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Abstract

For the one billion sufferers of respiratory disease, managing their disease

with inhalers crucially influences their quality of life. Generic treatment plans

could be improved with the aid of computational models that account for patient-

specific features such as breathing pattern, lung pathology and morphology. There-

fore, we aim to develop and validate an automated computational framework

for patient-specific deposition modelling. To that end, an image processing ap-

proach is proposed that could produce 3D patient respiratory geometries from

2D chest X-rays and 3D CT images. We evaluated the airway and lung mor-

phology produced by our image processing framework, and assessed deposition

compared to in vivo data. The 2D-to-3D image processing reproduces airway

diameter to 9% median error compared to ground truth segmentations, but is

sensitive to outliers of up to 33% due to lung outline noise. Predicted regional

deposition gave 5% median error compared to in vivo measurements. The pro-

posed framework is capable of providing patient-specific deposition measure-

ments for varying treatments, to determine which treatment would best satisfy

the needs imposed by each patient (such as disease and lung/airway morphol-

ogy). Integration of patient-specific modelling into clinical practice as an addi-

tional decision-making tool could optimise treatment plans and lower the burden

of respiratory diseases.
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1 Introduction

Respiratory diseases affect over one billion people worldwide (The Global Asthma Net-

work, 2018). Diseases such as asthma, cystic fibrosis and COPD are typically treated with

inhaled therapeutics which are delivered to the affected tissue to prevent symptoms such as

breathlessness from arising, or relieve them when they do arrive. Many patients’ symptoms

are worsened by a combination of poor inhaler technique and a lack of adherence to their

treatment plan (van Boven et al., 2018). Electronic health (e-health) measures such as smart

inhalers (van Boven et al., 2018) are being introduced to improve adherence and quality of

care (Honkoop et al., 2022). Smart inhalers can use sensors to track how often patients use

inhalers and also provide estimates on technique or inspiratory flowrate based on acoustic

sensors (van Boven et al., 2018; Lim et al., 2019). The value of e-health monitoring for pa-

tients could be increased significantly by linking measurements such as inhalation flowrate

with patient-specific physical models that accurately predict how the inhaled drug has de-

posited in patient lungs.

Patient-specific modelling of drug deposition can be done with computational particle-

fluid dynamics (CPFD) which solves the governing equations of air and drug particle trans-

port during inhalation (Nowak et al., 2003; Koullapis et al., 2016; Williams et al., 2022a).

Patient-specific CPFD modelling requires 3D representations of the patient’s respiratory

system, usually obtained from clinical computed tomography (CT) scans (Kleinstreuer and

Zhang, 2010). Typically the airways are segmented using manual approaches, which can

take several hours (Sonka et al., 1996), and is therefore unsuitable for usage in future e-health

monitoring frameworks. Tschirren et al. (2009) showed that manually correcting airway seg-

mentations obtained from semi-automatic methods can also take several hours. Such a long

and labour-intensive process is a substantial bottleneck in applying patient-specific deposi-

tion models to a large number of respiratory patients. Fully-automatic segmentation meth-

ods have recently become available, which are promising for rapid segmentation of lungs

and airways from volumetric CT using convolutional neural networks (CNNs) (Garcia-

Uceda et al., 2021; Hofmanninger et al., 2020; Yun et al., 2019; Tang et al., 2019). CNNs

apply varying levels of convolution, where the convolution kernels are learned by evaluat-

ing the difference between the CNN output compared to a ‘ground truth’ human-verified
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result (LeCun et al., 1995). CNNs have been widely used in medical image processing and

are used here to segment airways from 3D images such as clinical CT. However, CT images

are more costly to acquire than chest X-rays and are therefore not optimal for imaging a large

number of respiratory sufferers. Additionally, using CT scans is not encouraged in children

for routine assessments due to harmful radiation. Therefore, an additional image-processing

approach that can extract 3D respiratory systems from sparser imaging such as chest X-rays

is an unmet need.

To perform deposition simulations based on patient chest X-rays, we require a novel

image-processing approach to reconstruct 3D respiratory geometries from 2D chest X-rays.

Reconstruction of 3D skeletal anatomies including femora, vertebra or knee joints from pla-

nar and bi-planar X-ray images has been performed using statistical shape and appearance

models (SSAMs) (Albrecht et al., 2013; Baka et al., 2011; Väänänen et al., 2015; Zheng et al.,

2011; Youn et al., 2017; Dworzak et al., 2010). Statistical shape models (SSMs) take a set

of corresponding geometries (usually represented with landmarks that represent key fea-

tures), and quantifies how shape features change across a population (based on eigenval-

ues and eigenvectors of the covariance matrix) (Cootes et al., 1995). A SSAM performs the

same operation, including an additional feature such as gray value at each landmark. In

this approach, patient lungs may be extracted from a chest X-ray by combining (i) available

information such as lung outline and gray-value distribution, as well as (ii) a SSAM that

describes how lung shapes and projected gray-value varies from a database of known (3D)

lung shapes (Cootes et al., 1995, 2001; Heimann and Meinzer, 2009). Respiratory statistical

shape models (SSMs) have previously been used for diagnostic purposes, as Irving et al.

(2013) developed an approach to extract 3D airways from a single chest X-ray and diagnose

tuberculosis in children (Irving et al., 2011, 2013). Osanlouy et al. (2020) used a SSM of the

lungs to quantify differences in lung morphology in smokers and non-smokers. These ex-

amples of SSM and SSAM applications in skeletal and respiratory imaging show that SSAMs

are a suitable approach for extracting full respiratory systems from planar or bi-planar chest

X-rays. However, a key issue in this approach is that only the first bifurcation-level (or ‘gen-

eration’) of the airway tree is visible on a chest X-ray (Irving et al., 2013), as the low density

lung structures are overlapped by denser structures such as the spine, rib cage and heart
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(Gozes and Greenspan, 2018; Yang et al., 2017; Liang et al., 2020). Similarly, only around

5-10 generations (out of 23) are visible on high resolution CT scans (Kleinstreuer and Zhang,

2010; Bordas et al., 2015). Thus, even with high resolution imaging, the deep lung airways

are left unaccounted for and must be included for patient-specific deposition predictions.

The limitations of imaging resolution have been overcome in several ways. The remain-

ing levels of the conducting airway tree can be generated (approximately up to generation

16) using statistical models based on information from the visible airways (Tawhai et al.,

2004; Bordas et al., 2015; Montesantos et al., 2016). The remaining portion of the airway tree

(bifurcations 17 to 23) are the respiratory ‘acinar’ region, which is a very small (characteris-

tic length is O(100 µm)) and intricate structure that is impossible to image in vivo (Haefeli-

Bleuer and Weibel, 1988; Rausch et al., 2011; Dong et al., 2022). Acinar flows have been stud-

ied with CPFD (Sznitman, 2013; Dong et al., 2022; Khajeh-Hosseini-Dalasm and Longest,

2015; Hofemeier and Sznitman, 2016), but it is highly computationally expensive to directly

resolve the full conducting airways and deep lung in one simulation (Koullapis et al., 2018a,

2019, 2020). Typically, the deep lung mechanics are treated with reduced-dimension mod-

els such as 1D airway networks or 0D lumped parameter models which are coupled to 3D

CPFD simulations at the 3D airway outlet (Oakes et al., 2015, 2018; Roth et al., 2017; Com-

erford et al., 2010; Ismail et al., 2014; Pozin et al., 2017; Kuprat et al., 2020; Poorbahrami and

Oakes, 2019; Feng et al., 2021). To model the full respiratory system, we therefore couple

3D CPFD domains produced from our image-processing framework with a 0D lumped pa-

rameter model to validate the entire image-processing and simulation framework against

experimental deposition data (Conway et al., 2012; Fleming et al., 2015).

Therefore, we aimed to (i) develop a computational framework to reconstruct 3D airways

and lungs from 2D image(s); (ii) develop a segmentation tool for reconstructing airways

and lungs from clinical CT data; (iii) evaluate the ability of the developed image-processing

tools to reproduce morphological properties and deposition of the ground truth airways,

and (iv) validate deposition predictions against experimental data. Our developed compu-

tational framework is made publicly available online (https://github.com/jvwilliams23/

respiratory2Dto3Dpaper).

5



2 Methods and materials

2.1 Patient image data and ground truth generation

We used 51 clinical CT scans from the LUNA16 challenge (Setio et al., 2017), which is part of

The Cancer Imaging Archive (TCIA) (Clark et al., 2013). The scans were acquired for lung

cancer nodule detection which does not depend on inhalation state, therefore no information

on breath-hold procedures was reported by Setio et al. (2017). The scans used were chosen

randomly by Tang et al. (2019), and they provided radiologist-verified lung lobe segmenta-

tions online. We created airway segmentations for the same scans using a semi-automatic

region-growing approach based on Nardelli et al. (2015). These segmentations have been in-

dependently verified by a radiologist with 9 years experience. We excluded 13 samples from

our SSAM dataset, as the segmentations only included the trachea and first bifurcation.

