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Abstract—This paper develops an optimal design for de-

vice scheduling, alignment coefficient, and aggregation rounds

within a differentially private over-the-air federated averaging

(DP-OTA-FedAvg) system considering a constrained sum power

budget. In DP-OTA-FedAvg, gradients are aligned using an

alignment coefficient and then aggregated over the air, utilizing

channel noise to ensure participant privacy. This study high-

lights two critical tradeoffs in aligned over-the-air federated

learning (OTA-FL) systems with limited power and privacy

budgets. Firstly, it reveals the tradeoff between the number

of scheduled devices and the alignment coefficient. Secondly,

it investigates the balance between aggregation distortion and

local training error while adhering to the sum power constraint.

Specifically, we measure privacy using differential privacy (DP)

and perform convergence analyses for both convex and non-

convex loss functions. These analyses provide insights into how

device scheduling, the alignment coefficient, and the number

of global aggregations affect both privacy preservation and

the learning process. Building on these analytical results, we

formulate an optimization problem aimed at minimizing the

optimality gap of DP-OTA-FedAvg under power and privacy

constraints. By specifying the number of aggregation rounds,

we derive a closed-form expression describing the relationship

between the alignment coefficient and the number of scheduled

devices. We then tackle the problem through iterative optimiza-

tion of scheduling and aggregation rounds. The effectiveness of

the proposed policies is verified through simulations, and the

performance advantage is particularly pronounced in scenarios

where devices have poor channel conditions and limited sum-

power budgets.

Intex Terms

Federated averaging, differential privacy, device scheduling,

and sum-power constraint.

I. INTRODUCTION

With the rapid increase in data volume and computing
capability of edge devices, artificial intelligence (AI) and

Part of this work will be presented in IEEE International Conference
on Communications (ICC), 28 May – 01 June 2023, Rome, Italy. This
work of Na Yan was supported by China Scholarship Council. (Cor-

responding author: Kezhi Wang and Cunhua Pan.). Na Yan and Kok
Keong Chai are with School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K. (e-
mail: n.yan, michael.chai@qmul.ac.uk). Kezhi Wang is with Department
of Computer Science, Brunel University London, Uxbridge, Middlesex,
UB8 3PH, U.K. (email: kezhi.wang@brunel.ac.uk). Cunhua Pan is with
the National Mobile Communications Research Laboratory, Southeast Uni-
versity, Nanjing 210096, China (email: cpan@seu.edu.cn). Feng Shu is
with the School of Information and Communication Engineering, Hainan
University, Haikou 570228, China, and also with the School of Electronic
and Optical Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China (e-mail: shufeng0101@163.com). Jiangzhou Wang
is with the School of Engineering, University of Kent, Canterbury CT2
7NT, U.K. (Email: j.z.wang@kent.ac.uk).

Internet of Things (IoT) are well-developed as a result of the
unprecedented success of machine learning (ML) techniques,
especially deep learning [1]. These systems normally employ
highly parameterized models, such as deep neural networks
(DNNs), which are trained by the massive data samples
generated or collected by edge devices, e.g. smartphones and
sensors. The conventional strategy for training these models
is to aggregate all these raw data to a central server with high
computing capability, where the training is performed [2].
However, such a centralized training paradigm is becoming
more and more costly due to the transmission of raw samples
with the dramatic growth in data amount. Furthermore, the
raw data usually contains some personal information, and
thus the users may refuse to share them with the server. All
the above reasons inspire the development of federated learn-
ing (FL), which is a kind of privacy-preserving distributed
ML paradigm [3]–[5].

FL enables the devices to train models collaboratively
with the help of a central controller, such as a base station
(BS) [3]. Instead of uploading the raw data to the BS, the
model parameters and the gradients are exchanged between
the devices and the BS. By training models locally, FL not
only makes full use of the computing capability of the edge
devices, but also effectively reduces the power consumption,
latency, and privacy exposure caused by the transmission
of the massive datasets. However, despite these promising
benefits, FL still involves the following challenges. First,
FL suffers from communication bottlenecks due to the high
dimension of each local update, especially when a large
number of participants try to upload gradients via a resource-
limited wireless multiple access channel (MAC). This also
leads to considerable upload latency as the bandwidth al-
located to each participant decreases with the increased
number of devices [3], [6]. Second, although FL offers basic
privacy protection, which benefits from the fact that all
raw data is processed locally, it is far from sufficiency if
some attacks are applied to the exchanged messages, i.e.,
the gradients [7], [8]. This is because the gradients are
obtained based on local data and therefore may contain some
information of raw data [9].

One promising countermeasure to jointly overcome the
two challenges is differentially private over-the-air FL (DP-
OTA-FL) [10]–[14]. On one hand, differential privacy (DP)
[15] preserves individual privacy in FL by introducing a
controlled amount of random noise into the local update,
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ensuring that the contribution of any individual data sample
to the model remains statistically indistinguishable. On the
other hand, over-the-air FL (OTA-FL) [1], [11], [16]–[24] is
promising to alleviate the above-mentioned communication
bottleneck and reduce the communication and computation
latency. It schedules the devices to convey their gradients
simultaneously via a shared wireless MAC with analog sig-
nals, i.e., without converting the gradients to discrete coded
symbols which need to be decoded at the BS. Then, the
gradients are directly aggregated “over-the-air” thanks to the
waveform-superposition property of a MAC. Furthermore,
over-the-air computation (Aircomp) has been demonstrated
to offer a surprising advantage in enhancing DP in FL. It
achieves this by enabling the superposition of both local
artificial noise and channel noise at the server, effectively
enhancing privacy protection as shown in [10], where arti-
ficial Gaussian noise was injected into its update locally to
enhance privacy. Instead of leveraging additional artificial
noise, the work of [25] harnessed inherent communication
noise to preserve DP by solely reducing transmit power. The
authors in [13] proposed transmit power control algorithms
that attain accurate FL training while satisfying given DP
requirements. The above-mentioned works considered the
aligned OTA-FL, where all the gradients are aligned by a
constant, referred to as the alignment coefficient. In this way,
the impact of the fading channel becomes a constant and can
be easily removed by performing an inverse operation of the
pre-processing at the BS. However, the alignment coefficient
is limited by the device with the worst channel condition due
to the peak transmit power constraint. This limitation can
lead to an exceptionally low alignment coefficient, resulting
in a very poor signal-to-noise ratio (SNR), particularly when
all devices are scheduled for training [10], [13], [25]. To
improve the alignment coefficient, the authors of [19], [26]
set a threshold to schedule the devices with better channel
conditions to participate in the training. Nevertheless, the op-
timal threshold was not given. The authors in [11] optimized
the power control at edge devices and the denoising factors at
the server to balance the trade-off on the compromised accu-
racy of federated averaging (FedAvg) and enhanced privacy,
without considering the gradient alignment [13]. However,
the aforementioned studies typically revolve around peak
power constraints. It is also crucial to investigate sum-
power limited OTA-FL systems [23], [27], [28] for the
practical deployment of FL as these edge devices are power-
constrained due to limited battery capacity. In [23], the
device selection and power control were jointly optimized
to improve the performance of OTA-FedAvg subjecting to
the individual and sum uplink transmit power constraints.
However, the number of local training rounds of FedAvg
was pre-defined. To the best of our knowledge, there has
been no prior study addressing the optimization of aggrega-
tion rounds under sum-power constraints, aiming to strike
a balance between reducing transmission disturbance and
increasing local training error. This exploration is essential
for guiding the design of device scheduling and aggregation

within powe-limited FedAvg systems.
In this paper, a scheme is proposed to jointly design

device scheduling, alignment coefficient, and global aggrega-
tion for an aligned differentially private OTA-FedAvg (DP-
OTA-FedAvg) system with limited sum power and privacy
budgets. The device scheduling, alignment coefficient, and
global aggregation can affect the performance of DP-OTA-
FedAvg in two ways. On one hand, in each communication
round, scheduling more devices to participate in the training
is beneficial to alleviate the error of the average gradient.
However, the alignment coefficient may decrease with the
increased number of the scheduled devices as it is more
likely to involve the devices with poor channel conditions,
which can significantly lower down the alignment coefficient
[10], thus degrading the utility of the aggregated gradient.
Therefore, there is a tradeoff between the number of sched-
uled devices and the alignment coefficient. Additionally,
scheduling more devices in each aggregation round may
consume more power. As a result, the number of aggregation
rounds will be reduced due to the limited sum power budget.
Then, the number of local training will increase with the
reduced number of global aggregation rounds, which leads
to a larger local training error. Therefore, it is crucial for
DP-OTA-FedAvg systems with limited sum power budget
to design the device scheduling, alignment coefficient, and
aggregation rounds. The main contributions can be summa-
rized as follows:

