in the striatum had a mean coefficient of variance of 10.019 in session one and 

17.724 in session two, sixteen participants in session one, and twelve in session two had values less 

than 20%. The mean coefficient of variance for GPC+PC in the POC was 7.387 in session one, and 

8.441 in session two, all participants had values below 20% in session one and only one participant 

in session two had a value that was now lower than 20%. 
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Figure 21 Correlation between spectra averaged from 128 and 256 transients for 

Cho 

 

Figure 22 Bland-Altman plot of the difference between spectra averaged from 

128 and 256 transients for Cho 
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Figure 23 Coefficient of variance for spectra averaged from 128 and 256 

transients for Cho 

 

Figure 24 Correlation between spectra averaged from 128 and 256 transients for 

GPC+PC 
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Figure 25 Bland-Altman plot of the difference between spectra averaged from 

128 and 256 transients for GPC+PC 

 

Figure 26 coefficient of variance for spectra averaged from 128 and 256 

transients for GPC+PC 
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Across Sessions analysis 

Single choline peak 

Paired sample t-tests were run to test whether tCho1 concentrations were significantly different 

between session one and session two. No significant difference in metabolite concentrations 

between sessions were found in the striatum for spectra averaged from 128 transients (t(17) = -

0.857, p = 0.403, 95% CI [-0.145, 0.061], mean difference = -0.042) or 256 transients (t(17) = 

0.642, p = 0.530, 95% CI [-0.048, 0.090], mean difference = 0.021), nor in the POC for spectra 

averaged from 128 transients (t(18) = -1.134, p = 0.272, 95% CI [-0.103, 0.031], mean difference 

= -0.036) or 256 transients (t(18) = -0.609, p = 0.550, 95% CI [-0.072, 0.039], mean difference = -

0.016). Between session consistency in tCho1 concentrations within the striatum, assessed using 

intra-class correlation coefficient, showed poor consistency (F(17,18) = 1.49, p = 0.204, ICC = 

0.197, ICC 95% CI [-0.274, 0.596]) for spectra averaged from 128 transients, and for spectra 

averaged from 256 transients (F(17,18) = 2.3, p = 0.044, ICC = 0.394, ICC 95% CI [-0.064, 0.719]). 

POC tCho1 concentrations showed poor consistency for spectra averaged from 128 transients 

(F(18,19) = 1.28, p = 0.3, ICC = 0.122, ICC 95% CI [-0.332, 0.534]), and poor consistency for 

spectra averaged from 256 transients (F(18,19) = 1.92, p = 0.084, ICC = 0.315, ICC 95% CI [-0.14, 

0.664]). No significant correlations in tCho1 concentrations between sessions one and two were 

observed for spectra acquired from 128 and 256 transients in the striatum and POC (Figure 27). 

Coefficients of variance between sessions are summarised in Figure 29. In the striatum, the mean 

coefficient of variance for tCho1 concentrations for spectra averaged from 128 transients was 9.202, 

for spectra from 256 transients the mean coefficient of variance was 7.324. In the POC these 

coefficients of variance were 8.363 and 6.338 for averages of 128 and 256 transients, respectively. 

One participant had a coefficient of variance that exceeded 20% in the striatum and POC for spectra 

averaged from 128 transients. 
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Figure 27 Correlation of across session difference for spectra averaged from 128 

and 256 transients for tCho1 

 

Figure 28 Bland-Altman plot of across session difference for spectra averaged 

from 128 and 256 transients for tCho1 
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Figure 29 coefficient of variance of across session difference for spectra averaged 

from 128 and 256 transients for tCho1 

Separate choline peaks 

Cho concentrations were not significantly different across sessions for spectra averaged from 128 

and 256 transients at the group level in the striatum (128 transients: Z = -0.314, p = 0.761, 95% CI 

[-0.177, 0.107], median difference = -0.026, 256 transients: Z = -0.958, p = 0.347, 95% CI [-0.180, 

0.051], median difference = -0.054), or in the POC (128 transients: Z = 0, p = 1, 95% CI [-0.066, 

0.136], median difference = -0.000016, 256 transients: Z = -0.275, p = 0.791, 95% CI [-0.120, 

0.043], median difference = 0.005). A significant difference in GPC+PC concentration between 

sessions was found in the striatum for spectra averaged from 256 transients (t(17) = 2.793, p = 

0.012, 95% CI [0.026, 0.186], mean difference = 0.106), but not for spectra averaged from 128 

transients (t(13) = 0.266, p = 0.795, 95% CI [-0.093, 0.118], mean difference = 0.013). No 

significant differences in GPC+PC concentrations were found in the POC for spectra averaged 

from 128 transients (t(9) = 0.949, p = 0.367, 95% CI [-0.045, 0.111], mean difference = 0.033) nor 

256 transients (t(11) = 0.645, p = 0.532, 95% CI [-0.059, 0.108], mean difference = 

0.024).Consistency of Cho concentrations in the striatum and POC across sessions, as measured 

using intra-class correlation, showed poor consistency for spectra averaged from 128 transients 

(striatum: F(13,14) = 1.35, p = 0.292, ICC = 0.149, ICC 95% CI [-0.381, 0.612], POC: F(9,10) = 
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1.1, p = 0.437, ICC = 0.049, ICC 95% CI [-0.548, 0.628]), and 256 transients (striatum: F(17,18) 

= 1.5, p = 0.202, ICC = 0.199, ICC 95% CI [-0.272, 0.597], POC: F(11,12) = 0.728, p = 0.697, 

ICC = -0.157, ICC 95% CI [-0.64, 0.428]). Intra-class correlation coefficients for GPC+PC showed 

spectra averaged from 128 and 256 transients both had moderate consistency in the striatum (128 

transients: F(13,14) = 2.88, p = 0.030, ICC = 0.485, ICC 95% CI [-0.022, 0.798], 256 transients: 

F(17,18) = 2.77, p = 0.019, ICC = 0.47, ICC 95% CI [0.029, 0.761]); moderate consistency for 

spectra averaged from 128 transients and poor consistency for spectra averaged from 256 transients 

were observed in the POC (128 transients: F(9,10) = 3.62, p = 0.029, ICC = 0.567, ICC 95% CI [-

0.022, 0.87], 256 transients: F(11,12) = 1.38, p = 0.293, ICC = .16, ICC 95% CI [-0.412, 0.652]). 

No significant correlations for Cho concentrations across sessions for spectra averaged from 128 

and 256 transients were observed in the striatum or the POC (p > 0.05, Figure 30). GPC+PC 

concentrations had a significant positive correlation in the striatum across sessions for spectra 

averaged from 256 transients (t(16) = 2.926, p = 0.010, 95% CI [0.170, 0.829], r = 0.590), however 

no other GPC+PC concentrations were significantly correlated across sessions (p > 0.05, Figure 

33). In the striatum the mean coefficient of variance for Cho measures across sessions was 51.787 

for spectra averaged from 128 transients, and 45.187 for 256 transients. For Cho in the striatum 

two participants had coefficients that were below 20% for spectra averaged from 128 transients, 

and three participants had coefficients lower than 20% for spectra averaged from 256 transients. In 

the POC the average coefficient of variance for Cho was 48.050 and 46.534 for spectra averaged 

from 128 and 256 transients, respectively. Three participants had coefficients of variance that were 

lower than 20% in the POC for spectra averaged from 128 transients, and four had coefficients 

lower than 20% for spectra averaged from 256 transients for Cho (Figure 32). Mean coefficients 

of variance for GPC+PC measures across sessions were 9.290 and 12.145 across sessions for 

spectra averaged from 128 and 256 transients, respectively. Mean GPC+PC coefficients of variance 

in the POC were 7.616 and 8.120 for spectra averaged from 128 and 256 transients, respectively. 

In the striatum two spectra averaged from 128 transients, and five from 256 transients had 

coefficients of variance that were greater than 20 % for GPC+PC, and in the POC one participant 

had a coefficient greater than 20% for both spectra averaged from 128 and 256 transients (Figure 

35).  
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Figure 30 Correlation of across session difference for spectra averaged from 128 

and 256 transients for Cho 

 

Figure 31 Bland-Altman plot of across session difference for spectra averaged 

from 128 and 256 transients for Cho 
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Figure 32 Coefficient of variance of across session difference for spectra 

averaged from 128 and 256 transients for Cho 

 

Figure 33 Correlation of across session difference for spectra averaged from 128 

and 256 transients for GPC+PC 
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Figure 34 Bland-Altman plot of across session difference for spectra averaged 

from 128 and 256 transients for GPC+PC 

 

Figure 35 Coefficient of variance of across session difference for spectra 

averaged from 128 and 256 transients for GPC+PC  
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Discussion 

We used 1H-MRS to assess the reliability of cholinergic metabolites in the striatum and cortex. We 

analysed averages of 128 and 256 transients in the dorsal striatum and POC in spectra acquired one 

week apart. Cholinergic metabolites were quantified using two different basis sets: one quantified 

cholinergic metabolites as a single peak (tCho1), while the other separated choline (Cho) from 

glycerophosphocholine and phosphocholine (GPC+PC). We found quantifying CCCs using 

separate peaks for choline and GPC+PC resulted in concentrations that were consistent with 

estimates when using a single peak in the striatum, but not in the POC. Additionally, we find tCho1 

and choline concentrations were inconsistent at the individual level within and between sessions, 

but there were no differences at the group level. Conversely, within session GPC+PC 

concentrations were consistent in the striatum at the individual level in one session. Between 

session GPC+PC were consistent between sessions for spectra averaged from 256 transients at the 

individual level, but were significantly different at the group level. GPC+PC concentrations were 

inconsistent within and between sessions in the POC, but showed no significant difference at the 

group level.  

tCho1 levels in the striatum were highly correlated with the sum of Cho and GPC+PC (tCho2) for 

both averages in both sessions. tCho1 and tCho2 were significantly correlated for 256 transients in 

session one, and 128 transients in session two for the POC, and for both acquisitions in both 

sessions in the striatum. Separate peaks for Cho and GPC+PC were also quantified more frequently 

in the striatum than in the POC.  Within session tCho1 concentrations were inconsistent at the 

subject level in the striatum and POC between spectra averaged from 128 and 256 transients, but 

no significant differences in metabolite concentrations were observed at the group level. The same 

results as tCho1 were found at the individual and group level for Cho. GPC+PC concentrations for 

spectra averaged from 128 and 256 transients were consistent at the subject level for the first but 

not the second session in the striatum, and for neither session in the POC; no group level differences 

were observed for GPC+PC. Across session tCho1 concentrations were inconsistent at the subject 

level in the striatum and POC for spectra averaged from 128 and 256 transients, but no significant 

differences in metabolite concentrations were observed at the group level. Cho concentrations 

showed the same trend as tCho1 across sessions. GPC+PC concentrations were consistent at the 

subject level across sessions for the striatum but not the POC. Significant group level differences 

were found for GPC+PC across sessions for spectra averaged from 256 transients, but no other 

group level differences were significant. These differences in metabolite concentrations are not due 
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to diurnal effects as participants were scanned at the same time of day, nor were they due to the 

heating of gradient coils causing scanner drift as all sessions were the first scan of each day. 

Conventional approaches for quantifying the choline containing metabolites from 1H-MRS spectra 

treat these metabolites as a single peak, however we have previously demonstrated that Cho can be 

separated from GPC+PC, and that this can be used to measure functionally relevant changes in 

metabolites (Bell et al., 2018, 2019; Lindner et al., 2017). Here, we again show that separate peaks 

for the CCCs can be quantified, and that the sum of these separate metabolites are positively 

associated with metabolite estimates with a single peak. This suggests that quantifying metabolites 

with a single peak for the CCCs quantifies equivalent parts of the metabolite spectra as when using 

separate peaks but oversimplifies the underlying biochemistry as it masks the functionally relevant 

Cho signal that is present within the metabolite signal. The between session coefficients of variance 

observed for GPC+PC in the striatum and POC are in line with previously reported values by Chard 

et al. (2002), however the coefficients we observed for Cho between sessions was around five times 

greater than we observed for GPC+PC. The difference in consistency between GPC+PC and Cho 

suggests that GPC+PC is a more stable measure over time, and that differences in tCho1 over time 

may be driven more by differences in Cho than in GPC+PC concentrations. This interpretation is 

in line with the fundings of Bell et al. (2018), who show that while there are functionally relevant 

changes in Cho following behavioural change, there was no significant changes in total choline, or 

other CCCs. We therefore interpret this difference in consistency over time as being relevant for 

the functional role that Cho plays in acetylcholine neurotransmission, and that variation in resting 

Cho levels over time may also explain some variance in intra-individual performance on tasks 

requiring the recruitment of the cholinergic system (Bell et al., 2019). 

Within sessions, quantified concentrations of tCho1, Cho, and GPC+PC from spectra averaged from 

128 and 256 transients in the striatum and POC were not significantly correlated, except for 

GPC+PC in the striatum in session one. These differences may be due to increased precision in 

metabolite concentration estimation during spectral acquisition and quantitation following an 

increase in the number of averaged transients. Conversely, these differences may reflect 

fluctuations in resting metabolite concentrations during acquisition, or noise due to participant 

movement. In either case, we found no significant differences in metabolite concentrations at the 

group level, suggesting that this variance may average out when inferences do not need to be drawn 

at the individual level. We are unable to explore these alternative explanations further with this 

dataset using approaches like bootstrapping because our archived spectral data were averages for 

each acquisition; therefore, we do not have individual spectra for each transient. Nevertheless, the 

difference in metabolite concentrations from spectra of different lengths raises important 
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considerations for work employing functional 1H-MRS to studying changes in metabolite 

concentrations in relation to behaviour. Experimental design should balance the trade-off between 

the temporal resolution required to study the behaviour of interest, and the signal to noise ratio in 

the metabolite spectra.  

One limitation of this study is that some unaccounted variance in between session metabolite 

estimates is likely to be due to inconsistency in voxel positioning. Though voxel positioning was 

guided by an individual’s anatomy, and the average consistency of voxel positioning was good, we 

also had a wide range in voxel positioning consistency in both the striatum and POC. Striatal voxel 

positioning consistency was in line with previous reports, but POC positioning was lower than 

previously reported voxel positioning consistency (~70%) (Dou et al., 2015). Furthermore, unlike 

Lindner et al. (2017), our POC voxel position was driven by anatomical boundaries, rather than a 

functional localiser. These issues could be addressed in future by using an automated voxel 

positioning, such as the Automated Voxel Placement procedure described by Woodcock et al. 

(2018). Furthermore, participant head motion during spectral acquisition could be controlled for by 

using prospective motion correction to ensure the anatomical location of the voxel is consistent 

across time and within each spectral acquisition (Zaitsev et al., 2010). 

In summary, we assess the use of 1H-MRS to investigate the reliability of measures of cholinergic 

metabolites in the striatum and POC. Quantifying CCCs with single and separate peaks showed 

these metabolite concentrations were related, and that using separate peaks for Cho and GPC+PC 

may more clearly explain functionally relevant cholinergic signals. Separate peaks were more 

frequently delineated in the striatum than in the POC and suggests there are regional differences in 

how these metabolites can be quantified. We observed greater intra-individual variability in tCho1 

and Cho than in GPC+PC. Disproportionate variability in Cho may reflect its functional 

relationship with acetylcholine dynamics, and therefore quantifying the CCCs using a single peak 

may mask functionally relevant information in the metabolite spectra. Further work is required to 

clarify the use of 1H-MRS to study the human cholinergic system in vivo including the use of 

standardised routines for positioning the spectroscopy voxel, and methods for online correction of 

motion artefacts during spectral acquisition. 
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Abstract 

Cognitive flexibility is essential for enabling an individual to respond adaptively to changes in their 

environment. Evidence from human and animal research suggests that the control of cognitive 

flexibility is dependent on an array of neural architecture. Cortico-basal ganglia circuits have long 

been implicated in cognitive flexibility. In particular, the role of the striatum is pivotal, acting as 

an integrative hub for inputs from the prefrontal cortex and thalamus, and modulation by dopamine 

and acetylcholine. Striatal cholinergic modulation has been implicated in the flexible control of 

behaviour, driven by input from the centromedian-parafascicular nuclei of the thalamus. However, 

the role of this system in humans is not clearly defined as much of the current literature is based on 

animal work. Here, we aim to investigate the roles corticostriatal and thalamostriatal connectivity 

in serial reversal learning. Functional connectivity between the left centromedian-parafascicular 

nuclei and the associative dorsal striatum was significantly increased for negative feedback 

compared to positive feedback. Similar differences in functional connectivity were observed for 

the right lateral orbitofrontal cortex, but these were localised to when participants switched to using 

an alternate response strategy following reversal. These findings suggest that connectivity between 

the centromedian-parafascicular nuclei and the striatum may be used to generally identify potential 

changes in context based on negative outcomes, and the effect of this signal on striatal output may 

be influenced by connectivity between the lateral orbitofrontal cortex and the striatum. 
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Introduction 

Flexible control over behaviour enables goal directed action by allowing an individual to respond 

to changes in its environment. Being adaptive to change means an individual can adjust their 

behaviour while maintaining their current goal, which is particularly important in ambiguous or 

volatile environments where there is uncertainty around optimal behaviours. One common 

behavioural assay is the reversal learning task (Izquierdo et al., 2017; Yaple & Yu, 2019). During 

reversal learning participants learn associations between actions and outcomes, with the aim of 

maximising reward. Some actions are more rewarding, while others are less so. These associations 

between actions and outcomes change during the task and therefore participants need to alter how 

they respond to continue maximising reward. Perseverative responding, the inability to effectively 

switch to an alternate response strategy following reversal, is indicative of inflexibility, and 

elevated in conditions characterised by repetitive behaviour including addiction (De Ruiter et al., 

2009; Ersche et al., 2011; Verdejo-Garcia et al., 2015), autism (Crawley et al., 2020; though also 

see D’Cruz et al., 2016) and obsessive compulsive disorder (Remijnse et al., 2006).  

Cognitive flexibility requires the orchestration of signals from across the cortical surface and 

subcortical brain regions. Previous work has shown that the striatum, with its afferent projections 

from the cerebral cortex, thalamus, amygdala, and hippocampus (among other regions) is well 

positioned to act as an integrative information hub (Haber, 2016) and supports reversal learning 

(Bradfield, Hart, et al., 2013; Cools et al., 2002; Ruge & Wolfensteller, 2016). One striatal afferent 

consistently implicated in studies of reversal learning is the orbitofrontal cortex (Dalton et al., 2016; 

Rudebeck & Murray, 2008; Rygula et al., 2010; Tsuchida et al., 2010). Reduced orbitofrontal 

activation during reversal learning is associated with increased inflexibility in obsessive 

compulsive disorder, (Remijnse et al., 2006), and with a reduced capacity to use negative outcomes 

to guide behaviour (Groman et al., 2019). Within the context of reversal learning, the orbitofrontal 

cortex is broadly thought to be involved in the shifting of behaviour following the reversal of 

outcome contingencies (Izquierdo et al., 2017; Uddin, 2021). More specifically, the medial and 

lateral portions of the orbitofrontal cortex are thought to have dissociable roles, with the former 

involved in outcome evaluation, and the latter representing the current state of the task and its 

associated contingencies (Hampshire et al., 2012; Hervig et al., 2020; Noonan et al., 2017). 