To validate our modelling approach, we compared to experimental data of radiophar-

maceutical aerosol deposition from Conway et al. (2012) and Fleming et al. (2015), which

we refer to throughout as the ‘Southampton/Air Liquide dataset’. Conway et al. (2012) and

Fleming et al. (2015) performed experiments with inhaled aerosol in six healthy and six asth-

matic subjects. Patients sat in an erect (sitting) position while aerosol was delivered through

an AKITA nebuliser. The AKITA nebuliser is breath-actuated to release drug only during in-

halation, and a controlled (constant) inhalation profile to optimise deposition (Munro et al.,

2020). Deposition was imaged with single photon emission computed tomography (SPECT)

and combined with low resolution X-ray CT captured in the same machine (SPECT-CT),

which relates deposition images to anatomical structure of the lungs (Fleming et al., 2011).

To relate deposition measurements to airway morphology, high resolution CT was acquired

for each patient on a different machine on a different day (Conway et al., 2012; Montesantos

et al., 2013). Full information on scanning equipment and protocol are provided elsewhere

(Conway et al., 2012; Montesantos et al., 2013), and only key points related to our study

are discussed here. High resolution CT images were acquired in supine position, which is

known to decrease lung volume compared to erect position (Ibanez and Raurich, 1982). Ad-

ditionally, Conway et al. (2012) discussed imaging issues in the upper airway. In half of the

images acquired, the epiglottis was completely closed, meaning there was no path for air to
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pass from the mouth to the lung airways. This may have occurred since the images were

taken during exhalation, where the glottis area is at its narrowest (Brancatisano et al., 1983;

Scheinherr et al., 2015). Furthermore, motion artefacts may have blurred the already narrow

glottis to appear fully closed. To allow for air and drug particles to pass from the mouth to

the lung, we manually cleaned up segmentations in these problematic cases (Supplementary

Material Section 1).

2.2 Shape reconstruction from a chest X-ray image

To reconstruct 3D lung and airway geometries from an X-ray image, we created a statistical

shape and appearance model (SSAM) based on ground truth airway and lung lobe segmen-

tations. The appearance is based on digitally reconstructed radiographs (DRRs) derived

from the patient CT data (described below). The DRRs were also used for testing how well

the SSAM fits to an X-ray. Below we describe the process to create a SSAM from patient CT

data and segmentations described above (Section 2.1).

2.2.1 Pre-processing and landmarking

To establish correspondence amongst the lobes, we make use of the ‘Growing and Adaptive

Meshes’ (GAMEs) algorithm of Ferrarini et al. (2007). This algorithm determines the set of

landmarks needed to best describe the surface mesh by clustering points based on their

proximity and covariance. A set of landmarks are grown for a base mesh that acts as a pop-

ulation mean (Marsland et al., 2002). The base landmarks are then iteratively adapted to fit

the rest of the population, such that adapted points correspond to the same feature (Koho-

nen, 1990, 2013). Outlier points that had not correctly fitted to a new shape were detected as

points with a Mahalanobis distance of greater than 0.15, which we determined empirically

by analysing statistics of poorly fitted cases. Once all points were below this threshold, the

landmark adaptation was considered converged. If convergence was not satisfied and the

maximum distance has settled at a steady-state (change in maximum Mahalanobis distance

less than 0.05 after five full iterations through all points in ground truth), then the land-

marking was considered failed. If landmarking failed, another cloud of landmark points

was used as a base to adapt from.
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As we cannot directly see the lobar fissures on a chest X-ray, we removed landmarks on

the lobar fissures from the landmark list. Landmarks were classified as being on a lobar

fissure if the (dimensionless) Mahalanobis distance between a landmark in one lobe and a

landmark in the adjacent lobe was less than 0.2. This allowed the SSAM to capture more

variance on the outer curvature of the lungs instead of the highly variable lobar fissures,

which improves adaptation to lung outlines on X-ray images. Landmarks for all lobes were

combined into one dataset to have a SSAM for the entire lungs (instead of individual lobes),

which allows us to capture inter-organ relations (Cerrolaza et al., 2019) such as distance

between both lungs, orientation and non-overlapping structure of lobes. This gave us 2966

landmarks in total for the lungs.

To landmark the airways we first skeletonised the segmentation in scikit-image (Lee

et al., 1994). The skeletonised labelmap was then converted to spatial coordinates with the

Skan package (Palmer et al., 2013). A graph was created from coordinates output from

Skan using Networkx (Hagberg et al., 2008). Branches with length less than 5 mm were

removed as recommended by Tschirren et al. (2005b). We included the trachea, main and

lobar bronchi in the skeleton landmarks, as airways below this will not be visible on the

X-ray image.

At each node on the graph we computed the diameter based on the cross sectional area

of the 3D segmentation at that location. This was used to get landmarks on the surface by

creating a circle centered on and perpendicular to the medial axis. We computed a vector

from the circle center to each point along its circumference. We found where this vector

intersected the surface mesh of the segmentation and set a landmark here. This allowed

us to landmark irregular cross-sections. The airway landmarks were combined with lung

landmarks, giving us 3486 landmarks in total.

We created DRRs for all patients in the LUNA16 dataset which we used to train the

SSAM and assessing performance. This was done by integrating the Hounsfield units for

each voxel in the anterior-posterior direction of the scan to create a frontal chest X-ray. We

also created additional DRRs in the sagittal plane to test the influence of including an addi-

tional projection on the morphologies predicted by the SSAM. The gray-value at the land-

mark location could then be used in the appearance part of the SSAM. The DRRs represent
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patient X-rays at the same time point that the CT data used to extract landmarks was taken.

The DRRs were also used for assessing our SSAM performance, as we can compare the 3D

reconstructions of the lungs and airways from the SSAM to CT at the same instant. By com-

paring lungs and airways at the same time instant, our results are not influenced by changes

in lung or airway shape during breathing.

Similar to Baka et al. (2011), we computed a Canny edge map of the chest X-ray to use

for guiding our SSAM fitting. To reduce noise in the edge map, we first downsampled the

X-ray to be four times coarser and applied global histogram equalization. We then applied

a Canny edge map (Canny, 1986), where the Gaussian kernel has a width of two pixels. We

found this combination of pre-processing steps to produce an edge map with the lowest

amount of noise from overlapping structures such as the rib cage.

2.2.2 Statistical shape and appearance modelling

Once a set of landmarks and DRRs were extracted from the LUNA16 dataset (Section 2.2.1),

all sets of landmarks were aligned to zero mean and isotropic scaling was applied such that

the coordinates had zero mean and unit standard deviation. Landmark gray values were

also normalised to zero mean and unit standard deviation per sample. We then create a

SSAM to describe and parameterise the covariance of the lung and airway shape-appearance

data in the LUNA16 dataset. The SSAM parameters are then iteratively adjusted based on

how well the lung and airway shape and appearance agrees with the X-ray image (Figure 1a-

b).

The SSAM uses principal component analysis (PCA) to create a model of the variation in

the shape and the gray-values of the corresponding chest X-ray. The shape and gray-value,

x can then be described by the linear function

x ≈ x +
Nm

∑
m=1

Φm ·
(

bm

√
σ2

m

)
, (1)

where x is a vector of mean shape and gray-value. It has a size of (3 + NXR)NL, where NL

is number of landmarks, corresponding to a Cartesian coordinate for each landmark and

NXR is the number of X-rays per patient, which each contains a set of gray-values for each

landmark. Φ is a (3 + NXR)NL × Nm matrix, giving the main modes of variation of the
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(a)

25 cm

(d) CT scan

Chest X-Ray(s) (b) Mode 1 
(27% variance)

+ 2 S.D

- 2 S.D

Mode 2 
(16% variance)

Shape identified 
by SSAM

Deep learning segmentation(e)

Personalised 3D 
respiratory system

(c)

10 cm

Segmented labelmap(f)

Figure 1: Schematic overview of image-processing framework. Chest X-ray image(s) are
provided as an input (a), where the shape is identified by our SSAM by iteratively adapting
lung outline and gray-value based on a database of known lung shapes (b-c). The SSAM
reconstruction can then be used to generate a surface mesh of lungs with a full airway tree
(c). Alternatively, a 3D CT scan may be provided as an input (d) to our trained CNN archi-
tecture (e). The CNN returns a segmented labelmap for lungs and airways (f), which can
also be used to generate the full respiratory domain (c).
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Figure 2: Assessment of sensitivity of SSAM metrics to number of modes included in the
model. Panels show (a) explained variance based on number of modes, (b) reconstrucion
error for shapes in training set, (c) generalisation error for unseen shapes. When the model
describes 90% of the population variance (indicated by blue dashed line), the generalisation
error in adapting the model to unseen shapes is saturated.

training set, where Nm is the number of modes. σ2
m is the variance described by mode m.

bm is the shape parameter for mode m, where Figure 1(b) shows the effect of varying the

weighting of b for the first two modes. By using PCA, the complexity of the model can be

reduced by including only the number of modes, Nm, that are required to capture a specified

amount of variance in the modelled shape. In this study, 90% of the population variance is

included in the model (Nm = 25, Figure 2a). The SSAM was created using our Python library

‘pyssam’ for statistical shape and appearance modelling (Williams et al., 2023).

The accuracy obtained by the SSAM with Nm modes can be assessed in terms of its abil-

ity to reconstruct a shape in the training dataset (reconstruction error). More importantly,

the SSAM can be assessed by its ability to generalise and reconstruct an unseen shape (not

in the training set), which is known as generalisation error. When the shape model contains

100% of the training population variance (Figure 2a), the reconstruction error should tend

to zero as all information required to reconstruct the shape is contained within the model

(Figure 2b). We assessed reconstruction and generalisation error with leave-one-out testing,

which was calculated over the entire training set and repeated 30 times. The mean abso-

lute error is presented, which is expressed as a percentage of the lung bounding-box size.

