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A B S T R A C T

Traditional high-dimensional electroencephalography (EEG) features (spectral or temporal) may not always
attain satisfactory results in cognitive workload estimation. In contrast, deep representation learning (DRL)
transforms high-dimensional data into cluster-friendly low-dimensional feature space. Therefore, this paper
proposes an Integrated Spatio-Temporal Deep Clustering (ISTDC) model that uses DRL followed by a clustering
method to achieve better clustering performance. The proposed model is illustrated using four Algorithms and
Variational Bayesian Gaussian Mixture Model (VBGMM) clustering method. Temporal and spatial Variational
Auto Encoder (VAE) models (mentioned in Algorithm 2 and Algorithm 3) learn temporal and spatial latent
features from sequence-wise EEG signals and scalp topographical maps using the Long short-term memory
and Convolutional Neural Network models. The concatenated spatio-temporal latent feature (mentioned in
Algorithm 4) is passed to the VBGMM clustering method to efficiently estimate workload levels of 𝑛-back
task. For the 0-back vs. 2-back task, the proposed model achieves the maximum mean clustering accuracy of
98.0%, and it improves by 11.0% over the state-of-the-art method. The results also indicate that the proposed
multimodal approach outperforms temporal and spatial latent feature-based unimodal models in workload
assessment.
1. Introduction

Cognitive workload can be defined as a multidimensional con-
struct representing the load that performing a particular task imposes
on the learner’s cognitive system [1]. The workload level of an op-
erator can be evaluated using subjective or physiological measures.
To assess workload levels using traditional subjective measures, self-
rating-based methods are used where results mostly depend on an in-
dividual subject’s honesty. Therefore, an objective measurement based
on physiological signals is indispensable. There exist several types
of physiological measures that include cardiac activity: Electrocardio-
graphy (ECG), respiratory activity, eye activity, and brain activity:
Electroencephalography (EEG), Functional magnetic resonance imag-
ing (fMRI), Near-infrared spectroscopy (NIRS), Functional near-infrared
spectroscopy (fNIRS). Due to the ability to reflect the electrical ac-
tivities of the cortex, EEG is used as the most effective physiological
measure for estimating cognitive workload levels [2]. EEG is used in
several cognitive applications such as emotion classification [3,4], men-
tal arithmetic tasks [5], 𝑛-back tasks [6], and simultaneous multitasking
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activities [7]. Mostly, high-dimensional power spectral density (PSD)
features [8], or event-related potential (ERP) features [9] of EEG is
used for workload estimation. EEG features have been used in several
medical applications. A hybrid framework consisting of a complex
brain network and Takagi–Sugeno–Kang fuzzy system has been used to
identify Alzheimer’s disease [10]. The topological features of functional
brain networks have been used for efficient classification. The spectral
power of EEG has been used in acupuncture stimulation [11]. Apart
from PSD, topological graph features such as clustering coefficient,
global efficiency, etc have been used in acupuncture manipulation [12].
However, the classification model using the unimodal hand-crafted EEG
features (temporal: ERP or spectral: PSD) does not give a satisfac-
tory result [13]. Multimodal fusion technique can be implemented by
combining data of different sensors [14], by fusing different types of
features of the same sensor [15] or based on the decision of different
unimodal feature extractors [16]. Zhang et al. [17] have developed a
deep multimodal framework consisting of temporal and spectral EEG
features and a deep Convolutional Neural Network (CNN) model to
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Fig. 1. Workload estimation using the proposed Integrated Spatio-Temporal Deep Clustering (ISTDC) framework. The framework is constructed using four proposed algorithms
(Algorithm 1–Algorithm 4). Inputs are segregated based on stimulus representation of 2 s sequence window. The latent features (extracted from LSTM and CNN-based VAEs) are
fused, and the merged latent feature is transmitted to the VBGMM clustering method to estimate workload levels.
estimate workload levels from 𝑛-back task. The multimodal-CNN model
achieved 91.9% classification accuracy. Spatial–temporal autoencoder
(STAE) constructed from CNN and Long short-term memory (LSTM)
has been used to find the brain dynamics of Alzheimer patients [18].
The STAE model has achieved 96.30% classification accuracy. In [19],
authors have merged multimodal features from EEG (PSD and ERP
features) and ECG (Heart rate: HR feature) for the 𝑛-back experiment.
In addition, HR and heart rate variability (HRV) features have been
extracted from ECG signals. The fused features from both EEG and ECG
sensors were passed to the different classifiers (k-nearest neighbors:
kNN, SVM). Among different classifiers, SVM achieves the maximum
classification accuracy of 90.6%. Lin et al. [20] have combined EEG
(spectral power of EEG bands), and fNIRS (oxygenated hemoglobin:
HbO and deoxygenated hemoglobin: HbR) signals to identify workload
levels in the lane-deviation driving task. The results showed that an
increased concentration of HbO and variation of EEG spectral power
for theta, alpha, and beta bands were associated with poor driving per-
formance. However, the feature space becomes large when combining
multiple sensor/ modality data and high dimensional feature vectors,
often giving poor classification results [21]. Moreover, traditional ma-
chine learning or deep learning-based classification methods generally
suffer from high computational complexity on large-scale data [22].
To mitigate the computational complexity, the deep representation
learning (DRL) method is extensively used alongside clustering to map
the input data into feature space in such a way that separation in class
becomes more relevant to the problem’s context [23].