Therefore, though the medial division of the orbitofrontal cortex is generally important for goal 

directed learning, the lateral portion is specifically involved in reversal learning and changing 

behaviour following the reversal of reward contingencies (Dalton et al., 2016; Hampshire et al., 

2012; Morris et al., 2016). Previous work from Bell, Langdon, et al. (2019) used a multi-alternative 
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reversal learning task with a single uninstructed reversal to investigate the neural mechanisms 

underlying reversal learning. This task closely mimics the setup of animal studies of reversal 

learning. It has a protracted period of initial and reversal learning where participants learn correct 

and incorrect choices from experiencing trial-and-error. These protracted learning periods are like 

learning in animal reversal learning task (e.g. in T-mazes Izquierdo et al, (2017)), where many 

trials are required for learning stimulus-outcome contingencies. This is because participants are not 

instructed about the reversal of reward contingencies. Instead, they rely on ongoing outcome 

processing to signal a potential change in environmental contingencies. Increased functional 

connectivity between the medial orbitofrontal cortex and ventral striatum was found after initial 

learning, and before reversal; at this time participants should have a stable initial representation of 

the task to guide goal-directed behaviour. This finding supports the proposed role of the medial 

orbitofrontal cortex in outcome evaluation and goal directed behaviour. Conversely, increased 

functional connectivity between the lateral orbitofrontal cortex and the dorsal striatum was found 

during reversal learning. The strength of functional connectivity was inversely correlated with trials 

to criterion during reversal learning and was found to be mediated by the learning rate for positive 

prediction errors. This suggests lateral orbitofrontal connectivity with the dorsal striatum promotes 

changes in behaviour following reversal via learning from positive outcomes, reducing response 

perseveration.  

Another region important for cognitive flexibility is the thalamus. While traditionally viewed as a 

relay for sensory and motor signals, there is an increasing appreciation for the role of the thalamus 

in cognitive processes (Wolff & Vann, 2019). This includes cognitive flexibility and reversal 

learning, where several thalamic nuclei are known to have an important role. For instance, animal 

literature has shown that lesions to the mediodorsal nucleus of the thalamus does not impair initial 

discrimination learning but does impair reversal learning (Chudasama et al., 2001). More 

specifically, lesions to the mediodorsal thalamus are thought to impair reversal learning by 

preventing the use of recent history to guide future choice, and thus choice behaviour is increasingly 

stochastic following the reversal of reward contingencies (Chakraborty et al., 2016). In addition to 

the mediodorsal thalamus, the centromedian-parafascicular nuclei are also important for flexibility. 

However, while the mediodorsal projects primarily to the cortex with axon collaterals to the 

striatum, the centromedian-parafascicular nuclei project primarily to the striatum, with afferents 

that are preferentially connected with the striatal cholinergic system (Smith et al., 2009). Thalamic 

connectivity between the parafascicular nucleus of the thalamus (the rodent homologue of the 

primate centromedian-parafascicular (Smith et al., 2011)) and the striatal cholinergic system is 

important for reversal learning (Bradfield, Hart, et al., 2013); disconnection of these circuits 
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impairs reversal learning by reducing striatal acetylcholine efflux, which in turn increases 

interference between new and existing contingency encoding following reversal (Bradfield, 

Bertran-Gonzalez, et al., 2013; Brown et al., 2010). Therefore, though both the mediodorsal and 

centromedian-parafascicular nuclei support cognitive flexibility, they show distinct roles and 

connectivity patterns.  

Thalamostriatal connections between the centromedian-parafascicular nuclei and the striatal 

cholinergic system are also thought to be important for flexibility in humans. For instance, 

magnetic resonance spectroscopy has previously been used during uninstructed reversal learning, 

to demonstrate functionally relevant changes in dorsal striatal choline that are specific to the 

reversal of reward contingencies and are not present during initial learning (Bell et al., 2018). 

Moreover, baseline striatal choline levels are also associated with reversal learning performance, 

and suggests that the state of the striatal cholinergic system explains some variability in cognitive 

flexibility (Bell, Lindner, et al., 2019). Additionally, changes in functional connectivity between 

the centromedian-parafascicular nucleus in the thalamus and the dorsal striatum have been seen 

during reversal, but not initial learning in the same task (Bell, Langdon, et al., 2019). Based on 

evidence from animal and human literature we think the thalamostriatal connectivity between the 

centromedian-parafascicular nuclei and the dorsal striatal system is important for producing 

internal representations that are context dependent and support cognitive flexibility. More 

specifically, thalamostriatal connections are believed to recruit cholinergic interneurons to support 

new learning without “overwriting” prior knowledge (Bradfield, Bertran-Gonzalez, et al., 2013). 

Cholinergic involvement, alongside dopaminergic prediction errors, enables behaviour that can 

adaptively and efficiently respond to change by making the system sensitive to the broader 

behavioural context, beyond simply outcome contingencies. Furthermore, the striatal cholinergic 

system may enable the representation of context by modulating the output of striatal projection 

neurons (Stayte et al., 2021). Therefore, the concurrent representation of context-dependent 

contingencies in the striatum facilitates flexible behaviour that is responsive to change. Indeed, this 

preposition is supported by computational work from Franklin & Frank (2015), who show the 

inclusion of cholinergic interneurons in a model of the basal ganglia enables learning rates to 

respond to environmental noise and uncertainty. Cholinergic interneurons are tonically active and 

show a transient pause and rebound response to phasic activity. Changes in length of this transient 

pause in Franklin & Frank's (2015) model were associated with balancing flexibility and stability, 

with pause length inversely associated with learning rate during reversal. Shorter pauses facilitated 

faster updating of expected values but meant the system was more perturbed by noise, while the 

inverse was true for longer pauses. Importantly, a pause length that was reciprocally modulated by 
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medium spiny neuron activity (compared to models with fixed pause lengths), enabled the system 

to respond adaptively to change, minimising errors during probabilistic reversal. These dynamics 

may ultimately regulate the effects of dopamine on the plasticity of corticostriatal synapses, 

enabling the striatum to generate internal representations that are responsive to change and 

uncertainty in the environment. Furthermore, these dynamics are in line with our understanding of 

how variability in cholinergic transmission influences sensitivity to volatility and noise during 

reversal learning.  

Previous evidence in animals has shown that thalamostriatal connectivity between the 

centromedian-parafascicular nuclei and the striatal cholinergic system is important for preventing 

interference when integrating new and existing learning (Bradfield, Bertran-Gonzalez, et al., 2013). 

This is supported by our previous work in humans where we show that the striatal cholinergic 

system, recruited by corticostriatal and thalamostriatal connectivity, is involved in reversal learning 

(Bell et al., 2018; Bell, Langdon, et al., 2019; Bell, Lindner, et al., 2019). These works from Bell 

and colleagues bridge the gap between animal and human neuroscience, using a homologous task 

setup to consolidate how we think cortical, striatal, and thalamic systems interact during initial and 

reversal learning. However, most reversal learning tasks used in human neuroimaging work are 

more like serial reversal learning than the multi-alternative task of the Bell et al. studies. Internal 

representations of task context are readily acquired in serial reversal learning, and once an “if not 

A, then B” heuristic for correct and incorrect choices exists, no additional information is relevant 

for representing task structure. Therefore, task representation in serial reversal learning may be 

considered as “saturated”. However, task representations for the multi-alternative task can be 

considered as “unsaturated”, since participants are not instructed on the structure of the task and 

only compile mature task representations following both the protracted initial and reversal learning 

periods. Therefore, these differences in task representation may explain evidence suggesting 

dissociable roles for choline in serial and multi-alternative reversal learning in chapter 5 and Bell, 

Lindner, et al. (2019). We propose having a higher cholinergic “tone” at rest is beneficial under a 

saturated task representation, by limiting learning disproportionately from probabilistic and 

regressive errors, thereby promoting stability. By contrast, a lower tone is beneficial for unsaturated 

task representations, by maximising contrast between periods of stability and change, thereby 

promoting flexibility.  

However, it is unclear how cortical and thalamic regions interact with the striatum and produce 

flexible behaviour in a context with a saturated task representation. In such a context, there is no 

new contextual information following initial discrimination and reversal learning, because the 

reversal has been instructed. Therefore, connectivity specifically from the centromedian-
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parafascicular nuclei to the striatum may not contribute to serial reversal learning in the same way 

as in the uninstructed multi-alternative task, where the reversal needs to be discovered. Instead, 

behaviour may be mediated via cortically driven mechanisms, using prior knowledge to guide 

action in line with the known task representation. This is supported by evidence demonstrating that 

inputs from the orbitofrontal cortex to striatal cholinergic interneurons are necessary for generating 

internal representations in the striatum (Stalnaker et al., 2016). Alternatively, these thalamic 

connections may continue to be important after initial and reversal learning. For instance, they 

signal behaviourally relevant sensory events (Matsumoto et al., 2001; Schepers et al., 2017), and 

respond to changes in context (Yamanaka et al., 2018). Therefore, thalamostriatal connectivity may 

be relevant for identifying contextual change to promote flexibility in serial reversal as in the multi-

alternative task.  

To arbitrate between these possibilities, we use recent advances in parcellation approaches and 

functional magnetic resonance acquisition optimised for spatial specificity to examine the roles of 

orbitofrontal, striatal, and thalamic regions in producing cognitive flexibility in serial probabilistic 

reversal learning (Iglesias et al., 2018; Volz et al., 2019). In our task we define two distinct phases 

that appear consistently over successive reversal episodes. The “re-learning phase” is the period 

between the reversal of outcome contingencies and participants reaching the learning criterion. 

Once they reach criterion participants are in the “stability phase” until outcome contingencies 

reverse again. We used psychophysiological interaction analysis to study the functional 

connectivity between regions of interest in subdivisions of the cortex, striatum, and thalamus during 

re-learning and stability. Additionally, we conducted exploratory analyses investigating how 

reward and error signals may be used to guide behaviour during re-learning and stability phases. 
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Methods 

Participants 

36 healthy adult participants (mean age = 24.38 years; SD = 6.51; range = 18-49; 23 female) were 

recruited via opportunity sampling from the University of Reading community. Participants were 

eligible for participation if they were right-handed, and did not self-report the use of cigarettes, 

recreational drugs, or psychoactive medication or have a formal diagnosis of psychiatric or mental 

health condition. Participants were reimbursed £15 for their time. Seven participants were excluded 

from the final dataset. One participant had artifacts in MR data due to braces; one participant had 

technical errors during scanning; one participant had registration issues; four participants 

responded on less than 95% of trials during the task.  

Materials 

Magnetic resonance images were collected on a Siemens MAGNETOM Prisma 3T MRI Scanner 

with a 32-channel receiver head coil at the Centre for Integrative Neuroscience and Neurodynamics 

at the University of Reading. The probabilistic reversal learning task was programmed using 

MATLAB (2017b, The Mathworks, Inc, Natick, MA, United States) and Psychtoolbox-3 

(Brainard, 1997) on a Macintosh running macOS Sierra. The task was presented on a BOLDscreen 

LCD (Cambridge Research Systems Ltd, Rochester, Kent, United Kingdom) during scanning and 

displayed to the participant via a mirror placed above their eyes. Task presentation, synchronised 

with functional volume acquisition, was controlled by a computer running Windows 7, MATLAB 

2015b and Psychtoolbox-3. 

Learning task 

Two abstract images of fractal patterns were shown on the left and right hemifield of the visual 

display. Participants had to choose one of the two images within 2000ms by pressing the 

corresponding button on a button box, else a “too late” message was displayed. After selection, the 

chosen stimulus was immediately highlighted (duration: min = 1500ms, max = 2500ms, x̅ = 

2000ms, plus a jitter sampled from an exponential distribution (min = 500ms, max = 6000ms, x̅ = 

1000ms)). The outcome of the participant’s choice was then presented for 1000ms. A jittered 

fixation cross sampled from an exponential distribution (min = 500ms, max = 3000ms, x̅ = 1000ms) 

followed and was presented in the centre of the display. The participant’s cumulative points total 

was then presented for 500ms and the trial ended with a second jittered fixation cross in the centre 
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of the screen, sampled from a different exponential distribution to the first fixation cross (min = 

500ms, max = 6000ms, x̅ = 1000ms). Delays and jitters were optimised to separate events of interest 

without compromising the psychological features of the trial, desynchronise trial timings from the 

fMRI acquisition repetition time, and to fully sample across the hemodynamic response function. 

Figure 36 shows a schematic of the task trial structure and timings.  

 

Figure 36: Overview of a single trial. Participants are initially shown two abstract 

fractal images and given two seconds to choose one image. Their choice is then 

highlighted. The participant is then shown the outcome of their choice; this will 

either be an increase or decrease of 50 points if they selected an image, or 0 points 

if they made no choice. The outcome is followed by a fixation cross, their 

cumulative total so far, and finally another fixation cross. 

At the beginning of the task, one of the two images were randomly assigned as the correct image, 

and the other as the incorrect image. The probability of winning points on the correct image was 

0.8, and the probability of losing points was 0.2. The inverse was true for the incorrect image. 

Outcomes were pseudo-randomised such that the assigned probabilities were true for blocks of 20 

consecutive selections of the correct or incorrect choice. Additionally, no more than six of the same 

outcomes (win or loss) would be consecutively presented for the correct or incorrect choice. If 

participants won, their cumulative total increased by 50. If they lost, their cumulative total 

decreased by 50. If they did not choose an image, their cumulative total did not change. For 

outcome probabilities to reverse participants had to reach and maintain a predefined learning 

criterion: the selection of the correct image on five of the previous six trials. After reaching criterion 
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participants entered a stability phase where the probability of reversal was equal to the number of 

trials where criterion had been maintained, divided by 10 (adapted from (Hampton et al., 2006)). 

If criterion was not maintained, then the probability of reversal was reset to 0 and restarted once 

criterion was reached. This variable length was included to minimise identification of the learning 

criterion and anticipation of the reversal event. The reversal event involved the switching of 

outcome probabilities, with the correct image becoming incorrect and vice versa. On reversal, 

participants had to re-reach and maintain the learning criterion for the reassigned outcome 

probabilities (re-learning phase) before outcome probabilities would reverse again. Participants 

completed 360 trials of the reversal learning task. There was no limit on the number of reversal 

events a participant could experience. Left-right stimulus presentation was randomised across 

trials. Before starting, participants were instructed that: their aim was to collect as many points as 

possible; the outcome was dependent on the image they chose; one choice may be better than the 

other; and the better choice could change during the task. Participants completed 20 practice trials 

prior to entering the MRI scanner. Practice trials followed the same structure as trials in the scanner, 

but participants did not receive any feedback for their choices. Instead, hashtags were presented in 

place of outcome and cumulative total feedback.  

 

 

Figure 37 Trial and task phase overview of the serial reversal learning task. 

Dashed vertical lines show when criterion was reached (C); thin vertical lines 

show where outcome contingencies reversed (R) and a new learning event starts. 

Initial learning is the first learning event. After each reversal (R) participants are 

in the re-learning phase until they reach criterion (C). Participants are then in the 

stability phase until outcome contingencies reverse (R). The learning criterion 

must be maintained during the stability phase before reward contingencies 

reverse. Incorrect choices during the re-learning phase are defined as reversal 

errors, and the last reversal error of each re-learning phase is defined as the final 

reversal error. Each participant completes a total of 360 trials.  
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fMRI acquisition 

T2-weighted whole-brain blood oxygen level-dependent (BOLD) functional images were acquired 

using a multi-band 2D-echo-planar imaging sequence with GeneRalized Autocalibrating Partially 

Parallel Acquisitions (GRAPPA) (acceleration factor = 2)  [TR = 2160ms; TE = 30ms; slices = 93; 

voxel volume ≈ 1.6mm3; slice thickness = 1.6mm; distance factor = 0%; FOV = 205 x 205 mm; 

matrix = 128 x 128; flip angle = 90°; multiband acceleration factor = 3; phase encoding direction 

= A → P (negative polarity); interleaved acquisition; echo spacing = 0.75ms; fat suppression]. 

BOLD acquisition parameters were optimised for spatial resolution due to the scale of thalamic 

nuclei relative to standard parameters used at 3T (2.5-3mm isotropic), and because smaller voxels 

decreases signal loss in the orbitofrontal cortex as field inhomogeneities cause partial volume 

distortions for fewer voxels (Volz et al., 2019; Weiskopf et al., 2007). Fieldmap images were 

acquired to correct for distortions in the acquired data due to inhomogeneities in the magnetic field 

[TR = 2900ms; TE = 53.8ms; slices = 93; voxel volume ≈ 1.6mm3; slice thickness = 1.6mm; 

distance factor = 0%; FOV = 205 x 205 mm; matrix = 128 x 128; flip angle = 90°; multiband 

acceleration factor = 3; phase encoding direction = A → P and P → A; interleaved acquisition; 

echo spacing = 0.75ms; fat suppression; GRAPPA acceleration factor = 2]. High resolution T1-

weighted anatomical images were acquired with a magnetization-prepared rapid gradient-echo 

(MP-RAGE) sequence with GRAPPA (acceleration factor = 2) [TR = 2300ms; TE = 2.29ms; TI = 

900ms slices = 192; voxel volume ≈ 0.9mm3; slice thickness = 0.94mm; distance factor = 50%; 

slice oversampling = 16.7%; FOV = 240 x 240mm; matrix = 256 x 256; flip angle = 8 °; phase 

encoding direction = A → P; echo spacing = 7ms]. 

Analysis of fMRI data 

fMRI image analysis was performed principally using the FSL (6.0.4) toolbox from the Oxford 

Centre for Functional MRI of the Brain (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl), and 

the FreeSurfer image analysis suite (version 6.0.0). 

Preprocessing 

fMRI data pre-processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 6.00. 

Registration of high resolution structural, functional and standard space images was carried out 

using FLIRT (Normal search, 12 DOF) (Jenkinson et al., 2002; Jenkinson & Smith, 2001); 

structural registration to standard space was further refined using FNIRT nonlinear registration 

(Normal search, 12 DOF, warp resolution = 10mm) (Andersson et al., 2007a, 2007b). MCFLIRT 

http://www.fmrib.ox.ac.uk/fsl
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was used to identify motion artefacts in functional data. Motion and distortion correction were 

simultaneously applied to functional data using MCFLIRT parameters and B0 unwarping 

parameters from fieldmap images respectively. Functional data were spatially smoothed using a 

smoothing kernel (3.2 FWHM). 

Anatomical segmentation 

Cortical reconstruction and volumetric segmentation were performed with FreeSurfer. Firstly, 

anatomical images were processed using the FreeSurfer recon-all pipeline, which included the 

generation of subject specific parcellations of the medial and lateral orbitofrontal cortex. We then 

used the ThalamicNuclei tool in FreeSurfer to perform thalamus segmentation. This tool performs 

segmentation of the thalamus using Bayesian Inference, and is based on a probabilistic atlas 

constructed from histological and ex vivo MRI data (Iglesias et al., 2018). Subject space masks for 

the centromedian, parafascicular, mediodorsal (medial), and mediodorsal (lateral) nuclei of the 

thalamus and the medial and lateral portions of the orbitofrontal cortex were generated from the 

automated FreeSurfer parcellations. Masks were transposed from anatomical space to functional 

space using FLIRT affine transformation parameters and re-binarised. Centromedian and 

parafascicular nuclei masks were combined to create a single mask for the Centromedian-

parafascicular complex; mediodorsal (medial), and mediodorsal (lateral) masks were combined to 

create a mask for the mediodorsal nucleus. 