• This paper presents an optimal design of device
scheduling, alignment coefficient, and aggregation
rounds for DP-OTA-FedAvg (O-DP-OTA-FedAvg),
which effectively addresses two crucial tradeoffs within
sum-power-limited DP-OTA-FedAvg systems. Firstly,
we investigate the delicate balance between accommo-
dating a higher number of participants and the resulting
reduction in the alignment coefficient. Secondly, we
explore the tradeoff between reducing local training
error and increasing aggregation distortion through the
optimization of aggregation rounds.

• To characterize the impact of the alignment coefficient
on the privacy preservation of OTA-FedAvg, we first
conduct the privacy analysis. Then, we derive the
closed-form expressions of the optimality gap and the
average-squared gradient to demonstrate the conver-
gence of DP-OTA-FedAvg in the cases of convex and
non-convex loss functions, respectively. These closed-
form expressions quantify the impact of analog over-
the-air aggregation on the convergence of DP-OTA-
FedAvg, characterizing how the design of the alignment
coefficient, device scheduling, and the number of ag-
gregation rounds can affect the privacy protection and
the performance of DP-OTA-FedAvg.

• Based on these closed-form theoretical results, we
formulate an optimization problem to minimize the op-
timality gap by jointly designing the device scheduling,
alignment coefficient, and aggregation rounds consider-
ing the limited sum power and privacy budgets.
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• The problem is decoupled into two sub-problems. By
giving the number of communication rounds, the opti-
mal design of device scheduling and alignment coeffi-
cient is studied. We obtain limited potential optimal
solution pairs by exploring the relationship between
the number of scheduled devices and the alignment
coefficient. Thanks to the reduced search space, the
optimal solution can be efficiently obtained. Given the
optimal device scheduling and alignment coefficient,
the optimal number of aggregation rounds can be
obtained by searching a limited solution space.

A. Organization

The remainder of this paper is organized as follows. In
Section II, we present the system model, aligned OTA-
FedAvg, and the definitions of DP. The theoretically ana-
lytical results are presented in Section III. We formulate an
optimization problem in Section IV. The simulation results
are shown in Section V and we conclude the paper in Section
VI.

II. SYSTEM MODEL AND PRELIMINARIES

As shown in Fig. 1, we consider a DP-OTA-FedAvg
system consisting of a BS and N edge devices indexed
by N = {1, · · · , N}. Assume that each device of index
k 2 N stores a local dataset Dk which contains Dk pairs
of training samples (u, v) where u is the raw data for
training and v is the corresponding label. For simplicity, we
assume that D1 = · · · = DN . The BS and these devices
collaborate to train an ML model by exchanging the models
and gradients without sharing these locally stored raw data,
which offers basic protection for users’ personal information.
However, the BS is assumed to be curious and attempts
to probe sensitive information from the received gradients,
threatening users’ privacy. In this work, the privacy of the
scheduled devices can be guaranteed by channel noise by
designing the alignment coefficient.

The goal of an FL task is to obtain the optimal model
parameterized by m⇤ by minimizing the average global loss
L (m), i.e.,

m⇤ = argmin
m

L (m) , 1

N

NX

k=1

Lk (m), (1)

where m 2 Rd is the model parameter to be optimized.
More specifically, the objective function of device k is
defined as:

Lk (m) =
1

Dk

X

(u,v)2Dk

l (m; (u, v)), (2)

where l (m; (u, v)) denotes the loss function, quantifying
the error of model m on the input-output data pair (u, v).

A. Over-the-Air Federated Averaging

To solve the problem in (1) while reducing the communi-
cation overhead, we employ the classic and widely-adopted
FedAvg algorithm, which is implemented in an iterative
manner. Generally, it requires a number of global aggrega-
tions, i.e., communication rounds, between devices and the
BS to achieve the desired accuracy level of the learned global
model m. Specifically, we assume that T and I are the
number of total training rounds and the number of communi-
cation rounds, respectively. Consequently, the local training
step in each communication round is decided by E = T

I , and
we assume that T is divisible by I 1. Specifically, in each
communication round i 2 {0, · · · , I � 1}, FedAvg consists
of the following steps: (1) Parameter broadcasting: At the
beginning of communication round i, the BS broadcasts the
latest global model parameter mi to the scheduled devices
denoted by K, K 2 N . (2) Local training: Each device first
performs the initialization of the local model by setting the
received global model parameter as the initial local model
parameter, i.e., wi,0

k = mi, 8k 2 K. Then, each device
performs E rounds of local training by

wi,◆+1
k = wi,◆

k � ⌧rLk

⇣
wi,◆

k

⌘
, ◆ 2 {0, ..., E � 1} , (3)

where ⌧ is the learning rate and

rLk

⇣
wi,◆

k

⌘
=

1

Dk

X

(u,v)2Dk

rl
⇣
wi,◆

k ; (u, v)
⌘
. (4)

(3) Over-the-air aggregation: Upon completing E times of
local training, each scheduled device uploads the accumu-
lative gradients in this current communication round to the
BS, i.e.,

gi
k =

1

⌧

⇣
wi,E

k �wi,0
k

⌘
=

E�1X

◆=0

rLk

⇣
wi,◆

k

⌘
. (5)

To further alleviate communication bottlenecks and unbear-
able upload latency, we adopt analog over-the-air aggrega-
tion in this work, which enables the scheduled devices to
simultaneously communicate their gradients to the BS via a
shared MAC. Taking device k as an example, the gradient
is transmitted by a pre-processed signal xi

k:

xi
k = e�j k

✓p
'kPk

$
gi
k

◆
, (6)

where e�j k is the local phase correction performed by
the device k. Pk is the maximum transmission power of
device k and 'k 2 [0, 1] is the power scaling factor. We
assume that the upper bound of each gradient’s 2-norm is
$, i.e.,

��gi
k

��
2
 $, so that E

h
kxk22

i
 Pk. The scheduled

devices upload their local gradients gi
k via the uncoded form

with perfect time synchronization among them. In this way,
the gradients can be aggregated over the air thanks to the

1Since I and E are in one-to-one correspondences when we have a
fixed T , we use E and I exchangeably when we discuss the impact of the
communication rounds I in the rest of this paper.
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Fig. 1: The procedure of DP-OTA-FL.

superposition property of MAC. Consequently, the received
signal at the BS is given by

yi =
X

k2K
hkx

i
k + ri

=
X

k2K
|hk|

p
'kPk

$
gi
k + ri,

(7)

where hk = |hk| ej k is the complex-valued time-invariant
channel coefficient between device k and the BS. The
received noise ri ⇠ N

�
0,�2Id

�
at the BS is employed to

prevent privacy leakage in this paper. To recover the desired
average gradient gi = 1

|K|
P

k2K gi
k from the received

signal, the BS performs the post-processing by

g̃i =
1

|K| ⌫
yi =

1

|K|

X

k2K
|hk|

p
'kPk

⌫$
gi
k +

1

|K| ⌫
ri, (8)

where ⌫ is a post-processing factor, which is referred to
as the alignment coefficient. The induced error between the
recovered gradient and the desired gradient is derived as:

�gi
err =

1

|K|

X

k2K

✓
|hk|

p
'kPk

⌫$
� 1

◆
gi
k

| {z }
fading error

+
1

|K| ⌫
ri

| {z }
noise error

.

