
Science of Computer Programming 233 (2024) 103057

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

OnTrack: Reflecting on domain specific formal methods for

railway designs

Phillip James ∗, Faron Moller, Filippos Pantekis
Department of Computer Science, Swansea University, Swansea, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Model driven engineering

Formal methods

Railway verification

OnTrack is a tool that supports workflows for railway verification that has been implemented
using model driven engineering frameworks. Starting with graphical scheme plans and finishing
with automatically generated formal models set-up for verification, OnTrack allows railway
engineers to interact with verification procedures through encapsulating formal methods.
OnTrack is grounded on a domain specification language (DSL) capturing scheme plans and
supports generation of various formal models using model transformations. In this paper, we
detail the role model driven engineering takes within OnTrack and reflect on the use of model
driven engineering concepts for developing domain specific formal methods toolsets.

1. Introduction

In this paper, we reflect on the development of OnTrack, a tool that automates workflows for railway verification. Such workflows
usually start with graphical scheme plans or scheme plan representations and finish with automatically generated formal models set
up for verification. OnTrack has been implemented using a number of model driven frameworks and aims to overcome typical issues
surrounding the uptake of formal methods by industry [38,18,17,21] by encapsulating such methods within a domain specific tooling
environment. The paper reflects upon advances made in a number of previous papers [39,35,38,47].

For many years, the application of verification processes such as model checking and interactive theorem proving to various
industrial case studies has been successfully illustrated, e.g. see [52,9,59,62,48,31,34,58,19,50,15,27]. Even though these approaches
have been successful from a Computer Science perspective, the adoption of formal methods within industry is still limited [10] due
to questions around faithful modelling, scalability and accessibility [38,4,20]. Without experts in the field of formal verification, the
modelling approaches presented are often in a form that is acceptable to computer scientists, but not to the engineer working within
the domain. These presentations thus lead to doubts in the approach by the engineers and a low level of confidence towards the
capabilities of the approach to correctly capture the systems being modelled. At the same time, many verification methods are prone
to suffering from a scalability problem that makes their application to large industrial problems lengthy and often unfeasible. Finally,
tool support for verification procedures is often aimed towards a Computer Science audience interested in verification, and hence is
not easily accessible to engineers outside the field of formal methods. This work gives an experience report on how these problems
can be overcome by using model driven engineering within the domain of railway signalling.

Within the railway industry, it is common practice to define graphical descriptions of railway networks. Such descriptions enable
an engineer to visually represent the tracks and signals etc., of a railway network. Within OnTrack, we offer this graphical language

* Corresponding author.
Available online 15 November 2023
0167-6423/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: P.D.James@swansea.ac.uk (P. James), F.G.Moller@swansea.ac.uk (F. Moller), Filippos.Pantekis@swansea.ac.uk (F. Pantekis).

https://doi.org/10.1016/j.scico.2023.103057

Received 19 March 2023; Received in revised form 7 November 2023; Accepted 8 November 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:P.D.James@swansea.ac.uk
mailto:F.G.Moller@swansea.ac.uk
mailto:Filippos.Pantekis@swansea.ac.uk
https://doi.org/10.1016/j.scico.2023.103057
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2023.103057&domain=pdf
https://doi.org/10.1016/j.scico.2023.103057
http://creativecommons.org/licenses/by/4.0/

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 1. A simple scheme plan.

as one particular starting point. OnTrack is grounded on a domain specification language (DSL) for the railway. Around this DSL, we
have created a graphical editor and implemented a number of model transformations. These transformations can be used to generate
formal specifications in different languages. We distinguish between model transformations for abstraction (DSL meta-model to DSL
meta-model), representation (DSL meta-model to a meta-model for a formal specification language) and generate for verification
transformations (DSL/formal specification language meta-model to plain text). OnTrack also offers the ability to visualise failed
verification attempts within the OnTrack editor, rather than at the mathematical level of the verification tool output.

In addition, both the DSL and the extensibility of OnTrack to allow the generation of formal models in any given language
form part of the novelty of our work. The second key aspect of our approach is that we define abstractions on the DSL in order
to yield optimised descriptions prior to formal analysis. Importantly, these abstractions allow for common benefits for verification
across different formal languages. The effectiveness of the approach has been illustrated through its application to verify a number of
different real world railway scheme plans. We note that OnTrack was developed through 2012 – 2018 and thus some of the languages
and techniques we discuss in this paper have since advanced. However we feel the essence of the lessons from the development remain
insightful.

Finally, OnTrack is designed for the railway domain, but the clear separation of an editor with support for abstractions from the
chosen formal language is a principle that we feel is more widely applicable.

The remainder of this paper is structured as follows. In Section 2 we briefly introduce the field of railway signalling verification
and discuss related contributions. In Section 3 we explore the core model driven frameworks that have been used in implementing
OnTrack. Section 4 then explores the main structure of the OnTrack tool, highlighting the key areas where model driven frameworks
have successfully played a role. In Section 5 we highlight challenges that were faced when implementing particular features of
the tool within an MDE setting. Finally, Section 6 gives a reflection from the authors on the use of model driven frameworks for
developing formal methods toolsets, before we conclude the paper in Section 7.

2. Verification of railway interlocking data

Railway control systems are a typical example of a safety-critical system, where their failure could lead to catastrophic conse-

quences. A core system for ensuring safety is the Interlocking system. Interlockings operate functionally as a filter between inputs
from railway signallers and the concrete railway infrastructure itself. Their aim is to ensure that requested changes from the operator,
such as setting of a particular route, are only undertaken if it is safe to do so with respect to the current state of the railway.

Interlocking applications are developed according to processes prescribed by railway authorities, such as Network Rail’s Gov-

ernance for Railway Investment Projects (GRIP) process. The first four GRIP phases (Output definition, Feasibility, Option selection,
Single option development) define the track plan and routes of the railway to be constructed. The next phase, is then contracted to
signalling companies such as Siemens Rail Automation (who have supported the research we present here). Such companies choose
appropriate track equipment and add control logic in the form of control tables that stipulate, among other things, when it is safe
2

to set routes. The track plan in addition to the control tables is typically referred to as a scheme plan (see Fig. 1). The signalling

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

company, based upon these design documents, then implements the interlocking system. Thus, correctness of this detailed design
and in particular the control logic is fundamental to ensuring safety of the railway.

2.1. Track plans

A railway network consists of a number of track-side elements of different types, for instance linear sections, points, and physical
signals (or marker boards in newer deployments). The track plan in Fig. 1 shows an example layout of a railway network having a
number of track circuits (TC1, TC2, TC3 etc.), a number of points (P1, P2 etc.), and 7 signals (S1, S2, etc.).

Track circuits are detection sections, and are used by interlocking systems to detect the presence of trains in a railway network.
A point can be switched between two positions known as Normal and Reverse. A signal is used to control entry to a particular route,
which is a region of the scheme plan that depends on the direction of travel. For example Signal S4 controls whether or not a train
can leave the top platform and exit the track plan via TC16. The rules on when a signal can be set to allow a train to proceed are
captured within so-called control and release tables. Here we present only the former for simplicity.

2.2. Control tables

An interlocking system constantly monitors the status of track-side elements, and also sets them to appropriate states in order to
allow trains to travel safely through the given railway network. A control table specifies the routes in the given network layout and
the conditions for setting these routes. A route is a path from a source signal to a destination signal.

In railway signalling terminology, setting a route denotes the process of allocating resources. That is, sections, points and signals
for the route are set and then locked for use exclusively for one train. The specification of a route and conditions for setting it includes
the following information. Considering the control table shown in Fig. 1: the name of the route (e.g. R1A), a list of the detection
sections in the route’s path that need to be clear of trains (e.g. TC2, TC3, TC4, TC5, TC12 and TC13) and the required positions of
points used by the route (e.g. P1 and P2 are Normal and P3 is Reverse). Release tables are similar, but instead dictate when resources
along a route can be released after they have been used by a train.