Statistical analysis  

First level and higher-level statistical analyses for the fMRI data were performed using FEAT. At 

the first level, two general linear models were run. 

Model 1 – trial-wide modelling for activation comparison across task phases 

The first modelled different trial types as separate regressors. These regressors were modelled as 

boxcar functions, the onset coincided with the onset of choice stimuli (the start of the trial as 

depicted in Figure 36) and the offset with the removal of the cumulative total (the start of the 

intertrial fixation cross; Figure 36). Twelve regressors were used to model different trial types at 

the subject level; Trial regressors are defined in Table 6, and are based on the phase of the task 

(initial learning, re-learning, or stability), the choice made (correct or incorrect), and the outcome 

of the choice (positive or negative feedback). A regressor to separate final reversal errors (Figure 

37) from other reversal errors was also included. Each regressor and its temporal derivative were 
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convolved with the canonical (double gamma) haemodynamic response function. Activation maps 

for each regressor were generated at the subject level by creating contrast estimates relative to an 

implicit baseline derived from fixation periods (Figure 36). Contrast estimates for this model were 

generated at the whole-brain level. 

 Initial learning Re-learning Stability 

 Correct Incorrect Correct Incorrect Correct Incorrect 

Win CI  CRe  CSt  

Loss  II  Re FRe PESt ISt 

Re_pa

r 

        

Abbreviation  Description 

CI Correct response and positive feedback during initial learning 

CRe Correct response and positive feedback during re-learning 

CSt Correct response and positive feedback during stability 

CR = (CI + CRe + CSt) All correct response and positive feedback trials 

II Incorrect response and negative feedback during initial learning 

Re Reversal error – Incorrect response and negative feedback during re-

learning (excluding the last Re trial for each learning event)  

Re_par Reversal error – As above, but with EV the parametrically modulated such 

that activation decreases from 1 to (excluding) 0 in each learning event. 

FRe Final reversal error – The last incorrect response and negative feedback 

during re-learning (for each learning event)  

PESt Probabilistic error - Correct response but negative feedback during 

stability  

ISt Incorrect response and negative feedback during stability 

Table 6 Definitions of trial types within the task used for the analysis of 

functional magnetic resonance imaging data based on the task phase, the 

participant’s choice, and the outcome of their choices. Task phases are described 

as based on definitions in Figure 37; correct choices are choices of the option 

with the higher probability of positive feedback, regardless of whether positive 

feedback was received; incorrect choices are choices with the higher probability 

of negative feedback. Positive feedback is the gain of 50 points irrespective of 

the participant’s choice, negative feedback is the loss of 50 points irrespective of 

the participant’s choice. 

Model 2 – epoch-wide modelling across task phases for PPI analysis 

The second general linear model modelled each epoch of the trial as a separate regressor and was 

used as the basis for our psychophysiological interaction analyses (PPI). These epochs were the 

decision-making phase, the anticipation phase, the outcome phase, and the cumulative total phase 

for each trial (see Figure 36 for a schematic of the trial epochs). The decision-making phase was 
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subdivided into decision making during initial learning, re-learning and the stability phase. The 

outcome phase was subdivided into positive, negative, and neutral (i.e. no choice on that given 

trial) feedback during each of the initial learning, re-learning, and stability phases separately. 

The purpose of the PPI analysis was to interrogate the functional connectivity of regions of interest 

in the orbitofrontal cortex and the thalamus with specific subregions of the striatum (Friston et al., 

1997; O’Reilly et al., 2012). 

Unilateral seed timeseries for the medial and lateral portions of the orbitofrontal cortex, and the 

mediodorsal and centromedian-parafascicular nuclei of the thalamus were extracted using subject-

space masks generated using FreeSurfer, and subjects pre-processed BOLD data. Medial 

orbitofrontal cortex was included as a control region for the lateral orbitofrontal cortex due to their 

dissociable roles in reversal learning. The mediodorsal thalamus was included as a control region 

as although it has some projections to the striatum (which do not project to cholinergic 

interneurons), the cortex is its main target. Conversely, the centromedian-parafascicular nuclei 

project preferentially to the striatal cholinergic interneurons, and these projections have been 

implicated specifically in reversal learning (Bell, Langdon, et al., 2019). The centromedian-

parafascicular nuclei and the mediodorsal nucleus also appear to have distinct functional roles 

during reversal learning. Previous evidence suggests the mediodorsal nucleus is important for using 

recent reward history to guide behaviour and minimising perseveration (Chakraborty et al., 2016), 

while the centromedian-parafascicular nuclei are important for generating multiple concurrent 

representations of contingencies that are relevant in different contexts, signalling behaviourally 

relevant sensory stimuli that signal a change in context, and minimising regressive error (Bradfield 

& Balleine, 2017; Brown et al., 2010; Matsumoto et al., 2001; Schepers et al., 2017; Yamanaka et 

al., 2018). 

For each general linear model, the timeseries of a seed region was included as a regressor, and the 

interaction between the psychological regressors and the seed timeseries was calculated. Therefore, 

each general linear model contained sixteen regressors. Each permutation of psychological 

regressor and seed timeseries was run as a separate model; these are summarised in Table 7. This 

resulted in forty-eight PPI models for each subject. Contrast estimates were generated using the 

interaction term from each PPI to identify differences in functional connectivity for positive and 

negative feedback during the outcome epoch and differences in functional connectivity between 

the re-learning and stability phases for the decision making and feedback epoch. Region of interest 

analysis was used to restrict our PPI results to three functional subdivisions of the striatum 

(associative, limbic and motor) that were defined a priori as target areas (Bell, Langdon, et al., 
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2019; Choi et al., 2012). Regions of interest were ipsilateral to the seed region used for PPI analysis, 

based on the predominant anatomical connectivity of corticostriatal and thalamostriatal circuits 

(Bradfield, Bertran-Gonzalez, et al., 2013; Gourley et al., 2013). 

 

Physiological regressors Psychological regressors 

Left-CM-Pf, 

Left-MD, 

Left-lOFC, 

Left-mOFC, 

Right-CM-Pf, 

Right -MD, 

Right -lOFC, 

Right -mOFC 

Decision making (Re-learning), 

Decision making (Stability), 

Positive feedback (Re-learning), 

Positive feedback (Stability), 

Negative feedback (Re-learning), 

Negative feedback (Stability) 

Table 7 Overview of physiological and psychological regressors used in the 

general linear model for psychophysiological interaction analysis.  

Group-level Estimates 

Higher analysis was used to calculate group level activation for our contrast estimates. Age was 

included as a covariate of no interest in our higher level analysis to control for maturational effects 

on our results, given the age range of our participants (Boehme et al., 2017); the number of reversals 

was also included to control for the number of learning events each participant completed. Group 

estimates were calculated using FLAME 1 (FMRIB's Local Analysis of Mixed Effects) in FSL 

using familywise error corrected (FWE) cluster thresholding (Z = 2.3, p < 0.05). For whole-brain 

contrasts, global and local maxima within each cluster were identified using a custom python script 

(https://github.com/bwilliams96/pyCL/blob/master/Label_copes.ipynb) that used atlasquery in 

FSL to produce an html report of the most probable region using the Harvard-Oxford cortical 

subcortical structural atlases. For each region, the coordinates, size, and p(FWE) corresponding to 

the highest z-value are reported. Our results follow published reporting guidelines for functional 

neuroimaging studies (Poldrack et al., 2008). 
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Results 

Behavioural summary 

All subjects included in the analysis experienced an average of 24.62 (SD = 5.67; Range = 10 - 37) 

reversals during the task and selected an image on >95% of trials. Correct responses, regardless of 

outcome, were made at significantly greater than chance level (mean correct choices = 254.38, 95% 

CI [248.66, ∞], 𝑡(28) = 22.13, 𝑝 < .001, SD = 18.10, Range = 193 - 290), and participants 

experienced an average of 24.62 (SD = 5.77; Range = 10 - 37) reversals (Figure 38). The average 

number of trials taken to reach criterion was 8.76 (SD = 4.33; Range = 5 - 40); an average of 3.07 

(SD = 2.30; Range = 0 - 18) perseverative errors were made following the reversal of contingencies 

before reaching criterion in each learning event. Participants did not respond on an average 2.79 

trials (SD = 3.59; Range = 0 - 15) during the task. An average of 4,718.97 (SD = 1,065.31, Range 

= 1200 - 6800) points were collected by the end of the task. The average reaction time of 

participants to choose following the onset of the stimuli was 621.57 milliseconds (SD = 123.86, 

Range = 367.07 - 917.30). 

 

Figure 38 Mean (±95% confidence intervals) number of correct, incorrect, and 

missed responses for each participant across the task. Mean (±95% confidence 

intervals) number of trials (blue) and trials to criterion (orange) in each learning 

event; grey bars are the number of participants who reached each learning event.  
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fMRI results 

Task-related activations are in line with previous studies of probabilistic reversal 

learning.  

First, we wanted to understand whether our data was in line with previous reports of probabilistic 

reversal learning. If results from these analyses are aligned with previous reports, then this suggests 

our task is broadly comparable with other designs. Significant bilateral insula activation was found 

when contrasting final reversal errors and correct responses (FRe > CR), in line with previous 

findings (Table 8, Figure 39) (Cools et al., 2002; Dodds et al., 2008; Freyer et al., 2009; Waegeman 

et al., 2014; Yaple & Yu, 2019; Zeuner et al., 2016). Reversal errors that did not lead to a change 

in behaviour (Re > CR) showed activation consistent with past findings in the anterior 

cingulate/paracingulate cortex (Kringelbach & Rolls, 2003), bilateral insular cortex and right 

frontal operculum cortex/inferior frontal gyrus (Table 8) (Mitchell et al., 2008). 

  Final reversal error > Correct 

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Frontal operculum/orbitofrontal 

cortex 
R 46 20 -4 297 4.24 < 0.001 

Insula L -32 24 -2 158 3.75 < 0.001 

Insula R 32 26 2 297 3.62 < 0.001 

        

  Reversal error > Correct 

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Anterior cingulate/paracingulate 

cortex 
R 8 22 40 275 3.84 < 0.001 

Cerebellum L -40 -50 -30 110 3.71 < 0.001 

Frontal operculum cortex/inferior 

frontal gyrus 
R 46 18 2 1811 3.77 < 0.001 

Frontal pole R 36 46 6 162 3.51 < 0.001 

Insula L -42 18 -4 202 3.68 < 0.001 

Insula R 32 26 2 1811 3.75 < 0.001 

Superior frontal gyrus R 14 10 62 233 3.71 < 0.001 

Table 8 Significant clusters from whole brain analysis of contrasts used in 

previous studies of probabilistic reversal learning (see text for details and 

citations). 
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Figure 39 Whole brain analysis shows similar activations for final reversal errors 

versus correct response as in previous studies of reversal learning (see text for 

details). Significant clusters were identified in bilateral insula (peak coordinates 

were 𝑥 = −32, 𝑦 = 24, 𝑧 = −2, 𝑧(𝑚𝑎𝑥) = 3.75 for the left insula; 𝑥 = 32,

𝑦 = 26, 𝑧 = 2, 𝑧(𝑚𝑎𝑥) = 3.75 for the right insula) and in the right 

orbitofrontal cortex (peak coordinates 𝑥 = 46, 𝑦 = 20, 𝑧 = −4, 𝑧(𝑚𝑎𝑥) =

4.24). A significance threshold of 𝑝(𝐹𝑊𝐸) < 0.05 and a cluster threshold of z 

> 2.3 was used. 

Centromedian-parafascicular nuclei and lateral orbitofrontal cortex show 

increased functional connectivity with striatal regions during the processing of 

negative feedback. 

We were next interested in assessing functional connectivity between the orbitofrontal cortex and 

striatum, and between the thalamus and the striatum. To do this we use psychophysiological 

interaction analysis. We used unilateral seed regions in the medial and lateral orbitofrontal cortex, 

and in the centromedian-parafascicular and mediodorsal nuclei of the thalamus. We measured 

ipsilateral functional connectivity with the striatum and restricted our analysis to regions of the 

associative dorsal striatum, motor dorsal striatum, and limbic ventral striatum (Bell, Langdon, et 

al., 2019; Choi et al., 2012). For the outcome epoch we assessed differences in functional 

connectivity between the re-learning and stability phases, and between positive and negative 

feedback. For the decision-making epoch we assessed differences in functional connectivity 

between the re-learning and stability phases (Table 7). 
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Outcome valence 

Functional connectivity between the left centromedian-parafascicular nucleus of the thalamus and 

the associative dorsal striatum during the outcome epoch was significantly greater for negative 

feedback than positive feedback (z(max) = 3.57, MNI coordinates = [-26, 4, -2], 38 voxels, p = 

0.012, Figure 40B & C). We also found significantly greater functional connectivity for negative 

feedback than positive feedback between the right lateral orbitofrontal cortex, and the associative 

dorsal striatum (z(max) = 4.14, MNI coordinates = [18, 16, -4], 39 voxels, p = 0.008, Figure 40E). 

Increased functional connectivity for negative feedback, relative to positive feedback suggests that 

thalamostriatal and corticostriatal circuits may use negative outcomes to guide adaptive behaviour 

during serial reversal learning. 
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Figure 40 A: Left centromedian-parafascicular (CMPf) seed region. B: 

Functional connectivity between the left centromedian-parafascicular and the left 

associative striatum was significantly greater during the processing of negative 

feedback versus positive feedback (peak coordinates 𝑥 = −26, 𝑦 = 4, 𝑧 = −2,

𝑧(𝑚𝑎𝑥) = 3.57). No significant differences in this contrast were seen when 

comparing between phases of the task. C: Strength of functional connectivity 

between left cortical (lOFC: lateral orbitofrontal cortex, mOFC: medial 

orbitofrontal cortex) and thalamic (CMPf, MD: mediodorsal nucleus) seeds with 

the associative dorsal striatum for negative feedback versus positive feedback. 

Significant functional connectivity was observed between the left centromedian-

parafascicular nuclei and the striatum, but other regions did not show significant 

functional connectivity. D: Right lOFC seed region. E: Functional connectivity 

between the right lOFC and the right associative striatum was significantly 

greater during the processing of negative feedback versus positive feedback (peak 

coordinates 𝑥 = −18, 𝑦 = 16, 𝑧 = −4, 𝑧(𝑚𝑎𝑥) = 4.14). F: Significant 

differences in functional connectivity were observed for negative versus positive 

feedback during the stability phase, but not between other phases of the task. A 

significance threshold of 𝑝(𝐹𝑊𝐸) < 0.05 and a cluster threshold of z >2.3 was 

used. 

To determine whether differences in functional connectivity between the centromedian-

parafascicular nucleus or the lateral orbitofrontal cortex and the associative striatum were localised 
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to a specific phase of the task we calculated differences in functional connectivity for negative and 

positive feedback across the re-learning and stability phases of the task. Functional connectivity 

between the lateral orbitofrontal cortex and the associative striatum was significantly greater for 

negative feedback than positive feedback during the stability phase (z(max) = 3.21, MNI 

coordinates = [14, 16, 0], 40 voxels, p = 0.006, Figure 40F). No differences were found between 

the centromedian-parafascicular and the associative striatum for negative and positive feedback 

across re-learning and stability. These findings are suggestive of a general error signal between the 

centromedian-parafascicular and the associative striatum used to guide behaviour by signalling 

potential changes in context based on negative feedback. Conversely, error signals between the 

lateral orbitofrontal cortex and associative striatum may be specifically used to implement a change 

in response strategy, in line with previous literature (Hampshire et al., 2012; Rygula et al., 2010). 

Importantly, no differences in functional connectivity between the medial orbitofrontal cortex and 

mediodorsal thalamus with our striatal regions of interest was observed during the outcome epoch 

of the task. These regions were included as control regions, and support the specificity of the 

thalamus with the dorsal striatal cholinergic system, and the lateral orbitofrontal cortex during 

serial reversal learning. The dorsal striatal cholinergic system is preferentially innervated by the 

centromedian and parafascicular nuclei, while the mediodorsal nucleus has few projections to the 

striatal cholinergic system (Smith et al., 2009). The striatal cholinergic system has an important 

role during reversal learning, and is associated with the generation and flexible use of multiple 

internal representations (Bell et al., 2018; Bradfield, Bertran-Gonzalez, et al., 2013; Bradfield & 

Balleine, 2017; Brown et al., 2010; Ragozzino et al., 2009; Stalnaker et al., 2016). Therefore, 

although we have not measured striatal cholinergic activity directly, the specificity of these results 

suggests that functional connectivity between the centromedian-parafascicular nucleus and the 

dorsal striatum might be associated with striatal cholinergic interneuron activity. Additionally, 

while the medial orbitofrontal cortex is involved in outcome evaluation and goal-directed 

behaviour, its inactivation is associated with general impairments in probabilistic learning (Dalton 

et al., 2016). Conversely, lateral orbitofrontal inactivation preferentially impairs reversal learning 

(Dalton et al., 2016), in line with other work suggesting the lateral orbitofrontal cortex is important 

for initiating change and minimising perseveration after the reversal of outcome contingencies 

(Bell, Langdon, et al., 2019; Hampshire et al., 2012; Hervig et al., 2020). Therefore, the specificity 

of lateral orbitofrontal result suggests its functional connectivity with the dorsal striatum changed 

as a function of reversal learning, while no differences in functional connectivity for the medial 

orbitofrontal cortex suggests the strength of its connectivity was consistent across the task. 
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Decision-making 

Next, we assessed functional connectivity between our seed regions in the orbitofrontal cortex and 

thalamus with the striatum during decision making. Functional connectivity between the right 

mediodorsal thalamus and the ventral striatum was significantly greater during the decision-making 

epoch of the re-learning phase than the stability phase (z(max) = 3.03, MNI coordinates = [16, 6, -

12], 8 voxels, p = 0.046). 

Although the mediodorsal thalamus was included as control regions based on the specificity of 

centromedian-parafascicular connectivity with the dorsal-striatal cholinergic system, there is prior 

evidence from animal and human literature for a role for the mediodorsal thalamus and ventral 

striatum in reversal learning. For instance the ventral striatopallidal circuit, which includes the 

ventral striatum and mediodorsal thalamus, helps the inhibition of responding to previously 

rewarded stimuli after contingency reversal, as lesions to the circuit impair reversal learning, but 

not stimulus discrimination or simple stimulus-outcome association learning (Ferry et al., 2000; 

Price, 2005). 

In the present study, increased coherence between the mediosorsal thalamus and ventral striatum 

during decision making may help prevent perseverative errors during re-learning, i.e. after the 

reversal has been instigated. We ran supplementary analyses to test this hypothesis but found no 

correlation between participant’s average number of perseverative errors and the difference in 

functional connectivity between the re-learning and stability phases (r = -0.029, p = 0.881). 