Deep neural network architecture such as AutoEncoder (AE) is
mainly used in the DRL-based clustering techniques that embed the
higher-level features from input data to capture task-specific contextual
information. However, due to the complex behavior of EEG signals,
AE and Sparse AutoEncoder (SAE)-based deep models [17,24] are
unable to identify the underlying structure of the input EEG data. The
Variational AutoEncoder (VAE) overcomes this issue by implementing
the variational Bayesian method, which improves the scalability of
the base network and, consequently, enhances the clustering perfor-
mance [22]. The VAE model extracts the probabilistic properties from
underlying EEG data [25]. Probabilistic properties allow better under-
standing and inference of underlying cognitive states by identifying
2

the probability distributions of EEG features associated with different
cognitive workload levels. In contrast, AE and sparse AE-based deep
models are unable to find the underlying probability distributions of
EEG features. Moreover, VAE also extracts noise-free localized latent
features from input EEG, which improves classification results of EEG
tasks [26]. EEG-based applications such as speech recognition [27] or
emotion classification [28] have been implemented using the LSTM-
based VAE model. VAE model constructed using CNN has been used
for motor imagery classification [29]. However, for the large-sized
EEG dataset, the computational complexity of deep models is expen-
sive [22]. In contrast, in data clustering, samples (without class labels)
are grouped into different clusters by minimizing inter-cluster simi-
larity and maximizing intra-cluster similarity [21]. In the Variational
Bayesian Gaussian Mixture Model (VBGMM), an appropriate model
selection algorithm has been performed using the posterior distribution
of data [30]. VBGMM has been used in EEG-based epileptic seizure
detection [31], speaker identification [32] and speech recognition [33].
The VBGMM clustering method leads to better cluster covariance than
other clustering methods [21].

Recent DRL-based clustering studies mainly highlighted the image
recognition task [34,35], so designing a robust DRL-based clustering
method that combines multiple EEG features (temporal and spatial) for
workload estimation is of utmost demand. As EEG is suffering from
the curse-of-dimensionality issue [21], and traditional classification
techniques suffer from large computational complexity for executing
large amounts of EEG data, it is essential to propose a DRL-based
clustering model that can effectively estimate the workload levels
from low-dimensional latent features. The proposed Integrated Spatio-
Temporal Deep Clustering (ISTDC) framework is constructed using
four algorithms (Algorithm 1–Algorithm 4). The temporal and spatial
information from EEG data is captured using LSTM and CNN-based
VAE in Algorithm 2 and Algorithm 3, respectively. Outputs of these
algorithms (i.e., low-dimensional latent features of temporal and spatial
VAEs) are combined into the final latent feature (output of Algorithm
4). The final merged latent feature is passed to the VBGMM clustering
method for identifying workload levels. The proposed framework and
its relationship with the Algorithms (1–4) are plotted in Fig. 1.

The contributions of this study are mentioned below:



Biomedical Signal Processing and Control 89 (2024) 105703D.D. Chakladar et al.

m
p
t
f

2

D
(
V

2

p
m
r
F
P
a
a
N
a

s

c
e
d
t
o

p
v
o
1
A
t
2
s
L
(
t
e
p
V
o

o
n
a
t
"
m
d
E
H
E
s
f

(1) The proposed ISTDC framework is illustrated by four Algorithms
(Encode, Temporal VAE, Spatial VAE, and Multimodal integra-
tion) followed by a deep clustering method. As the clustering ef-
ficiency mostly depends on learned feature representation [21],
the VBGMM clustering method can effectively classify workload
levels using the combined (temporal and spatial) deep latent
feature.