2.3. Safety guarantees

In order to prevent collisions and derailment of trains, interlocking systems employ a simple logical principle: a route is locked
exclusively for use by one train at a time. Thus, it is common that signalling companies wish to check various properties of their
designs, including:

Collision-freedom: which excludes two trains occupying the same track.

Run-through-freedom: which states that whenever a train enters a point, the point is set to cater for this. For example, considering
Fig. 1 e.g., when a train travels from track TC12 to track TC5, point P3 is set so that it connects TC12 and TC5 (and not
TC5 and TC6).

No-derailment which prescribes that whenever a train occupies a point, the point does not move.

Here, correct design for the scheme plan is clearly safety-critical as mistakes can lead to a violation of any of the three safety
properties above.

2.4. Related work on verification environments

It is still an open research question as how to perform safety checks on interlocking designs. Here the main research challenge
is how to cope with the complexity of the problem as the state space to be verified grows exponentially in the size of the scheme
plan. Over a sustained period, several research groups, see e.g. [32,3,29,24,26,25,57,38,37,16,30,61,60,56,11,44,58,19,50,15,27],
have been addressing this challenge and have developed a number of different modelling and verification approaches. Indeed, recent
approaches have also been shown to scale well to modern industrial systems [27,15,50] and even to railway systems yet to be realised
within rail industry [14]. Also, effort has been undertaken to review the usability of railway verification tools, where, for example,
Ferrari et al. have systematically assessed the usability of 13 different formal methods tools [17]. In spite of this, formal methods
still lack widespread use within industry often due to questions surrounding the usability and expertise required for applying formal
methods [18,17,21].

The modelling part of such approaches usually consists of “transformations” of how to derive a (formal) model from informal rail
descriptions as used in rail industry such as a track plan (e.g., as a CAD drawing) enriched by various tables (e.g., a control table).
Similarly, the verification part usually states a safety condition (e.g., no train collision) and expresses this as a (formal) property
(e.g., as a logical formula). Finally, a suitable and often automated verification tool is utilised to provide an answer if the property
holds for the given model.

With respect to modelling, historically, Dines Bjørner has notably developed an extensive DSL for the railway domain [6,8,7].
Bjørner’s DSL – the DSL on which we build later – has been applied in the PRaCoSy (People’s Republic of China Railway Computing
System) project to model a 600 km line between Zhengzhou and Wuhan [8]. More recently, Vu et al. have developed a detailed DSL
3

aimed particularly at interlocking modelling and verification [58].

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

There are several projects with a close relevance to this work. The first is the development environment for verification of railway
control systems created by Haxthausen and Peleska [23,28]. This environment includes a DSL allowing modelling of control systems,
and an automatic translation from models described in this DSL to executable control programs. At each level of production, various
safety checking steps are taken. The difference between our approach and this is that we employ standard techniques from the field
of MDE to support our toolset, rather than just implementing elements such as model transformations in a general purpose language.
We highlight the benefits of this in Section 6. Similarly, work by Luteberget et al. [43] has explored automated graphical layout of
scheme plans, which indeed was a challenge encountered within our work. Here their approach encodes the optimisation challenge
as a SAT problem, where as we utilised simulated annealing [47].

Next, is the SafeCap project [51] which has the aim of improving railway capacity safely by integrating proof-based reasoning
about time and state-based models. Part of the project aims to develop an intuitive graphical DSL for the railway domain with a
tailored toolset [33,53] supporting verification of railway plans. Their approach is based on Event B [1] and the Rodin framework [2].
The approach taken in the development of this graphical language is inspired by the methodology we present in this work (in fact,
the SafeCap DSL and toolset have been developed in co-operation with several of the authors of this paper).

Finally, work by Kanso [40] presents a framework that aids in the development of verified railway interlockings. The framework
is built around the Agda theorem prover and has been applied to verify two existing railway control systems. The approach by Kanso
also presents novel results on integrating model checking into Agda. Here we differ from Kanso, as we concentrate on designing
verification processes with industrial applicability in mind, rather than applying new formal methods to industry in an exemplary
fashion.

3. Model driven frameworks

In this section, we discuss the main Eclipse IDE components and plugins that we use for creating the OnTrack DSL and the
associated tool support. To this end, we discuss the Eclipse Modelling Framework (EMF) [54], the Graphical Modelling Framework
(GMF) [22] and Epsilon [42]. Each of these plugins are developed to support various aspects of model driven engineering and
development [41,5] of DSLs.

3.1. Eclipse modelling framework

Many people consider the core of a language to be its abstract syntax. From an abstract syntax, one can develop artefacts such
as a concrete syntax or model transformations to another abstract syntax. The Eclipse Modelling Framework [54] is a modelling
framework and code generation facility for building tools and other applications based on a structured data model. Part of this
framework includes Ecore [54] which is a UML class diagram like language for describing meta-models for DSLs. Models are stored
using the XMI (XML based) file format and can be edited using a number of varying viewpoints. From such a XMI model specification,
EMF provides tools and runtime support for producing various Java classes for the model, along with a set of adaptor classes that
enable viewing and editing the model. Finally, such a model serves as the basis for creating a graphical syntax for a DSL using GMF.
We have utilised EMF to define the elements of the underlying domain specific language within OnTrack. For further reading on
EMF we refer the reader to [54].

3.2. Graphical modelling framework

The GMF or Graphical Modelling Framework project [22] provides the features allowing one to develop, from an Ecore meta-

model, a graphical concrete syntax for a DSL. The result of applying the GMF process is a graphical editor encapsulating this graphical
concrete syntax. Such an editor is shown in Fig. 2. This editor consists of a drawing canvas (in the centre) and a palette (right hand
side). Graphical elements from the palette can be dragged and positioned onto the drawing canvas. Overall, the editor can be used
to produce model instances of the DSL described by the underlying Ecore meta-model.

GMF uses the Graphical Editing Framework GEF for many of its features, but provides a useful development framework on top
of GEF. The main features of GMF can be split into two components: a tooling framework for developing graphical editors and a
runtime framework for running such editors. Here, we discuss the tooling component.

3.2.1. GMF tooling

The tooling component of GMF provides easy access and model driven editing to several models that are required to create a
GMF editor plugin.

Graphical Definition Model: The graphical definition model is where the user can define the various figures to be used for the
concrete syntax.

Tooling Definition Model: As illustrated in Fig. 2 (right hand side), most editors created using GMF include a palette allowing users
to create and work with constructs from the concrete syntax of the DSL. The tooling definition model is where users can define
and design the elements to be included and displayed in the palette.

Mapping Model: The mapping model is one of the most important models used when generating a GMF editor. It is where one
can define how elements from the graphical definition model and tooling definition model are linked to elements from the
4

underlying Ecore meta-model.

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 2. OnTrack GMF editor for railway scheme plans.

Generator Model: Finally, the generator model combines the information of the previous models with details that are needed to
generate code for the editor. The generation of this model from the mapping model is often an automatic step, however it is
possible to customise this model to include features such as extension points [22]. The generator model is used to generate a
DSL editor similar to the one shown in Fig. 2.

For further details on developing GMF editors we refer the reader to [54,22].

3.2.2. Epsilon

Often, the development of a GMF editor is motivated by the possibility of producing, from an instance model created by the
editor, some sort of output usually in the form of text or program code. Similarly, many people wish to transform the model into a
slightly different model, or compare it to another model that may be an instance of a different meta-model. To help with these tasks,
users can make use of what are known as model transformations. Although there are several possible frameworks for defining model
transformations we concentrate our review on the Epsilon framework [42] used in this work.

Epsilon, an extensible platform of integrated languages for model management [42], provides a family of languages and features
for defining and applying model transformations, comparisons, validation and code generation. In the case of Ecore meta-models,
the main types of model transformation which are of interest to us are:

1. Model-to-text transformation (M2T): Model-to-text transformations can be viewed as model-to-model transformations, where
the output model is simply an instance of the (very general) meta-model defining sequences of characters. Such transformations
are often used for code generation from a given model to a programming language. Later in Section 4.1.1, we will use this type
of transformation to generate formal specifications from graphical models. Interestingly when generating text, one can opt to
use a meta-model for the output text or to skip the meta-model and simply directly output text.