(9)
The estimate gradient recovered from the over-the-air ag-
gregated gradient results in two sources of error, i.e., the
misalignment error due to fading and the additive error due
to the noise. In order to eliminate the fading-related error,
the gradients need to be aligned by the alignment coefficient

⌫ by adjusting the power scaling factor 'k in pre-precessing
as follows,

|hk|

p
'kPk

$
= ⌫, 8k 2 K, (10)

which is referred to as the aligned OTA-FL and was also
studied in [10]. Following such an aligned aggregation
scheme, the received signal at the BS in (7) can be simplified
as:

yi = ⌫
X

k2K
gi
k + ri, (11)

and the estimated average gradient is finally given by,

g̃i =
1

|K|

X

k2K
gi
k +

1

|K| ⌫
ri. (12)

(4) Model update: The BS updates the global model param-
eter based on the estimated average gradient as follows:

mi+1 = mi
� ⌧ g̃i. (13)

The above iteration steps are repeated until a certain training
termination condition is met.

B. Power Constraints of the DP-OTA-FedAvg System

In this paper, we consider both the peak transmit power
constraint of each device and the sum power constraint of
the overall DP-OTA-FedAvg system.

1) Peak power constraint: Following (10), we have

'k =
⌫2$2

|hk|
2 Pk

, 8k 2 K. (14)
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To make sure that 'k  1, the alignment coefficient ⌫ needs
to satisfy:

⌫ 
min
s2K

�
|hs|
p
Ps

$
. (15)

From (15), we can learn that the alignment coefficient ⌫
is limited by the device with the worst channel condition
among the scheduled devices, i.e., min

s2K

�
|hs|
p
Ps

 
. How-

ever, a larger ⌫ is expected to mitigate the noise-related
error following (9). Since the learning performance will be
degraded due to a small ⌫, i.e., large noise error, the opti-
mal design of device scheduling to improve the alignment
coefficient is significant, especially in the FL systems where
devices are power-limited and some of the devices suffer
from poor channel conditions.

2) Sum power constraint: In each communication round,
the power consumption for transmitting gradient of device
k is:

'kPk =
⌫2$2

|hk|
2 , 8k 2 K. (16)

Assume that the total power budget for the communication
rounds of DP-OTA-FedAvg is P tot. Then, the sum power
transmit power constraint is given by,

P
k2K

⌫2$2

|hk|
2 

P tot

I
. (17)

From (17), we can learn that if the number of the com-
munication rounds I is small, the power budget in each
communication round for gradient uploading will be large,
which means that we can schedule more devices or set a
large alignment coefficient. The impact of the number of
the communication rounds I , the number of the scheduled
devices, and the alignment coefficient ⌫ on the learning
performance will be discussed in Section III.

C. Differential Privacy

DP [15] is defined on the conception of the adjacent
dataset, which guarantees the probability that any two adja-
cent datasets output the same result is less than a constant
with the help of adding random noise. More specifically,
DP quantifies information leakage in FL by measuring the
sensitivity of the gradients to the change of a single data
point in the input dataset. The basic definition of (✏, ⇠)-DP
is given as follows.

Definition 1. (✏, ⇠)-DP [15]: A randomized mechanism O

guarantees (✏, ⇠)-DP if for two adjacent datasets D,D0

differing in one sample, and measurable output space Q

of O, it satisfies,

Pr [O (D) 2 Q]  e✏Pr [O (D0) 2 Q] + ⇠. (18)

The additive term ⇠ allows for breaching ✏-DP with the
probability ⇠ while ✏ denotes the protection level and a
smaller ✏ means a higher privacy preservation level. Specifi-
cally, the Gaussian DP mechanism which guarantees privacy
by adding artificial Gaussian noise is introduced as follows.

Definition 2. Gaussian mechanism [15]: A mechanism O is

called as a Gaussian mechanism, which alters the output of

another algorithm L : D ! Q by adding Gaussian noise,

i.e.,

O (D) = L (D) +N
�
0,�2Id

�
. (19)

Gaussian mechanism O guarantees (✏, ⇠)-DP with ✏ =

�S
�

r
2 ln

⇣
1.25
⇠

⌘
where �S , max

D,D0
kL (D)� L (D0)k2 is

the sensitivity of the algorithm L quantifying the sensitivity

of the algorithm L to the change of a single data point.

III. PRIVACY AND CONVERGENCE ANALYSIS OF
DP-OTA-FEDAVG

To reveal the impact of over-the-air aggregation on privacy
and learning performance, we conduct privacy and conver-
gence analysis in this section. Then, based on these analyt-
ical results, we formulate an optimization problem to mini-
mize the optimality gap by optimizing the device scheduling,
alignment coefficient, and the number of communication
rounds subject to privacy and sum power constraints.

For analysis purposes, we provide the following common
assumptions first.

Assumption 1. The expected squared norm of each gradient

is bounded:

E
⇥��gi

k

��
2

⇤
 $. (20)

Assumption 2. Assume that L (·) is ⇣-smooth, i.e., for all

◆0 and ◆, one has

L (◆0)� L (◆)  (◆0 � ◆)
T
rL (◆) +

⇣

2
k◆0 � ◆k

2
2 . (21)

A. Privacy Analysis

We aim to improve the learning performance while achiev-
ing a certain level of DP of the participants in the OTA-
FedAvg system by designing device scheduling and align-
ment coefficient. We conduct the privacy analysis based on
the Gaussian mechanism of DP in the following. To calculate
the privacy leakage according to the Gaussian mechanism,
the key point is the sensitivity of the OTA-FedAvg algorithm
to the change of a single data point in the input dataset.
Taking device m as an example, assume that Dm and D

0

m

are two adjacent datasets differing in one sample, and gi
m

and
�
gi
m

�0 are the two gradients obtained based on Dm

and D
0

m, respectively. The two signals received at the BS
corresponding to datasets Dm and D

0

m are given by

yi = ⌫
X

k2K
gi
k + ri,

�
yi
�0

= ⌫
X

k2K,k 6=m

gi
k +

�
gi
m

�0
+ ri,

(22)

which only differ in the gradient from device m. Then,
the sensitivity of the OTA-FedAvg is given by �Si

m ,
max

Dm,D0
m

���yi
�
�
yi
�0���

2
and we have the following lemma.
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Lemma 1. Assume that Assumption 1 holds and the set

of the scheduled devices is K. For each device k 2 K,

such a OTA-FedAvg algorithm achieves (✏k, ⇠)-DP in each

communication round where

✏k =
2$⌫

�
·

r
2 ln

1.25

⇠
, k 2 K. (23)

Proof: Accroding to the definiation of sentivisity and (22),
we have

�Si
m , max

Dm,D0
m

���yi
�
�
yi
�0���

2
= ⌫ max

Dm,D0
m

���gi
m �

�
gi
m

�0���
2

=⌫
���gi

m �
�
gi
m

�0���
2

(a)
 2$⌫,

(24)
where (a) is from triangular inequality and Assumption 1.
Following Gaussian mechanism of DP and replacing m with
k, one completes the proof of Lemma 1. ⌅

Lemma 1 characterizes the impact of the alignment co-
efficient on privacy protection. More specifically, a smaller
alignment coefficient ⌫ leads to less privacy leakage. Phys-
ically speaking, a smaller alignment coefficient ⌫ decreases
the amplitude of the gradient signal, which enables the
gradient more easily hidden in the channel noise. However,
it degrades the utility of the gradients, which is validated in
the following convergence analysis results.