No differences in functional connectivity during decision making between the orbitofrontal cortex 

or centromedian-parafascicular nucleus and the striatum were observed during re-learning and 

stability phases.  

Cortical error signals are parametrically modulated by response perseveration. 

Following our findings describing the role of thalamostriatal and corticostriatal connectivity in 

reversal learning, we next ran a series of whole brain exploratory analyses. These analyses aimed 

to investigate further how negative and positive feedback may guide adaptive behaviour during 

serial reversal learning; we modelled different trial types as individual explanatory variables (Table 

6). 

We first tested for error signals that could relate to a change in behavioural strategy. To do this we 

compared final reversal errors, as defined by Cools et al. (2002), with errors unrelated to reversal 
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learning. Specifically, we compared final reversal errors with incorrect choices during initial 

learning (FRe > II) and found significant increases in activation in the orbitofrontal and insular 

cortices and middle frontal, paracingulate, and superior frontal gyri (Table 9). However, these 

differences do not provide causal evidence of activation resulting in behavioural change, since the 

difference could merely be due to differences in responding to negative outcomes during initial and 

reversal learning. Therefore, we compared error signals leading to a change in strategy with those 

that did not (FRe > II) > (Re > II) to test whether these effects were specifically associated with 

strategy change. None of our initial clusters survived thresholding. One potential explanation for 

this lack of overall statistical effect is that evidence leading to a change in strategy is accumulated 

gradually. Therefore, this gradient could be averaged out when grouping trial types. 

To test this hypothesis, we parametrically modulated reversal errors not leading to a change in 

strategy (Re_par), scaled descending from one to (excluding) zero. Re_par was then de-meaned, 

allowing us to combine learning events of differing lengths. We used a descending parametric 

modulator because we expect early reversal errors to produce greater responsivity than late reversal 

errors, akin to a prediction error signal. Reversal errors showed significant parametric modulation 

in regions involved in error processing, including the posterior insula, Heschl’s gyrus, and the 

posterior cingulate cortex (Table 9). These findings suggest activation may be related to the 

accumulation of evidence to determine when to reverse.  

  Final reversal error > Incorrect Initial learning 

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Angular gyrus R 52 -46 58 477 3.79 < 0.001 

Frontal operculum cortex L -40 18 0 163 3.68 0.001 

Frontal operculum/orbitofrontal 

cortex 
R 44 20 -4 497 4.71 < 0.001 

Inferior frontal gyrus R 52 20 -4 497 3.78 < 0.001 

Insula L -34 20 -2 163 3.36 0.001 

Insula R 32 26 4 497 3.85 < 0.001 

Lateral occipital cortex R 42 -58 56 477 3.74 < 0.001 

Middle frontal gyrus R 46 24 44 122 3.23 0.013 

Orbitofrontal cortex L -32 24 -4 163 3.86 0.001 

Paracingulate gyrus R 2 14 52 464 4.32 < 0.001 

Superior frontal gyrus R 2 28 52 464 3.91 < 0.001 

Supramarginal gyrus R 56 -44 50 477 4.12 < 0.001 

        

  
Reversal error Parametric modulation > Incorrect Initial 

learning 

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Central opercular cortex L -58 -6 8 162 3.43 < 0.001 

Central opercular cortex R 56 2 4 375 3.70 < 0.001 

Heschl's gyrus L -46 -24 12 120 3.47 0.003 

Heschl's gyrus R 44 -26 12 416 3.63 < 0.001 
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Insula R 40 -16 6 375 3.50 < 0.001 

Lateral occipital cortex L -52 -70 36 92 2.77 0.024 

Lingual gyrus L -30 -56 4 192 4.56 < 0.001 

Paracingulate gyrus L 0 44 -8 327 4.38 < 0.001 

Parietal operculum cortex L -52 -26 12 120 2.77 0.003 

Parietal operculum cortex R 56 -24 18 416 3.86 < 0.001 

Planum temporale  L -64 -24 14 184 2.96 < 0.001 

Postcentral gyrus R 66 -12 14 416 3.58 < 0.001 

Posterior cingulate cortex L -4 -52 14 191 3.71 < 0.001 

Precentral gyrus L -58 6 2 162 3.43 < 0.001 

Precentral gyrus R 62 4 6 375 3.49 < 0.001 

Precuneous L -8 -56 26 191 3.81 < 0.001 

Subcallosal cortex L 0 22 -14 327 3.47 < 0.001 

Supramarginal gyrus L -66 -24 26 184 3.34 < 0.001 

Supramarginal gyrus R 62 -28 24 416 4.02 < 0.001 

Table 9 Significant clusters from whole brain analysis of contrasts that describe 

how perseverative error processing may be used to guide adaptive behaviour 

following the reversal of outcome contingencies. 

Prefrontal regions supporting the implementation of cognitive flexibility.  

Considering our findings describing how errors may be used to guide behaviour, we next wanted 

to explore differences in activation for choices made during the re-learning and stability phases. 

We contrasted trials where participants made correct responses during the stability versus the re-

learning phase (CSt > CRe) and found a single significant cluster in the left frontal pole (Table 10, 

Figure 41). During the stability phase, participants demonstrate behaviourally that they understand 

which is the choice that is most likely to lead to a positive outcome. However, the relationship 

between actions and outcomes may be more uncertainty during the re-learning phase, given the 

recent reversal of reward contingencies. It has been suggested that the frontal polar cortex tracks 

the relative advantage of alternative response strategies, and recruits prefrontal regions to shift 

behaviour when the alternative strategy becomes advantageous (Mansouri et al., 2017). Therefore, 

while participants use a single response strategy during stability to gain positive outcomes, they 

may use the frontal polar cortex to track the relative advantage of the unchosen option. 
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Figure 41 The frontal pole showed significantly increased activation when 

participants made correct choices during the stability phase versus re-learning 

(peak coordinates 𝑥 = −22, 𝑦 = 40, 𝑧 = 30, 𝑧(𝑚𝑎𝑥) = 3.28). This signal 

may reflect tracking the reliability of the alternative task strategy during reversal 

learning. Participants have demonstrated behaviourally that they understand the 

currently correct action policy once they have reached the stability phase, 

whereas the correct policy would be more ambiguous during re-learning, and 

therefore there is not a clear correct and alternative action policy. A significance 

threshold of 𝑝(𝐹𝑊𝐸) < 0.05 and a cluster threshold of z >2.3 was used. 

Outcomes that deviate from expectations are also likely to guide behaviour given that correct and 

incorrect choice are mutually exclusive in our task. Therefore, we next compared activation when 

feedback was congruent or incongruent with a participant’s expectations by contrasting correct 

choices during the stability phase that led to negative versus positive feedback (PESt > CSt). This 

type of negative feedback, i.e. following a choice they considered correct, could indicate to the 

participant that reward contingencies changed as they are incongruent with expectations. The 

contrast showed increased activation across the cortex, including regions involved in feedback 

monitoring such as the angular gyrus, anterior cingulate, inferior frontal gyrus, insula, and 

orbitofrontal cortex (Table 10, Figure 42A). To confirm the specificity of this result we looked for 

the effect over and above activation differences due to positive and negative feedback (PESt > CSt) 

> (ISt > CSt). Activation in several regions discriminated between incongruent negative feedback 

and congruent positive feedback for correct responses during the stability phase, over and above 

responsivity to punishment (Table 10, Figure 42B). Most notably, significant activation was 

consistently found in the anterior cingulate and paracingulate cortex for activation over and above 

differences due to positive and negative feedback; significant activation in the lingual and 

precentral gyri was also observed in both analyses ((PESt > CSt) > (ISt > CSt) and PESt > CSt). 

Anterior cingulate has been found to support adaptive behaviour in macaques by using errors to 
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guide choice, while lesions to the anterior cingulate led to impairments in reversal learning 

(Chudasama et al., 2013).  

 

Figure 42 A: Significantly greater activation for probabilistic loss errors than 

correct choices during the stability phase was seen in the anterior cingulate, 

orbitofrontal cortex, insula, and inferior frontal gyrus (full details on regions and 

cluster statistics in Table 10). This contrast shows differences in activation when 

actual outcomes are incongruent with expected outcomes and may indicate 

regions that are involved in signalling unexpected outcomes that could lead to a 

change in behaviour. B: Significant differences in activation for probabilistic loss 

errors than correct choices, above activation for negative versus positive 

feedback (Probabilistic loss error > correct)  > (Incorrect > correct) (all stability). 

Several regions, including the anterior cingulate cortex (see Table 10 for full 

details) show increased activation to probabilistic loss errors specifically. These 

regions may use probabilistic loss errors to signal a potential change in context 

that could lead to the reversal of behaviour. A significance threshold of 

𝑝(𝐹𝑊𝐸) < 0.05 and a cluster threshold of z >2.3 was used. 

  Stability Correct > Re-learning Correct  

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Frontal pole L -22 40 30 145 3.28 0.002 

        

  Stability Probabilistic loss error > Stability Correct  

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Angular gyrus R 40 -48 44 198 3.21 < 0.001 

Anterior cingulate cortex L -8 24 28 1356 4.21 < 0.001 

Anterior cingulate cortex R 6 12 42 1356 3.96 < 0.001 

Frontal operculum cortex L -42 14 -2 261 3.80 < 0.001 
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Frontal operculum cortex R 40 26 6 380 3.70 < 0.001 

Inferior frontal gyrus L -48 18 2 261 3.28 < 0.001 

Inferior frontal gyrus R 44 22 8 380 3.43 < 0.001 

Insula L -30 18 10 261 4.25 < 0.001 

Insula R 32 20 8 380 5.30 < 0.001 

Intracalcarine cortex L -16 -68 6 134 3.94 0.002 

Intracalcarine cortex R 14 -60 6 118 3.95 0.005 

Lingual gyrus L -18 -56 2 134 3.15 0.002 

Middle frontal gyrus L -28 -2 58 307 3.65 < 0.001 

Middle frontal gyrus R 42 18 28 94 2.70 0.027 

Orbitofrontal cortex R 34 28 2 380 3.14 < 0.001 

Paracingulate gyrus L 0 22 44 1356 4.17 < 0.001 

Paracingulate gyrus R 4 14 50 1356 4.21 < 0.001 

Precentral gyrus L -30 -6 64 307 3.50 < 0.001 

Precentral gyrus R 54 10 18 94 3.79 0.027 

Precuneous R 22 -58 6 118 3.16 0.005 

Superior frontal gyrus L -26 4 54 307 3.54 < 0.001 

Superior frontal gyrus R 16 12 64 1356 4.18 < 0.001 

Superior parietal lobule L -36 -54 48 183 3.62 < 0.001 

Superior parietal lobule R 32 -44 40 198 3.59 < 0.001 

Supramarginal gyrus L -32 -46 38 183 3.51 < 0.001 

Supramarginal gyrus R 42 -42 42 198 3.46 < 0.001 

        

  
Stability (Probabilistic loss error > Correct) > Stability (Incorrect > 

Correct)   

Region L/R 𝒙 𝒚 𝒛 Size 𝒛(𝒎𝒂𝒙) 𝒑(𝑭𝑾𝑬) 

Anterior cingulate cortex L 0 34 -2 827 3.75 < 0.001 

Central Opercular cortex L -54 -16 10 943 3.64 < 0.001 

Central Opercular cortex R 64 -12 10 105 3.26 0.033 

Frontal pole L 0 56 4 827 3.76 < 0.001 

Lateral occipital cortex L -46 -76 28 189 3.53 < 0.001 

Lingual gyrus L -10 -46 -2 1125 3.70 < 0.001 

Middle temporal gyrus L -48 -48 8 943 3.87 < 0.001 

Paracingulate gyrus L 0 48 -4 827 3.99 < 0.001 

Planum temporale L -62 -14 8 943 3.55 < 0.001 

Postcentral gyrus L -6 -36 66 134 2.71 0.006 

Postcentral gyrus R 58 -10 20 105 2.54 0.033 

Precentral gyrus L -2 -32 56 134 3.39 0.006 

Precuneus L -6 -54 14 1125 3.83 < 0.001 

Precuneus R 12 -54 14 1125 3.80 < 0.001 

Posterior cingulate cortex L -10 -42 32 1125 4.06 < 0.001 

Superior temporal gyrus L -62 0 -10 943 3.99 < 0.001 

Supplementary motor cortex R 10 -2 48 193 3.59 < 0.001 

Table 10 Significant clusters from whole brain analysis of contrasts showing 

differences between making correct choices at during different phases of the task, 

and how unexpected feedback may be used to prepare switching behaviour in 

response to negative feedback. 
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Discussion 

The present study aimed to investigate the influences of cortical and thalamic brain regions on 

striatal activity during probabilistic reversal learning. We found that functional connectivity 

between the centromedian-parafascicular nuclei of the thalamus and a portion of the associative 

striatum was significantly greater during the processing of negative compared to positive feedback. 

A similar pattern of functional connectivity was observed between the lateral orbitofrontal cortex 

and the associative striatum. These results suggest the centromedian-parafascicular nuclei, and the 

dorsal striatum use negative feedback as a general error signal to promote flexibility. Lateral 

orbitofrontal cortex and dorsal striatum connectivity was specific to when participants were using 

the alternative response strategy, suggesting connectivity may be involved in the implementation 

of change to an alternate strategy. Additionally, we explored how cortical activity may influence 

cognitive flexibility. Following the reversal of contingencies, parametric modulation of regions 

involved in error processing, including the posterior cingulate and insula cortices, and Heschl's 

gyrus, was observed. This modulation may be related to the gradual accumulation of evidence that 

contingencies have reversed from negative feedback in preparation for change. Orbitofrontal and 

insular cortices and middle frontal, paracingulate, and superior frontal gyri showed significant 

activation for probabilistic loss errors during the stability phase. These regions have previously 

been reported to be important for error processing and change detection, and therefore activation 

may be related to anticipating future reversals. Lastly, we provide evidence suggesting that the 

frontal polar cortex is involved in monitoring the relative advantage of alternate response strategy, 

and a set of regions including the inferior frontal gyrus, anterior cingulate and orbitofrontal cortices 

that may signal when a reversal has occurred.  

Connectivity between the centromedian-parafascicular nuclei and striatum has previously reported 

to be involved in the expression of adaptive behaviour in rodents and humans (Bell, Langdon, et 

al., 2019; Bradfield, Bertran-Gonzalez, et al., 2013; Bradfield, Hart, et al., 2013; Brown et al., 2010; 

Yamanaka et al., 2018). Here we provide further evidence for the premise that thalamostriatal 

circuits are important for adaptive behaviour by showing that functional connectivity is 

significantly greater during the processing of negative versus positive feedback in a task where 

behavioural adaptation relies on the reliable tracking of negative outcomes. This difference in 

functional connectivity is in line with the purported role of the centromedian-parafascicular in 

signalling contextual change (Bradfield, Bertran-Gonzalez, et al., 2013; Yamanaka et al., 2018). In 

a simple, two-choice task, actual outcomes are likely to match expected outcomes; therefore, 

incongruent feedback might suggest that outcome contingencies had reversed.  Thus, in this task, 



Page | 156  

 

the centromedian-parafascicular may be involved in detecting changes in behavioural context by 

tracking negative feedback. This information could then be used to infer that the current 

behavioural policy needs to be changed. 

Indeed, this suggestion is in line with previous research showing greater activation in the 

centromedian-parafascicular nuclei when overcoming bias and responding to unexpected outcomes 

(Matsumoto et al., 2001; Minamimoto et al., 2005, 2014). Centromedian-parafascicular activity 

may indicate a general error signal that is used to guide behaviour by signalling a potential change 

in context following negative outcomes. This may also explain why significant differences in 

connectivity were not found during feedback in different phases of the task, i.e. thalamostriatal 

connectivity did not discriminate between losses and wins during stability or re-learning. This is in 

line with previous work showing that centromedian-parafascicular neurons habituate to non-reward 

but not reward-related stimulation (Alloway et al., 2014; Matsumoto et al., 2001). If we did see 

differences between phases of the task, then this would suggest the centromedian-parafascicular 

nuclei, and the dorsal striatum have reduced connectivity during some phases compared to others.  

Conversely, the lateral orbitofrontal cortex and the striatum show increased connectivity during 

negative feedback, but only during the stability phase, suggesting this connectivity may support 

changes in behaviour following reversal. This finding is in line with previous evidence that suggests 

the lateral orbitofrontal cortex is involved in the implementation of changes in behaviour during 

reversal learning (Hampshire et al., 2012; Rygula et al., 2010). 

Thalamic and cortical connections may be integrated within the striatum to coordinate cognitive 

flexibility. For instance, thalamostriatal connections have the potential to signal changes in context 

to the cholinergic interneurons at any time, simply by virtue of a non-specific error signal. 

Meanwhile, corticostriatal connections may either attenuate or enhance the influence of this 

thalamostriatal input to the striatum. For instance, other external inputs to the orbitofrontal cortex 

may signal that a change in behaviour is required, at which point connections from the orbitofrontal 

cortex to the striatum will modulate the influence of cholinergic interneurons on the output of the 

striatum.  

Previous studies using reversal learning have indicated that quantitative activation differences exist 

between final reversal errors and errors not leading to a change in strategy (Cools et al., 2002; 

Culbreth et al., 2016; Remijnse et al., 2006), although, we did not find such differences in our data. 

One potential explanation is the differences in the design of our probabilistic learning task. For 

instance, Cools et al. (2002) had participants complete thirty minutes of probabilistic discrimination 

learning training, Culbreth et al. (2016) also had participants complete practice trials (though they 
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do not describe the extent of practice), and instructed them to stick with a response. Therefore, 

participants in these studies received more training than our participants did. In terms of prior 

experience, the participants of Remijnse et al. (2006) are closest to our own, as they completed 

thirty trials of probabilistic discrimination learning without reversal. Yet, although Remijnse et al. 

(2006) used probabilistic feedback for correct choices, incorrect choices were always deterministic, 

and participants were told what stimulus would initially be correct. Therefore, discrimination of 

correct and incorrect choices should require less effort from the participant. By contrast, 

participants in our task were relatively naïve to probabilistic discrimination learning, and though 

they received instruction about probabilistic feedback and the existence of reversals they were not 

explicated instructed how to make choices in the task. We therefore cannot assume that reversal 

errors and final reversal errors in our task are necessarily equivalent with those of Cools et al. 

(2002), Culbreth et al. (2016) and Remijnse et al. (2006). Importantly, we also observe parametric 

modulation of reversal error signals in regions involved in change detection such as the insula and 

Heschl’s gyrus, and the posterior cingulate cortex. Furthermore, these differences in activation exist 

over and above negative feedback during initial learning. This may explain why Cools et al. (2002) 

did not see any modulatory effect of the number of preceding reversal errors on the final reversal 

error; here, we find that the insula appears to be modulated by preceding perseverative errors. 

Alternatively, the relatively small sample size of thirteen subjects used by Cools et al. (2002) could 

mean parametric modulation could not be detected in their dataset due to insufficient statistical 

power.  

Model-based approaches to learning assume mental representations of an environment are used to 

guide goal-directed behaviour. This representation could include multiple plausible environmental 

contexts, with representation of the current context being driven by recent experience. The 

orbitofrontal cortex is associated with the representation of the current context (Schuck et al., 2016; 

Wilson et al., 2014); in particular medial orbitofrontal and ventromedial prefrontal activity is 

thought to be related to the reliability of the inferred context (Domenech & Koechlin, 2015). 