(2) For the 0 vs. 2-back task, the proposed model achieves the
maximum classification accuracy, and the proposed multimodal
model demonstrates superior performance than the unimodal
(spatial and temporal) VAE-based clustering approaches by
15.8% and 13.7%, respectively. Furthermore, the multimodal
framework exceeds the current deep clustering approaches, im-
proving clustering accuracy by 13.5%. The proposed model
is also tested over two other open-access 𝑛-back datasets to
demonstrate its effectiveness.

(3) Different kinds of comparison studies are performed to evaluate
the efficiency of the proposed model. A significant performance
improvement of the proposed model is observed for all types of
comparisons.

The remainder of the paper is designed as follows. The proposed
odel is discussed in Section 2. The experimental results of the pro-
osed model are represented in Section 3. A brief discussion is illus-
rated in Section 4. Finally, in Section 5, the paper is concluded with
uture work.

. Methodology

The proposed ISTDC model is divided into three subsections: (A)
ataset and experiment analysis, (B) Integrated spatio-temporal VAE

IST-VAE) model, and (C) Cognitive workload estimation using
BGMM. A detailed description of each subsection is mentioned below.

.1. Dataset and experimental analysis

An open-access public dataset [36] is used for evaluating the pro-
osed model. The dataset contains EEG recordings of 26 subjects (9
ales and 17 females, average age of 26.1 ± 3.5 years). EEG data were

ecorded using 30 EEG electrodes (Fp1, Fp2, AFF5 h, AFF6 h, AFz,
1, F2, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6,
z, P3, P4, P7, P8, POz, O1, O2, TP9 (reference) and TP10 (ground))
t a sampling rate of 1,000 Hz. Then, the raw EEG was filtered with
passband of 1–40 Hz to remove high-frequency noise from EEG.

ext, the Independent component analysis (ICA) was applied to remove
rtifacts (ocular, cardiac) from EEG.

The experimental 𝑛-back dataset includes three sessions, where each
ession is divided into three series. In the experiment, nine series of 𝑛-

back tasks are performed for each participant. Each series consists of 20
trials; thus the experiment includes a total of 180 (20 trials × 3 series ×
3 sessions) trials for each 𝑛-back task. A single series was composed of
a 2 s instruction showing the type of the task (0-, 2- or 3-back), a 40 s
task period, and a 20 s rest period. In the 𝑛-back task, participants need
to identify the letter/digit presented 𝑛 trials earlier in the sequence. In
the task state, a digit (i.e., stimulus) randomly appeared on a screen
for 2 s. In the rest state, subjects were asked to keep their eyes closed
without performing any task.

2.2. Integrated spatio-temporal VAE model

The DRL-based method, A non-linear mapping function 𝑓𝜃 ∶ 𝑋 → 𝑍
onverts the high-dimensional input 𝑋 ∈ R𝑑 into low-dimensional
mbedded feature space (𝑍 ∈ R𝑘, where 𝑘 ≪ 𝑑). The input and reduced
imensions are represented as 𝑑 and 𝑘, respectively. Due to better fea-
ure learning capabilities and function approximation properties than
ther deep neural networks (DNN) methods, AEs are widely used for
3

arameterization of 𝑓𝜃 . In VAE, the regularization effect on the latent
ariables overcomes the overfitting issue of AE. The entire process
f the IST-VAE model is illustrated using four algorithms. Algorithm
depicts the encoding process of input data into a latent variable.

lgorithm 2 and Algorithm 3 illustrate the construction process of
he encoder in both VAEs. The two encoders (𝑇𝐸𝑛𝑐𝑜𝑑𝑒𝑟 in Algorithm

and 𝑆𝐸𝑛𝑐𝑜𝑑𝑒𝑟 in Algorithm 3) of VAEs have extracted the corre-
ponding latent features from inputs. Two encoders are built using
STM and CNN models. Algorithm 4 concatenates the latent features
𝑆𝑝𝐿𝑎𝑡 and 𝑇 𝑒𝑚𝐿𝑎𝑡) obtained from 𝑇𝐸𝑛𝑐𝑜𝑑𝑒𝑟 and 𝑆𝐸𝑛𝑐𝑜𝑑𝑒𝑟 and passed
o the VBGMM clustering method for workload classification. In the
xperiment, the sequence-specific (two seconds) EEG signals and to-
ographical images were passed as input to the temporal and spatial
AEs. VAE extracts the localized features from topographical images
f EEG [37].