We observed that Nm = 25 is a suitable choice to reduce the SSAM dimensionality, as the

generalisation error did not increase further by including additional modes (Figure 2c).
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The shape parameters, b, can then be optimised with respect to the fit of the SSAM out-

line (L f it) and the similarity to the training set (Lprior). The appearance model optimises the

shape by minimising the gray-value loss (Lg). Gray-value loss is calculated as the difference

between the image gray-value at the landmark location and the expected gray-value from

Equation 1 (Väänänen et al., 2015; Sarkalkan et al., 2014; Castro-Mateos et al., 2014). We

also used the anatomical shadow loss (LAS) for airways as proposed by Irving et al. (2013).

Anatomical shadow compares local gray-values inside a small control area inside and out-

side of the projected airway surface, which can enhance airway contrast compared to dense

overlapping structures such as the spinal column. Therefore, the optimal isotropic scaling,

translation and shape parameters are found by minimising the equation

L = C f itL f it + CpriorLprior + CgLg + CASLAS (2)

where C is a coefficient that controls the weight of each fitting term.

The fit of the projected landmarks outline (‘silhouette’ landmarks) to the lung outline on

the X-ray image is found by

L f it = 1− 1
NSL

NSL

∑
i=1

Di (3)

where NSL is the number of silhouette landmarks, Di is a function based on the distance

between each silhouette landmark and the nearest X-ray image outline point. Silhouette

landmarks were defined as landmarks where the nearest surface mesh point is shared by two

faces, with one face normal pointing towards and another away from the image source. For

example, for an anterior-posterior (frontal) chest X-ray image, the projection is normal to the

y-direction and therefore the two faces nearest to the silhouette landmark will have positive

and negative y components in the normal vector. The silhouette landmarks represent the

outline of the shape normal to the projection (Baka et al., 2011).

Baka et al. (2011) normalised the outline distance to bounds of [0,1] by

Di = exp
(
− min(||xSSM,i − xXR||)

C

)
. (4)

where C = 5 was used by Baka et al. (2011) and also in this study. L f it is not evaluated for

the airways as the airway outline extracted from a Canny edge map is weak and unreliable
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due to overlapping denser regions on the X-ray image.

Improbable shapes (relative to our training set) are penalised by the Mahalanobis dis-

tance between the created shape and the mean shape (Baka et al., 2011; Ferrarini et al., 2007)

calculated by

Lprior =
1

NL

NL

∑
i=1

√
(xi − xi)T cov[x, x]−1 (xi − xi), (5)

where NL is the total number of landmarks, cov[x, x]−1 is the inverse covariance matrix

between xi and xi.

We use the appearance model to minimise the difference between the modelled gray-

value (gmodel) and the gray-value at the landmark location (gtarget). This is found by

Lg =
1

NL

NL

∑
i=1
|gmodel,i − gtarget,i|. (6)

Finally, the anatomical shadow loss is found for each silhouette landmark as proposed by

Irving et al. (2013). This is done by creating two regions-of-interest (ROIs) at some distance

±sAS normal to the border of the silhouette landmarks. Each ROI is a circle with radius rAS,

and the gray-value ‘inside’ and ‘outside’ of the airway projection are compared as

LAS =
1

NSL

NSL

∑
i=1

ginside,i − goutside,i

goutside,i
. (7)

We found the optimal parameters to be sAS = 20 pixels and rAS = 14 pixels.

Shape parameters were optimised using the NGO (Nevergrad optimiser) algorithm (Me-

unier et al., 2021) in the Nevergrad Python library (Rapin and Teytaud, 2018). This is a

competence map method, which adjusts the optimisation algorithm based on the number

of optimisation iterations and number of parameters optimised. We chose this method as it

can therefore adjust to more modes of variation as our dataset grows in future studies. We

found this gradient-free optimisation to show good robustness against local minima. The

shape parameters for each mode were initialised to bm = 0, and were bound to bm ± 3.

SSAM hyperparameters in the loss function (Equation 2) which produced the lowest

maximum error in reconstructed lung space volume were found through Gaussian process

regression (Perdikaris and Karniadakis, 2016; Angelikopoulos et al., 2012), also known as
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Kriging (Krige, 1951). We performed 100 optimisation iterations, using a subset of 11 ran-

domly selected samples from the LUNA16 dataset. This gave the optimal model parameters

to be C f it = 0.795, Cg = 0.687 and Cprior = 4.4× 10−4. The anatomical shadow loss coeffi-

cient was later found through a simple grid search as CAS = 0.2.

New landmarks obtained from the SSAM were converted to a surface by morphing a

template mesh with template landmarks to the new set of landmarks (Grassi et al., 2011).

New mesh points (pi,new) are created from the new landmarks (xi,new), template mesh points

(pi,template) and template landmarks (xj,template) by

pi,new = pi,template +
NL

∑
j

k(pi,template, xj,template)wj (8)

where k is a kernel used for morphing the mesh and wj represents the weights controlling

how much each landmark point is morphed. The weights are computed by solving (8) for

wj and setting pi,new = xj,new. We adjusted the surface morphing algorithm of Grassi et al.

(2011) to use a Gaussian kernel, as we found it to produce a smoother deformation when

morphing. The kernel is k(a, b) = exp(||a− b||/2 σ2), where σ = 0.3 (Carr et al., 1997).

2.3 Segmentation from volumetric CT

To segment lung lobes and airways from volumetric CT scans (Figure 1d), we used convo-

lutional neural networks (LeCun et al., 1995) such as the U-Net shown in Figure 1e (Ron-

neberger et al., 2015; Çiçek et al., 2016). We implemented the U-Net in PyTorch (Paszke

et al., 2019). The U-Net architecture was detailed by Ronneberger et al. (2015). For lung

segmentation we used the pre-trained U-Net of Hofmanninger et al. (2020). For segment-

ing the airways we trained a U-Net using segmentations from the LUNA16 challenge (Fig-

ure 1e). Prior to training, all images and labelmaps were cropped to the extent of the airway

labelmap to conserve memory and allow us to segment the entire 3D image, instead of slice-

by-slice (Hofmanninger et al., 2020), or sliding-box approaches (Juarez et al., 2019). With the

aim of lowering memory consumption, we also trained an ENet (‘efficient neural network’)

as proposed by Paszke et al. (2016). The ENet has approximately 15 times fewer parameters

than the U-Net architecture (Comelli et al., 2021), which creates lower memory consumption
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during training and faster processing time for 3D images (Paszke et al., 2016; Lieman-Sifry

et al., 2017).

The loss function used for training all CNNs was (Lin et al., 2017; Tang et al., 2019), given

as

L = LDICE + L f ocal, (9)

where LDICE is the DICE loss and L f ocal is the focal loss. The DICE loss maximises the total

intersection between a modelled labelmap and the ground-truth labelmap during training,

and is found by

LDICE =
1

CN

C

∑
c

N

∑
i

(
1− picgic

picgic + (1− pic)gic + pic(1− gic)

)
, (10)

where pic is the probability of a voxel i belonging to class c as predicted by the CNN. gic is

the ground truth value for the same voxel (which will be 1 or 0). This is averaged over all

voxels in the image N and the total number of classes C.

The focal loss weights the loss more towards ‘harder to learn’ voxels with a focusing

parameter, γ. Focal loss was developed for images with high class imbalances, such as

airway segmentations, where we found the number of voxels representing the airways to be

on average 63 times fewer than the number of background voxels. The focal loss was found

by

L f ocal = −
1

CN

C

∑
c

N

∑
i

αgic(1− pic)
γ log(pic), (11)

where we set the focusing parameter γ = 5 based on a parametric study of training with γ

set to 1, 3 and 5 (Supplementary Material Figure S2). We used α = 1 as recommended by

Tang et al. (2019).

To train the U-Net and ENet, we used the Adam optimiser with a batch size equal to one

to minimise memory consumption. Data was augmented with rotations of±15°. We created

50 new augmented datasets per epoch. Training was stopped once the validation loss had

not decreased further in the most recent 10 epochs. To train the U-Net and ENet models,

we used a compute node with 756 GB of RAM on Heriot-Watt University high performance

computing cluster ROCKS. Training took 3 days for the U-Net (42 epochs) and 5 hours for

the ENet (45 epochs). The ENet DICE coefficient was lower than the U-Net (0.89 compared
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to 0.93, Figure S3a). The ENet had a significantly improved inference time compared to the

U-Net (ENet gave 5.7 times speedup, Figure S3b).

2.4 Distal airway generation

To create the rest of the conducting airways not visible in CT or from our airway SSAM,

we implemented a volume-filling airway generation algorithm (Bordas et al., 2015; Tawhai

et al., 2004). The algorithm generates a full conducting airway tree based on information

from the upper airways such as branch length and diameter. The lung space volume was

discretised into seed points with a uniform spacing found by ∆ = (Vlung/NT)
1/3 where

NT = 30, 000 is the number of terminal nodes in the conducting airway tree.

The algorithm for generating conducting airways can be found in detail elsewhere (Bor-

das et al., 2015). We will briefly cover it here. Seed points were first clustered based on their

nearest terminal branch in the airway tree. The centroid of each cluster was found and a

splitting-plane was defined based on the centroid and the node of the parent branch. This

splitting-plane was used to divide each seed point cluster into two more clusters. A new

branch was generated extending towards each seed point set by 40% of the distance to the

centroid. When the seed point set had only one node, or the branch length was less than

2 mm, the branch is classed as a terminal bifurcation and the nearest seed point was deleted.