2. Model-to-model transformation (M2M): Model-to-model transformations define how a model instance of one Ecore meta-model
can be transformed into a model instance of (optionally) another Ecore meta-model. Later in Section 4.1.2 we will use these to
capture abstractions from the field of model checking of Interlockings.

To support the above model transformations Epsilon provides several languages [42] of which we consider and use:

EOL: The Epsilon object language that provides a common set of model management constructs. EOL forms the base language of
which the other Epsilon languages are constructed.

ETL: The Epsilon transformation language for specifying model to model transformations.

EGL: The Epsilon generation language for model-to-text transformations. EGL provides a templating feature for code generation
5

without requiring a meta-model for the output model.

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 3. A snippet of the OnTrack DSL.

EWL: Finally, the Epsilon wizard language for defining and executing transformation workflows, including activating transformations
from a GMF editor.

More details on these languages and their formal definitions can be found in the Epsilon book by Kolovos et al. [42].

4. OnTrack architecture and functionality

OnTrack has been created using the EMF [54] and GMF frameworks [22] and multiple Epsilon [42] model transformations.
Fig. 4 shows the workflows that we support in OnTrack. Initially, users can either import an existing rail plan in RailML [46] or
they can draw a track plan using the graphical front end. They can then enrich this graphical plan by adding textual (table based)
information for control and release tables. Together these form a scheme plan, which are models formulated relative to OnTrack’s
DSL meta-model. Fig. 3 provides a snippet of this DSL highlighting the elements required to capture a control table. However the full
DSL contains 20 classes and around 60 associations. We note that the DSL only captures those elements necessary for verification
of control tables against safety properties at ERTMS Level 2 and below, which means it does not capture many elements of railway
systems. The DSL also took some time in development and was a result of many discussions with Railway experts. It was also built
upon the elements visible in manually constructed formal models that had been initially, in a time-consuming manner, developed to
explore verification techniques.

A scheme plan is then the basis for subsequent workflows that support its verification, simulation, analysis etc. Scheme plans can
then be translated to formal specifications in various (specification) formalisms.

Once a formal model has been generated, it can be simulated or verified using the tools associated with the formal specification
language that has been used as the generation target language. For example, ProB can be used for animating and verifying CSP||B,
SPASS can be used for verifying CASL, TimedCSP Simulator can be used for simulating and visualising train runs.

OnTrack is extensible, that is, the editor, tooling and importantly, abstractions (see Section 4.1.2) can be reused to generate formal
models from various contexts by providing a suitable model transformation to that context. These models can then be simulated and
analysed with the respective tools. In principle, this workflow can be fully automatic. In a prototyping phase, one would support it
only partially, i.e., OnTrack produces a file that then needs to be loaded into another tool, rather than having OnTrack opening this
other tool directly.

4.1. The successful role of model transformations

The original goals of OnTrack were to support the generation of formal models from a graphical model. Here, it was somewhat
6

planned that model transformations would be used to generate text based formal models. However, throughout development, it

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 4. The OnTrack workflow.

Fig. 5. Model transformations within OnTrack.

became apparent that model transformation could also be used as a powerful way of implementing common abstractions (see
Section 4.1.2) that are needed to allow for successful verification. For example, see the abstractions explored in [37,45]. We now
discuss the role of model transformations within these settings. The general scheme is captured in Fig. 5.

Initially, a user draws a Track Plan using the graphical front end. Then the first model transformation we have implemented,
Generate Tables leads to a Scheme Plan, which is formed from a track plan and its associated control tables. This model transformation
is included to aid signalling engineers by pre-populating control tables with data that can be automatically derived from the scheme
plan. We note, that in general it is not possible to fully automatically generate control tables as there are often design choices to be
made.

Next, there are two possible scenarios for the horizontal workflow that depend upon whether or not a meta-model is available for
the formal specification language one would like to generate.

1. Using a meta-model for the formal specification language: The first option is to have a meta-model describing the formal
specification language. A Represent transformation translates a Scheme Plan into an equivalent Formal Scheme Plan over the
meta-model of the formal specification language. Then various Generate for Verification model-to-text transformations turn a
7

Formal Scheme Plan into a Formal Specification Text ready for verification.

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 6. Example of static text generation for our DSL.

Fig. 7. Dynamic text generation for elements of Unit free type.

2. Direct generation of a formal specification: The second approach is to directly generate a formal specification. Thus only the
Generate for Verification model-to-text transformations need to be implemented.

In both cases, the Generate for Verification transformations can enrich the models appropriately for verification, e.g. by including
the various lemmas that may be known to help that formal method in proving safety.

This horizontal workflow provides a transformation yielding a formal specification that faithfully represents a scheme plan. In
Section 4.1.1 we highlight the second approach that has been taken for the generation of CASL specifications 4.1.1.

Finally, the top level of the workflow shows the ability of OnTrack to include abstractions. We are interested in abstractions
as these can ease verification. For currently implemented abstractions, the diagram commutes. Although we note that abstractions
within the tool are implemented at the DSL meta-model level, whilst any abstractions on concrete specifications are part of the formal
construction within the given formal language. Thus, when implementing new abstractions, one should check that the implementa-

tion meets the formal definition of the abstraction.

4.1.1. Formal model generation

Here we describe the direct implementation of the Generate for Verification transformations for CASL. The Generate for Verification

transformation translates meta-model instances of OnTrack’s DSL into formal specification text. This transformation is implemented
using the Epsilon Generation Language (EGL) [42]. EGL allows template files to be written describing the text to be generated. These
templates provide two main features for outputting text, namely the ability to output static text and to output dynamic text. Static
text is considered text that is always generated independent of the model. Whilst Dynamic text is text that depends on the given
model. For this reason, Dynamic text is sometimes referred to as configuration data. By default, any text written in an EGL template
is considered to be static text. For example we know that the specification of data types for our DSL and similarly our extension of
this with dynamical aspects is the same for all models. Hence this is rather straightforwardly encoded as static text to be output, see
Fig. 6.

Within the same EGL template, we can then specify the output for a concrete scheme plan. For example, consider the free type
of units that is used to capture track-like components. Here, such a free type is built from the concrete elements of linear tracks and
points contained within the graphical model. Hence we can specify the template in Fig. 7 for the dynamic generation of the free type
Unit. The result of applying this EGL fragment, to the concrete scheme plan in Fig. 1 is the following CASL specification fragment:

free type Unit::= TC1 | TC2 |... | P1 | P2... .

Considering Fig. 7, the first construct of EGL that we notice is [% and %]. Any text specified between such a set of brackets is
interpreted as code. For example, the line var rail: OTDiagram:=... is a line of EGL code for declaring the variable rail
and assigning to it the current scheme plan instance within the graphical editor. This variable, can then be used throughout the
EGL template to refer to the current model instance. Next, we see an EGL if statement (line 3). This statement checks the number
8

of elements in the hasUnits relation of the current rail diagram. If there are linear units or points that have been drawn in the

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 8. ETL rule for abstract model transformation.

diagram, the code inside the if statement is executed. The first line within the if statement is static text to be generated. That is,
as long as the if statement is entered, the text “free type Unit::=” will be output. Lines 6 to 9 perform a loop through the
units of the concrete scheme plan instance. For each unit up until the last but one, we can see that in line 9 the dynamic text
generation “[%=unit.name%]” is executed. Here, the dynamic text generation also contains the “=” symbol. This indicates that the
text following is a piece of code that returns a value. For example, “unit.name” is a field containing the name that has been given
to the current unit element. This name will then be output by the generation process. This dynamic text generation is immediately
followed by the static text generation “|”. This produces the “|” symbol between elements of the free type. Finally, after the while
statement there is another block of code (lines 10 and 11) that outputs the last unit identifier in the collection.