Remark 1. Note that when the “=” in (23) is replaced by

“”, it indicates a stronger privacy protection so it still

satisfies (✏k, ⇠)-DP.

B. Convergence Analysis

We here present convergence analysis in the cases of
convex and non-convex loss functions. We first present the
expectation of the gap between the updated global model
mi+1 and the current global model mi for the following
analysis.

Lemma 2. Given the learning rate ⌧  1
⇣ , the upper bound

of the gap between the updated global model mi+1
and the

current model mi
, i.e., E

⇥
L
�
mi+1

�⇤
�E

⇥
L
�
mi
�⇤

is given

by

E
⇥
L
�
mi+1

�⇤
� E

⇥
L
�
mi
�⇤
 �

⌧

2
E
h��rL

�
mi
���2

2

i

+ ⌧$2 (E � 1)2 + 4⌧$2

✓
1�

|K|

N

◆2

+
⇣⌧2

2

d�2

|K|
2 ⌫2

.

(25)
The expectation is with respect to the randomness of Gaus-

sian noise.

Proof: Please refer to Appendix A. ⌅
For notation simplicity, we define ✓ = ⌫$ as an equiv-

alent substitution of ⌫ and refer to it as the alignment
factor. In the following, we mainly focus on the alignment
factor ✓ instead of ⌫. Based on Lemma 2, we give the
following convergence analysis in both convex and non-
convex settings.

1) Convex Setting: We first consider the most benign set-
ting, where the loss function L (·) is assumed to be strongly
convex. We formalize a strong convexity assumption as
below.

Assumption 3. Assume that L (·) is strongly convex with

a positive parameter %, i.e., for all ◆0 and ◆, one has

L (◆0)� L (◆) > (◆0 � ◆)
T
rL (◆) +

%

2
k◆0 � ◆k

2
2 . (26)

Under Assumption 3, we could derive a useful result [29]
as follows:

krL (◆)k22 > 2% [L (◆)� L (◆⇤)] . (27)

We state the convergence theorem of the DP-OTA-FedAvg,
describing its behavior when minimizing a strongly convex
objective function with a fixed learning rate in the following.

Theorem 1. Assume that m⇤
is the optimal model and mI

is the obtained model after I communication rounds. Assume

that the learning rate is ⌧ = 1
⇣ , then, the upper bound of

the optimality gap E
⇥
L
�
mI
�
� L (m⇤)

⇤
is given by

E
⇥
L
�
mI
�
� L (m⇤)

⇤
 ⌘IE

⇥
L
�
m0
�
� L (m⇤)

⇤
| {z }

Initial gap

+
$2

%

�
1� ⌘I

�

2

6664
4

✓
1�

|K|

N

◆2

| {z }
A

+ (E � 1)2| {z }
B

+
1

2

d�2

|K|
2 ✓2| {z }

C

3

7775
,

(28)
where ⌘ = 1 � %

⇣ . The expectation is with respect to the

randomness of Gaussian noise.

Proof: Please refer to Appendix B. ⌅
The optimality gap presented in the right-hand side (RHS)

of (28) demonstrates the impact of device scheduling K,
alignment factor ✓, and the local training times E on the
learning process. Specifically, term A is the error caused
by partial device participation. A larger |K| contributes to a
smaller optimality gap, i.e., a better learning performance.
This can be understood that the channel noise leads to a
smaller distortion to the gradient average when more devices
are involved. This term decreases as the number of the
scheduled devices increases and will be eliminated with
full device participation, i.e., |K| = N . The local update
error shown in term B increases with the number of local
training times E. If E = 1, i.e., the FedAvg becomes
the conventional FL algorithm, this term goes to 0. Term
C is the error caused by the channel noise, which can
be controlled by designing the device scheduling and the
alignment coefficient. From this term, we can learn that a
larger number of participants and the alignment coefficient
contribute to a smaller noise-related error.

Furthermore, Theorem 1 offers the following important
insights: (1) The impact of the number of the communica-
tion round I: the first term decreases with the number of
communication round I due to the fact that ⌘  1. When
I goes to infinity, the first term approaches zero. For the
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second term, on one hand, a larger I leads to a smaller E,
which is beneficial for mitigating the local training error.
On the other hand, a larger I increases the weight of the
design-related error, i.e., term A, B, C.

Based on Theorem 1, we can also derive the optimality
gap of a conventional FL algorithm where the number of
local training times is one with full device participation and
a noise-free channel.

Corollary 1. Given the total training number is T and

learning rate ⌧ = 1
⇣ , the upper bound of the optimality

gap E
⇥
L
�
mT

�
� L (m⇤)

⇤
of an conventional FL algorithm

with one local training round without considering noise and

device scheduling is

E
⇥
L
�
mT

�
� L (m⇤)

⇤


✓
1�

%

⇣

◆T

E
⇥
L
�
m0
�
� L (m⇤)

⇤
.

(29)

Proof: If the FL algorithms with full device participa-
tion only perform one local training round in each com-
munication round and communicate through the noiseless
channel, we have E = 1, |K| = N , and � = 0. Hence,

4
⇣
1� |K|

N

⌘2
+ (E � 1)2 + 1

2
d�2

|K|2✓2 = 0. Then (29) can be
derived based on (28). ⌅

From Corollary 1, we can observe that, if the communi-
cation between the BS and devices is noise-free and there
is only one local training in each communication round, the
FL algorithm with all device participation will converge to
the optimal global FL model without any gaps. This result
corresponds to the results in the existing works [30], [31].

2) Non-Convex Setting: Considering that many useful
machine learning models, e.g., deep neural networks, lead
to non-convex objective functions, we thus investigate the
convergence property of DP-OTA-FedAvg in the non-convex
setting in the following. Different from the convex case
where the expected optimality gap is employed to measure
the convergence rate. In the case of non-convex loss function
L (·), the algorithm converging to a global minimum cannot
in general be guaranteed. A reasonable substitute is to study
the convergence to a local minimum, or at the very least,
to stationary points [32], [33]. In Theorem 2, we adopt the
average norm of the gradients as the convergence indicator,
which is widely used in the convergence analysis for non-
convex loss [34]–[38]. Note that the FL algorithm achieves
an �-approximation solution if

1

I

I�1X

i=0

E
h��rL

�
mi
���2

2

i
 �. (30)

Theorem 2. Given the learning rate ⌧ and the commu-

nication rounds I , the average-squared gradient after I

communication rounds is bounded as follows,

1

I

I�1X

i=0

E
h��rL

�
mi
���2

2

i


2

⌧I

⇥
E
⇥
L
�
m0
�⇤
� [L (m⇤)]

⇤

+$2

"
8

✓
1�

|K|

N

◆2

+ 2 (E � 1)2 +
d�2

|K|
2 ✓2

#
.

(31)
The expectation is with respect to the randomness of Gaus-

sian noise.

Proof: Please refer to Appendix C. ⌅
In Theorem 2, we establish an upper bound of the average-

squared gradients of L (·) for a certain communication round
number I , which guarantees convergence of the FL algo-
rithm to a stationary point [29], [34]. According to [29], the
larger this upper bound is, the more communication rounds
are required for convergence. We can boost the convergence
rate by optimizing the device scheduling, alignment factor,
and aggregation rounds.