This was repeated until no seed points remained in the tree. Once the tree was grown,

a diameter was assigned to each branch segment as described in Supplementary Material

Section 3. In our CPFD simulations, the image-based airways are used until generation 3

and airway tree generated from the volume-filling algorithm (Bordas et al., 2015) is used to

generate a surface from generations 3 to 6, similar to Nousias et al. (2020).

2.5 Deposition simulation configuration

To prepare the airway segmentations of the LUNA16 dataset for deposition simulations, we

added a generic mouth-throat geometry obtained from a healthy adult patient (Banko et al.,

2015) as done in Williams et al. (2022a) in cases where the upper airways were not imaged.

This was done by scaling the surface mesh of the healthy patient’s upper airways such that

the diameter at the interface between healthy patient upper airways and the patient’s trachea
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reconstructed was the same (Williams et al., 2022a). As jet-like flow structure produced in

the upper airways has a key influence on the swirling flow observed in the trachea (Feng

et al., 2018), it is important to include at least a generic representation of the upper airways in

respiratory CPFD models (Feng et al., 2018; Williams et al., 2022a). For the Southampton/Air

Liquide dataset, segmentations of the mouth and throat were obtained by region-growing

and joined to the trachea directly without scaling since they were from the same patient.

The deposition simulations in this study were performed using OpenFOAM v6 (Weller

et al., 1998) using our custom solver deepLungMPPICFoam (Williams et al., 2022b). Briefly

summarised, we solved mass and momentum conservation equations for transport of an

incompressible fluid (air). As described in Williams et al. (2022a), our computational fluid

dynamics mesh had a spacing of ∆ = 500 µm, which gave excellent agreement with flow

through 3D printed airways Banko et al. (2015). The fluid turbulence modelling is discussed

in detail in Williams et al. (2022c). Particles were tracked in a Lagrangian approach by solv-

ing Newton’s equations of motion accounting for drag and gravity, as we showed in our

previous study that particle-particle interactions are not influential (Williams et al., 2022a).

Particles were deleted when they reached an outlet, and were given a ‘sticking’ condition

when they hit the wall boundary. The number of particles tracked was 200,000 with diam-

eter, dp = 4 µm as used in our previous study (Williams et al., 2022a). In simulations with

airways from the LUNA16 dataset, particles were released from the inlet over a period of

0.1 s with initial velocity as 10 m/s to represent a metered-dose inhaler (Liu et al., 2012).

More information on simulation configuration for comparing to the Southampton/Air Liq-

uide dataset is given later in this section.

To drive flow in the simulation, we model pressure at the outlet of the 3D domain using

a lumped-parameter model based on a resistance-compliance circuit (Oakes et al., 2018). In

this model, the pleural pressure required to drive flow during inhalation, pd, is found by

pd(t) = RglobalQ(t) +
V(t)

Cglobal
− patm, (12)

where Rglobal is the global resistance of the circuit, Cglobal is the global capacitance, Q(t) is

the flowrate as a function of time, V(t) is the volume of air inhaled as a function of time,

and patm is the atmospheric pressure. As the flow is incompressible, there is no effect of
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atmospheric pressure and therefore it is dropped (patm = 0). In simulations of inhalation

in airways from the LUNA16 dataset, we model tidal inhalation where the volume of air

inhaled to the lung is (Oakes et al., 2018)

V(t) = −1
2

[
VT cos

(
2π

t
TB

)
−VT

]
(13)

where VT is the tidal volume and TB is the time for one breath. Oakes et al. (2018) estimated

respiratory parameters such as Rglobal, Cglobal, VT using empirical relationships which are of-

ten based on parameters such as age, weight, height, gender. We used the adult parameters

from Oakes et al. (2018), Rglobal = 7 × 10−3 cm H2O s/mL and Cglobal = 59 mL/cm H2O.

Pressure at the outlet is then calculated by solving the following equation at each outlet

(subscript (i)) at each time-step of our simulation:

p(i) = R(i)φ(i) +
V(i)

C(i)
+ pd. (14)

where φ(i) is the flowrate (also called ‘flux’) at the outlet computed from the fluid solver.

Volume at the outlet is then found by integrating the flux in time. Local compliance and

resistance at each outlet are estimated based on

C(i) =
A(i)α(L)

A(L)
Cglobal R(i) =

A(L)

A(i)α(L)
Rglobal (15)

where the A(L) is the sum of areas of all outlets in each lung, L. α(L) is the fraction of (static)

volume of a lung to the combined volume of both lungs, which assumes that the volume

change during inhalation is a factor of the lung’s volume only (not accounting for localised

disease).

By defining Neumann boundary conditions for velocity at the inlets and outlets, the

simulation can be unstable. Particularly, when the flow at the outlet is reversed (due to

turbulence or local changes in geometry curvature) the flux at the face has a negative sign

(creating positive pressure) and can cause numerical divergence (Esmaily Moghadam et al.,

2011, 2013). To prevent backflow instabilities, we (i) set maximum pressure at each outlet to

zero and minimum flux at each outlet to zero, (ii) use limiters when calculating gradients at

outlet faces to prevent small negative fluxes caused by interpolation errors. We also (iii) set
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the maximum Courant number to be 0.1 when the flow is developing, and Courant number

is set to 0.2 when the flow is developed (quantified by 0.2 < | sin(2πt/TB)|).
Simulations of the Southampton/Air Liquide dataset modelled inhalation from a breath-

actuated AKITA nebuliser (Conway et al., 2012). This provided a constant inhalation flowrate

of 18 L/min. Therefore, we assigned V(t) = VT t/Tinhale, where Tinhale is the time for one in-

halation, Tinhale = TB/2. In the experimental study, inhalation duration was varied between

2 and 3.3 s (shallow and deep breathing). However, Fleming et al. (2015) observed no signif-

icant difference in regional deposition when changing from shallow to deep inhalation. As

our model cannot account for particle motion in the deep lung, we cannot model particles

re-entering the central airways from the deep lung during exhalation. Therefore, we used

an inhalation duration of 2 s for our simulations to reduce simulation clock-time, since the

longer inhalation and breath-hold would only influence particle motion in the deep lung

(increasing time for deposition due to diffusion or settling). As the inhalation flowrate is

steady and we could not model exhalation, we only modelled one inhalation. This was also

done by De Backer et al. (2010) to compare with SPECT-CT data, although they used a steady

solver which cannot capture transient flow features.

In the Southampton/Air Liquide experimental study (Conway et al., 2012; Fleming et al.,

2015), the particle diameters were dp = 3.1 and 6.05 µm. To simplify our analysis, we used

monodisperse particles as the experimental size distribution was reported as being narrow

(Conway et al., 2012). Simulated particles were released from a 5 mm disk in the AKITA

mouthpiece, which represented the diameter of the tubing that delivers the particles from

the nebuliser. Simulated particles were released with initial velocity of 0 m/s, since the par-

ticle timescale was small it would quickly adapt to the local fluid velocity in the mouthpiece

(τp = 28 µs for dp = 3.1 µm and τp = 108 µs for dp = 6.05 µm).

Simulations of flow in airways from the LUNA16 dataset were performed using ROCKS

with 28 CPUs each (Intel Xeon Silver), taking between one and three days. Simulations

of flow in patient airways from the Southampton/Air Liquide dataset were performed on

Oracle cloud with two bare metal compute nodes each with 36 CPUs (BM.optimised3.36,

Intel Xeon Gold), taking between one and three days depending on the airway geometry.
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2.6 Model evaluation

To evaluate our model, we compared two benchmarks. The first aimed to verify our 2D-3D

reconstruction algorithm by comparing reconstructed lung and airway morphological prop-

erties, as well as deposition results against ground truth segmentations from the LUNA16

dataset (Section 2.1). The second stage aimed to validate our drug deposition modelling by

comparing deposition predictions in airways segmented from CT images with our CNN to

in vivo deposition data described in Section 2.1 (Conway et al., 2012; Fleming et al., 2015).

As our SSAM did not contain training data from the mouth-throat region, we did not test

the SSAM against the Southampton/Air Liquide deposition measurements. The Southamp-

ton/Air Liquide experimental data contained measurements from deposition in six healthy

and six asthmatic patients. Two experiments were performed for each patient, testing vary-

ing combinations of aerosol size, breathing pattern (shallow/deep) and inhaled gas (air com-

pared to He/O2) giving 24 total measurements. We omitted cases with He/O2 inhaled gas

(4/24 experiments). Images in three asthmatic patients had blockages in the upper airways

due to tongue positioning, which meant we could not segment the entire upper airways and

these patients were omitted (4 of remaining 20 experiments). Additionally, as our model

does not account for particle transport in the deep lung or exhalation we omitted the ‘shal-

low’ inhalation in cases where shallow and deep inhalations were the independent variable

compared (4 of remaining 16 cases). Therefore, we performed 12 simulations to evaluate our

model against the available experimental data (Conway et al., 2012; Fleming et al., 2015).