In a similar manner to the presented free type generation, it is possible to explore all the elements of the diagram generating the
concrete scheme plan specification in CASL. After generation of the scheme plan, the safety property to be proven over the scheme
plan can also be generated. As CASL supports quantification within property specifications, this property is the same for all scheme
plans and is thus simply generated as static text. The result is a full CASL specification ready for verification of the current model
instance.

Overall, this generation means that OnTrack achieves the aim of automating the production of formal specifications from a
graphical model. OnTrack is a toolset that is usable by engineers from the railway domain and allows them to produce formal CASL

specifications ready for verification.

4.1.2. DSL level abstractions

Research groups have developed so-called domain level abstractions for the setting of railway verification [37,45,36,49,27,15,50].
These abstractions take advantage of domain specific features of railways in order to provide benefits to verification. Such abstractions
often aim to reduce the scale and complexity of the railway plan that is needed to prove safety. They are typically expressed over
a mathematically formulated DSL of the domain and often require a manual proof to be constructed within the setting of the
formal specification approach being utilised. Within OnTrack, we have implemented a number of such abstractions ranging from
simple removal of non essential elements (discussed below), to the much more complex construction of influencing regions (see the
covering abstraction provided by James et al. [36]).

Within OnTrack one of the implemented abstractions is based on the simplifying scheme plan abstraction by Moller et al. [45],
where various sequences of units are “collapsed” into single units. For example, considering Fig. 1, route R1A ends with track circuits
𝑇𝐶12 and 𝑇𝐶13 which appear in the clear column of the control table. As these are straight tracks, the abstraction allows them to
be considered as a single logical unit. The abstraction has been shown correct, and to improve the feasibility of verification [45]. The
abstraction is implemented using the Epsilon Transformation Language (ETL) [42] that is designed for model transformations. Fig. 8

gives an excerpt of our transformation. The algorithm uses the following list structures: toDelete: storing units to be removed and

consToBeMapped: storing which connectors require renaming.

The abs rule performs as follows: line 1 states that the rule translates the given rail diagram rd to another rd2. The second line
simply calls an operation computeAbstraction() on rd to compute which units can be collapsed and to populate the lists with
appropriate values. Next, the algorithm will consider every unit ut within rd (line 3). If ut is not in the list toDelete (line 4),
then the algorithm will perform analysis on the connectors of ut. If connector one of ut is within the set of connectors requiring
renaming (line 5), then the first connector of ut is renamed using a call to the operation getMapping() (line 6). Lines 8 to 9 of the
algorithm perform these steps for connector C2 of ut. After this computation, the modified unit ut is added as an element to rd2
(line 11). The algorithm continues in a similar manner, computing which connectors and signals should be added to rd2. Finally, an
operation computeTables is called to compute a new control table for rd2.

Importantly, we note, that any domain level abstractions implemented in OnTrack (such as the one presented) can be applied
9

before the model transformations that generate formal models. This allows reuse of these abstractions for the currently supported

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

formal models in OnTrack, as well as reuse for any languages that are added in the future. However, the ability to apply the
transformation in OnTrack does not mean that the abstraction is semantically sound within the given formal model, and indeed the
abstraction would need to be proven correct based upon the semantics of the formal language. As an example of such a proof we
refer the reader to [36].

5. Challenges in input formats and counterexample visualisation

Throughout the development of OnTrack, there were a number of desired features from a railway verification perspective that
did not fit naturally with the available MDE frameworks at the time. In particular, both involved interfacing OnTrack with other
tools and formats that were not defined in the traditional sense of a meta-model or DSL. We now discuss these challenges.

5.1. Importing data

In the railway verification community, there are often issues around interoperability of tools due to a plethora of data formats
that are used by the different organisation across the railway domain. Here, a limitation with many existing toolsets is that users are
often required to re-draw and re-enter railway layouts directly into the verification toolset. Re-entering data is clearly cumbersome,
open to errors and time consuming. Similarly, automated importation of verification data tends to be hard as geospatial information
on positioning of language elements is often missing from the data.

Here, we had hoped to be able to develop a model transformation from existing data formats (for example Brave [12] and
RailML [46]), however it was a challenge that after initial investigations looked to be too cumbersome. Hence the decision was taken
to implement the import as an ad-hoc Java plugin.

5.1.1. Well defined data

Here, considering for example the Brave data format, the following aspects played a role in this decision:

• No defined language model: The lack of a well defined meta-model for the data meant that one would need to be developed;
here the size of the Brave language is much larger than the OnTrack DSL and thus this endeavour seemed too large.

• Well Formed Models: Given the lack of a language definition, there were a number of concerns around importing incomplete
complex models that may work fine with the Brave toolset, but would require the (likely manual task) of adding data to make
a well formed OnTrack model. For example, a simple missing end of track marker at the edge of the scheme plan would work
within simulations in Brave, but would not be a well-formed model within OnTrack.

• Granularity and Terminology: The Brave data format contains many added interconnected domain entities that were not needed
in the setting of OnTrack. These differences in granularity often led to overlapping terminology that represented domain entities
in a conflicting manner from varied viewpoints. For example, train detection units could cover multiple tracks and points in
Brave, whereas within OnTrack this granularity is not present and is abstracted into a single unit of detection.

MDE Challenge 1 – Supporting less structured and non well-formed models: Overall, the developers of OnTrack felt that the
well-structured nature of data often found within MDE tools was not matched by the less structured data that we would like to
import. Thus dealing with abnormalities seemed much easier from a generic programming language perspective. Here we feel there
could be an interesting area of research in dealing with non well-formed models or similar within MDE settings.

5.1.2. Model layout and geospatial information

In addition to being able to import data, the graphical nature of our models means that geospatial information on layout of model
entities is essential for viewing and working with the models. However, we note that such geospatial information is not necessary
for the verification of control tables, which is only concerned with the topological nature of the railway. Such geospatial information
is often not available when importing models, or is very complex to deal with. Here we had hoped that GMF would offer a sensible
graph layout option or algorithm that produced a somewhat workable result for railway engineers (even if not matching the real
world scheme plan layout). However, essentially any imported model is displayed graphically in a hierarchical list of entities. This
led to our imported models being completely unusable for domain experts, and is indeed one of the limitations of MDE frameworks
such as GMF, where geospatial information is not considered as part of the models semantics.

To overcome this, we developed a best-fit approach to track layout that we then tested with end users [47]. This approach is
based upon simulated annealing, which makes incrementally smaller changes to the layout over thousands of iterations, with an
aim of optimising a defined score function. In terms of implementation, this feature took considerable effort for development of the
simulated annealing algorithm. However, linking this to interact with the layout of elements within GMF was relatively simple once
the initial hurdle of understanding the construction of GMF models had been overcome. We note that the implementation does not
follow any systematic MDE principles, and is rather generic in terms of approach, which in turn may hinder maintainability of the
toolset as MDE frameworks evolve. The approach is incorporated as a simple Java based import plug-in.

MDE Challenge 2 – Consider geospatial information as part of a models semantics: We feel that layout of entities in DSLs
is something that would be fruitful for the MDE community to explore. Where perhaps the solution is in-fact a DSL that allows
10

specification of how entities should be geospatially represented in relation to one-another. In addition, to aid in uptake of MDE tools,

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

better documentation and examples (at the time of development of OnTrack) would have provided greater support for such ad-hoc
plugins.

5.2. Counterexample visualisation

Finally, OnTrack aims to encapsulate formal methods for proving correctness of railway designs with regards to safety. When
designing signalling systems, engineers often step through problems and safety issues like a mathematician would step through the
lines of a proof. As OnTrack generates formal models from graphical specifications, it is highly desirable that any failed proofs, or
counterexamples to a safety property be presented once again at the level of the graphical specification within the graphical DSL.

Here, there is once again a trade-off as failed proof counterexample traces are typically described at the low level of the proof tool
involved (indeed sometimes lower than the generated formal models). Hence a reverse model transformation would be somewhat
cumbersome to try to construct. Often such counterexample traces also contain not just a single “state”, but thousands of consecutive
states, leading from initial conditions through to where the safety property is violated. Hence a graphical visualisation must not
only be perceptually effective, it must also support the cognitive map with which railway engineers and formal methods researchers
approach the problem.