However, an environment with multiple contexts requires arbitration between them for an 

individual to respond adaptively to change. The frontal polar cortex, found exclusively in primates, 

is well placed to support such adaptive responding (Bunge, 2004; Bunge et al., 2005; Koechlin, 

2014; Sakai & Passingham, 2006), and is associated with monitoring alternative strategies 

(Boorman et al., 2009). Here, we find increased activation in the frontal polar cortex during correct 

choices in stability compared to re-learning, and postulate that this is related to monitoring the 

reliability of the alternative task context. Though this study was not specifically designed to test 

this hypothesis, our reversal learning task is structured in such a way that once participants reach 
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the stability phase, they have demonstrated behaviourally that they understand the current context 

of the task due to our stringent learning criterion. During the re-learning phase, the reversal of 

contingencies increases the relative uncertainty around the currently correct choice, making the 

likelihood for each choice more similar. Participants need to determine whether contingencies have 

reversed or not. Because either choice could currently be correct, there is no alternative context 

during re-learning. However, after reaching the stability phase participants have demonstrated 

behaviourally that they understand the current task context. Therefore, the frontopolar cortex can 

track the relative reliability of the alternative context, while the medial orbitofrontal cortex 

implements the behavioural policy associated with the current context during the stability phase. 

This proposition is supported by the error signals we found when participants received 

probabilistically incorrect feedback to correct choices during stability as compared to rewarded 

correct choices. Here we see increased activation in regions often associated with error feedback, 

such as the insula and inferior frontal gyrus, but we also see increased activation in the orbitofrontal 

and anterior cingulate cortices. Error-dependent changes in activity within the orbitofrontal cortex 

may indicate a decrease in the reliability of the current context, due to choice outcomes being 

incongruent with the estimate of the current context (Ghahremani et al., 2010). Alternatively, 

orbitofrontal cortex activity may indicate preparation to switch responding as is suggested by our 

functional connectivity results. Anterior cingulate activation may signal outcomes that are 

unexpected based on the current context and this salient event may increase attentional resources 

for monitoring outcomes with a view to potentially change strategy (Behrens et al., 2007; 

Chudasama et al., 2013; Liu et al., 2015). 

There are several limitations with the current study which also provide possible avenues for future 

research. The first is the spatial specificity of our functional signal within subregions of the 

thalamus. In this study we aimed to minimise cross-contamination of our functional signal between 

nuclei within the thalamus by reducing our voxel size and smoothing kernel during preprocessing. 

Nevertheless, it is likely that signal blurring would still occur at the anatomical boundaries of nuclei 

within the thalamus, meaning that our timeseries used for psychophysiological interaction analysis 

may be influenced by more than one anatomical region. Therefore, it would be useful to validate 

these findings using ultra-high field magnetic resonance imaging as this would allow for greater 

spatial specificity and would provide further evidence that this signal is localised within the 

centromedian-parafascicular nuclei. Secondly, despite efforts taken to optimise echo-planar image 

acquisition to reduce dropout in the orbitofrontal cortex (Volz et al., 2019; Weiskopf et al., 2007), 

we found that for some participants there was still partial signal loss in the most rostral portions of 

the orbitofrontal cortex. Therefore, though we detected significant functional connectivity between 



 

Page | 159  

 

the lateral orbitofrontal cortex and the striatum, it would be worth undertaking further work 

optimising signal within the orbitofrontal cortex to further investigate how it interacts with 

thalamostriatal connections during reversal learning. 

In summary, we show that functional connectivity between the centromedian-parafascicular nuclei 

of the thalamus and the associative dorsal striatum contributes to adaptive behaviour. Functional 

connectivity is increased when processing negative versus positive outcomes and points to a simple 

system that utilises negative outcomes to detect potential changes in behavioural context and guide 

adaptive behaviour. This information may be used by the striatum to signal potential changes in 

context. Functional connectivity between the lateral orbitofrontal cortex and the associative dorsal 

striatum was also increased, but only during the stability phase. We believe this specificity is related 

to the role of the orbitofrontal cortex in flexibly implementing a change in behaviour when required. 

We also describe how task context might be represented and tracked within the prefrontal cortex. 

We suggest that activity within the frontal polar cortex is related to tracking the reliability of an 

alternative context to determine when a change in behaviour is required. Furthermore, we suggest 

that activity in the orbitofrontal cortex, anterior cingulate, insula, and inferior frontal gyrus may 

prepare neural architecture for change after receiving evidence that is incongruent with current 

expectations.  
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Abstract 

The production of cognitive flexibility requires the coordination and integration of information 

from across the brain, by the dorsal striatum. In particular, the striatal cholinergic system is thought 

to be important for the modulation of striatal activity. Research from animal literature has shown 

that chemical inactivation of the dorsal striatum leads to impairments in reversal learning. 

Furthermore, proton magnetic resonance spectroscopy work has shown that the striatal cholinergic 

system is also important for reversal learning in humans. Here, we aim to assess whether the state 

of the dorsal striatal cholinergic system at rest is related to flexible behaviour in reversal learning. 

We provide preliminary results showing that variability in choline in the dorsal striatum is 

significantly related to both the number perseverative and regressive errors that participants make, 

and their rate of learning from positive and negative prediction errors. These findings, in line with 

previous work, suggest the resting state of dorsal striatal cholinergic system has important 

implications for producing flexible behaviour. However, these results also suggest the system may 

have heterogeneous functionality across different types of tasks measuring cognitive flexibility. 

These findings provide a starting point for further interrogation into understanding the functional 

role of the striatal cholinergic system in flexibility. 
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Introduction 

Cognitive flexibility enables an individual to generate complex behavioural output that allows them 

to adaptively respond changes in their world. The neurotransmitter acetylcholine is thought to play 

a critical role in this ability (Yamanaka et al., 2018). Evidence of the importance of the striatal 

cholinergic system has mostly come from the animal literature, where cholinergic interneurons in 

the dorsomedial striatum have been shown to be important for flexibility (Bradfield & Balleine, 

2017)8. The reversal learning task is a commonly used paradigm for studying cognitive flexibility, 

with reversal learning associated with increases in acetylcholine release in the dorsomedial striatum 

(Ragozzino et al., 2009). Cholinergic neurotransmission modulates medium spiny neuron activity 

directly via the expression of muscarinic receptors on medium spiny neurons (Assous, 2021), and 

indirectly via the expression of acetylcholine receptors on glutamatergic and dopaminergic 

projection neurons, GABAergic interneurons, and as autoreceptors on cholinergic interneurons 

(Ding et al., 2010; English et al., 2012; Kljakic et al., 2017; Kreitzer, 2009). Inactivation of 

cholinergic interneurons, and antagonism of cholinergic receptors on medium spiny neurons in the 

dorsomedial striatum impairs reversal learning performance (McCool et al., 2008; Ragozzino et 

al., 2009; Tzavos et al., 2004). These impairments, as indexed by a reduced ability to update 

outcome contingencies following reversal and an increase in regressive errors are seen following 

the loss of cholinergic interneuron activity, or input from parafascicular nucleus of the thalamus to 

cholinergic interneurons (Brown et al., 2010; Ragozzino et al., 2002).  

The response of cholinergic interneurons to changes in outcome contingency is thought to be 

dependent on input from the parafascicular nucleus of the thalamus in rodents, and its homologue 

in human and non-human primates, the centromedian-parafascicular nuclei (Smith et al., 2011). 

Unlike other thalamostriatal pathways, connections between the centromedian-parafascicular 

nuclei and the striatum show preferential connectivity with cholinergic interneurons in the striatum 

(Smith et al., 2009). Moreover, these thalamostriatal connections are crucial for the role of 

cholinergic interneurons for flexible behaviour. For instance, inactivation of parafascicular nucleus 

in rodents impaired reversal learning performance, with similar behavioural impairments seen in 

studies where cholinergic interneurons were chemically inactivated (Brown et al., 2010). The 

importance of input from the parafascicular nucleus to the striatal cholinergic system is thought to 

be specific for reversal learning, and direct evidence for the role of these thalamostriatal 

connections for flexible behaviour is provided by Bradfield et al. (2013). Firstly, they show bilateral 

lesions of the parafascicular nucleus impair reversal, but not initial learning. Next contralateral 

 
8 See Chapter 1, “Reversal learning, the striatum, and acetylcholine” for a detailed overview. 
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lesions of the parafascicular nucleus and dorsomedial striatum, but not ipsilateral lesions of the 

same regions are also shown to impair reversal learning. This is because unilateral lesions spare 

thalamostriatal connections in the hemisphere contralateral to the lesions, while contralateral 

lesions leave no intact connectivity because at least one node of the circuit is ablated in each 

hemisphere. Finally, unilateral lesions of the parafascicular and the chemical inactivation of 

cholinergic interneurons in the contralateral hemisphere also leave reversal learning impaired, 

emphasising that it is the inactivation of these thalamic connections specifically that impair reversal 

learning, providing compelling evidence for the role thalamostriatal connectivity with the striatal 

cholinergic system in the production of cognitive flexibility.  

Compared with animal research, where invasive experiments can interrogate causal interactions, 

studying the role of thalamostriatal connectivity and the striatal cholinergic system in cognitive 

flexibility in humans is not trivial. Nevertheless, proton magnetic resonance spectroscopy (1H-

MRS) is a non-invasive application of nuclear magnetic resonance spectroscopy, and is used to 

measure brain metabolites in vivo (Keeler, 2010). Theoretically, 1H-MRS can be used to directly 

measure acetylcholine, but its concentration is so low in vivo that its signal is masked by other 

choline containing compounds (Bell, Lindner, et al., 2019). These choline containing compounds 

are choline, glycerophosphocholine (GPC), and phosphocholine (PC). These metabolites could be 

used to indirectly study acetylcholine function. For instance, choline is the rate-limiting factor in 

synthesis of acetylcholine (Lockman & Allen, 2002), and synaptic choline levels are related to 

cholinergic interneuron activity with prolonged activation of cholinergic interneurons decreasing 

the concentration of choline in the synaptic cleft (Löffelholz, 1998). However, typical 1H-MRS 

approaches to quantifying choline containing compounds model them as a single peak due to their 

proximity on the spectrum. Doing so masks any functionally relevant choline effects as choline 

concentrations are anti-correlated with other choline-containing compounds (Lindner et al., 2017). 

Therefore, if we were able to separably measure choline from GPC and PC, then we could use this 

to indirectly and non-invasively study cholinergic system in humans. Previous work from our lab 

has demonstrated that choline can be separated from GPC and PC using 1H-MRS at three tesla by 

modelling choline as a separate peak from a combined GPC and PC peak. We observed task related 

functional changes in choline that were in line with expected changes in acetylcholine release 

during visuospatial attention (Lindner et al., 2017) which suggests that quantifying choline 

separately from GPC+PC using 1H-MRS may be an appropriate proxy for measuring acetylcholine 

activity in vivo.  

We have previously used 1H-MRS to study the role of the dorsal striatal cholinergic system in 

cognitive flexibility using a multi-alternative probabilistic reversal learning task. Functional 1H-
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MRS was previously used by  Bell et al. (2018) to study changes in choline that functionally relate 

to flexible behaviour. 1H-MRS data were acquired in the dorsal striatum while participants 

completed a multi-alternative probabilistic reversal learning task, and levels of choline and 

GPC+PC were quantified from metabolite spectra. The reversal of reward contingencies coincided 

with a significant decrease in the concentration of choline, but not GPC+PC or the total sum of 

choline containing metabolites, in line with previous findings of choline kinetics following the 

stimulation of cholinergic neurons in animals (Löffelholz, 1998), and from previous work using 

1H-MRS to study visuospatial attention (Lindner et al., 2017). These results show the functional 

relevance of choline for cognitive flexibility and demonstrate the specificity of this metabolite as a 

proxy for acetylcholine release.  

Performance during reversal learning can be summarised in several ways. Direct measures of 

performance include the number of trials taken to reach a predefined learning criterion, number of 

correct responses, or the number of perseverative and regressive errors participants make. 

Following the reversal of reward contingencies in the task, the continued selection of the previously 

correct response strategy is known as response perseveration and the number trials before switching 

to using a difference response strategy is a measure of perseverative errors. Following a change in 

response strategy and in the absence of any reversal of outcome contingencies, trials where 

participants revert to using the now incorrect response strategy are used to measure regressive 

errors. Latent variables of performance can be inferred by fitting models to behavioural data. For 

instance, temporal difference reinforcement learning models can be used to model how participants 

learn from experience (Sutton & Barto, 2018). These models describe how people learn 

associations between actions and outcomes. Learning is driven by reward prediction errors, which 

describe the difference between actual and expected outcomes and are used to generate future 

estimates of expected value (Schultz et al., 1997). The rate of expected value updating is determined 

by the learning rate, and can be symmetric (a single learning rate α) or asymmetric for positive (α+) 

and negative (α−) prediction errors (Niv et al., 2012). Reversal learning performance is associated 

with dorsal striatal choline levels at rest, with Bell, Lindner et al. (2019) finding choline 

concentrations were positively correlated with perseverative errors, and negatively correlated with 

α-. Additionally, α- was negatively correlated with perseverative errors during reversal learning. 

These results show that lower levels of choline in the dorsal striatum at rest are associated with a 

quicker change in behaviour following the onset of reversal during multi-alternative probabilistic 

reversal learning and suggests that participants who reversed more quickly had lower levels of 

acetylcholine at rest, or more efficient re-uptake of choline following acetylcholine release. 
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In comparison to multi-alternative probabilistic reversal learning, two-choice serial reversal 

learning task is computationally simpler to solve. This simplicity means participants can feasibly 

complete multiple reversals over the course of the task. In chapter 4, we show that functional 

connectivity between the centromedian-parafascicular nuclei and the associative dorsal striatum is 

significantly increased during the processing of negative feedback relative to positive feedback. 

This change in functional connectivity could reflect a general error signal from the thalamus to 

cholinergic interneurons to promote flexible behaviour. However, these results do not directly 

implicate the striatal cholinergic system in the generation of flexible behaviour. Therefore, we next 

want to use 1H-MRS to determine whether, in line with animal literature and our previous human 

work, serial reversal learning performance is associated with the striatal cholinergic system. More 

specifically, we are interested in the relationship between reversal learning and choline in the dorsal 

striatum at rest. Participants completed a probabilistic reversal learning task and we then acquired 

spectroscopy data from the dorsal striatum while at rest. Based on previous results, we predict 

reversal learning performance, as indexed by perseverative and regressive errors and parameter 

estimates from reinforcement learning models, will be associated with levels of choline in the 

dorsal striatum at rest.  
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Methods 

Participants 

Thirty three healthy adult participants were recruited to take part in this study. Thirty one of these 

participants were a subset of participants who also took part in the study described in chapter 4. 

Participants were recruited through opportune sampling within the University of Reading 

community. Eligible participants were right-handed, and self-reported no use of cigarettes, 

recreational drugs, prescription of psychoactive medication, and that they had no formal diagnosis 

of a psychiatric or neurological condition. Participants received £15 compensation for their time. 

Participants were included in the analysis reported here if they responded on at least 95% of the 

trials in the learning task, if their MRS spectral acquisition appeared correctly aligned within the 

striatum on their T1 acquisition, and if we were able to quantify separate peaks for choline and 

glycerophosphocholine plus phosphocholine. Three participants were excluded because they 

responded on fewer than 95% of trials, one had registration issues, one had no behavioural data, 

one was manually removed as their behaviour suggested they did not understand the task, one had 

spectroscopy data lost, four had spectra that were corrupted during acquisition, and nine had 

choline peaks that could not be separated. Our sample used for statistical analyses consisted of 

thirteen participants (mean age = 22.69 years; SD = 3.20; range = 18-29; 11 female). The study 

was approved by the research ethics committee of the University of Reading [UREC 19/42].  

Probabilistic reversal learning task  

This task has been described previously in chapter 4. Briefly, two abstract images of fractal patterns 

were shown on the left and right hemifield of the visual display. Participants had to choose one of 

the two images within 2000ms by pressing the corresponding button on a button box, else a “too 

late” message was displayed. The outcome of the participant’s choice was then presented, followed 

by their cumulative points total. Figure 43 shows a schematic of the task trial structure and timings.  
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Figure 43 Overview of a single trial. Participants are initially shown two abstract 

fractal images and given two seconds to choose one image. Their choice is then 

highlighted. The participant is then shown the outcome of their choice; this will 

either be an increase or decrease of 50 points if they selected an image, or 0 points 

if they made no choice. The outcome is followed by a fixation cross, their 

cumulative total so far, and finally another fixation cross. 

At the beginning of the task, one of the two images were randomly assigned as the correct image, 

and the other as the incorrect image. The probability of winning points on the correct image was 

0.8, and the probability of losing points was 0.2. The inverse was true for the incorrect image. 

Outcomes were pseudo-randomised such that the assigned probabilities were true for blocks of 20 

consecutive selections of the correct or incorrect choice. Additionally, no more than six of the same 

outcomes (win or loss) would be consecutively presented for the correct or incorrect choice. If 

participants won, their cumulative total increased by 50. If they lost, their cumulative total 

decreased by 50. If they did not choose an image, their cumulative total did not change. For 

outcome probabilities to reverse participants had to reach and maintain a predefined learning 

criterion: the selection of the correct image on five of the previous six trials. After reaching criterion 

participants entered a stability phase where the probability of reversal was equal to the number of 

trials where criterion had been maintained, divided by 10 (adapted from (Hampton et al., 2006)). 

If criterion was not maintained, then the probability of reversal was reset to 0 and restarted once 

criterion was reached. The reversal event involved the switching of outcome probabilities, with the 

correct image becoming incorrect and vice versa. After reversal, participants had to re-reach and 
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maintain the learning criterion for the reassigned outcome probabilities before outcome 

probabilities would reverse again. Participants completed 360 trials of the reversal learning task. 

Participants completed 20 practice trials. Practice trials followed the same structure as trials in the 

scanner, but participants did not receive any feedback for their choices. Instead, hashtags were 

presented in place of outcome and cumulative total feedback.  

 

 

Figure 44 Trial and task phase overview of the serial reversal learning task. 

Dashed vertical lines show when criterion was reached (C); thin vertical lines 

show where outcome contingencies reversed (R) and a new learning event starts. 

Initial learning is the first learning event. After each reversal (R) participants are 

in the re-learning phase until they reach criterion (C). Participants are then in the 

stability phase until outcome contingencies reverse (R). The learning criterion 

must be maintained during the stability phase before reward contingencies 

reverse. Incorrect choices during the re-learning phase are defined as reversal 

errors, and the last reversal error of each re-learning phase is defined as the final 

reversal error. Each participant completes a total of 360 trials. 