To validate the 2D-3D reconstruction algorithm, we reconstructed the lungs against DRRs

from the LUNA16 dataset. We evaluated the reconstructed lung space volume against

radiologist-verified lung segmentations from the same volumetric CT scan used to create

the DRR. During the deep breathing expected when inhaling aerosol drugs, the lung space

volume changes significantly. A recent modelling study (Koullapis et al., 2020) applied a

lung expansion equal to 70% relative to the initial volume to deform the deep lung’s walls

during inhalation. Bearing this in mind we aimed to have a volume error significantly be-

low 70% to produce realistic estimation of lung space volume. We evaluated the quality of

our airway SSAM reconstruction by comparing branch diameter to the ground truth, as the

diameter will influence flow characteristics such as Stokes number and Reynolds number
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in the central airways (Kleinstreuer and Zhang, 2010). Morphological data is compared to

ground truth in terms of relative error, and median, upper-quartile and 95th percentiles are

assessed.

We evaluated the deposition fraction predictions in SSAM and CNN-based airways com-

pared to simulations using the ground truth airways. Deposition fraction was computed as

the number of particles depositing in a region (relative to the total number of inhaler parti-

cles). Deposition predictions were assessed based on regional drug deposition fraction (right

and left lung), and a local drug deposition concentration metric known as deposition en-

hancement factor (DEF) (Balashazy et al., 1999; Longest et al., 2006). We calculate this using

the number of particles deposited within a fixed distance (1 mm, area Aconc = π (1 mm)2) of

the central point of each wall face, as used by Dong et al. (2019b). This is made relative to

the global deposition by

DEF =
Np,deposit(Aconc)/Aconc

Np,deposit(Atot)/Atot
, (16)

where Np,deposit(A) is the number of deposited particles in a surface area A. Atot is the total

airway surface area. We use this instead of the sum of the deposition efficiencies as the de-

fined areas may overlap, and this therefore prevents particles being counted multiple times

towards the global average. To minimise differences in total number of deposited particles

or total surface area interfering with quantitative comparison between DEF in the ground

truth and SSAM or CNN, we used the ground truth denominator from Equation 16 in DEF

calculations in the SSAM and CNN (Dong et al., 2019a). Finally, we validated our frame-

work by quantifying simulated regional deposition (left lung, right lung and mouth-throat

airways) against experimental values reported by Conway et al. (2012) and Fleming et al.

(2015). Relative errors are expressed in terms of the median, upper quartile and maximum.

Correlation between experimental and simulated deposition data is also assessed using the

concordance correlation coefficient. All statistical analyses were performed in Python 3.8.
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Figure 3: Lung space volume error from SSAM and U-Net reconstructions of patients from
LUNA16 dataset. Inset shows U-Net lung space volume error, where the U-Net results were
produced using the pretrained U-Net from Hofmanninger et al. (2020).

3 Results

3.1 Morphological assessment on LUNA16 dataset

We found our SSAM to yield a relative lung space volume error of 9.9% median and a 95th

percentile of 34.3% on the LUNA16 dataset (Figure 3a). The maximum error for the right

lung was 33.64% and 41.66% for the left lung. The concordance correlation coefficient be-

tween SSAM lung volume and ground truth lung volume was 0.884 and 0.893, respectively

for one and two DRRs used for SSAM fitting (Figure S4). The total volume error (averaged

over left and right lungs) had a median value of 9.8% and a 95th percentile of 26.1%. Larger

error in the left lung may be due to the presence of the heart interfering with the edge-

map, which would cause a poor fit at the inner side of the lung. In contrast, the absolute

relative error for the U-Net lung segmentation gave a median value of 1.35% and a 95th per-

centile of 3% (Figure 3). The U-Net is well-suited to segmenting lungs from CT, due to the

high-contrast and well-resolved boundary between dark (air-filled) lung parenchyma and

surrounding soft and hard-tissue. The SSAM lung reconstruction yielded a larger maximum

error due to the poor contrast between lung and surrounding tissues on some radiographs.

In Figure 4 we compared the output SSAM landmarks against the input X-ray image and

lung outline map in two outlier cases and the best case (in terms of lung space volume error,

Figure 3). In both cases, we observed that the outer edge of the left lung has incorrectly fitted
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(a) largest error (b) second largest error (c) lowest error

Figure 4: Example of fitted SSAM compared to projection and lung outline for two largest
lung space volume errors. Yellow markers are output landmarks from the SSAM, and
black markers represent the X-ray edges detected by the Canny edge map described in Sec-
tion 2.2.1. Panels show (a) the largest error, (b) second largest error and (c) the lowest error.
In (a) the right lung error was 31% and left lung error was 42.6%. In (b) the right lung error
was 15.5% and left lung error was 38.3%. In (c) the right lung error was 1.8% and left lung
error was 0.06%.

to a spurious edge introduced to the lung edge map. In the largest error case (Figure 4a),

the lower corner of the SSAM landmark point cloud has fitted to the outline of the patient’s

torso. In the case with the second largest error (Figure 4b), the left lung outer edge and right

lung lower edge have mistakenly fitted to an edge in the soft tissue. In the lowest error

case (Figure 4c), there is a spurious edge for the outline of the patient’s torso that slightly

interferes with the outer edge of the patient’s right lung. However, this is located very near

the lung itself as the patient has a narrow torso, which therefore appears to cause a minor

influence on the SSAM fitting.

Diameter predictions did appear to be sensitive to outliers, as the maximum diameter

error was above 30% in the main bronchi (Figure 5). We compare airway diameter error

with a single DRR (anterior-posterior plane projection) and two DRRs (anterior-posterior

and sagittal plane projections). The maximum trachea diameter error was 20.4% for one

projection and 21.9% for two projections, which shows the trachea is less sensitive to out-

liers than the main bronchi due to higher visibility on an X-ray image. The absolute trachea

diameter error had a median value of 8.5% and 7.8% for one and two projections, respec-

tively. The main bronchi maximum error was 26.9% and 33.2% for one and two projections,

and the upper quartile error was 13.6% and 12.4%. The concordance correlation coefficient

was slightly higher for two projections than one (0.71 compared to 0.657, Figure S5). There
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Figure 5: Comparison of airway diameter errors predicted by our SSAM compared to the
ground truth segmentations. We show the influence of including an additional projection
on diameter error in the trachea and main bronchi.

was no statistically significant difference between the absolute error when comparing SSAM

results with one and two projections (Wilcoxon signed-rank test p = 0.6 and p = 0.69 for

the trachea and main bronchi, respectively).

To evaluate the effect of imaging error propagation into distal airway diameters, we eval-

uated the diameter generated from the distal airway generation algorithm from the ground

truth compared to the SSAM and CNN (Figure 6). Here, the ground truth refers to results

from the airway generation algorithm using the central airway tree from the ground truth

segmentations. Due to the dependence on the diameter in the central airways, the CNN

also shows mixed performance. The median absolute error in mean airway diameter per

generation was 24.2% (similar to the SSAM with parent model, Figure S6). Additionally,

the maximum absolute error was 77.6%, compared to 76% for the SSAM. The CNN airways

show improved predictions of the diameter standard deviation (Figure 6), as the maximum

error in standard deviation was 125.5% for the SSAM and 69.6% for the CNN.

3.2 Deposition analysis

In this section, we first compare deposition predictions from CPFD simulations in the LUNA16

dataset. We compare predicted deposition in ground truth airways with deposition predic-

tions in airways obtained from SSAM and CNN segmentations. Following this, we then

compare our simulated deposition from airways segmented by the CNN with experimental

24



0 5 10 15
Generation [-]

10 2

10 1

100

No
rm

al
ise

d 
di

am
et

er
 [-

]

case 1943

Truth
SSAM
CNN

0 5 10 15
Generation [-]

10 1

100

No
rm

al
ise

d 
di

am
et

er
 [-

]

case 3948

Figure 6: Generated airway diameter for our image-processing modalities on two cases from
the LUNA16 dataset. Markers show the normalised mean diameter per generation. Error
bars show ±1S.D. where S.D. is the standard deviation.

results from the Southampton/Air Liquide dataset.

Errors in deposition fraction from simulations of flow in airways from the LUNA16

dataset are shown in Figure 7. Comparing simulations in the CNN with the ground truth,

the median absolute error was 6.5%, with a 95% confidence interval of −3.3± 12.1% (Fig-

ure 7a). The Pearson correlation coefficient between ground truth and CNN deposition re-

sults was 0.88. Deposition in the SSAM airway had a similar median absolute error as the

CNN deposition (8%, Figure 7b). SSAM deposition error was more widely distributed, as

the 95% confidence interval was −3.5± 20.5%. The Pearson correlation coefficient between

deposition in the SSAM with the ground truth was 0.6. The error range for deposition

in the SSAM was similar to diameter error (Figure 5) which had a confidence interval of

−2.1± 21.7%.

To evaluate the effect of SSAM reconstruction on local deposition hotspots, we computed

the deposition enhancement factor (DEF). The deposition hotspots are highly sensitive to

local flow and geometry (Farghadan et al., 2020; Williams et al., 2022a), which itself is sus-

ceptible to geometric differences by image acquisition and image processing (MacDonald

et al., 2020). We can see that even for the case with the lowest deposition error (Figure 8), the

deposition hotspots in the SSAM do not match the ground truth. Particularly, in the ground

truth and CNN segmented airways (Figure 8a,c), the drug is noticably more dispersed than

in the SSAM (Figure 8b). Less dispersed hotspots in the SSAM is likely due to additional

turbulence generated in the CT-based airways which is not present in the SSAM, since it con-
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Figure 7: Bland-Altman plot comparing drug deposition in each lung predicted in ground
truth airways, compared to airways reconstructed by our SSAM. Number of patients in
sample was 9. Each marker represents one lung, and each colour represents a different
patient.

tains a reduced number of principal components. A lower number of principal components

essentially simplifies the geometry and removes intricate details that may onset turbulence

such as cartiligenous rings in the trachea (Zhang and Finlay, 2005; Russo et al., 2008).