To overcome this, we once again implemented an ad-hoc plugin that only supports CSP models (here a unique backwards
transformation is needed for each formal method). We provide an interactive step-through approach via next/previous buttons,
similar to a debugger. The various states of the system are displayed within the GMF editor (see Fig. 9, which highlights the dynamic
state changes for a simple counterexample that ends with two trains occupying the same track highlighted in red). Again this approach
was subjected to a user study [47] to help determine which states should be displayed (i.e. key frames), rather than displaying the
possibly thousands of states for a given counterexample.

Overall here, the implementation effort was minimal, where familiarity with GMF aided in the development. However, we do
note that some changes were made to the underlying DSL meta-model to support this functionality. For example to capture state
information in a nice way, certain fields were added to domain elements.

MDE Challenge 3 – Animation of models: Overall, the authors feel that there could be a better solution to counterexample
visualisation through some form of graphical DSL that supports animation. Indeed this perhaps could be achieved through a dedicated
DSL/GMF editor combination that captures and supports a generic form of counterexample and interactions with it. From this, it
would also be interesting to explore if bi-directional model transformations could be used to support a close link between DSL models
and counterexamples from each formal method.

6. Reflections on model driven engineering for formal methods

The aims of the OnTrack toolset were to deal with shortcomings surrounding the uptake of formal methods by industry [38,4,20]

due to questions around:

Faithful modelling: Do the proposed mathematical models faithfully represent the systems of concern? Modelling approaches
offered from Computer Science are often in a form that is acceptable to computer scientists, but not to the engineer
working within the domain. How can an engineer working within the domain come up with new models?

Scalability: Does the proposed technology scale up to industrially sized systems in a manner that is uniformly applicable? Often,
formal methods have been applied in a pilot to specific systems, but require individual, hand-crafted adaptation and
optimisation for each new system under consideration.

Usability: Are the methods accessible to practitioners in the domain of interest or is it just the developers of the approach who can
apply them? Handling of tools for verification procedures is often aimed towards a Computer Science audience specialised
in verification, however they are usually not manageable by engineers outside the field of formal methods.

On each of these fronts, utilising MDE frameworks to implement a tool environment has had a number of both expected and
unforeseen benefits. In particular:

Takeaway 1 – DSLs and model transformations support faithful modelling well: Confidence in a formal model actually pro-

viding a faithful model of the domain has been increased. Here, both the use of OnTrack’s DSL, that is well understood by railway
engineers, and the use of model transformations, that are highly systematic and easy to read (compared to an ad-hoc translation), have
improved confidence of Siemens Rail Engineers in the formal models we have created. Interestingly, the tool has also allowed for
rich discussions in a manner that overcomes language barriers between domain experts and formal methods researchers, supporting
further refinement of the formal models and verification processes.

Takeaway 2 – Model transformations are a good approach to implementing abstractions: OnTrack has presented a new form
of scalability for formal methods, in that it supports domain centred abstractions that can be utilised by any underlying formal
method. Here, the development of domain level abstractions [36] were in fact inspired by the idea of DSL level model-to-model
transformations. In addition, the fact that such abstractions are implemented as model transformations independent of the formal
11

method, means that if a new formal method is added to OnTrack, it can benefit from these abstractions without any additional

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Fig. 9. Counterexample visualisation via key frames. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

implementation work.1 As these abstractions are also written in a clear and concise way as model transformations, there is again
increased confidence in the correctness of the implementation, which is especially important within the setting of formal methods.
12

1 We note that there may be manual effort in constructing a semantics level proof, but this would have to be completed for any abstraction anyway.

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

Takeaway 3 – MDE tools were successful in allowing rapid development of a graphical tool to improve usability of formal
methods: Thanks to OnTrack’s DSL and its GMF based editor, OnTrack succeeds in being highly usable by railway engineers [47]

by encapsulating formal model generation. Here, although not without some challenges (see Section 5), the use of GMF allowed for
rapid development of a modelling environment that allows rail engineers to create, edit and fine-tune railway scheme plan designs.
In addition, simple wizards have been implemented in Epsilon’s Wizard Language that allow automation of several tasks, such as
generation of control table data.

7. Conclusions and future ideas

In this paper, we have reviewed and reflected upon the implementation of OnTrack, a tool for automating workflows for railway
verification. Overall, we believe the OnTrack project has been a success as a demonstrator of how model driven engineering can
be applied to develop domain specific toolsets for formal methods. Indeed, OnTrack is still in use today by researchers developing
formal models particularly at Swansea University, Coventry University and Siemens Rail Research. However, we note that there are
barriers to the use of OnTrack within the setting of safety cases for the railway domain. In particular, many of the implementation
techniques do not meet the relevant safety compliance checks required for safety critical systems (e.g. qualification of a T2 level tool
according to EN50128 [13]) and thus any likely usage outside of industrial research departments would require re-development of
the tool, in a likely more bespoke manner. However, the ideas explored in OnTrack have influenced the views on rich data models
and also data transformations within Siemens Rail.

As experts in formal methods, the authors have developed a particular fondness towards the benefits of using DSLs and model
transformations. Not only did GMF provide a low barrier to entry for developing a graphical specification tool, but formulating
specification generation and abstractions as model transformations provides a real clarity both conceptually and in terms of both
traceability and readability within the implementation. This level of traceability we feel is core to maintain faith in any formal
methods tool. In addition, OnTrack has supported collaboration between academic groups benefiting from the tool without the need
for a large implementation effort, but by simply developing translations to their formal models. For example, OnTrack was an integral
part of the DITTO research project (see http://dittorailway .uk) allowing traffic engineers and transport operations researchers (from
University of Leeds and University of Southampton), railway engineering researchers (from Birmingham University) and computer
scientists (from Swansea University) to explore fundamental principles for the optimisation of rail operations.

Finally, the authors would like to further explore the use of Model driven approaches within OnTrack. In particular, we feel there
is scope for improving upon the argument of faithful modelling by utilising validation languages such as EVL [42] to show correctness
of the implemented model transformations. In addition, we are keen to explore the development of a separate tool that encompasses
a family of DSLs to capture various forms of counterexamples as generated by various proof tools. Here, we feel a generic graphical
framework that can be specialised to a particular domain and that supports presentation and interaction with failed proofs would
provide many benefits to both the formal methods community and domain experts wishing to use formal methods. We envisage that
perhaps bi-directional model transformations [55] would play a key role in such an endeavour.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors would like to thank Siemens Rail Automation UK and the Rail Safety and Standards Board, RSSB, for supporting
this work. We also wish to highlight the rich insights provided by Simon Chadwick, Mark Thomas, Thomas Werner and Andrew
Lawrence from Siemens Rail Automation UK. We extend a special thanks to our academic collaborators, in particular, Prof. Markus
Roggenbach, Dr. Hoang Nga Nguyen, Prof. Helen Treharne and Dr. Monika Seisenberger for their valued insights and contributions
to the development of OnTrack.

References

[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge University Press, 2010.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L. Voisin, Rodin: an open toolset for modelling and reasoning in Event-B, Int. J. Softw. Tools
Technol. Transf. 12 (6) (2010) 447–466.

[3] M. Banci, A. Fantechi, S. Gnesi, Some experiences on formal specification of railway interlocking systems using statecharts, Technical report, CNR-ISTI, Pisa,
Italy, 2005, TRain Workshop at SEFM 2005 (Software Engineering and Formal Methods), Koblenz, Germany, September 5–9, 2005.

[4] D. Basile, M.H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, A. Piattino, D. Trentini, A. Ferrari, On the industrial uptake of formal methods in the railway domain,
in: C.A. Furia, K. Winter (Eds.), Integrated Formal Methods, Springer, 2018, pp. 20–29.