IV. DP-OTA-FEDAVG WITH LIMITED SUM POWER
BUDGETS

In order to improve the learning performance of DP-OTA-
FedAvg with privacy and power constraints, we formulate
the following problem where we take the optimality gap
E
⇥
L
�
mI
�
� L (m⇤)

⇤
as the objective function. To mini-

mize the objective function, we expect a larger |K| and a
larger ✓. However, ✓ is limited by the device in K with the
worst channel condition. We can improve ✓ by scheduling
the devices with better channel conditions to participate in
the training, which leads to a smaller |K|. Therefore, there is
a tradeoff between the number of the scheduled devices |K|

and the alignment factor ✓. On the other hand, the impact of
the global aggregation parameter I is significant. A larger
I , corresponding to a smaller E, can help mitigate the local
update error and reduce the initial gap. However, it may
also introduce more transmission distortion. As a result,
there exists a balance between reducing the local training
error and increasing the aggregation error. Thus, selecting
an optimal value for I that effectively balances the trade-off
is of paramount importance. Overall, the design of device
scheduling, alignment factor, and the number of global
aggregations is crucial for enhancing learning performance
while maintaining privacy.

A. Problem Formulation

Assume that each device has the same privacy budget
(✏, ⇣), i.e., the maximum value of tolerable privacy leakage.
The total training rounds is T and we use T

I to substi-
tute E for simplicity. The number of global aggregations
I and local training times E should be an integer. We
firstly ignore the integer constraint of E, which will finally
be guaranteed by rounding operation. By defining G =

E
⇥
L
�
m0
�⇤
� [L (m⇤)], � =

q
2 ln 1.25

⇠ , and W (K, ✓, I) =
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⌘IG+ $2

%

�
1� ⌘I

� 
4
⇣
1� |K|

N

⌘2
+
�
T
I � 1

�2
+ 1

2
d�2

(|K|✓)2

�
,

the problem is formulated as follows.

P1. min
K,✓,I

{W (K, ✓, I)} (32)

s.t. K ✓ N , (32a)
2✓

�
· �  ✏, (32b)

0  ✓  min
s2K

n
|hs|

p
Ps

o
, (32c)

I
X

k2K

✓2

|hk|
2  P tot, (32d)

1  I  T, I 2 Z, (32e)

where Z denotes the set of natural numbers. Constraint
(32a) guarantees that |K|  N . Constraint (32b) ensures
that the privacy leakage of each device does not exceed
the privacy budget. By replacing ⌫ with = ✓

$ in (15),
we obtain constraint (32c) implying that the alignment
coefficient should ensure that 'k  1 due to the peak power
constraint. Constraint (32d) is the sum power constraint.
Constraint (32e) implies that the number of the aggregation
rounds should be an integer and no more than T .

P1 is solved in the following way. First, we decouple P1
into two sub-problems. Given the number of aggregation
rounds, the potential optimal solution pairs for K and ✓
can be obtained by exploring the relationship between the
number of scheduled devices and the alignment coefficient.
Thanks to the reduced search space, the globally optimal K
and ✓ can be efficiently found by searching the set of the
limited solution pairs. Furthermore, based on the optimal
scheduling and alignment factor, the optimal aggregation
rounds can be obtained by the one-dimensional search.

B. Optimal Device Scheduling and Alignment Factor

Assume that the number of the aggregation rounds is

I . We define q[K] =
q

P tot

I

✓
1/

r
P

k2K

⇣
1/ |hk|

2
⌘◆

and

c[K] = min
s2K

�
|hs|
p
Ps for notation simplicity. Then, the

constraints (32b), (32c) and (32d) can be rewritten as 0 

✓  min
n
✏�
2� , c[K], q[K]

o
. The problem that optimizes device

scheduling K and alignment factor ✓ can be decoupled as
follows:

P2. min
K,✓

(
4

✓
1�

|K|

N

◆2

+
1

2

d�2

|K|
2 ✓2

)
(33)

s.t. K ✓ N , (33a)

0  ✓  min

⇢
✏�

2�
, c[K], q[K]

�
. (33b)

By observing the objective function, we know that larger
|K| and ✓ yield a better objective function value. However,
the upper bound of ✓ is limited by the scheduling policy K

as shown in constraint (33b). To this end, we first analyze
the relationship between the number of scheduled devices

|K| and the alignment factor ✓, which can offer us a set of
potential optimal solution pairs.

Assume that the devices are sorted in descending order
of |hk|, i.e., |h1| � |h2| � · · · � |hN |. In order to specify
the relationship between |K| and ✓, we first conclude the
relationship between |K| and the upper bounds of c[K] and
q[K], which limits the value of ✓. For ease of presentation, we
introduce the notation S (N ; q), representing a mechanism
that returns a list where the elements in set N are arranged
in a descending order based on the parameter q.

Lemma 3. Assume that cmax
|K| and qmax

|K| are the achieveable

upper bounds of c[K] and q[K] for a given |K|, then, we have

cmax
|K| =

��hnc[|K|�1]

��
q
Pnc[|K|�1], (34)

when K = Kc = {nc [k] |k < |K| , k 2 Z} and nc =
S
�
N ; |hk|

p
Pk

�
. qmax

|K| can be achieved when K = Kq =
{k + 1|k < |K| , k 2 Z}, and can be given by

qmax
|K| =

r
P tot

I

0

@1/

vuut
|K|X

j=1

⇣
1/ |hj |

2
⌘
1

A . (35)

Proof: To achieve the maximum value of c[K] for a
given |K|, the |K| devices with largest |hk|

p
Pk should be

scheduled as K, i.e., K = Kc = {nc [k] |k < |K, k 2 Z|}. At
this point, we achieve the upper bound of c[K], i.e., cmax

|K| =��hnc[|K|�1]

��pPnc[|K|�1]. Similarly, the devices with larger
|hk| contribute to a larger q[K]. The maximum value of q|K|

is achieved, i.e., qmax
|K| =

q
P tot

I

✓
1/

r
P|K|

j=1

⇣
1/ |hj |

2
⌘◆

when K = Kq = {k + 1|k < |K| , k 2 Z}. ⌅
Remark 2. If all the devices are with the same peak transmit

power budget P dev
, i.e., P1 = P2 = · · · = PN = P dev

,

Kc = Kq .

Lemma 3 provides valuable insights, indicating that when
the value of |K| is given, it is possible to determine the
potential optimal scheduling sets, denoted as Kc and Kq ,
which can maximize c[K] and q[K], respectively. Conse-
quently, it offers a potential upper bound for ✓. In other
words, each given |K| corresponds one potential optimal
set, i.e., Kc or Kq , which can determine the upper bound
of ✓, i.e., min{ ✏�2� , c[Kc], q[Kc]} or min{ ✏�2� , c[Kq ], q[Kq ]}. The
potential optimal set, denoted as Kc or Kq , along with the
associated upper bound of ✓, forms what we refer to as the
potential optimal solution pair. These pairs exhibit a one-to-
one correspondence with the number of scheduled devices.
In other words, each specific number of scheduled devices
determines a potential optimal solution pair. The maximum
number of potential optimal solution pairs is N , i.e., the
value of |K| is set from 1 to N . However, when ✓ is fixed,
we have the following results.

Corollary 2. If ✓ is given, the optimal K to P2 is obtained

by K = {m|min{cm, qm} >= ✓,m 2 N}, where cm =

|hm|
p
Pm and qm =

q
P tot

I

✓
1/

r
Pm

j=1

⇣
1/ |hj |

2
⌘◆

.
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Corollary 2 emphasizes that for each given ✓, there exists
an optimal K, which leads to a optimal value of |K|. Taking
into account the constraint that ✓  ✏�

2� , we can further refine
the set of potential solution pairs as outlined below.