Deposition hotspots in the CNN-based airways appear qualitatively similar to the ground

truth (Figure 8a,c). The surface area with DEF > 1 at the first bifurcation in the ground truth

is 17% larger than the CNN. However, the intensity of the hotspots is significantly differ-

ent since the average DEF at the first bifurcation was 2.49 for the ground truth (maximum

value 400), compared to 0.93 for the CNN (maximum value 225). At the first bifurcation, the

mean DEF in our SSAM was 1.06 (maximum value 225). The surface area with DEF > 1 at

the first bifurcation was 2.16x larger in the ground truth than the SSAM. Interestingly, the

mean DEF at the first bifurcation in the SSAM and U-Net are similar (1.06 compared to 0.93

for SSAM and U-Net, respectively). However, there is a significant difference in the surface

area covered by the deposition hotspots here (Figure 8).

Finally, we performed simulations of nebulised aerosol inhalation in healthy and asth-

matic patient cases of the Southampton/Air Liquide dataset (Conway et al., 2012; Fleming

et al., 2015). The maximum deposition absolute error averaged over both lungs was 12.1%,

which belonged to the case with most obstructed upper airway images shown in Figure

S1a (case H02 with small particles). The median, 75th percentile and maximum absolute
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Figure 8: Deposition enhancement factor for simulations in airways constructed using the
developed SSAM and U-Net, compared to simulations in a ground truth segmentation.
Columns show (left) ground truth, (middle) SSAM, and (right) U-Net segmented airways.
Rows show (top) front and (bottom) rear view of the airways.
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error was 4.9%, 7.9% 13.1%, respectively. The concordance correlation coefficient between

simulated and experimental lung deposition measurements was 0.43. The mouth-throat

deposition had a concordance correlation coefficient of 0.525 (Figure 9b). The maximum

mouth-throat deposition error was also in case H02 with small particles (27.2%). The linear

best-fit line shows that the cases with high error in the mouth-throat region causes the distri-

bution to depart from the 45 ° line (Figure 9a,b). We observed that mouth-throat deposition

was best in the two cases where the glottis did not require manual cleanup (grey and yellow

markers in Figure 9b). The error in these cases was 1.3% and 3.1%. The median and 75th

percentile mouth-throat deposition errors were 5.7% and 11%, respectively. These results

show that our models agree well with in vivo deposition data, particularly in the absence of

imaging artefacts (Figure 9).

In an attempt to understand how our simulations would perform in a perfect case with

no imaging difficulties in the upper airways, we partially corrected the simulation and ex-

perimental data by normalising the deposition fraction by 1−DFmouth, where DFmouth is the

deposition fraction in the mouth (Figure 9c). This makes deposition relative to number of

particles entering the trachea, rather than the total number of particles entering the mouth.

We apply this only to cases where the experimental lung deposition fraction was 5% larger

than the simulated lung deposition (only outlier cases above the 45° line), as these were cases

where the mouth-throat deposition was severly over-estimated (for example, green markers

in Figure 9). Once these problematic cases were corrected, we see an improvement in the

correlation between experimental and simulated data, as the concordance correlation coeffi-

cient increases from 0.432 to 0.810 (Figure 9a,c). This can be seen quantitatively by the fitted

linear regression line nearly matching the 45° line. The resultant r2 value is 3.3 times larger,

at a value of r2 = 0.699. The median, 75th percentile and maximum errors all decreased

to 2.12%, 4.14% and 8.6%, respectively. This idealised test shows that the physical model

is working well, but manually cleaning the segmentations around the glottis can introduce

uncertainty that lowers correlation with experimental data (Figure 9a,c). Additionally, this

idealised test points to an avenue for future development of image-processing tools for this

region.
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Figure 9: Comparison of simulated deposition against experimental measurements from
Conway et al. (2012). Panels show (a) right and left lung deposition, (b) mouth-throat depo-
sition, and (c) the partially corrected right and left lung deposition. Cases which are adjusted
by correcting over-predicted mouth-throat deposition are shown with a blue border on the
marker. CCC is the concordance correlation coefficient. The linear regression lines shown
have (a) r2 = 0.213, (b) r2 = 0.36, (c) r2 = 0.699. The cases requiring no manual cleanup of
the glottis have grey and yellow markers.
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4 Discussion

In this study, we aimed to develop an image-processing framework to automatically gener-

ate personalised computational respiratory systems from volumetric CT and planar X-ray

image(s). To that end, we developed a statistical shape and appearance model to parame-

terise the variation in 3D lung and airway shapes across a population. An algorithm was

proposed to reconstruct 3D lung and airway geometries, by iteratively adjusting shape pa-

rameters based on a given X-ray image. We also trained a convolutional neural network

(CNN) based on the U-Net and ENet architectures (Ronneberger et al., 2015; Paszke et al.,

2016), which allow us to automatically segment airways from volumetric CT scans. We

evaluated the ability of our proposed framework to reproduce morphological properties

and deposition results that were obtained from the ground truth airway/lung geometries.

The CNN-based airways showed good agreement with the ground truth on all metrics. Our

SSAM showed good agreement with the ground truth, although it was sensitive to outliers

in predictions of morphological properties due to the low amount of information available

in a planar X-ray image. Finally, we aimed to validate our proposed framework against

experimental in vivo deposition measurements (Conway et al., 2012; Fleming et al., 2015).

After cleaning the upper airway segmentations to account for glottis motion artefacts, we

obtained good agreement with the experimental data.

Despite imaging uncertainties in the upper airway geometry, we obtained good agree-

ment with experimental deposition measurements (median deposition error 4.9%, Figure 9).

Available in vivo experimental studies of drug deposition are limited due to the difficult and

expensive nature of the experiments. Therefore, most modelling studies with validation

compare to in vitro experiments, such as flow or deposition measurements in airway casts

(Williams et al., 2022a; Koullapis et al., 2018b; Holbrook and Longest, 2013; Longest et al.,

2012). Alternatively, some CPFD validation studies have used varying forms of experimen-

tal in vivo data (Tian et al., 2015; De Backer et al., 2010; Oakes et al., 2013, 2015). Tian et al.

(2015) compared their geometrically-simplified model to 2D scintigraphy data at varying

particle sizes. De Backer et al. (2010) compared patient-specific models with SPECT-CT data,

but only for tracer particles (dp ≈ 1 µm). Additionally, their outlet boundary conditions uses

a fixed flowrate based on the regional lung space volume change from CT images at full in-
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halation and exhalation. In contrast, the outlet pressure in our study is approximated with

a model based on lung space volume fraction, resistance and compliance (Section 2.5). Our

approach has the benefit that it requires less radiation (only one CT or X-ray image required)

to model regional ventilation to each lung. Other in vivo validation studies have compared to

3D deposition measurements in rats (Oakes et al., 2013, 2015), although the Reynolds num-

ber and Stokes number will change in these cases since the airway diameter is smaller than

humans. Therefore, by validating our full patient-specific modelling and imaging approach

against 3D in vivo data at varying particle sizes, our work represents a key development in

advancing towards incorporating deposition models into clinical care.

Morphological and deposition results produced by the developed SSAM had a wide dis-

tribution, as the SSAM was sensitive to outliers. We observed that outliers occurred in cases

where the outline of the lung on the X-ray image was noisy or low quality (Figure 4). How-

ever, the SSAM largely provided good agreement with the ground truth, as median absolute

error was under 10% for the lung space volume (Figure 3), airway diameter (Figure 5), and

lung deposition (Figure 7b). We also observed that the maximum error for airway diameter

(32%) was less than the maximum error for regional deposition (24%), which shows that

morphological errors in the SSAM do not propagate into significantly worse regional depo-

sition results despite the nonlinear influence of diameter error on local velocity, Reynolds

number and Stokes number on deposition.

When assessing local deposition hotspots, we observed significantly different deposi-

tion patterns in the SSAM compared to the ground truth (Figure 8a,b). Therefore, for exact

predictions of deposition hotspots, the SSAM is not a suitable approach and a CNN seg-

mentation from CT should be used. This occurs since hotspots are highly influenced by

near-wall flow structures. This shows the complex geometrical features of the airways that

create secondary flows responsible for deposition cannot be reconstructed from the limited

information available in a planar X-ray image. Our SSAM shows similar performance to the

SSAM developed by Väänänen et al. (2015) to reconstruct femora from 2D radiographs, as

the average errors were below 10%, but the SSAM had difficulty predicting local morpho-

logical properties. The quality of our reconstruction from 2D images may be improved by

using a neural network (transformer) architecture to find the optimal shape parameters (b)

31



from the X-ray image, as this approach was shown by Shen et al. (2019) to reconstruct a full

volumetric CT from a series of X-ray images.

By analysing the lung space volume error outliers, we observed that the input lung edge

map appeared to create some difficulties due to spuriously introduced edges (Figure 4). Li

et al. (2016) proposed an approach to extract lung-field outlines from chest X-rays using

SSAMs. Using a SSAM instead of a general edge detection algorithm constrains the lung

outline with the SSAM modes, and ensures no non-lung edges are highlighted to potentially

interfere with the fitting. Alternatively, fitting of the SSAM could be improved by replacing

the global loss function parameters (model coefficients, C in Equation 2) with patient-specific

values. This could be obtained by determining the optimal parameters for each patient in the

training database, through the same Gaussian process regression described in Section 2.2.2.