[5] S. Beydeda, M. Book, V. Gruhn (Eds.), Model-Driven Software Development, Springer, 2005.

[6] D. Bjørner, Formal software techniques for railway systems, in: CTS2000: 9th IFAC Symposium on Control in Transportation Systems, 2000, pp. 1–12.

[7] D. Bjørner, Dynamics of railway nets: on an interface between automatic control and software engineering, in: CTS2003: 10th IFAC Symposium on Control in
Transportation Systems, 2003.

[8] D. Bjørner, C. George, S. Prehn, Scheduling and rescheduling of trains, in: Industrial Strength Formal Methods in Practice, Springer, 1999, pp. 157–184, chapter
13

8.

http://dittorailway.uk
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5E6A8D9174B3BECD3485ED119E795A2Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib3273C7E0FB872A9858F86357C8FF4936s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib3273C7E0FB872A9858F86357C8FF4936s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib63EC8FCF677F99198642935C0DFDF12Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib63EC8FCF677F99198642935C0DFDF12Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib03EDCEACB13CDEEA4155F4037C7B6C26s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib03EDCEACB13CDEEA4155F4037C7B6C26s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib27294008A547FE55B75920B5D2D3D75Fs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib67011AA67F448933DB27D9E429654DF2s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCF6556BC7883131BC556B495B41BC9BBs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCF6556BC7883131BC556B495B41BC9BBs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF268E131D2701606432363F4D05ED806s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF268E131D2701606432363F4D05ED806s1

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

[9] J. Boulanger, M. Gallardo, Validation and verification of METEOR safety software, in: J. Allen, R.J. Hill, C.A. Brebbia, G. Sciutto, S. Sone (Eds.), Computers in
Railways VII, vol. 7, WIT Press, 2000, pp. 189–200.

[10] J.P. Bowen, M.G. Hinchey, Ten commandments of formal methods... ten years later, IEEE Comput. 39 (1) (2006) 40–48.

[11] Y. Cao, T. Xu, T. Tang, H. Wang, L. Zhao, Automatic generation and verification of interlocking tables based on domain specific language for computer based
interlocking systems, in: Proceedings of the IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011, vol. 2, IEEE, 2011,
pp. 511–515.

[12] L. Chen, P. James, D. Kirkwood, H.N. Nguyen, G.L. Nicholson, M. Roggenbach, Towards integrated simulation and formal verification of rail yard designs-

an experience report based on the UK East Coast Main Line, in: 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT), IEEE, 2016,
pp. 347–355.

[13] European Union, Railway applications-communication, signalling and processing systems: Software for railway control and protection systems, En-50128,
CENELEC, 2011.

[14] A. Fantechi, S. Gnesi, A.E. Haxthausen, Formal methods for distributed control systems of future railways, in: T. Margaria, B. Steffen (Eds.), Leveraging Appli-

cations of Formal Methods, Verification and Validation. Practice - 11th International Symposium, ISoLA 2022, Proceedings, Part IV, Rhodes, Greece, October
22–30, 2022, in: Lecture Notes in Computer Science (LNCS), vol. 13704, Springer, 2022, pp. 243–245.

[15] A. Fantechi, G. Gori, A.E. Haxthausen, C. Limbrée, Compositional verification of railway interlockings: comparison of two methods, in: S.C. Dutilleul, A.E.
Haxthausen, T. Lecomte (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification - 4th International
Conference, Proceedings, RSSRail 2022, Paris, France, June 1–2, 2022, in: Lecture Notes in Computer Science (LNCS), vol. 13294, Springer, 2022, pp. 3–19.

[16] A. Ferrari, G. Magnani, D. Grasso, A. Fantechi, Model checking interlocking control tables, in: FORMS/FORMAT 2010, Springer, 2011, pp. 107–115.

[17] A. Ferrari, F. Mazzanti, D. Basile, M.H. ter Beek, Systematic evaluation and usability analysis of formal methods tools for railway signaling system design, IEEE
Trans. Softw. Eng. 48 (11) (2022) 4675–4691.

[18] A. Ferrari, F. Mazzanti, D. Basile, M.H. ter Beek, A. Fantechi, Comparing formal tools for system design: a judgment study, in: Proceedings of the 42nd
International Conference on Software Engineering (ICSE 2020), ACM, 2020, pp. 62–74.

[19] A. Ferrari, M.H. ter Beek, F. Mazzanti, D. Basile, A. Fantechi, S. Gnesi, A. Piattino, D. Trentini, Survey on formal methods and tools in railways: the ASTRail
approach, in: S.C. Dutilleul, T. Lecomte, A.B. Romanovsky (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Cer-

tification - Third International Conference, Proceedings, RSSRail 2019, Lille, France, June 4–6, 2019, in: Lecture Notes in Computer Science (LNCS), vol. 11495,
Springer, 2019, pp. 226–241.

[20] H. Garavel, M.H. ter Beek, J.v.d. Pol, The 2020 expert survey on formal methods, in: M.H. ter Beek, D. Ničković (Eds.), Formal Methods for Industrial Critical
Systems, Springer, 2020, pp. 3–69.

[21] M. Gleirscher, D. Marmsoler, Formal methods in dependable systems engineering: a survey of professionals from Europe and North America, Empir. Softw. Eng.
25 (6) (2020) 4473–4546.

[22] R.C. Gronback, Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit, Addison-Wesley Professional, 2009.

[23] A. Haxthausen, J. Peleska, A domain-oriented, model-based approach for construction and verification of railway control systems, in: C. Jones, Z. Liu, J.
Woodcock (Eds.), Formal Methods and Hybrid Real-Time Systems, in: Lecture Notes in Computer Science (LNCS), vol. 4700, Springer, 2007, pp. 320–348.

[24] A.E. Haxthausen, Towards a framework for modelling and verification of relay interlocking systems, in: 16th Monterey Workshop: Modelling, Development
and Verification of Adaptive Systems: the Grand Challenge for Robust Software, in: Lecture Notes in Computer Science (LNCS), vol. 6662, Springer, 2011,
pp. 176–192.

[25] A.E. Haxthausen, Automated generation of formal safety conditions from railway interlocking tables, Int. J. Softw. Tools Technol. Transf. 16 (6) (2014) 713–726,
Special Issue on Formal Methods for Railway Control Systems.

[26] A.E. Haxthausen, M.L. Bliguet, A.A. Kjær, Modelling and verification of relay interlocking systems, in: Foundations of Computer Software, Future Trends and
Techniques for Development, 15th Monterey Workshop, in: Lecture Notes in Computer Science (LNCS), vol. 6028, Springer, 2010, pp. 141–153.

[27] A.E. Haxthausen, A. Fantechi, Compositional verification of railway interlocking systems, Form. Asp. Comput. 35 (1) (2023) 4.

[28] A.E. Haxthausen, A.A. Kjær, M.L. Bliguet, Formal development of a tool for automated modelling and verification of relay interlocking systems, in: M.J. Butler,
W. Schulte (Eds.), FM 2011, in: LNCS, vol. 6664, Springer, 2011, pp. 118–132.

[29] A.E. Haxthausen, J. Peleska, S. Kinder, A formal approach for the construction and verification of railway control systems, Form. Asp. Comput. 23 (2) (2011)
191–219.

[30] A.E. Haxthausen, J. Peleska, R. Pinger, Applied bounded model checking for interlocking system designs, in: Software Engineering and Formal Methods, in:
Lecture Notes in Computer Science (LNCS), vol. 8368, Springer, 2014, pp. 205–220.

[31] G. Holland, T. Kahsai, M. Roggenbach, B.H. Schlingloff, Towards formal testing of jet engine Rolls-Royce BR725, in: L. Czaja, M. Szczuka (Eds.), Proceedings
18th International Conference on Concurrency, Specification and Programming, Springer, 2009.

[32] A. Iliasov, I. Lopatkin, A. Romanovsky, Practical formal methods in railways – the SafeCap approach, in: Reliable Software Technologies, Ada-Europe 2014,
Proceedings, 2014, pp. 177–192.