We define c = [c1, · · · cm, · · · cN ] and q =
[q1, · · · qm, · · · qN ]. Since |h1| � |h2| � · · · � |hN |, the ele-
ments in q are sorted in the descending order. However, the
elements in c may not be. We define cs = [cs1, · · · c

s
m, · · · csN ]

as the list where the elements of c are sorted in the
descending order. Therefore, the minimal values of q[K] and

c[K] are qN =
q

P tot

I

✓
1/

r
PN

j=1

⇣
1/ |hj |

2
⌘◆

and csN , in

which case K = N . For clarity, we give the solutions in
two cases: 1) ✏�

2� < min {csN , qN}; 2) min {csN , qN} 
✏�
2�

as follows.
1) In the case that

✏�
2� < min {csN , qN}: The constraint

of ✓ is independent of the device scheduling K. Constraint
(33b) can be rewritten as 0  ✓  ✏�

2� . Then, the optimal
solution to P2 can be given by the following Lemma.

Lemma 4. If
✏�
2� < min {csN , qN}, the optimal solution to

P2 is

✓⇤ =
✏�

2�
, K

⇤ = N , (36)

in which case all the devices are scheduled.

Proof: Firstly, to achieve a larger ✓, we have ✓⇤ = ✏�
2� .

On the other hand, all the devices satisfying cm �
✏�
2� and

qm �
✏�
2� should be selected to achieve a larger |K|, i.e.,

a better value of objective function. Since ✏�
2� < csN  cm

and ✏�
2� < qN  qm, 8m 2 N , we have K

⇤ = N . This
completes the proof of Lemma 4. ⌅

2) In the case that min {csN , qN} 
✏�
2� : The constraint

of ✓ is related to the device scheduling K. Let wm =
min{cm, qm} and we assume that Q = Qc[Qq where Qc =n
m|cm < ✏�

2� ,m 2 N

o
and Qq =

n
m| qm < ✏�

2� ,m 2 N

o
.

The elements in Q represents the indexes of devices satis-
fying wm < ✏�

2� . We define s = S (N ;wm) denoting the list
where the elements in set N are arranged in a descending
order based on the parameter wm, i.e., ws[0] � · · · �

ws[N�|Q|�1] �
✏�
2� > ws[N�|Q|] � · · · � ws[N�1] as shown

in Fig. 2. Then, constraint (33b) can be discussed in two
cases: (1) 0  ✓  wm,m 2 Q; (2) ws[N�|Q|] < ✓  ✏�

2� .
Therefore, there are |Q|+1 potential upper bounds of ✓. For
each upper bound of ✓, there is a corresponding optimal |K|

following Corollary 2. To capture the trade-off between the
alignment factor ✓ and the number of the scheduled devices
|K|, we have the following results.

Lemma 5. The minimum value of the potential optimal |K|

is N � |Q|. The relationship between the potential optimal

|K| and ✓ can be given by

✓ =

(
ws[|K|�1], if |K| � N � |Q|+ 1
✏�
2� , if |K| = N � |Q|

. (37)

Proof: Firstly, given a value of |K| � N � |Q| + 1, the
largest wm that can be achieved is ws[|K|�1]. To achieve a

larger ✓, we have ✓ = ws[|K|�1]. The largest feasible value of
✓ is ✏�

2� , in which |K| achieves the minimum value N � |Q|.
Then, we complete the proof of Lemma 5. ⌅

Remark 3. Althrough values in the {1, · · · , N � |Q|� 1}
are technically feasible for |K|, it will not lead to the optimal

solution as larger |K| values usually results in smaller

objective function values, which aligns with our goal of

obtaining optimal solutions.

Lemma 5 captures a trade-off between the alignment
factor ✓ and the number of the scheduled devices |K|.
In particular, the trade-off involves the choice between
scheduling more devices to boost the learning process with
a lower alignment factor ✓, or scheduling fewer devices to
attain a larger alignment factor, thereby enhancing the utility
of the aggregated gradient. For instance, in the scenario
where |K| = N , indicating the participation of all devices
in training, ✓ will achieve the minimal value of the potential
optimal solution, i.e., ✓ = ws[N�1]. On the contrary, ✓ can
achieve the largest value by scheduling the device with the
largest wm, i.e., ws[0] when |K| = 1. From a physical
perspective, when more devices are involved in training,
there is a higher likelihood of including devices with poorer
channel conditions, and this also leads to stricter total power
constraints. The trade-off is validated by Fig. 3 in Section
V-B.

The space of the potential optimal solutions pairs to P2
can be given as follows.

Lemma 6. There are |Q| + 1 closed-form solution pairs

which may be the globally optimal solution. The j-th, 1 
j  |Q|, potential optimal solution pair ✓⇤j and K

⇤
j is given

by

✓⇤j = ws[N�j], K
⇤
j = {s [m]|m  N � j,m 2 Z} , (38)

and the |Q|+ 1-th solution pair ✓⇤|Q|+1, K
⇤
|Q|+1 is

✓⇤|Q|+1 =
✏�

2�
, K

⇤
|Q|+1 = {s [m]|m  N � |Q|� 1,m 2 Z} .

(39)

Proof: Firstly, there are |Q| elements in Q, which are
qualified for the upper bound of ✓ i.e., wm. It thus follows
from Lemma 5 that there are |Q| pairs of ✓ and |K|, i.e.,
|Q| potential optimal solution pairs, which may achieve the
best performance. Specifically, the j-th solution corresponds
to the setting that ✓⇤j = ws[N�j] and |K| = N � j + 1, in
which case, K⇤

j = {s [m]|m  N � j,m 2 Z}. Addition-
ally, ✓⇤|Q|+1 = ✏�

2� is the |Q| + 1-th solution, the largest
|K|, i.e., |K| = N � |Q| � 1, can be achieved when
K

⇤
|Q|+1 = {s [m]|m  N � |Q|� 1,m 2 Z}, which can

contribute to the optimal value of objective function. This
completes the proof of Lemma 6. ⌅

The ✓⇤j and K
⇤
j in Lemma 6 can be interpreted as repre-

senting the optimal solution when the number of scheduled
devices, denoted as |K|, is set to j. Based on Lemma 6, we
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... ...

Potential values of 

Index of devices

... ...

Fig. 2: Illustration of the potential optimal solution space.

can perform the one-dimension search method to obtain the
globally optimal solution K

⇤, ✓⇤ = K
⇤
j⇤ , ✓

⇤
j⇤ , in which

j⇤ = arg min
1j|Q|+1

�
 
�
K

⇤
j , ✓

⇤
j

� 
, (40)

where  
�
K

⇤
j , ✓

⇤
j

�
= 4

✓
1�

|K⇤
j |

N

◆2

+ d�2

2|K⇤
j |

2(✓⇤j )2
. The

overall procedure for solving P2 is summarized in Algo-
rithm 1. As the optimal solution for ✓ and K is derived
through an exhaustive search among |Q|+1 ( N) potential
optimal solution pairs, given by a closed-form expression,
the complexity of Algorithm 1 is denoted as O (N).

Algorithm 1 The Procedure for Solving Problem P2

Input: Given N , T , d, �, (✏, ⇠), h = {|h1| , · · ·, |hN |},
{Pn}

N
n=1 and P tot. Let I = T .

Output: K
⇤, ✓⇤.

1: Calculate ✏�
2� , c and q.

2: if
✏�
2� < min {csN , qN} then

3: Obtain the optimal solution K
⇤ = N , ✓⇤ = ✏�

2�
following Lemma 4.

4: else

5: Calculate Q = Qc [ Qq where
Qc =

n
m|cm < ✏�

2� ,m 2 N

o
and Qq =

n
m| qm < ✏�

2� ,m 2 N

o
.