Computational Modelling 

Overview 

Two models were fit using mean-field variational Bayes to perform hierarchical Bayesian inference 

on our behavioural data using the MATLAB computational/behavioural modelling toolbox (Piray, 

Dezfouli, et al., 2019). Calculating parameter distributions at the population level using hierarchical 

Bayesian inference is advantageous over hierarchical parameter estimation, since one of the 

assumptions of hierarchical parameter estimation is that a given model is responsible for generating 

data from all subjects. During hierarchical parameter estimation, each participant equally 

influences group level parameters as model identity is included as a fixed effect despite it not 
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necessarily being true that one given model best explains the behaviour of each subject. By contrast, 

hierarchical Bayesian inference takes a random effects approach to parameter estimation and model 

comparison (Piray & Daw, 2020).Therefore, an advantage of hierarchical Bayesian inference over 

hierarchical parameter estimation is that it includes a step where the responsibility of each model 

for generating a given dataset is calculated, and this responsibility influences group parameter 

estimation. The modelling approach described below follows recommendations from Wilson & 

Collins (2019). 

Models 

Model one is a model-free reinforcement learning model with a single learning rate parameter (α), 

and an inverse temperature parameter (β). The learning rate parameter defines the rate that value 

estimates are updated based on the difference between expected and actual outcomes, also known 

as a prediction error. The inverse temperature parameter describes the degree to which choices are 

based on value estimates. The lower an agent’s inverse temperature parameter, the more stochastic 

their choices will be. When β=0, choices would be made completely at random; when β=∞ the 

choice with the largest expected value would be deterministically chosen. In this model the softmax 

function is used to calculate the probability of making choice 𝑘 at time 𝑡 (𝑝𝑡
𝑘), and is based on 

expected values 𝑄 and the inverse temperature parameter β. These probabilities are used during 

model fitting to calculate parameters that best describe the data. The softmax choice rule is defined 

as: 

𝑝𝑡
𝑘 =

𝑒βQ𝑡
𝑘

∑ 𝑒βQ𝑡
𝑖𝐾

𝑖=1

(1) 

 

where 𝑄𝑡
𝑘 is defined as: 

𝑄𝑡
𝑘 = 𝑉𝑡

𝑘  (2) 

The expected value for choice 𝑘 is updated such that 𝑉𝑡+1
𝑘  is equal to 𝑉𝑡

𝑘 plus the product of the 

learning rate (α) and the prediction error (𝛿) (eq. 3). The prediction error 𝛿 is defined as the 

difference between the actual 𝜆𝑡 and expected value 𝑉𝑡
𝑘 for choice 𝑘 at time 𝑡 (eq. 4). 

𝑉𝑡+1
𝑘 = 𝑉𝑡

𝑘 + α𝛿𝑡 (3) 



 

Page | 177  

 

𝛿𝑡 = (𝜆𝑡 − 𝑉𝑡
𝑘) (4) 

Model two is a model-free reinforcement learning model with separate learning rates for positive 

(α+) and negative (α−) prediction and errors (eq. 5) and an inverse temperature parameter (β). The 

softmax function (eq. 1) is used to calculate the probability of making choice 𝑘 at time 𝑡 (𝑝𝑡
𝑘). The 

expected value for choice 𝑘 is updated such that 𝑉𝑡+1
𝑘  is equal to 𝑉𝑡

𝑘 plus the product of the learning 

rate (α+/−) and the prediction error (𝛿) (eq. 5). The prediction error 𝛿 is defined as the difference 

between the actual 𝜆𝑡 and expected value 𝑉𝑡
𝑘 for choice 𝑘 at time 𝑡 (eq. 4). Separate learning rates 

for positive and negative prediction errors were included in this model because they have been 

shown to have asymmetric effects on expected value updating (Niv et al., 2012). 

 

𝑉𝑡+1
𝑘 = {

𝑉𝑡
𝑘 + α+𝛿𝑡              if 𝛿 > 0

𝑉𝑡
𝑘 + α−𝛿𝑡        otherwise

(5) 

Model fitting 

Model fitting and parameter estimation was performed using hierarchical Bayesian inference as 

implemented in the Computational/Behavioural Modelling toolbox (Piray, Dezfouli, et al., 2019). 

Model fitting was performed using behavioural data from the twenty-nine participants who 

successfully completed the reversal learning task; data from these participants were modelled to 

produce better estimates of group-level parameter distributions. In the first step of model fitting 

each model was fitted to participant’s data using Laplace approximation for non-hierarchical 

inference to generate a maximum a-posteriori estimates for each parameter for each subject, and 

log-model evidence for each subject. This non-hierarchical model fit requires that parameters have 

Gaussian priors; for all parameters these priors were specified as having mean=0, variance =6.25, 

in line with previous reports (Piray, Dezfouli, et al., 2019; Piray, Ly, et al., 2019). These values 

were selected because it creates a wide range of values that parameters could take. These values 

were then used during hierarchical Bayesian inference, implemented using mean-field variational 

Bayes. Each iteration of model fitting contained the following steps 1. Calculate summary statistics, 

2. Update estimates of the posterior distribution for group parameters, 3. Update estimates of the 

posterior for individual parameters, 4. Update estimates of responsibility for each model in 

generating given data. Model fitting was iterated until the model reached convergence. The best 

fitting model was determined by the model with the highest exceedance probability, which is the 

probability that a given model is more commonly expressed than other candidate models in model 
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space. Lastly, Model fitting was re-run, but this time under the hypothesis that observed differences 

in model fit are due to chance. This returns the protected exceedance probability, and a more 

conservative approach for finding the best fitting model (Piray, Dezfouli, et al., 2019). 

Magnetic Resonance Spectroscopy 

Data acquisition  

1H-MRS spectra and MR images were acquired at the Centre for Integrative Neuroscience and 

Neurodynamics, University of Reading, using a Siemens Magnetom Prisma-fit scanner 3T scanner 

and a 32 channel receiver head coil. High resolution T1-weighted anatomical images were acquired 

with a magnetization-prepared rapid gradient-echo (MP-RAGE) with GeneRalized Autocalibrating 

Partially Parallel Acquisitions (GRAPPA) (R = 2) sequence [TR = 2300ms; TE = 2.29ms; TI = 

900ms slices = 192; voxel volume ≈ 0.9mm3; slice thickness = 0.94mm; distance factor = 50%; 

slice oversampling = 16.7%; FOV = 240 x 240mm; matrix = 256 x 256; flip angle = 8°; phase 

encoding direction = A → P; echo spacing = 7ms]. T2 HASE images [TR = 1500 ms; TE = 82 ms; 

FOV = 220 x 220mm; flip angle = 150o; voxel = 0.7 x 0.7 x 3 mm; 15 slices] were acquired 

immediately prior to the acquisition of the MRS spectra; this positioned the axial plane of the voxel 

in the isocenter of the magnetic field, optimizing the homogenization of the magnetic field during 

shimming. The native scanner PRESS sequence [striatal voxel = 15 x 10 x 15 mm; TR = 2000 ms; 

TE = 30ms; 256 transients; water suppression bandwidth = 50 Hz; automatic shimming] was used 

to acquire spectra in the left dorsal striatum of all participants, similar to Bell et al. (2018), and 

Bell, Lindner, et al. (2019). The same PRESS sequence was used to acquire a water unsuppressed 

peak for eddy current correction and calculating absolute metabolite concentrations [15 transients]. 

PRESS data were acquired following the acquisition of echo planar data presented in chapter 4. 

Preprocessing  

1H-MRS data analysis was performed in line with experts’ consensus recommendations published 

by (Near et al., 2020). MRS data pre-processing was carried out using the MATLAB toolbox FID-

A (Simpson et al., 2015). Firstly, radiofrequency coil channels were combined, and bad individual 

spectra (spectra > 4 standard deviations used as rejection threshold) were removed. Spectra were 

then aligned to correct for frequency drift and averaged to create a single spectrum. The averaged 

spectrum was brought in phase (first-order phasing), and zero-order phase correction was applied 

using the creatine peak. The spectrum was frequency shifted so that creatine appeared at 3.027ppm 
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for the water suppressed spectrum, and water appeared at 4.65ppm in the water unsuppressed 

spectrum. eddy current correction was applied to remove distortion in the spectrum due to 

fluctuations in the B0 field, then the water peak was subtracted from the water suppressed spectrum 

using Hankel-Lanczos Singular Value Decomposition (Pijnappel et al., 1992) as implemented in 

FID-A.  

 

Figure 45 Coronal and axial slices visualising voxel positioning within the 

striatum for all participants in standard space. Heatmap denotes extent of spatial 

overlap, from maximum/yellow to minimum/red. 

Spectral quantitation  

A metabolite basis set was generated using the MATLAB FID-A toolbox (Simpson et al., 2015). 

Sixteen metabolites (acetate, aspartate, choline, creatine, gamma‐aminobutyric acid (GABA), 

glucose, glutamate, glutamine, lactate, myo‐inositol, N‐acetyl aspartate (NAA), 

phosphocreatine, phosphocholine (PC), glycerophosphocholine (GPC), scyllo‐inositol, and 

taurine) were simulated at a field strength of 3T using a PRESS pulse sequence (TE1 = 16.6 ms, 

TE2 = 13.4 ms, 4096 points, spectral width = 2399.8Hz, linewidth = 12.684Hz). Choline was 

modelled separately from PC and GPC, which were added following simulation to form a single 

peak (GPC+PC).  

Automatic quantification of metabolites from the spectra were calculated using the jMRUI tool 

Accurate Quantification of Short Echo time domain Signals (AQSES) ( jMRUI, version 6.0; 

http://www.jmrui.eu/; Garcia et al., 2010; Naressi et al., 2001; Stefan et al., 2009). The NAA peak 
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in the spectra was shifted to 2.02 ppm to correct for chemical shift displacement, and the metabolite 

model was realigned with the NAA peak in the spectra. The following settings were used for 

quantification: equal phase for all metabolites; begin fixed timing; delta damping -10 to 40 Hz; 

delta frequency -10 to 10 Hz, no background handling; 0 truncated points; 4096 points in AQSES; 

normalization on. Metabolite concentrations were corrected by calculating their amplitude relative 

to the corresponding regional water peak (acquisition correction=1, tissue correction=0.5555). 

MRS voxels were co-registered with high resolution T1 anatomical images using 

CoRegStandAlong in Gannet 3.1 and SPM-12 (Ashburner & Friston, 2005; Edden et al., 2014). 

During registration, the fraction of grey matter, white matter, and cerebrospinal fluid was calculated 

for each spectral acquisition. These fractional tissue compositions were used to correct the 

concentrations of choline and GPC+PC for partial volume and relaxation effects using the 

MATLAB toolbox MRSParVolCo (https://github.com/DrMichaelLindner/MRSParVolCo), based 

on the formulae described by (Gasparovic et al., 2006). 

Statistical analysis 

Statistical analyses were performed using the R programming language (R Core Team, 2020; Wei 

& Simko, 2021; Wickham, 2016; Wickham et al., 2020) and SPSS (IBM Corp. Released 2017. 

IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Correlational analyses 

were used to assess the relationship between metabolite concentrations, model parameter estimates, 

and behavioural performance. Hierarchical multiple regression was used to assess whether variance 

in choline concentrations could be explained by participants’ model parameter estimates and 

behaviour. As part of this analysis we included GPC+PC concentration, since we know it is anti-

correlated with choline concentrations (Bell, Lindner, et al., 2019; Lindner et al., 2017), and 

number of reversals as covariates of no interest. Lastly, to assess the specificity of these results to 

choline, we re-ran our regression analysis using NAA.  
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Results 

Reversal learning performance 

Participants made correct choices at significantly greater than chance level (mean correct choices 

= 252.71, 95% CI [244, ∞], 𝑡(13) = 14.19, 𝑝 < .001, SD = 19.18, Range = 193 - 269), and 

experienced an average of 24.21 (SD = 4.96; Range = 10-29) reversals. The average number of 

trials taken to reach criterion was 8.756 (SD = 4.371; Range = 5 - 40); an average of 3.044 (SD = 

2.161; Range = 0 - 17) perseverative errors were made following the reversal of contingencies 

before reaching criterion in each learning event. On 3.357 (SD = 3.734; Range = 0 - 12) trials 

participants did not respond to either of the two images presented to them. An average of 4617.857 

(SD = 1099.407, Range = 1200 - 5550) points were collected by the end of the task. The average 

time taken by participants to make a choice following the onset of the stimuli was 595.746 

milliseconds (SD = 110.104, Range = 398.713 - 782.612).  

 

Figure 46 A: Average number of trials to reach criterion (orange) and reversal 

(blue) for each learning event (± 95% confidence intervals). Number of 

participants who reached each learning event (grey bars). B: Average number of 

perseverative (orange) and regressive (blue) errors for each learning event (± 95% 

confidence intervals). 

Model fit 

Two reinforcement learning models were fit to participants behavioural data from the reversal 

learning task. The first was a model-free reinforcement learning model with a single learning rate 

α, and an inverse temperature parameter β. The second model was a model-free reinforcement 
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learning model with two learning rates, α+ and α− for positive and negative prediction errors, and 

an inverse temperature parameter β. Model fitting was performed using hierarchical Bayesian 

inference with the MATLAB Computational/Behavioural Modelling toolbox (Piray, Dezfouli, et 

al., 2019). Overall, the dual-learning rate model out-performed the single learning rate model with 

respect to its protected exceedance probability (0.9727 for the dual learning rate model, 0.0273 for 

the single learning rate model), and the goodness of fit to each participant’s data (the dual learning 

rate model had a higher responsibility for eleven of the fourteen participants included in the analysis 

of spectroscopy data). The group-mean learning rate for positive prediction errors (α+) was 0.4605 

and 0.9786 for negative prediction errors (α-); the group-mean inverse temperature parameter (β) 

was 1.8533.  

 

Figure 47 Protected exceedance probability and model frequency for the single 

and dual learning rate reinforcement learning models. The exceedance 

probability is the probability that a given model is the most commonly expressed 

model across particiapants, given the null hypothesis none of the models are 

sufficiently supported by the data 
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Figure 48 Group level parameter estimates for the learning rate for positive (α+) 

and negative (α-) prediction errors and the inverse temperature parameter (β). The 

error bars for all plots are the standard error of the mean. 

Metabolite quantitation 

Metabolite spectra were quantified for twenty-one participants to measure concentrations of 

choline and glycerophosphocholine plus phosphocholine (GPC+PC) in the dorsal striatum. 

Separate measures of choline and GPC+PC could be quantified for fourteen participants. The mean 

concentration of choline in the dorsal striatum was 0.797 millimolar (mM) (SD = 0.253, Range = 

0.481 - 1.351); for GPC+PC the mean concentration was 0.854 mM (SD = 0.241, Range = 0.323 - 

1.238). As previously reported, we found that concentrations of choline and GPC+PC were anti-

correlated (r = -0.912 t(11) = -7.379, 95% CI = [-0.974, -0.726], p < 0.001) (Bell et al., 2018; 

Lindner et al., 2017; Miller et al., 1996). 
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Relationship between choline measures and behaviour 

 

Figure 49 Correlations between metabolite concentrations, reinforcement 

learning model parameter estimates, and measures of reversal learning behaviour. 

Significant correlations are denoted with asterisks (*p < 0.05, **p < 0.01, ***p 

< 0.001) 

To investigate the relationship between neurochemistry and behaviour we first ran correlations 

between our measures of task performance (correct choices, perseverative errors, regressive errors, 

and number of reversals), modelling parameters (α+, α-, β) and metabolite concentrations in the 

dorsal striatum (Cho, GPC+PC, total choline, and NAA). Increases in dorsal striatal choline were 

associated with decreases in dorsal striatal GPC+PC (r = -0.912 t(11) = -7.379, 95% CI = [-0.974, 

-0.726], p < 0.001), and decreases in the number of reversals participants experienced (r = -0.667 

t(11) = -2.971, 95% CI = [-0.891, -0.184], p = 0.013). Increases in the number of reversals was 

associated with an increase in the number of correct responses made (r = 0.630 t(11) = 2.688, 95% 

CI = [0.120, 0.877], p = 0.021). An increase in the number of perseverative errors was associated 

with a decrease in the learning rate for positive prediction errors (α+; r = -0.632 t(11) = -2.701, 95% 

CI = [-0.877, -0.123], p = 0.021), and a decrease in the number of regressive errors made (r = -

0.709 t(11) = -3.333, 95% CI = [-0.906, -0.259], p = 0.007). No other significant correlations were 

identified at a threshold of p < 0.05.  

Before running our hierarchical multiple regression, the following assumptions were tested. We 

tested for multicollinearity by calculating variance inflation factors (VIF) for our predictor 
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variables; no variables had a VIF greater than 10, suggesting they have not violated assumptions 

of multicollinearity (Field, 2013). To test the assumption that the residuals of predictors are 

uncorrelated, we used the Durbin-Watson test and found this assumption was met (Durbin-Watson 

= 2.288);  values of two suggest residuals are uncorrelated, while values less than one or greater 

than three suggest indicate there are problematic positive or negative correlations (Field, 2013). 

Plots of standardised residuals and standardised predicted values suggested the assumptions of 

homogeneity of variance were met; P-P plots of standardised residuals suggested that the 

assumption of normality may have been violated, however regression results are unlikely to be 

biased by violations of normality when there are ten or more observations for each variable 

(Schmidt & Finan, 2018). Cook’s distance for two participants were greater than one and suggests 

these participants may have a disproportionate influence on the model, however these participants 

were not excluded from analysis given the size of the dataset. 

A two-stage hierarchical multiple regression model was run to investigate the relationship between 

levels of choline and task performance. The GPC+PC concentration and number of reversals were 

included in the first stage as a covariates of no interest. Perseverative and regressive errors, positive 

(α+) and negative (α-) learning rates, and the inverse temperature parameter (β) were included in 

the second stage of the model. One participant was excluded from our regression model because 

their behaviour suggested they did not understand the task, but this did not influence model fitting. 

The first stage of the regression revealed that GPC+PC and the number of reversals were significant 

predictors of choline concentrations in the dorsal striatum F (2,12) = 35.522, p < 0.001, and 

explained 87.6% of the variance in choline concentration. The inclusion of model parameters and 

number of errors at the second stage of the regression increased the variance explained by 10.6%, 

and this was a significant increase in explained variance F (7,12) = 39.802, p < 0.001, f2 = 0.119 

(Table 11). 

Variable Unstandardised β 

/ Standardised β  

t R R2 ΔR2 

Stage 1   .936 .876  

GPC+PC -.820 / -.778 -5.913***    

Reversals -.023 / -.250 -1.903    

      

Stage 2   .991 .982 .149* 

GPC+PC -.894 / -.848 -7.083**    

Reversals -.037 / -.400 -3.407*    

α+ -.493 / -.303 -2.914*    

α- 1.891 / .328 3.275*    

β -.067 / -.125 -1.192    

Perseverative err -.014 / -.619 -4.397**    

Regressive err -.015 / -.574 -4.197**    
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N = 13; *p < .05; **p <.01; ***p <.001 

Table 11 Hierarchical regression model predicting concentrations of choline. At 

the first stage GPC+PC concentration and the number of reversals are included 

as covariates of no interest. In the second stage reinforcement learning model 

parameter estimates, perseverative and regressive errors are included in the 

model. 

To test whether these results were specific to the concentration of choline, we re-ran the same 

regression model with the concentration of N‐acetyl aspartate (NAA) as our dependent variable. 