[33] A. Iliasov, D. Taylor, L. Laibinis, A.B. Romanovsky, Formal verification of signalling programs with SafeCap, in: B. Gallina, A. Skavhaug, F. Bitsch (Eds.),
Computer Safety, Reliability, and Security - 37th International Conference, SAFECOMP 2018, Västerås, Sweden, September 19–21, 2018, in: Lecture Notes in
Computer Science (LNCS), vol. 11093, 2018, pp. 91–106.

[34] P. James, SAT-based Model Checking and its Applications to Train Control Software, Master’s thesis, Swansea University, 2010.

[35] P. James, Designing Domain Specific Languages for Verification and Applications to the Railway Domain, PhD thesis, Swansea University, 2014.

[36] P. James, F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Techniques for modelling and verifying railway interlockings, Int. J. Softw. Tools
Technol. Transf. 16 (6) (Nov 2014) 685–711.

[37] P. James, F. Moller, H.N. Nguyen, M. Roggenbach, S.A. Schneider, H. Treharne, On modelling and verifying railway interlockings: tracking train lengths, Sci.
Comput. Program. 96 (2014) 315–336.

[38] P. James, M. Roggenbach, Encapsulating formal methods within domain specific languages: a solution for verifying railway scheme plans, Math. Comput. Sci.
8 (1) (2014).

[39] P. James, M. Trumble, H. Treharne, M. Roggenbach, S. Schneider. Ontrack, An open tooling environment for railway verification, in: G. Brat, N. Rungta, A.
Venet (Eds.), NASA Formal Methods, in: Lecture Notes in Computer Science (LNCS), vol. 7871, Springer, 2013, pp. 435–440.

[40] K. Kanso, Agda as a Platform for the Development of Verified Railway Interlocking Systems, PhD thesis, Department of Computer Science, Swansea University,
UK, August 2013.

[41] S. Kent, Model driven engineering, in: M. Butler, L. Petre, K. Sere (Eds.), Integrated Formal Methods, in: Lecture Notes in Computer Science (LNCS), vol. 2335,
Springer, 2002, pp. 286–298.

[42] D. Kolovos, L. Rose, R. Paige, F. Polack, The Epsilon Book, 2013.

[43] B. Luteberget, K. Claessen, C. Johansen, Automated drawing of railway schematics using numerical optimization in SAT, in: W. Ahrendt, S.L. Tapia Tarifa (Eds.),
Integrated Formal Methods, Springer, 2019, pp. 341–359.

[44] A. Mirabadi, M.B. Yazdi, Automatic generation and verification of railway interlocking control tables using FSM and NuSMV, Transp. Probl. 4 (2009) 103–110.

[45] F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Defining and model checking abstractions of complex railway models using CSP||B, in: A.
14

Biere, A. Nahir, T. Vos (Eds.), Hardware and Software: Verification and Testing, in: Lecture Notes in Computer Science (LNCS), vol. 7857, Springer, 2013.

http://refhub.elsevier.com/S0167-6423(23)00139-9/bib51EA4065C7471B44F970015927F0B721s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib51EA4065C7471B44F970015927F0B721s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibEBB3C0B00887589AF220444340D0EF74s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib0FAAABF8EBD2B53F6068BE115AAFDB67s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib0FAAABF8EBD2B53F6068BE115AAFDB67s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib0FAAABF8EBD2B53F6068BE115AAFDB67s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib9E122C958F8E727B6173F2C678158AC5s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib9E122C958F8E727B6173F2C678158AC5s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib9E122C958F8E727B6173F2C678158AC5s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5D6D95B2D93411BFF27F1AC5F10B4F88s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5D6D95B2D93411BFF27F1AC5F10B4F88s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibC35DF198F261DAABD8EC2E42F0D3B166s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibC35DF198F261DAABD8EC2E42F0D3B166s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibC35DF198F261DAABD8EC2E42F0D3B166s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibA81FE8E2D8126D82A0D86A8255A37607s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibA81FE8E2D8126D82A0D86A8255A37607s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibA81FE8E2D8126D82A0D86A8255A37607s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib6F9E535911ADBBB92DA45D2CC0C18491s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib7A5981E3014821A8D98AC5EA4D3EBD79s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib7A5981E3014821A8D98AC5EA4D3EBD79s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib484A3BDB000CFC08C5FEE6BAE2553916s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib484A3BDB000CFC08C5FEE6BAE2553916s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5223DD26F0648F6E0637426AD529C1D1s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5223DD26F0648F6E0637426AD529C1D1s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5223DD26F0648F6E0637426AD529C1D1s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib5223DD26F0648F6E0637426AD529C1D1s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB5075B659CABA2D4AD33212B1544DF13s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB5075B659CABA2D4AD33212B1544DF13s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib458B0C699DC0E36E15F95858C889D4CFs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib458B0C699DC0E36E15F95858C889D4CFs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB6D12033902EEAE9DC9C5BC32E1444FAs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib4FD9F6C2675AE6F4AD0060C65B28EB59s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib4FD9F6C2675AE6F4AD0060C65B28EB59s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib1AA6D7724CFB9BBB6D94E67C6C170295s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib1AA6D7724CFB9BBB6D94E67C6C170295s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib1AA6D7724CFB9BBB6D94E67C6C170295s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib4E51B60EE3089EDF63B91DDA0DE8DB6As1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib4E51B60EE3089EDF63B91DDA0DE8DB6As1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCCA21ABD55677EE677037324EC4DE49Cs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCCA21ABD55677EE677037324EC4DE49Cs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib747F73EA3CF6B4DEE12C9004C99A5728s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF0AE18C3D26AF400AE5F9E39B46BD9E5s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF0AE18C3D26AF400AE5F9E39B46BD9E5s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibD234BD4212BBC1F1B162F6CF38668AB9s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibD234BD4212BBC1F1B162F6CF38668AB9s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib856EFC426C092D16C656BCBDED9F87ADs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib856EFC426C092D16C656BCBDED9F87ADs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib05EDE40C6CC683311165CC6657F9B759s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib05EDE40C6CC683311165CC6657F9B759s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF19FF93A97CB8E503C2A2D7384FD06CDs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF19FF93A97CB8E503C2A2D7384FD06CDs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB18DB9E84ED79F878D9CF9259C88D632s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB18DB9E84ED79F878D9CF9259C88D632s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB18DB9E84ED79F878D9CF9259C88D632s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibF6DD81A838B82C743FABDBA8193F0C51s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib56CDF1DD053D486F634E5660CD8FB86Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib012D0D26B4076A67696CF9AAE7A289DEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib012D0D26B4076A67696CF9AAE7A289DEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibFC4F70FA4F9060875983DB40F2301DD4s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibFC4F70FA4F9060875983DB40F2301DD4s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib8AD6BF047AB24FD95E92512C4F4552C9s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib8AD6BF047AB24FD95E92512C4F4552C9s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibFC255A27B96750AEC4477A48E3883E15s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibFC255A27B96750AEC4477A48E3883E15s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib844EEB95439EDE88F5E91683AA6FE25As1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib844EEB95439EDE88F5E91683AA6FE25As1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib87E9E1B13D44A9953472BCE3FFF54452s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib87E9E1B13D44A9953472BCE3FFF54452s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib22CFFAC6DC43BD3E2A6BE7FD4F5DC202s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibE11E6BCEDAF17FD1FF8C1E888813E0CEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibE11E6BCEDAF17FD1FF8C1E888813E0CEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib8B87B2D0765F2FF955E623C5375FA1A2s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib80BCF0090FD7CCC377BD12C83D29238Fs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib80BCF0090FD7CCC377BD12C83D29238Fs1

Science of Computer Programming 233 (2024) 103057P. James, F. Moller and F. Pantekis

[46] A. Nash, D. Huerlimann, J. Schütte, V.P. Krauss, RailML – a standard data interface for railroad applications, in: WIT Transactions on the Built Environment,
2004, p. 74.