6: Obtain |Q| + 1 pairs of potential optimal solution
following Lemma 6.

7: Obtain the optimal solutions by K
⇤, ✓⇤ = K

⇤
j⇤ , ✓

⇤
j⇤

where j⇤ = arg min
1j|Q|+1

�
 
�
K

⇤
j , ✓

⇤
j

� 
.

8: end if

From the above analysis, it can also be learned that the
aligned DP-OTA-FL with device scheduling will not be
worse than that with full devices participation because the
full device scheduling is one of the potential optimal solution
pairs. We next present which pairs of solutions can achieve
better performance than the case of full device participation.
Since the optimal solution is the same as full device situation
when ✏�

2� < min {csN , qN} as shown in Lemma 4, we only
consider the case that min {csN , qN} 

✏�
2� .

Lemma 7. If min {csN , qN} 
✏�
2� , the solution pairs K

and ✓ that satisfies the following condition will make the

aligned DP-OTA-FedAvg perform better than that with full

device participation:

|K| ✓ > 1q
1

N2(wmin)2
�

8
d�2

, (41)

where wmin = min {csN , qN}.

Proof: The aligned DP-OTA-FedAvg with full device
participation is equivalent to the solution that ✓ = wmin and
K = N , in which case, the value of the objective function
is d�2

N2(wmin)2
. By solving 4 + d�2

2|K|2✓2 
d�2

2N2(wmin)2
, we

complete the proof of Lemma 7. ⌅

C. Optimal Number of Global Aggregation

By giving K and ✓, the problem of the optimal number
of the global aggregations can be formulated by,

P3. min
I

{W (K, ✓, I)} (42)

s.t. 1  I  min

(
P tot

✓2
P

k2K
1

|hk|2
, T

)
, I 2 Z.

(42a)

Since there are only limited feasible solutions of I , the opti-
mal number of the aggregation rounds I⇤ can be efficiently
obtained by searching the solution space.

D. The Whole Precedure of the Optimal Design for DP-

OTA-FedAvg

In this subsection, we present the overall procedure for
design the optimal DP-OTA-FedAvg (O-DP-OTA-FedAvg)
as shown in Algorithm 2. Suppose that the algorithm of
optimal design needs M iterations to converge. In each iter-
ation, it obtains ✓, K with a complexity of O (N) and I with
a complexity of O (T ). Therefore, the overall complexity of
the proposed O-DP-OTA-FedAvg is O (MN +MT ).

V. SIMULATION RESULTS

A. Simulation Setting

We evaluate our proposed scheme by training a convolu-
tional neural network (CNN) on the popular MNIST dataset
used for handwritten digit classification. The MNIST dataset
consists of 60,000 images for training and 10,000 testing
images of the 10 digits. We have the general assumption
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Algorithm 2 Optimal Design for DP-OTA-FedAvg

Require: Given N , T d, �, (✏, ⇠), h = {|h1| , · · ·, |hN |},
{Pn}

N
n=1 and P tot.

1: Set the iteration number j = 0 and I0 = T .
2: repeat

3: Obtain K
⇤
(j), ✓

⇤
(j) by Algorithm 1.

4: Compute I⇤(j) by solving P3.
5: j  j + 1.
6: until the convergence condition���W

⇣
K

⇤
(j), ✓

⇤
(j), I

⇤
(j)

⌘
�W

⇣
K

⇤
(j�1), ✓

⇤
(j�1), I

⇤
(j�1)

⌘��� 
" is satisfied.

that there is an equal number of training data samples for
each device and no overlap between the local training data
sets [19]. We have the common assumption that each device
has an equal amount of training data samples and the local
training datasets are non-overlapping with each other [19].
We assume that local datasets are IID, where the initial
training dataset is randomly divided into N batches and
each device is assigned to one batch. In particular, CNN
consists of two 5×5 convolution layers with the rectified
linear unit (ReLU) activation. The two convolution layers
have 10 and 20 channels respectively, and each layer has
2×2 max pooling, a fully-connected layer with 50 units and
ReLU activation, and a log-softmax output layer, in which
case d = 21840. We have a total of N = 50 devices, each
with a maximum transmission budget of 1 watt. The learning
rate is configured with a value of ⌘ = 0.1 and the entire
training process consists of T = 500 rounds. The privacy
requirement is defined as (✏, ⇠) = (10, 0.1) and the upper
bound of the expected squared norm of each gradient is given
as $ = 3, which can be gaurantted by gradient clipping [39],
[40]. The channel noise power is designated as � = 1 and
we further introduce the notation hmin = minn2N {|hn|} to
represent the minimum channel coefficient. This enables us
to assess the performance of the proposed scheme across
various channel conditions in different systems.

B. The Optimal Alignment Factor and Scheduling

In this section, we first illustrate the trade-off between
the alignment factor ✓ and the number of scheduled de-
vices |K|, and evaluate the effectiveness of the proposed
optimal solution for the alignment factor and scheduling
while setting I = T . The sum-power budget is set to
P tot = 1000W . Given the one-to-one relationship between
the optimal alignment factor and optimal scheduling, for the
sake of simplicity, we will refer to the optimal solution for
both as “optimal scheduling” in the following discussions.

1) The tradeoff between the potential optimal alignment

factor ✓ and the number of the scheduled devices |K|:

In Fig. 3, we plot the alignment factor ✓ and the value
of the objective function in P2 against the number of the
number of the scheduled devices |K| in cases of hmin = 0.2,
hmin = 0.6 and hmin = 1.0. It is evident that the alignment
factor decreases as the number of participants increases, and

there exists an optimal number of scheduled devices that
minimizes the objective function’s value, for given values of
N and I . To elaborate, scheduling more devices accelerates
convergence but may result in a lower alignment factor ✓,
potentially negatively impacting learning performance. The
optimal value of |K| tends to increase with growing hmin
as scheduling more devices does not necessarily limit the
alignment factor to very small values, as demonstrated in
Fig. 3(c).

In Table I, we provide a comprehensive overview of the
optimal and full scheduling solutions, along with the cor-
responding objective function values for P2 across varying
hmin values. These solutions are denoted as (|K|

⇤, ✓⇤, obj⇤)
and

�
|K|

f , ✓f , objf
�
, respectively. By comparing the optimal

and full scheduling solutions for each hmin, we observe
that the proposed optimal scheduling policy yields a lower
value of the objective function. This achievement is realized
by scheduling a reduced number of devices to enhance
the alignment factor ✓. Therefore, this approach is par-
ticularly effective when hmin is relatively small. In such
cases, the alignment factor ✓ in the full scheduling policy is
limited by the device with the poorest channel condition,
denoted as hmin, when all the devices are scheduled. As
hmin increases, the gaps in the number of the participants
|K|, the alignment factor ✓, and the objective function
value between the optimal and the full scheduling solutions
gradually narrow, eventually reaching 0 when hmin = 2.8.
This is because when the alignment factor is no longer
restricted to very small values due to the minimum channel
conditions, scheduling more devices becomes advantageous
for improving learning performance, which is consistent with
the conclusion obtained in Fig. 3.