Morlet wavelet features are useful to identify the localized changes
f signal for different frequency components over time [38]. It can be
oted that Common Spatial Pattern (CSP), spectral power and mean
bsolute band power features of the alpha band of EEG can effec-
ively classify workload levels from different cognitive tasks such as
simultaneous capacity-based multitasking activity [7]", "mental arith-
etic [39]" and "modified Sternberg task [40]" respectively. So, for
ifferent cognitive tasks, it can be observed that the alpha band of
EG can effectively classify the workload states than other EEG bands.
ence, the Morlet wavelet features are estimated based on the best
EG band (i.e., alpha band) for workload estimation. In the 40 s of the
pecific task (0/2/3-back) period in the experiment, each digit displays
or 2 s; thus, 20 scalp topographical images ( 40𝑠2𝑠 = 20) are extracted

for each type of task. So, 20 task-specific topographical images are
constructed from one series. Thus, for nine such series, a total of 180
(20 × 9) images are constructed for each subject. Scalp topographical
maps are generated from the sequence (time interval of 2 s.)-specific
Morlet wavelet features. The topographical map refers to the spatial
distribution of brain electrical activity for a specific frequency band
(here, alpha band). The proposed spatial VAE model takes the topo-
graphical images (size: 80×60 × 3, where 80, 60, and 3 are represented
as height, width, and number of image channels) as input (line 2 of
Algorithm 3). The construction of the CNN-based VAE model (Spatial
VAE) is illustrated in line 2 − 11 of Algorithm 3. In the spatial VAE
model, 16 filters of size: 3 × 3 are applied on inputs, and outputs of
the first convolutional layer are passed to the first Max pooling layer
(width: 4 and stride: 2 × 2). The output of the first Max-pooling layer is
passed to the second convolutional layer of 24 filters (size: 5 × 5). The
output of the second convolutional layer is passed to the second Max
pooling layer (width: 2 and stride: 1 × 1). The second Max pooling
layer is followed by a Flatten layer. Finally, a dense layer of eight
neurons (best latent feature dimension, refer to Fig. 4(a)) completes
the model configuration. The construction process of temporal VAE
using stacked LSTM layers is depicted in line 4 to 17 of Algorithm
2. Three LSTM layers (6, 12, and 18 units, respectively) are used to
build the proposed temporal VAE, where the output of the first LSTM
layer is passed as an input to the second LSTM layer. Next, the output
of the second LSTM layer is fed into the third LSTM layer. A batch
normalization and dropout layer (dropout rate: 0.2) are appended after
each LSTM layer. A dense layer of eight neurons (best latent feature
dimension, refer to Fig. 4(a)) followed by the third dropout layer
(i.e., 𝑑3) completes the model configuration. For both VAEs (Algorithm
2 and Algorithm 3), the input is encoded into latent variables (𝑇 𝑒𝑚𝐿𝑎𝑡
and 𝑆𝑝𝐿𝑎𝑡) through the Encoding algorithm (Algorithm 1). The output
dimension of both VAEs is maintained at the same value (i.e., eight)
to combine the resultant latent features of both temporal and spatial
VAEs into a shared embedded space. Fig. 1 shows the configuration of
temporal and spatial VAE. The merging/concatenation process of two

latent features is performed in line 1 in Algorithm 4.
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Algorithm 1: Encode
Input: Model, Inputs (𝑋)
Output: 𝜇𝑧, 𝜎𝑧, 𝑧

1 𝜇𝑧, 𝜎𝑧 ← 𝑆𝑝𝑙𝑖𝑡(𝑀𝑜𝑑𝑒𝑙,𝑋, 2)
2 𝑏𝑎𝑡𝑐ℎ ← 𝜇𝑧[0]
3 𝑑𝑖𝑚 ← 𝜇𝑧[1]
4 𝑒𝑝𝑠 ← Random vector with size (batch, dim)
5 𝑧 ← 𝜇𝑧 + exp (0.5 ∗ 𝜎𝑧) * 𝑒𝑝𝑠
6 Return 𝜇𝑧,𝜎𝑧, 𝑧