The input chest X-ray may then be passed through a convolutional neural network with four

output neurons (one for each C in Equation 2). These minor alterations may improve fitting

the loss function given in Equation 2 and yield a more robust SSAM algorithm.

Error between experimental and simulated deposition in CNN-segmented airways in the

LUNA16 dataset gave a 95% confidence interval of −3.3± 12.1% (Figure 7a). This is likely

due to errors in distal airway diameter (Figure 6) that influenced deposition in the distal

airways and particles reaching the deep lung. The distal airway diameter may also have

influenced CNN-segmented airway deposition through changing the outlet diameter and

the computed outlet boundary condition through Equation 15. The ability of the CNN to

segment distal airways was limited by the low resolution of LUNA16 datasets (mean slice

thickness 1.6 mm), which is much lower than the high resolution CT used in the Southamp-

ton/Air Liquide dataset (mean slice thickness 0.5 mm) (Conway et al., 2012; Fleming et al.,

2015). We are also limited by the quality of ground truth obtained by our semi-automatic

algorithm which was verified by a radiologist to have no leakage, but suffered from a lim-

ited number of branches segmented. This was due to the low image resolution, which can

create significant difficulty in obtaining a full airway tree without leakage (Tschirren et al.,

2005a; Lo et al., 2012). The CNN training could be improved to mitigate this by masking

voxels belonging to trachea and main bronchi, which forces the model to focus on learning

to segment small airways (Garcia-Uceda et al., 2021).
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To move towards incorporating this framework in a clinical decision-making workflow,

the bottleneck of simulation time is the primary obstacle to overcome. Clock-time for sim-

ulations in this study ranged between 1-7 days, which is not suitable for clinical use. To

deliver real-time prediction of clinical quantities of interest, geometric parameters (such as

SSM weights) and flow variables can be used to fit machine learning models to simulation

data to provide predictions of deposition within minutes (Hoeijmakers et al., 2020, 2021; Su

et al., 2020). Morales Ferez et al. (2021) showed that wall-shear stress could be predicted

from patient-specific vascular meshes with minimal pre-processing using geometric deep

learning, which has been developed for analysing non-Euclidean geometries such as graphs

or meshes (Bronstein et al., 2017). This approach could be applied to the respiratory system

to evaluate properties such as deposition hotspots (Figure 8) based on a mesh obtained with

our segmentation algorithm, without the additional step of fitting to a SSM as done by Hoei-

jmakers et al. (2020) for the aortic valve. An alternative to using classic purely data-driven

machine learning models to predict deposition is to constrain the neural network fitting with

some physical constraints such as conservation of mass and momentum (Raissi et al., 2018,

2019; Alber et al., 2019; Karniadakis et al., 2021). This approach generates full velocity and

pressure fields based on the physical constraints and training data from similar flow con-

figurations. However, it is unclear if the physics-informed neural network approach would

work in the geometrically complex airway tree, since its application has been limited to sim-

ple flow configurations such as bluff body flow, lid-driven cavity or pipe flow (Raissi et al.,

2018; Yin et al., 2021; Jagtap et al., 2020). Our developed imaging and simulation framework

could be used to generate training data for machine learning approaches, as well as to ben-

efit from the speed improvements created by machine learning for CFD. Combining these

modelling approaches is crucial to feasibly incorporate patient-specific models in clinical

practice.

4.1 Limitations

A limitation of this study was the difficulty in capturing the upper airway anatomy (Sup-

plementary material Section 1). The glottis can dilate and narrow during inhalation and

exhalation, respectively (Brancatisano et al., 1983; Scheinherr et al., 2015), which created dif-
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ficulties in capturing CT images of the glottis (Conway et al., 2012). Changes in the shape

and area of the airways here can cause increased deposition in the glottis (Zhao et al., 2020),

but also downstream due to the flow separation at the expansion which creates an unsteady

wake whose structure will likely vary based on patient anatomy (Luo and Pedley, 1996;

Cisonni et al., 2010; Bhardwaj et al., 2022). Therefore, our attempt at cleaning up the glot-

tis cannot perfectly represent instantaneous patient-specific flow patterns observed in vivo.

Despite this, we observed good agreement with experimental lung and mouth-throat de-

position measurements (Figure 9). Future efforts should be focussed towards combining

our developments with dynamic upper airway models (Zhao et al., 2020; Bhardwaj et al.,

2022), to enable modelling the complex biomechanical fluid-structure interaction of respira-

tion. However, to perform fluid-structure interaction simulations of these cases still requires

a reliable baseline airway model, which requires manual cleanup of outlier cases shown in

Figure 9. An improved approach to manually cleaning the glottis segmentations may be

to determine the missing airway structure based on statistical shape models, as done for

segmenting obstructed bronchi by Irving et al. (2011). Therefore, a template mesh could

be morphed to approximate the glottis shape based on the shape of the nearby upstream

and downstream airways (the throat and trachea). Combining this improved segmentation

cleanup approach with dynamic mesh simulations in the upper airways is likely to produce

a robust approach for modelling upper airway dynamics.

An additional limitation is the use of a healthy patient mouth-throat geometry (Banko

et al., 2015) as a representative generic geometry for the upper airways in the LUNA16

dataset. Due to unavailable imaging data above the trachea in most clinical CT datasets,

it was not possible to segment this from CT with our CNN, or include it as part of our

SSAM to reconstruct from X-ray images. This of course limits the understanding of how

well our imaging approach can capture the upper airways and flow patterns specific to a

patient. The effect of this would be negligible on the CNN segmentation, as the upper air-

ways are easily segmented with a region-growing approach (Garcia-Uceda et al., 2021). It is

unclear how well the SSAM could reconstruct the mouth-throat from a patient X-ray image,

as there is no existing SSM that shows the main modes of variance in this part of the air-

ways. However, literature agrees that the glottis cross-sectional area is the most significant
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upper airway morphological parameter influencing deposition (Xi et al., 2016; Feng et al.,

2018). Moreover, realistic mouth-throat geometries were shown to give similar regional de-

position predictions as a simplified mouth-throat geometry with an elliptical cross-section

when dp ≤ 10 µm (Xi et al., 2016). This suggests that it would not be essential for a SSAM to

capture the exact shape of the mouth-throat, but an accurate prediction of the glottal cross

sectional area is required. With a good estimation of glottal area, the SSAM could produce

deposition that agrees with the deposition as shown for our generic healthy patient mouth-

throat (Figure 7).

Our deep lung model was a 0D approximation of deep lung mechanics (Oakes et al.,

2015, 2018). Using this 0D model as an outlet boundary condition for the 3D domain (3D-0D

model) has been shown to accurately predict lobar deposition in healthy and emphysema-

tous rats (Oakes et al., 2015). In this 0D model, particles reaching the outlets are deleted and

classified as depositing in the deep lung. Oakes et al. (2017) developed a 1D model for fluid

and particle transport in distal airways (3D-1D model), which tracks particle concentration

in the distal airways. This 1D formulation showed minor improvements in agreement with

experimental lobar deposition measurements over the 0D formulation (Oakes et al., 2017).

A key benefit of the 1D formulation is that particles can re-enter the 3D domain during ex-

halation as it is known how many particles are still floating in the distal lung (Oakes et al.,

2017). An inability to model particles re-entering the domain during exhalation is a limi-

tation of our model, as we cannot compare the fraction of drug exhaled with experimental

measurements (Conway et al., 2012; Fleming et al., 2015). In the majority of experiments, the

exhaled fraction was below 10%, meaning this has only a minor influence on the validity of

our model for inhalation studies. Incorporating a 1D model for particle and flow transport

in distal airways would enable further comparison to SPECT-CT data, as we could assess

if our model captures how deep particles penetrate into the lung, rather than only regional

deposition given here (Figure 9).

Our 0D deep lung model used global resistance and compliance metrics which were

based on empirical correlations from experimental measurements (Oakes et al., 2018; D’angelo

et al., 1989). The resistance and compliance per outlet was then based on the outlet area and

the lung’s volume fraction (relative to combined volume). Oakes et al. (2018) used this pro-

35



cedure as a initial condition, and then determined the true resistance (accounting for flow

resistance in the 3D domain) by iteratively computing the pressure drop between the tra-

chea and each outlet and adjusting the resistance until convergence. This would require

many simulations for each patient to determine the exact distribution of flow and particles

delivered to each individual outlet in the domain. As we are only interested in regional

deposition (right and left lung) at this stage to validate our imaging and model predictions,

this was not necessary. Therefore, we have not accounted for 3D domain flow resistance as

it has no effect on the distribution of particles between right and left lung, which is dom-

inated by the lobe volume fraction, α(L), and airway morphology. In future studies where

exact local deposition is required, the iterative simulation approach of Oakes et al. (2018)

may be improved by combining full 3D-0D simulations with a low-fidelity surrogate model

to decrease the number of time-consuming simulations (Perdikaris and Karniadakis, 2016).