2) The optimal alignment factor ✓ and scheduling policy

K: In Fig. 4, we plot the learning accuracy with four differ-
ent scheduling policies: optimal scheduling, full scheduling
[10], [13], [25], uniform scheduling (where the number
of scheduled devices remains consistent with the optimal
scheduling and the participants are uniformly selected from
N ), and random-✓-based scheduling [26] (where the devices
are scheduled based on a random alignment factor which
is set to 1). The proposed optimal scheduling policy con-
sistently outperforms full scheduling, uniform scheduling,
and random-✓-based scheduling in all scenarios. This per-
formance advantage becomes particularly significant when
hmin = 0.4, as the alignment factor is severely restricted
in the full scheduling scheme. Random-✓-based scheduling
attempts to enhance the alignment factor by setting a thresh-
old for scheduling devices but does not effectively strike
a balance between the alignment factor and the number
of scheduled devices. Despite having an equal number of
scheduled devices in both optimal scheduling and uniform
scheduling, the optimal scheduling policy achieves a larger
value of alignment factor by scheduling the |K

⇤
| devices

with the best conditions. Overall, the results demonstrate the
pronounced effectiveness of the proposed optimal scheduling
policy, especially in the case of FL systems with poor
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(a) hmin = 0.2 (b) hmin = 0.6 (c) hmin = 1.0

Fig. 3: The alignment factor ✓ and the value of the objective function against |K|.

TABLE I: The optimal and the full scheduling solutions with different hmin.

hmin 0.2 0.4 0.6 1.0
(|K|⇤ , ✓⇤, obj⇤) (22, 0.5751, 69.4774) (35, 0.4041, 54.9602) (35, 0.4563, 43.1706) (42, 0.4680, 28.3718)⇣
|K|f , ✓f , objf

⌘
(50, 0.1602, 170.1106) (50, 0.2277, 84.2273) (50, 0.2817, 55.0454) (50, 0.3778, 30.6066)

hmin 1.6 2.0 2.4 2.8
(|K|⇤ , ✓⇤, obj⇤) (47, 0.5481, 16.4679) (49, 0.6107, 12.1981) (49, 0.6955, 9.4046) (50, 0.7648, 7.4673)⇣
|K|f , ✓f , objf

⌘
(50, 0.5111, 16.7196) (50, 0.5969, 12.2595) (50, 0.6813, 9.4098) (50, 0.7648, 7.4673)

(a) hmin = 0.4 (b) hmin = 0.6 (c) hmin = 0.8

Fig. 4: The learning performance with different scheduling policies

channel conditions.

C. The Optimal Aggregation Rounds

In this section, we first illustrate the tradeoff between local
training error and the aggregation error and the impact of
aggregation rounds on learning performance by fixing the
participants as N .

1) The tradeoff between local training error and the

aggregation error: In Fig. 5, we plot the local training error
and the aggregation error, as well as the value of optimality
gap against the number of aggregation rounds in cases of
hmin = 0.2, hmin = 0.4 and hmin = 0.6. There is an optimal
number of aggregation times I in terms of convergence
performance for a given total training rounds T and P tot.
In more detail, a larger I leads to a smaller E, which
corresponds to a smaller local training error, however, may

involve more communication-related errors, including fading
distortion and channel noise, and thus may have a negative
impact on convergence performance. In this sense, there
is a tradeoff in choosing a proper I . The optimal number
of aggregation rounds increases as hmin decreases. This is
because when hmin is small, the alignment factor tends to be
small as well, resulting in significant noise distortion during
each aggregation round. Therefore, in such cases, fewer
aggregation rounds are preferable for better performance.
Conversely, increasing the number of aggregation rounds
reduces the local training error and can generally enhance
convergence performance, provided that noise distortion is
not relatively small (a larger ✓).

2) The optimal aggregation rounds: In Fig. 6, we plot the
learning accuracy with three different aggregation rounds:
the optimal aggregation, per-round aggregation, i.e., E =
1, I = T , and the random aggregation rounds. The best
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(a) hmin = 0.2 (b) hmin = 0.4 (c) hmin = 0.6

Fig. 5: The local training error, aggregation error and optimality gap against the number of aggregation rounds.

Fig. 6: The learning performance with different aggregation
times.

learning performance is achieved when training with the
optimal aggregation rounds. In the case of a per-round
aggregation scheme, there is a limitation on the number of
aggregation rounds due to the constrained sum-power for
the given set K. In the random aggregation, where a smaller
value of I implies a larger E, local training may converge
to the optimal solution of the local objective rather than
the global objective. Therefore, it is significant to carefully
select the number of aggregation rounds.

D. The Optimal Design for DP-OTA-FedAvg

We evaluate the overall performance of O-DP-OTA-
FedAvg under different sum power constraints. This as-
sessment involves comparing O-DP-OTA-FedAvg to four
benchmark schemes, which include: (1) differentially pri-
vate over-the-air federated stochastic gradient descent (DP-
OTA-FedSGD) with full device participation, denoted as
F-DP-OTA-FedSGD, where I = T . (2) DP-OTA-FedSGD
with optimal scheduling, denoted as O-DP-OTA-FedSGD.
(3) DP-OTA-FedAvg with random aggregation rounds and
full device participation, denoted as RF-DP-OTA-FedAvg.
(4) DP-OTA-FedAvg with random aggregation rounds and
optimal device scheduling, denoted as RO-DP-OTA-FedAvg.

Fig. 7 demonstrates that the proposed optimal design can
significantly improve the performance of DP-OTA-FL. On
the one hand, the optimal design of device scheduling and
alignment coefficient enhances the learning performance by
improving the utility of the aggregated gradient average
in each communication round. On the other hand, O-DP-
OTA-FedAvg can set more efficient local training rounds
by optimizing the number of the global model aggregations
under the constraint of limited sum power and privacy
budget. The sum power constraint has a more pronounced
impact on DP-OTA-FedSGDs when E = 1. In such cases,
the power available for transmitting gradients during each
communication round is limited, which, in turn, restricts
either the alignment factor or the number of scheduled
devices. In contrast, due to the reduced aggregation rounds,
the sum power constraint has a relatively smaller effect on
DP-OTA-FedAvgs, as neither the alignment factor nor the
number of scheduled devices is significantly limited by the
available power for transmission in each aggregation round.
However, it performs worse than O-DP-OTA-FedAvg due to
the presence of larger local training errors.

VI. CONCLUSION

This paper has studied an optimal design for device
scheduling, alignment coefficient, and the number of com-
munication rounds of DP-OTA-FedAvg considering con-
straints on the total available power. It has addressed two
fundamental tradeoffs inherent to aligned OTA-FL when
confronted with privacy and power limitations. Firstly, it
has uncovered the tradeoff between the number of scheduled
devices and the alignment coefficient, offering insights into
the delicate balance between these factors. Secondly, it has
explored the balance between aggregation distortion and
local training error while maintaining compliance with the
sum power constraint. The proposed optimal schemes can
significantly enhance the performance of the privacy and
power-limited DP-OTA-FedAvg system, particularly in sce-
narios characterized by devices with poor channel conditions
and limited sum-power budgets.
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(a) P tot = 500 (b) P tot = 1000

Fig. 7: The learning accuracy with different scheduling and aggregation times

APPENDIX A
PROOF OF LEMMA 2

Following (5), (12) and 13, we have
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where (a) is from Assumption 2 and (b) is come from the
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where (a) is from that ka+ bk22  2 kak22 + 2 kbk22 and (b)
is from ka+ b+ ck22  (kak2 + kbk2 + kck2)

2. Inequality
(c) comes from Assumption 1. Due to ⌧  1

⇣ , we obtain the

upper bound of the sum of term A2 and term B as follows
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For the last term C, we note that
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By pluggling these upper bounds back into (44), we com-
plete the proof as follows:
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APPENDIX B
PROOF OF THEOREM 1

Based on Lemma 2 and Assumption 3, we have
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where ⌘ = 1 � %
⇣ and (a) is from (27). By replacing i + 1

with I , we complete the proof.

APPENDIX C
PROOF OF THEOREM 2

Based on Lemma 2, we have
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where (a) is from ⌧ = 1
⇣ . By summing i from 0 to I � 1,

we complete the proof of Theorem 2 as follows:
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