GPC+PC and the number of reversals were not significant predictors of NAA concentration in the 

first stage of the regression model F (2,12) = 1.704, p = 0.231, and explained 25.4% of the variance 

in NAA concentration. The addition of our modelling parameters and measures of error increased 

the explained variance in NAA to 79%, however this was not a significant increase in explained 

variance and the model did not significantly explain concentrations of NAA F (7,12) = 2.693, p = 

0.146. 

Variable Unstandardised β 

/ Standardised β 

t R R2 ΔR2 

Stage 1   .504 .254  

GPC+PC .091 / .033 .103    

Reversals .117 / .485 1.501    

      

Stage 2   .889 .790 .536 

GPC+PC 1.836 / .672 1.628    

Reversals -.018 / -.073 -.181    

α+ 4.083 / .967 2.701*    

α- -16.326 / -1.092 -3.164*    

β 1.367 / .976 2.703*    

Perseverative err .059 / .995 2.050    

Regressive err .045 / .668 1.417    
N = 13; *p < .05; **p <.01; ***p <.001 

 

Table 12 Hierarchical regression model predicting concentrations of 

NAA. NAA model was used as a control metabolite to demonstrate the 

specificity of the model for choline. At the first stage GPC+PC 

concentration and the number of reversals are included as covariates of no 

interest. In the second stage reinforcement learning model parameter 

estimates, perseverative and regressive errors are included in the model. 
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Discussion 

We used 1H-MRS to investigate whether variability in resting levels of choline in the dorsal 

striatum are related to reversal learning performance and reinforcement learning model parameter 

estimates in a two-alternative serial reversal learning task. Positive and negative learning rates, and 

the number of perseverative and regressive errors were significant predictors of dorsal striatal 

choline, and their inclusion in our regression model explained significantly more variance in 

choline than when we only included GPC+PC and number of reversals as covariates of no interest. 

Almost all the variability in choline was explained by this regression model (98.2%). Conversely, 

when we re-ran the same analyses for a metabolite that we consider a functional control we 

observed no association with performance. Specifically, using NAA as our predicted outcome, we 

found that neither level of our hierarchical model significantly predicted NAA concentrations.  

Further correlational analyses are in line with previous findings. Firstly, we show that levels of 

choline in the dorsal striatum are inversely correlated with GPC+PC concentrations (Bell, Lindner, 

et al., 2019; Lindner et al., 2017). We believe this relationship is not due to issues with model 

fitting, as Lindner et al. (2017) previously demonstrated using synthetic spectra that relative 

differences in concentrations of choline and GPC+PC are faithfully recovered during model fitting 

when separate peaks for choline and GPC+PC are used. Secondly, we found that concentrations of 

choline are rest are negatively correlated with the number of reversals participants made. This 

mirrors previous findings that participants who were quicker to reverse had lower levels of dorsal 

striatal choline at rest (Bell, Lindner, et al., 2019), and that participants who learned during reversal 

had lower levels of choline at rest than those who did not (Bell et al., 2018). 

Previous work on deterministic reversal learning by D’Cruz et al. (2011) has demonstrated that 

unexpected outcomes during two- and four-choice tasks activate similar brain areas, but that 

activation during four choice learning is significantly greater in several regions, including the 

thalamus. Although D’Cruz et al. (2011) do not localise this activation to specific nuclei in the 

thalamus, based on our understanding of the roles of thalamostriatal connections in flexibility, 

especially in signalling unexpected outcomes (Bell, Langdon, et al., 2019; Bradfield et al., 2013; 

Matsumoto et al., 2001), we would expect this cluster to include the centromedian-parafascicular 

nuclei. If the centromedian-parafascicular nuclei show different levels of activation in two and four 

choice reversal learning, then their efferent projections to the cholinergic interneurons of the dorsal 

striatum may have different effects on the striatal cholinergic system during reversal learning. If 

resting levels of choline were consistent for participants completing both reversal learning tasks, 
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then variability in input to the striatal cholinergic system could have a differential effect on 

subsequent behaviour in the two tasks.  

Here we provide evidence suggesting choline levels at rest may have dissociable effects on 

behaviour, depending on task context. During multi-alternative reversal learning, there is a 

protracted period of learning where the participant’s experience closely mimics the experience in 

animal studies, with no prior knowledge of task context or structure. Conversely, in serial reversal 

learning, such as the task used here, participants are provided with instruction about the general 

structure of the task which can be used to scaffold task representations. This prior knowledge 

should enable participants to readily form mature task representations. Once participants develop 

an “if not A, then B” heuristic for choice, their task representation can be considered as “saturated”, 

as no other contextual information is available that might further support adaptive behaviour. 

However, task representations in the multi-alternative task can be considered as “unsaturated”, 

because participants only form mature task representations after experiencing both the protracted 

periods of initial and reversal learning. These differences could explain why resting cholinergic 

“tone” has dissociable effects during serial and multi-alternative reversal learning. Here, we found 

that dorsal striatal choline concentration was negatively associated with perseverative errors but 

positively associated with the learning rate for negative prediction errors. Conversely, Bell, Lindner 

et al. (2019) found that dorsal striatal choline was positively correlated with perseverative errors, 

but negatively correlated with the learning rate for negative prediction errors. In an unsaturated 

context (multi-alternative task), a low cholinergic tone may be beneficial for generating contrast 

between periods of stability and change. This increased contrast could detect change more clearly, 

enabling flexibility when required. However, in the saturated context (serial reversal learning task), 

a high cholinergic tone may be more beneficial:  participants with higher choline at rest were 

influenced more by negative than positive prediction errors and showed fewer perseverative and 

regressive errors. By contrast, lower cholinergic tone may disproportionately increase learning 

from positive feedback for perseverative errors and decrease learning from negative feedback from 

regressive errors. These participants would then be slower to reverse and less likely to maintain 

behaviour. However, these participants do not appear to be any more stochastic in their behaviour 

than participants with higher cholinergic tone, as the inverse temperature parameter did not 

significantly predict choline levels at rest. Task performance in different contexts thus appears to 

be modulated by the state of the cholinergic system at rest, with the saturation of task representation 

modulating its relationship with performance.  

One potential factor that may also account for differences between the serial and multi-alternative 

reversal learning tasks is the model fitting procedure. Although both studies use the same 
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reinforcement learning model, Bell, Lindner et al. (2019) fitted their model to initial and reversal 

learning separately, while here we fit the model to all trials at once. Therefore, parameter estimates 

in both studies do not describe exactly equivalent aspects of behaviour. This difference is inevitable 

due to the structure of our task. Combining trials across different phases would produce invalid 

results, as the model would be fit to non-contiguous trials that do not reflect the experience of the 

participant. Additionally, the model fitting approach taken here uses Hierarchical Bayesian 

Inference, while Bell, Lindner et al. (2019) use Maximum Likelihood Estimation. Hierarchical 

Bayesian methods have been shown to more accurately provide point estimates of individual 

parameters (Farrell & Ludwig, 2008; Katahira, 2016), and therefore some difference between our 

results and those of Bell, Lindner et al. (2019) may also be due to model fitting approaches. Most 

probable is that differences between our results and those of Bell, Lindner et al. (2019) are due to 

a combination of psychological and methodological factors, given none of the explanations given 

are mutually exclusive of one-another.  

Given the preliminary nature of this study, it is important that the results presented here are received 

with caution. Despite strong evidence from the animal literature and from our previous work in 

humans describing the roles of the striatal cholinergic system in flexibility (e.g. Bell et al., 2018; 

Bell, Lindner, et al., 2019; Bradfield et al., 2013; Brown et al., 2010; Ragozzino et al., 2002, 2009), 

these results need to be replicated. Several limitations of this study are related to the sample size. 

Firstly, although data were acquired for thirty-three participants, only thirteen datasets were used 

in our final analysis. Of the twenty excluded participants, thirteen had issues related to the 

acquisition or analysis of their metabolite spectra. One potential explanation for this data loss is the 

1H-MRS spectra were acquired following the acquisition of fMRI data using echo-planar imaging 

sequences, which can cause frequency drift, leading to the distortion of metabolite spectra (El-

Sharkawy et al., 2006; Harris et al., 2014; Lange et al., 2011). Future work could aim to minimise 

the effects of frequency drift by leaving time for the gradient coils to cool prior to the acquisition 

of spectroscopy data. Further, given the size of the sample size reported here it is worth noting that 

the implied α for ΔR2 (based on f2, sample size, and number of predictors) in the stage 2 choline 

regression model was 0.183. This inflated α increases the risk of type 1 error, so the results reported 

here may have an increased likelihood of being due to type 1 error. Furthermore, two participants 

had Cook’s distances that were greater than the recommended threshold and therefore these 

participants could disproportionately affect regression coefficient estimation (Field, 2013).  

As it stands, and in line with previous work, this study provides further evidence for the role of the 

dorsal striatal cholinergic system in flexibility, and particularly during reversal learning. We find 

that levels of choline are associated with learning rates for positive and negative prediction errors, 
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and the number of perseverative and regressive errors. These findings show that the dorsal striatal 

cholinergic system appears to be involved in producing flexible behaviour during reversal learning, 

in line with previous work. Importantly, however, we find potential differences in how the system 

may be involved during instructed serial reversal learning and during uninstructed multi-alternative 

probabilistic reversal learning. Together, these results suggest an important role for the cholinergic 

system in flexibility in humans, as is suggested by findings from animal literature, and describe 

how the system may function in different contexts. 
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Overview  

The main aim of this thesis was to investigate cortical, striatal, and thalamic involvement in 

cognitive flexibility, and to assess the practicability of using functional magnetic resonance 

imaging and magnetic resonance spectroscopy to study the functional connectivity and 

neurochemistry of this system. Studies from both the animal and human literature point to the 

importance of the striatal cholinergic system (Bell et al., 2018; Bell, Lindner, et al., 2019; McCool 

et al., 2008; Ragozzino et al., 2002, 2009; Ragozzino & Choi, 2004), the connections between the 

centromedian-parafascicular nuclei of the thalamus and the dorsal striatum (Bell, Langdon, et al., 

2019; Bradfield et al., 2013; Bradfield & Balleine, 2017; Brown et al., 2010) and the connections 

between the orbitofrontal cortex and dorsal striatum (Bell, Langdon, et al., 2019; Stalnaker et al., 

2016) for flexibility. Previous human work (Bell et al., 2018; Bell, Langdon, et al., 2019; Bell, 

Lindner, et al., 2019) has used a multi-alternative reversal learning task with four options and a 

single uninstructed reversal. This task has a behavioural context characterised by unexpected 

volatility, and where different contingencies need to be learned during initial and reversal learning 

phases. 

It is unclear whether these systems are similarly involved in the more commonly used serial 

reversal learning task with two choices, where prior knowledge of the reversal rule saturates the 

task representation needed for effective behaviour. In tackling this question in the work presented, 

we aimed to address methodological hurdles related to the application of non-conventional 

spectroscopy and functional imaging approaches to studying thalamostriatal and corticostriatal 

connectivity, and dorsal striatal cholinergic involvement in cognitive flexibility.  

In chapter two, we demonstrated that nuclei forming part of either of the major subdivisions of the 

anterior, lateral, medial or posterior thalamus were clearly delineated from each other using the 

automated segmentation approach described by Iglesias et al. (2018), when compared with the 

Morel atlas of the thalamus (Krauth et al., 2010; Morel, 2007; Morel et al., 1997). We found mixed 

segmentation efficacy within each subdivision, with posterior thalamic nuclei generally less well 

defined according to the Morel atlas compared to anterior, lateral, or medial thalamic nuclei. 

Importantly, we found the centromedian nucleus was particularly well defined, and the 

parafascicular nucleus was defined to a lesser extent. The centromedian, part of the intralaminar 

nuclear group, had the highest overlap measure of all nuclei in the medial thalamus, and the second 

lowest dissimilarity measure of all thalamic nuclei. The parafascicular nucleus, which is also an 

intralaminar nucleus, had relatively less overlap and higher dissimilarity than the centromedian 

nucleus, but with a segmentation that was mostly self-contained and within the boundaries of the 
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centromedian nucleus in the Morel atlas. This is important because in chapter four we combined 

segmentations of the centromedian and parafascicular nuclei to generate seed timeseries for 

psychophysiological analysis, and we are confident that segmentations are likely to faithfully 

recapitulate the location and shape of these nuclei.  

Chapter three assessed variability in choline containing compound concentrations measured at rest 

with magnetic resonance spectroscopy in the dorsal striatum and in the parieto-occipital cortex. 

Previous work has shown functionally relevant changes in choline in both regions and that this 

measure could be used as a proxy for studying acetylcholine dynamics (Bell et al., 2018; Lindner 

et al., 2017). Firstly, we find concentrations of choline containing compounds measured using 

separate peaks for choline and for glycerophosphocholine plus phosphocholine are highly 

correlated with the concentrations of a single peak modelled to contain all choline-containing 

metabolites. Choline concentrations estimated from spectra averaged from 128 and 256 transients 

were inconsistent in both the striatum and parieto-occipital cortex across two sessions one week 

apart. Glycerophosphocholine plus phosphocholine concentrations were consistent for the parieto-

occipital cortex and striatum in only one of the sessions. There were no differences at the group 

level between concentrations averaged from 128 and 256 transients. Striatal 

glycerophosphocholine plus phosphocholine concentrations were consistent between sessions for 

spectra averaged 128 transients and spectra averaged from 256 transients. Glycerophosphocholine 

plus phosphocholine concentrations were inconsistent between sessions in the parieto-occipital 

cortex. Choline concentrations were inconsistent between sessions in both the parieto-occipital 

cortex and the striatum, and for metabolite averaged from 128 and from 256 transients. These 

findings suggest that concentrations of the choline containing compounds not associated with 

acetylcholine function remain relatively stable in the striatum over time. Additionally, increasing 

the number of transients during acquisition may improve quantitation estimates for choline. 

Having demonstrated in chapter two that we can use the approach described by Iglesias et al. (2018) 

to individually parcellate the centromedian and parafascicular nuclei of the thalamus, in chapter 

four we used these parcellations to study thalamostriatal functional connectivity, as well as 

corticostriatal functional connectivity during serial reversal learning. Firstly, we found whole brain 

activation during reversal learning that was broadly in line with previous functional imaging studies 

of reversal learning. We also found that functional connectivity between the centromedian-

parafascicular nuclei and the dorsal striatum and between the lateral orbitofrontal cortex and the 

dorsal striatum were significantly increased for negative outcomes versus positive outcomes during 

reversal learning. However, while no differences in thalamostriatal functional connectivity were 

found during specific phases of the task, corticostriatal functional connectivity was found to be 
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driven specifically by differences in activation during the stability phase, which follows the reversal 

of reward contingencies where an alternative response strategy is implemented. We also report 

exploratory findings suggesting the frontopolar cortex may track the relative advantage of the 

unused response strategy (the counterfactual), and that the anterior cingulate is responsive to 

outcomes that are incongruent with the currently expected context of the task. 

These findings suggest thalamostriatal connectivity between the centromedian-parafascicular 

nuclei and the dorsal striatum during serial reversal learning may reflect a general error signal 

following negative outcomes which is used for guiding goal-directed behaviour by signalling a 

potential change in context and preparing for a possible change in response strategy. Conversely, 

corticostriatal connectivity between the lateral orbitofrontal cortex and the dorsal striatum was 

found to be specific to the stability phase of the task where participants are implementing a change 

in behavioural policy. This suggests these regions may be involved in the implementation of 

flexible changes in behaviour, as has been suggested by previous work (Hampshire et al., 2012; 

Rygula et al., 2010; Stalnaker et al., 2016). The roles these corticostriatal and thalamostriatal 

connections play in cognitive flexibility are likely to be supported by other brain regions, including 

the frontopolar and anterior cingulate cortices.  

Lastly, we use magnetic resonance spectroscopy to investigate the relationship between the state 

of the dorsal striatal cholinergic system at rest with serial reversal learning performance in chapter 

five. Based on our findings in chapter three, we acquired spectroscopy data averaged from 256 

transients. Computational modelling was used to derive latent measures of behaviour using a 

reinforcement learning model, while perseverative and regressive errors were used to describe 

behaviour. Choline levels were predicted by the number of perseverative and regressive errors, and 

by the learning rate for positive and negative prediction errors. More specifically, perseverative 

and regressive errors, and the learning rate for positive prediction errors were negatively associated 

with choline concentrations. The learning rate for negative prediction errors was positively 

associated with choline concentrations. These results suggest that the state of the striatal cholinergic 

system at rest is related to reversal learning performance, in line with the findings of Bell, Lindner, 

et al. (2019). However, unlike Bell, Lindner, et al. (2019) who find that choline concentrations at 

rest are positively correlated with perseverative errors, and that the learning rate for negative 

prediction errors is inversely correlated with dorsal striatal choline in uninstructed multi-alternative 

reversal learning, we find the opposite here in our serial reversal learning task. These opposing 

findings may be driven by differences in the task design and underlying neural computations 

required in uninstructed multi-alternative versus two-choice serial reversal learning. This 

possibility, in light also of the fMRI findings of chapter four, is discussed in the following section.  
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Striatal involvement in serial reversal learning 

As demonstrated by a wealth of prior evidence from the human and animal literature, as well as the 

work presented here, the dorsal striatum has an important role in producing flexible, goal-directed 

behaviour. In the following section I shall propose a potential role for the striatum, its connectivity 

with the orbitofrontal cortex and centromedian-parafascicular nuclei of the thalamus, and its 

modulation by the striatal cholinergic system in serial reversal learning.  

The striatum has a critical role in the production of flexible, goal directed behaviour. Its main inputs 

are glutamatergic afferents from the cortex and thalamus, and dopaminergic afferents from the 

ventral tegmental area and substantia nigra. Medium spiny neurons are the primary neuronal cell 

type in the striatum and form synaptic connections with both glutamatergic and dopaminergic 

projections. Cholinergic activity within the striatum has several direct and indirect effects on 

medium spiny neurons in the striatum. Acetylcholine can have excitatory effect on medium spiny 

neurons via the expression of the muscarinic M1 receptor on direct and indirect pathway medium 

spiny neurons (Abudukeyoumu et al., 2019; Assous, 2021), and via the M1 receptor expression on 

glutamatergic projections (Ding et al., 2010). Acetylcholine also has a direct inhibitory effect on 

medium spiny neurons via M4 muscarinic receptors (Assous, 2021; Kreitzer, 2009), and an indirect 

inhibitory effect through nicotinic acetylcholine receptors on GABAergic interneurons (English et 

al., 2012) and through M2 muscarinic receptors on glutamatergic projection neurons (Ding et al., 

2010). Additionally, dopamine release, which is traditionally thought to act as a teaching signal in 

the striatum (Schultz et al., 1997), can be modulated or even induced by acetylcholine in the 

absence of an action potential in dopaminergic neurons (Threlfell et al., 2010, 2012). Cholinergic 

interneurons thus have a broad range of effects on the dynamics of striatal activity, with one 

proposed overarching role being the modulation of the rate of learning and plasticity in the striatum 

(Cox & Witten, 2019).  