5 Conclusion

We have developed a rapid image-processing and mathematical modelling pipeline to en-

able patient-specific predictions of drug deposition with data as sparse as a single chest

X-ray image. This approach segmented lungs and airways from volumetric CT data with

high accuracy using convolutional neural networks (Ronneberger et al., 2015; Paszke et al.,

2016; Hofmanninger et al., 2020). We also developed an approach to extract lung and airway

geometries from chest X-rays using a statistical shape and appearance model that iteratively

adjusted shape parameters based on the outline and gray-value distribution of an unseen

X-ray image. This approach was shown to reconstruct patient respiratory morphologies in

good agreement with the ground truth data, with the exception of a few outliers. Depo-

sition in airways from both automated approaches agreed well with deposition in ground

truth airways obtained by semi-automatic segmentation. The SSAM reconstruction failed

to reproduce local deposition patterns present in the ground truth, which we expect is due

to morphological differences and the reduced number of principal components creating a

smoother airway. Finally, the imaging and modelling framework was compared to exper-

imental in vivo measurements (Conway et al., 2012; Fleming et al., 2015). The quality of

images of the upper airway (mouth-throat) was mixed and required cleanup (Conway et al.,
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2012), which introduced uncertainty. Despite this uncertainty in the mouth-throat geometry,

we achieved good agreement with experimental regional deposition. To enable future inte-

gration of physical models into healthcare settings and e-health frameworks, the ability to

generate patient-specific respiratory systems and deposition predictions automatically from

sparse data is crucial. Predicted deposition information could be used as part of the clinical

development of new inhaled therapeutics, and reduce the need for expensive and irradiat-

ing in vivo deposition imaging. Our developed and experimentally validated framework is

an essential step towards clinical implementation of patient-specific modelling, which will

allow for automated and reliable predictions of patient therapeutic response to an aerosol

drug.
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1 Manual cleanup of upper airways

To mitigate the issues in image acquisition discussed by Conway et al. (2012), we had to

manually clean the throat to allow passage for the air and particles to travel through which

would be close to expected in vivo conditions during inhalation. We extracted a baseline

upper airway segmentation using a semi-automatic region-growing approach implemented

in Python. The baseline segmentation was imported into 3D Slicer, where the glottal cross-

sectional area was filled in manually with a paintbrush tool to better agree with upper air-

way morphologies in literature (Feng et al., 2018; Zhao et al., 2020; Scheinherr et al., 2015).

The segmentation was then smoothed to remove artificial bumps introduced by the paint-

brush tool. Visual representations of two corrected airways are shown in Figure S1.

2 CNN architecture analysis

To find the optimal loss function γ parameter in Equation 11, we trained three U-Net CNNs

with γ = {1, 3, 5} (Figure S2). By comparing the DICE coefficient over the 10 cases in the

validation set, we observed γ = 1 to produce the lowest minimum DICE coefficient (0.85).

When γ = 3 and γ = 5, the minimum and maximum DICE coefficients were approximately

the same (0.855 minumum and 0.95 maximum). Throughout the remainder of the study, we

chose γ = 5 in our loss function due to the slightly higher lower quartile, median and upper

quartile (all approximately 1% larger for γ = 5).

As the U-Net has a large memory consumption, we also trained an ENet CNN architec-

ture as a less computationally expensive alternative (Figure S3a). Both architectures were

trained using γ = 5 and using 25 augmentations (with rotation ±15◦). There was a signifi-

cant difference in DICE coefficient (p < 0.05), as the U-Net median and upper-quartile was

4% larger than the ENet. The U-Net lower-quartile was 4.7% larger than the E-Net. We also

compared the time-taken for one forward-pass through the networks (inference time), for

all images in the training and validation dataset (Figure S3b). For the smallest images in

the dataset (number of voxels below the 25th percentile), the mean inference time was 5.89 s

and 7.81 s for the ENet and U-Net, respectively (1.3 times speed-up with ENet). In contrast,

for the largest images in the dataset (number of voxels larger than the 75th percentile), the

2



Figure S1: Visualisation of upper airway surface mesh before and after manual cleanup for
two cases (Conway et al., 2012). The upper row shows the most constricted case (H02). The
lower row shows a less extreme, but still heavily constricted case with a zoomed in view.
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Figure S2: Sensitivity analysis of focal loss parameter γ in Equation 11 to optimise CNN
DICE coefficient. CNNs were trained with no augmentations and results were computed
from 10 scans in validation set.

mean inference time was 15.9 s and 91.28 s for the ENet and U-Net, respectively, which is a

speed-up of 5.7 times when using the ENet. As speed is not a significant driver of our de-

velopments at the present stage, we use the U-Net as our default segmentation tool for this

study due to its improved DICE coefficient. However, due to memory overheads required

for inference with the U-Net, we used the ENet to segment airways from the high resolution

CT of the Southampton/Air Liquide dataset. Additionally, the ENet DICE coefficient is rea-

sonable and may be preferable for implementation in a clinical workflow, where speed is a

key factor.

3 SSAM morphology assessment

Here we provide the results presented in Figures 3 and 5 as scatter plots to allow for compar-

ison of absolute values of lung space volume and airway diameter. We found it important

to provide both plots, to show that the absolute values are within a realistic range. This

also shows a clear linear correlation between the ground truth measurements and those pre-

dicted by the SSAM. The lung space volume predicted by the SSAM agreed particularly

well (concordance correlation coefficient CCC ≈ 0.89, Figure S4). The diameter predicted

by the SSAM (Figure S5) showed a less ideal fit than the lung volume, as CCC = 0.657 and

0.71. The fit was slightly improved with two projections, compared to one projection (5.3%
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Figure S3: Comparison of accuracy and speed for U-Net and ENet architectures. Panels
show (a) DICE coefficient from 10 scans in validation set, and (b) inference time relative to
size of image, computed on combined training and validation set.

increase).

4 Choice of generated airway diameter model

As the SSAM-reconstructed airways do not have the same level of information as the CT-

based airways, best practices for generating distal airways may not be the same as that

of airways segmented directly from patient CT data. Specifically, on the chest X-ray, only

the trachea and main bronchi are visible. Even for these ‘visible’ airways, the contrast is

poor and the quality of reconstructed diameters was found to be varied in our analysis.

When using the diameter of the parent branch to assign diameters of the entire airway tree

(Bordas et al., 2015), it makes sense that erroneous diameters cause some level of error that

propagates into the distal airways. Therefore, we compared various models for computing

diameter obtained in literature (Bordas et al., 2015; Montesantos et al., 2016).

Bordas et al. (2015) assigned a logarithmic decay of diameter based on Horsfield order

(Horsfield et al., 1976) defined as

log Di(Hi) = (Hi − NH) log(RdH) + log(DN) (1)

5



(a) One DRR (b) Two DRRs

0 1 2 3 4 5
Ground truth lung volume [L]

0

1

2

3

4

5
SS

AM
 lu

ng
 v

ol
um

e 
[L

] CCC = 0.884

0 1 2 3 4 5
Ground truth lung volume [L]

0

1

2

3

4

5

SS
AM

 lu
ng

 v
ol

um
e 

[L
] CCC = 0.893

Figure S4: Comparison of lung volume predicted by our SSAM compared to the ground
truth segmentations. We show the influence of including an additional projection on lung
volume error. Panels show SSAM results with (a) one DRR provided for fitting (anterior-
posterior projection), and (b) two DRRs provided (anterior-posterior and lateral projections).
CCC is the concordance correlation coefficient.
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Figure S5: Comparison of airway diameter predicted by our SSAM compared to the ground
truth segmentations. We show the influence of including an additional projection on diam-
eter error in the trachea and main bronchi. Panels show SSAM results with (a) one DRR
provided for fitting (anterior-posterior projection), and (b) two DRRs provided (anterior-
posterior and lateral projections). CCC is the concordance correlation coefficient.
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where Di is the diameter of branch i, H is the Horsfield order, NH is the Horsfield order of

the reference airway in the image-based domain, DN is the diameter of the reference airway

in the image-based domain, RdH = 1.15 is a constant representing the logarithmic decrease

of diameter with Horsfield order (Horsfield et al., 1976; Tawhai et al., 2004; Bordas et al.,

2015). This approach requires declaration of an airway segment in the image-based airways

to obtain reference values that are used to assign diameter and Horsfield order to the gener-

ated airways. Bordas et al. (2015) used the parent branch of the image-based airway that is

connected to the generated airway, i (referred to here as ‘parent’ model). Alternatively, Mon-

tesantos et al. (2016) calculated airway diameter based on the airway length as Di = Li/3,

with a cutoff Dchild ≤ 0.95Dparent (referred to here as ‘length’ model). Ventilation simulations

using the ‘parent’ model was shown to have good agreement with clinical ventilation data

in healthy and diseased patients (Bordas et al., 2015). Therefore, we used the parent model

for CT-based airways. We used ground truth segmentations with the parent model as a

benchmark to evaluate the accuracy of the parent model or length model in on generated

airway diameter in SSAM-reconstructed airways.

We found the length model to produce better agreement with the ground truth dataset

than the parent model proposed by Bordas et al. (2015) (Figure S6a). This is likely due to

difficulty inferring the diameter of the central airways from a chest X-ray image. As can be

seen in Figure S6b, the generated airway length showed excellent agreement in the SSAM

and ground truth datasets. Based on this, we chose to use the length model of Montesantos

et al. (2016) to assign diameters to the full SSAM airway tree.
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Figure S6: Comparison of diameter error in full conducting airway tree from a SSAM with
varying models to calculate diameter. The ‘truth’ results were generated from ground truth
segmentations with the ‘parent’ model for diameter (Bordas et al., 2015).
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