[47] F. Pantekis, P. James, L. O’Reilly, D. Archambault, F. Moller, Visualising railway safety verification, in: Formal Techniques for Safety-Critical Systems: 7th
International Workshop, FTSCS 2019, Shenzhen, China, November 9, 2019, in: Communications in Computer and Information Science, vol. 1165, Springer,
2020, pp. 95–105, Revised Selected Papers.

[48] J. Peleska, D. Große, A.E. Haxthausen, R. Drechsler, Automated verification for train control systems, in: E. Schnieder, G. Tarnai (Eds.), Proceedings of Formal
Methods for Automation and Safety in Railway and Automotive Systems, Technical University of Braunschweig, 2004.

[49] J. Peleska, N. Krafczyk, A.E. Haxthausen, R. Pinger, Efficient data validation for geographical interlocking systems, in: S.C. Dutilleul, T. Lecomte, A.B. Ro-

manovsky (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification - Third International Conference,
Proceedings, RSSRail 2019, Lille, France, June 4–6, 2019, in: Lecture Notes in Computer Science (LNCS), vol. 11495, Springer, 2019, pp. 142–158.

[50] J. Peleska, N. Krafczyk, A.E. Haxthausen, R. Pinger, Efficient data validation for geographical interlocking systems, Form. Asp. Comput. 33 (6) (2021) 925–955.

[51] A. Romanovsky, F. Moller, M. Roggenbach, Overcoming the railway capacity challenges without undermining rail network safety (SafeCap), UKRI (EPSRC)
Project EP/I010807/1, 2011-2013.

[52] A. Simpson, A formal specification of an automatic train protection system, in: G. Goos, J. Hartmanis, J. van Leeuwen (Eds.), FME’94: Proceedings of the Second
International Symposium of Formal Methods Europe on Industrial Benefit of Formal Methods, in: Lecture Notes in Computer Science (LNCS), vol. 873, Springer,
1994.

[53] P. Stankaitis, A. Iliasov, Safety verification of modern railway signalling with the SafeCap platform, in: 2017 IEEE International Symposium on Software
Reliability Engineering Workshops, ISSRE Workshops, IEEE Computer Society, Toulouse, France, October 23–26, 2017, pp. 153–156, 2017.

[54] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling Framework, Pearson, 2008.

[55] P. Stevens, A landscape of bidirectional model transformations, in: R. Lämmel, J. Visser, J. Saraiva (Eds.), Generative and Transformational Techniques in
Software Engineering II: International Summer School, GTTSE 2007, Braga, Portugal, July 2–7, 2007, in: Lecture Notes in Computer Science (LNCS), vol. 5235,
Springer, 2008, pp. 408–424, Revised Papers.

[56] D. Tombs, N. Robinson, G. Nikandros, Signalling control table generation and verification, in: Proceedings of Cost Efficient Railways Through Engineering, CORE
2002, Railway Technical Society of Australasia, 2002, pp. 415–425.

[57] L.H. Vu, A.E. Haxthausen, J. Peleska, Formal modeling and verification of interlocking systems featuring sequential release, in: Formal Techniques for Safety-

Critical Systems, in: Communications in Computer and Information Science, vol. 476, Springer International Publishing, Switzerland, 2015, pp. 223–238.

[58] L.H. Vu, A.E. Haxthausen, J. Peleska, A domain-specific language for generic interlocking models and their properties, in: A. Fantechi, T. Lecomte, A.B.
Romanovsky (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification - Second International Conference,
Proceedings, RSSRail 2017, Pistoia, Italy, November 14–16, 2017, in: Lecture Notes in Computer Science (LNCS), vol. 10598, Springer, 2017, pp. 99–115.

[59] K. Winter, Model checking railway interlocking systems, Aust. Comput. Sci. Commun. 24 (1) (2002) 303–310.

[60] K. Winter, Optimising ordering strategies for symbolic model checking of railway interlockings, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications
of Formal Methods, Verification and Validation. Applications and Case Studies, in: Lecture Notes in Computer Science (LNCS), vol. 7610, Springer, 2012,
pp. 246–260.

[61] K. Winter, W. Johnston, P. Robinson, P. Strooper, L. van den Berg, Tool support for checking railway interlocking designs, in: 10th Australian Workshop on
Safety Critical Systems and Software, SCS’05, Proceedings, vol. 55, Australian Computer Society, Inc., 2006, pp. 101–107.

[62] K. Winter, N.J. Robinson, Modelling large railway interlockings and model checking small ones, in: M.J. Oudshoorn (Ed.), ACSC’03: Proceedings of the 26th
15

Australasian Computer Science Conference, Australian Computer Society, 2003.

http://refhub.elsevier.com/S0167-6423(23)00139-9/bib563F153606A3B74480B1540BDDB1B885s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib563F153606A3B74480B1540BDDB1B885s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibC106F42A519EA4CDC22D7378270BF5DAs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibC106F42A519EA4CDC22D7378270BF5DAs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibC106F42A519EA4CDC22D7378270BF5DAs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib72CEAE7095FF76782B122751D44C0ACEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib72CEAE7095FF76782B122751D44C0ACEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib47F9A598BC46C22C612128999BF00B8Bs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib47F9A598BC46C22C612128999BF00B8Bs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib47F9A598BC46C22C612128999BF00B8Bs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib0BD75C8F6C96A9D693941D15FF56E079s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCD86AB12626C8D8FD61798CB19E3D327s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCD86AB12626C8D8FD61798CB19E3D327s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCD86AB12626C8D8FD61798CB19E3D327s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib3C17C6140D2E1573E85C4CE27AF59C71s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib3C17C6140D2E1573E85C4CE27AF59C71s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib8331393B08876F9B71AAC46ECEF7809Fs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCF9888A8E588B9F7E48BEC429E67EE7Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCF9888A8E588B9F7E48BEC429E67EE7Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibCF9888A8E588B9F7E48BEC429E67EE7Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib702C988E49B47278F88FDFCD0694E911s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib702C988E49B47278F88FDFCD0694E911s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib71DF51BC0816EB81DC54B6F51B80091Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib71DF51BC0816EB81DC54B6F51B80091Ds1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib46AD7C21F3C1F2A93954D1CBEFED5897s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib46AD7C21F3C1F2A93954D1CBEFED5897s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib46AD7C21F3C1F2A93954D1CBEFED5897s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibD5D423E29C7D090E0F85BCC9E508674Cs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB8EB661C92AA19C12144256AB44438CEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB8EB661C92AA19C12144256AB44438CEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibB8EB661C92AA19C12144256AB44438CEs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib18F4F15C6C5F6B9E5EEE7AC72859E6CDs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bib18F4F15C6C5F6B9E5EEE7AC72859E6CDs1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibA182B24784ED541F84709B60ED664163s1
http://refhub.elsevier.com/S0167-6423(23)00139-9/bibA182B24784ED541F84709B60ED664163s1

	OnTrack: Reflecting on domain specific formal methods for railway designs
	1 Introduction
	2 Verification of railway interlocking data
	2.1 Track plans
	2.2 Control tables
	2.3 Safety guarantees
	2.4 Related work on verification environments

	3 Model driven frameworks
	3.1 Eclipse modelling framework
	3.2 Graphical modelling framework
	3.2.1 GMF tooling
	3.2.2 Epsilon

	4 OnTrack architecture and functionality
	4.1 The successful role of model transformations
	4.1.1 Formal model generation
	4.1.2 DSL level abstractions

	5 Challenges in input formats and counterexample visualisation
	5.1 Importing data
	5.1.1 Well defined data
	5.1.2 Model layout and geospatial information

	5.2 Counterexample visualisation

	6 Reflections on model driven engineering for formal methods
	7 Conclusions and future ideas
	Declaration of competing interest
	Acknowledgements
	References