The serial reversal learning task used here has several distinct features compared to the multi-

alternative reversal learning task previously used to demonstrate the importance of corticostriatal 

and thalamostriatal connections, and of cholinergic activity in human reversal learning (Bell et al., 

2018; Bell, Langdon, et al., 2019; Bell, Lindner, et al., 2019). Firstly, the multi-alternative reversal 

learning task has a protracted period of initial and reversal learning, where participants discover 

stimulus-outcome contingencies. Successfully learning the initial and reversed contingencies in the 

multi-alternative is not trivial, with fewer than half the participants reaching the learning criterion 

during initial and reversal learning in previous work (Bell et al., 2018; Bell, Langdon, et al., 2019; 

Bell, Lindner, et al., 2019). Furthermore, participants in the multi-alternative task are not given 
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instruction about the reversal of contingencies. In this context, we describe participant’s internal 

representation of task context as “unsaturated”, since they only compile mature task representations 

following both the protracted initial and reversal learning periods. Conversely, these contingencies 

are simpler and more readily learned in the serial reversal learning task by virtue of the fact that 

only two response options are available, and that the occurrence of reversals is instructed. In this 

task, most participants reach criterion during both initial and reversal learning at similar rates. 

Therefore, task representation in serial reversal learning may be considered “saturated”, as it is 

readily acquired and complete, because no additional information is relevant for representing task 

structure, once an “if not A, then B” heuristic has formed. 

Previous work has demonstrated that multiple contexts are concurrently represented in the striatum 

following reversal learning training, and that these state representations may depend on cholinergic 

activity (Bradfield & Balleine, 2017). In a recent review paper Stayte et al. (2021) present 

converging evidence suggesting the orbitofrontal cortex, striatal cholinergic system, and 

centromedian-parafascicular nuclei of the thalamus work in concert to produce these internal 

representations, and that these representations are important for goal-directed behaviour. The 

orbitofrontal cortex is well positioned to support internal state representations as it receives inputs 

from multiple sensory domains, the hippocampus, and the amygdala. Sensory, memory, and 

affective information can then be integrated to infer the current state of the individual. Conversely, 

the centromedian-parafascicular nuclei do not receive direct sensory input, nor do they receive 

input from the hippocampus and amygdala. Instead, the centromedian-parafascicular nuclei receive 

input from regions associated with motor functioning and attention, such as the laterodorsal 

tegmental nucleus, pedunculopontine nucleus, primary motor cortex, and cerebellar nuclei 

(Cornwall & Phillipson, 1988). Orbitofrontal and centromedian-parafascicular regions thus provide 

separable information useful for inferring and generating an internal representation of the current 

state via their converging connectivity on the cholinergic interneurons in the striatum (Bradfield et 

al., 2013; Bradfield & Balleine, 2017; Stalnaker et al., 2016). These cholinergic interneurons can 

then modulate the activity of medium spiny neurons via the direct and indirect effects of 

acetylcholine receptor expression. 

Due to the protracted period of learning in the multi-alternative reversal learning task, 

corticostriatal and thalamostriatal systems are involved in both the discovery and learning of the 

initial and reversal contexts. By contrast, in the serial reversal learning task these representations 

are “pre-loaded” through instruction and require only a short period of learning to be generated, 

with subsequent flexible behavioural output based on inferences about the current context. Lower 

choline concentrations at rest are associated with better performance during the multi-alternative 
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reversal learning task (Bell et al., 2018; Bell, Lindner, et al., 2019), and may facilitate internal 

representation formation by generating a greater contrast in acetylcholine concentrations between 

the initial and reversal learning periods. Conversely, in the work presented here we find that higher 

levels of choline are positively associated with serial reversal learning performance. Previous work 

has demonstrated that choline is the rate limiting factor in the synthesis of acetylcholine (Taylor & 

Brown, 1999), and has suggested choline levels are proportional to acetylcholine concentration 

(Koshimura et al., 1990; Wang et al., 2008). Therefore, higher levels of choline at rest may reflect 

greater potential to modulate internal representations by acetylcholine during serial reversal 

learning, influencing the activity of medium spiny neurons.  

Corticostriatal and thalamostriatal connectivity also likely contribute to the modulation of internal 

representations by striatal cholinergic interneurons. Here, we show functional connectivity between 

the centromedian-parafascicular nuclei and dorsal striatum, and between the lateral orbitofrontal 

cortex and dorsal striatum is significantly greater when negative feedback is received. However, 

while thalamostriatal connectivity was relatively increased throughout the task, corticostriatal 

connectivity increase was specific to when participants changed to using an alternate response 

strategy. Connectivity between the centromedian-parafascicular nuclei and the striatum may 

therefore provide a generic signal for a potential need to change due to negative feedback. The 

effect of thalamostriatal connectivity on the output of the striatum may be gated by corticostriatal 

connectivity between the lateral orbitofrontal cortex and striatum, with the orbitofrontal cortex 

inferring the current state. In this way, the whole system can determine whether to switch to using 

an alternate internal representation of task context. This position is supported by previous evidence 

showing the orbitofrontal cortex generates internal state representations from its many inputs 

(Wilson et al., 2014), that the orbitofrontal cortex is necessary for dorsal striatal cholinergic 

interneurons internal state representations (Stalnaker et al., 2016), that the centromedian-

parafascicular nuclei respond to salient events that are behaviourally relevant (Matsumoto et al., 

2001), are important for reversal learning (Bradfield et al., 2013; Bradfield & Balleine, 2017; 

Brown et al., 2010), and that cortical and thalamic inputs equally influence the effect cholinergic 

interneurons have on medium spiny neurons (Mamaligas et al., 2019). 
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Strengths and limitations  

Localising thalamic activation 

One of the main methodological strengths of this work is that our automated segmentation approach 

to defining the location of the centromedian and parafascicular nuclei in subject space was faithful 

to the Morel thalamic atlas (Krauth et al., 2010; Morel, 2007; Morel et al., 1997). This is important 

because we can be confident that our thalamic seed used for our psychophysiological analysis was 

representative of BOLD activation in the centromedian-parafascicular during reversal learning. 

Furthermore, we used a functional imaging acquisition protocol optimised for studying small, 

subcortical structures. Here, the spatial resolution used (1.6mm3) is relatively high compared to 

other studies using functional imaging studies at three tesla. Compromises when designing a 

functional imaging protocol and analysis pipeline include voxel size and the need to smooth the 

acquired signal to reduce noise. Here, we aimed to reduce partial volume effects in the thalamus 

by using a small voxel size and minimising the smoothing of our functional data by using a kernel 

that was only two times our voxel resolution. Both these decisions have the undesired effect of 

reducing our signal to noise ratio (Tabelow et al., 2009), but were important if we were to isolate 

our signal to specific nuclei in the thalamus. The decision to increase our spatial resolution also 

reduced the temporal resolution of our data. To circumvent this problem, we acquired functional 

data using multiband slice acceleration, reducing the time taken to acquire a single volume. 

Although multiband slice acceleration can sometimes cause spurious slice leakage artefacts in data 

due to eye movement (McNabb et al., 2020), we did not detect this artefact using our acquisition 

protocol. 

The acquisition protocol used here for acquiring functional data pushes what is feasibly possible 

for imaging data acquisition using magnetic resonance imaging at three tesla. Ultra-high field 

magnetic resonance imaging at seven tesla and above would have several benefits for future studies 

aiming to address the functional role of thalamic nuclei in cognitive processes. The increased 

magnetic field strength increases the signal to noise ratio, relative to using equivalent acquisition 

parameters at three tesla. Additionally, ultra-high field work offers the opportunity to trade off 

some signal to noise in favour of increasing spatial or temporal resolution. Increased temporal 

resolution would benefit model fitting by increasing the number of datapoints available to estimate 

the response shape in different conditions, while increasing spatial resolution would further help in 

the isolation of activation to specific thalamic nuclei, reducing the blending of signals between 

regions due to partial volume effects.  
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Spectroscopy acquisition 

Although the voxel size reported here (2.25cm3) for our striatal spectroscopy acquisition is in line 

with our previous striatal spectroscopy work (Bell et al., 2018; Bell, Lindner, et al., 2019), it is 

smaller than the size used for striatal voxels in other studies9, and aims to reduce partial volume 

effects during spectral acquisition. This may appear counter-productive given that increases in 

spectroscopy voxel size are associated with increases in signal to noise ratio in the acquired spectra 

(Gonen et al., 2001), but we aimed to prioritise anatomical inference. Acquisition of metabolite 

spectra in the striatum is associated with several issues. Firstly, while the use of surface coils 

improves the acquisition of metabolite spectra, the striatum is too deep for surface coil acquisition 

to be feasible (Gerard & Peterson, 2003). Secondly, the basal ganglia is an iron rich region of the 

brain (Schenck, 1995), and the presence of iron reduces the homogeneity of the magnetic field, 

causing a reduction of signal quality. These challenges, coupled with frequency drift due to gradient 

coil heating (El-Sharkawy et al., 2006; Harris et al., 2014; Lange et al., 2011) may explain why we 

had a higher rate of spectra that were not quantifiable in chapter five compared with chapter three. 

Therefore, although the result presented in chapter five suggest a relationship between dorsal 

striatal choline concentrations at rest and flexibility during serial reversal learning these findings 

should be treated with caution given the relatively small sample size presented in the study. 

In chapter three, some of the variance in metabolite concentrations between sessions may be related 

to variability in voxel positioning from one session to another. Despite having relatively high 

overlap between sessions for both the striatum and parieto-occipital cortex at the group level, we 

had a relatively large distribution of overlap values across participants. The consistency of manual 

voxel positioning for magnetic resonance spectroscopy acquisitions can be problematic in multi-

session studies even when anatomical markers are used to guide voxel positioning, because of 

individual differences in anatomy and variability in slice positioning and image contrast used when 

planning voxel location. One way to overcome this limitation is to use a functional localiser to 

identify regions with significant activation relating to the behaviour of interest (Lindner et al., 

2017). Alternatively, an automated voxel positioning approach could be used. For instance the AVP 

software produced by Woodcock et al. (2018) contains a suite of functions that can be used to co-

register a template voxel to a participant, and use these registration parameters to consistently place 

the voxel across sessions and participants. Automated voxel positioning is useful as it minimises 

nuisance variance due to variability in voxel positioning, and because it can be used to consistently 

 
9 For instance, Soreni et al. (2006) use a voxel size of 4cm3 
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localise regions for which there may be no clear task that produces reliable activation, as is the case 

for many cognitive functions.  

Another potential source of variability in metabolite quantitation is head motion during data 

acquisition. Correcting for motion artefacts during functional imaging data collection can be 

achieved by using image registration to re-align individual volumes with each other (Jenkinson et 

al., 2002). However, spectroscopy data cannot be retrospectively corrected for participant motion 

during data acquisition. This means that even if an automated approach is used for voxel 

positioning and the participant’s head is partially restrained, spectra are likely to be distorted by 

motion. This includes micro-movements that are not perceivable by participants actively trying to 

keep their head still. To circumvent motion-related distortion of the metabolite spectra, prospective 

motion correction can be used (Zaitsev et al., 2010). Prospective motion correction involves the 

online tracing of participant head movement and adjustment of the field of view used for data 

acquisition. It improves the quality of acquired data, and minimises alterations to spectroscopy data 

(Andrews-Shigaki et al., 2011; Callaghan et al., 2015; Maclaren et al., 2012). The work presented 

here did not involve the use of prospective motion correction due to a lack of access to hardware, 

however its use would have been beneficial particularly for minimising variability in the data 

presented in chapter three. Nevertheless, in chapter three we did try to minimise possible external 

sources of variance that we were able to control. For instance, we scanned all participants at 

approximately the same time of day to reduce diurnal effects (Soreni et al., 2006), and ensured we 

acquired the first scan of the day to reduce the effects of gradient coil temperature on frequency 

drift (El-Sharkawy et al., 2006; Harris et al., 2014; Lange et al., 2011).  

Multimodal imaging 

Combining functional magnetic resonance imaging with magnetic resonance spectroscopy enabled 

us to probe the role of striatal connectivity and neurochemistry in cognitive flexibility. In isolation, 

both methods have their limitations but combining findings from both modalities enables us to 

paint a clearer picture of their functional relevance. For instance, although striatal cholinergic 

interneurons are likely to contribute to variability the BOLD signal detected using functional 

magnetic resonance imaging, they are suggested to account for 1-2% to 20% of the total neuronal 

cell population in the human striatum (Bernácer et al., 2007; Prado et al., 2017). Therefore, a 

portion of variance in the BOLD signal will be related to cholinergic interneuron activity indirectly.  

Similarly, although spectroscopy can be used to infer how the state of the system at rest may 

influence subsequent flexibility, as shown here and in previous work (Bell, Lindner, et al., 2019), 
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we are nevertheless unable to explain functional changes in connectivity using magnetic 

spectroscopy. However, BOLD imaging allows us to study changes in functional connectivity over 

time during different phases of the task. In this way, we can use a combination of magnetic 

resonance imaging and spectroscopy to gain a more nuanced perspective on the potential role of 

the striatum in reversal learning. Future work could use functional magnetic resonance 

spectroscopy to investigate further the functional role of the striatal cholinergic system during 

reversal learning, as in previous work (Bell et al., 2018). Additionally, this approach could be 

improved by simultaneously acquiring spectroscopy data from two locations (Dehghani et al., 

2020), and acquiring interleaved water suppressed and unsuppressed spectra, where the latter can 

be used to simultaneously infer BOLD activation based on its direct relationship with the amplitude 

and width of unsuppressed water spectrum (Apsvalka et al., 2015). Concurrently acquiring data in 

this way could directly measure changes in functional connectivity between two regions and 

functional changes in neurochemistry, alongside changes in task-related behaviour.  

Reversal learning task 

The simplicity of the serial reversal learning task used here means it is applicable in multiple 

settings. For instance, serial reversal learning has been used in studies of development, mental 

disorder, and neurodegeneration (e.g. Boehme et al., 2017; Cools et al., 2007; Wetterling et al., 

2015), and could also be used for translational work across species. The serial reversal learning 

task could also be used to study the dynamics of how people flexibly adjust their use of prior 

knowledge across successive reversals. Across several reversals of reward contingencies 

participants may form better representations of the task structure and predict more reliably when 

feedback suggests reward contingencies have reversed. In this way the serial reversal learning task 

could be used to measure meta-flexibility, and study how people learn to regulate flexible and 

stable behaviour (see Geddert & Egner, 2021; Siqi-Liu & Egner, 2020). However, its simplicity 

means the serial reversal learning task is less appropriate than the multi-alternative task for studying 

the dynamics of how people form representations of different contexts, since participants are told 

of the existence of reversals before starting the task and because the two stimuli have a mutually 

exclusive relationship. 
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Future directions and conclusions 

Here, we have shown that corticostriatal and thalamostriatal connectivity and the state of the striatal 

cholinergic system at rest are associated with performance during a serial reversal learning task. 

Furthermore, we have proposed dissociable roles for cortical, striatal, and thalamic regions during 

serial reversal learning and multi-alternative reversal learning, and that these roles are driven by 

differences in demands between the tasks. Future work should aim to disentangle further the 

separable contributions of connectivity and the striatal cholinergic system during the formation and 

utilisation of internal representations. Electrophysiological recordings in the cortex, striatum, and 

thalamus of animals that have previously learned initial and reversed task contexts could be used 

to determine how these regions interact to use prior knowledge to guide behaviour. This would 

provide further evidence of how information from the cortex and thalamus are integrated by the 

striatal cholinergic system, and how the system uses this information to produce flexible output.  

Animal research can also be used to further our understanding of the relationship between 

concentrations of choline containing metabolites and acetylcholine. Techniques traditionally used 

in rodent and primate neuroscience to study neurochemistry, such as microdialysis, enable the 

direct measurement of neurotransmitter concentrations. This includes acetylcholine, and therefore 

most work interested in studying the functional relevance of the cholinergic system does so directly. 

Thus, though there is some evidence suggesting a causal relationship between choline and 

acetylcholine function, more work is needed to clearly define the parameters of this relationship. 

Moreover, by concurrently measuring acetylcholine dynamics and choline concentrations using 

magnetic resonance spectroscopy, inferences can be made about how changes in one modality and 

temporal dimension relate to the other. Future spectroscopy work would benefit from using file-

types that enable us to separate individual transients during acquisition. In the work presented in 

chapter three, the dataset generated had spectra saved as an average of all the transients in each 

acquisition. This meant that we could not disentangle the effects of the number of transients on the 

reliability of quantitation. In future by running a single acquisition with many transients that are 

not averaged, we could sample from this acquisition to investigate whether the number of transients 

is related to the reliability of the averaged spectra, and what effect the number of transients has on 

the signal to noise ratio of the quantified spectra. 

The use of ultra-high field magnetic resonance imaging will also have several benefits for future 

work in this area. Firstly, the increased signal to noise ratio should increase the contrast of the 

boundary between the mediodorsal and pulvinar nuclei that is used by the segmentation algorithm. 

This would improve the delineation of individual thalamic nuclei and may lead to more accurate 
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identification of individual thalamic nuclei than for data acquired at three tesla. Increased field 

strength could also improve the signal to noise ratio, the spatial or the temporal resolution of 

functional imaging data collected during reversal, and of metabolite spectra acquired using 

magnetic resonance spectroscopy. These improvements should help to further localise the signal to 

individual regions of the cortex, striatum, and thalamus, as well as de-noising acquired metabolite 

spectra. This latter effect may help in the separation of choline from glycerophosphocholine and 

phosphocholine and may improve the temporal resolution of future work investigating the 

functional dynamics of the choline containing compounds. Improved temporal resolution could 

thus allow us to study whether functional changes in choline concentrations are observed during 

serial reversal learning, and if so whether these differences are consistent or not with the dynamics 

observed during the multi-alternative task.  

In summary, in the methodological aspects of this work, firstly we showed that automated 

segmentation can be used to faithfully delineate the major thalamic areas based on their constituent 

nuclei, and that segmentation accuracy was variable across individual nuclei. However, importantly 

we found that we were able to individually define the centromedian and parafascicular nuclei, and 

that the combination of these nuclei had little non-specificity. Secondly, we found that 

concentrations of glycerophosphocholine and phosphocholine remain relatively stable in the 

striatum over time, but that choline concentrations are not. Choline is associated with 

concentrations of acetylcholine and thus these results suggest that acetylcholine concentrations at 

rest may vary over time. We also show that quantifying separating peaks for the choline containing 

compounds produced concentration estimates that were positively associated with estimates 

generated using a single peak for the choline containing compounds. 

In the functional aspects of the work, we show that functional connectivity between the lateral 

orbitofrontal cortex and dorsal striatum, and between the centromedian-parafascicular nuclei are 

associated with negative feedback during reversal learning. Furthermore, we show that while 

thalamostriatal connectivity is not associated with any specific phase of the task, corticostriatal 

connectivity is associated with the phase in the task where participants switch to using an alternate 

response strategy. Additionally, we show that the concentration of choline at rest is positively 

associated with reversal learning performance. We suggest that corticostriatal connectivity may 

modulate the influence of thalamostriatal connections on the representation of context by 

cholinergic interneurons, and that higher concentration of choline at rest is associated with more 

efficient use of internal representations of context during serial reversal learning.  
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We examined these findings in the context of prior work on the contributions of the striatal 

cholinergic system and it’s input from the cortex and thalamus to cognitive flexibility, and discuss 

emerging methodological opportunities to drive further insight. 
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