Algorithm 2: Temporal VAE
Input: 𝐸𝐸𝐺𝑑𝑎𝑡𝑎(𝐷) ∶

{

𝑥1, 𝑥2.....𝑥𝑁
}

Output: 𝑇 𝑒𝑚𝐿𝑎𝑡
1 𝑒𝑝 ← 1𝑒 − 04, 𝑀2 ← 𝐿𝑎𝑡𝑒𝑛𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
2 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚𝐷
3 𝐼𝑛𝑝𝑢𝑡𝑠 ← ⟨𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⟩
4 𝑀𝑜𝑑𝑒𝑙 ← 𝐼𝑛𝑝𝑢𝑡𝑠
5 𝐿1 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐿𝑆𝑇𝑀(6, 𝐼𝑛𝑝𝑢𝑡𝑠))
6 𝑏1 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑒𝑝, 𝐿1))
7 𝑑1 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2, 𝑏1))
8 𝐿2 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐿𝑆𝑇𝑀(12, 𝑑1))
9 𝑏2 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑒𝑝, 𝐿2))
0 𝑑2 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2, 𝑏2))
1 𝐿3 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐿𝑆𝑇𝑀(18, 𝑑2))
2 𝑏3 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑒𝑝, 𝐿3))
3 𝑑3 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.2, 𝑏3))
4 𝜇, 𝜎, 𝑇 𝑒𝑚𝐿𝑎𝑡 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝐼𝑛𝑝𝑢𝑡𝑠)
5 𝑀2 ← 𝑑𝑖𝑚(𝑇 𝑒𝑚𝐿𝑎𝑡)
6 𝑑𝑒𝑛 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐷𝑒𝑛𝑠𝑒(𝑀2, 𝑑3))
7 𝑇𝑉 𝐴𝐸 ← 𝑀𝑜𝑑𝑒𝑙(𝐼𝑛𝑝𝑢𝑡𝑠, [𝜇, 𝜎, 𝑇 𝑒𝑚𝐿𝑎𝑡], 𝑛𝑎𝑚𝑒 = 𝑇𝐸𝑛𝑐𝑜𝑑𝑒𝑟)
8 Return 𝑇 𝑒𝑚𝐿𝑎𝑡

Algorithm 3: Spatial VAE
Input: 3D Topographical Images: S
Output: 𝑆𝑝𝐿𝑎𝑡

1 𝑀1 ← 𝐿𝑎𝑡𝑒𝑛𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
2 𝑀𝑜𝑑𝑒𝑙 ← 𝐼𝑛𝑝𝑢𝑡𝑠(80, 60, 3)
3 𝐶1 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐶𝑜𝑛𝑣2𝐷(16, 𝐼𝑛𝑝𝑢𝑡𝑠)
4 𝑀1 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(4, 𝐶1))
5 𝐶2 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐶𝑜𝑛𝑣2𝐷(24,𝑀1)
6 𝑀2 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(2, 𝐶2))
7 𝐹 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐹 𝑙𝑎𝑡𝑡𝑒𝑛(𝑀2))
8 𝜇, 𝜎, 𝑆𝑝𝐿𝑎𝑡 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝐼𝑛𝑝𝑢𝑡𝑠)
9 𝑀1 ← 𝑑𝑖𝑚(𝑆𝑝𝐿𝑎𝑡)
0 𝑑𝑒𝑛 ← 𝑀𝑜𝑑𝑒𝑙.𝐴𝑑𝑑(𝐷𝑒𝑛𝑠𝑒(𝑀1, 𝐹 ))
1 𝑆𝑉 𝐴𝐸 ← 𝑀𝑜𝑑𝑒𝑙(𝐼𝑛𝑝𝑢𝑡𝑠, [𝜇, 𝜎, 𝑆𝑝𝐿𝑎𝑡], 𝑛𝑎𝑚𝑒 = 𝑆𝐸𝑛𝑐𝑜𝑑𝑒𝑟)
2 Return 𝑆𝑝𝐿𝑎𝑡

Algorithm 4: Multimodal integration
Input: TemLat, SpLat
Output: Merged Latent

1 𝑀𝑒𝑟𝑔𝑒𝑑𝐿𝑎𝑡𝑒𝑛𝑡 ← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑇 𝑒𝑚𝐿𝑎𝑡, 𝑆𝑝𝐿𝑎𝑡)
2 Return 𝑀𝑒𝑟𝑔𝑒𝑑𝐿𝑎𝑡𝑒𝑛𝑡

2.3. Cognitive workload estimation using VBGMM

The concatenated latent feature vector (output of Algorithm 4) is
passed to the VBGMM clustering for workload classification. In the
Variational BGMM approach, approximate posterior distributions can
be effectively determined using the variational inference algorithm
4

while retaining the advantages of the Bayesian approach [41]. Since the
probabilistic variables of each category (𝑐) are statistically independent,
he approximate posterior distribution of the VBGMM model can be
xpressed as:

(𝜃,𝑍 |𝑋,𝑚) =
∏

𝑐
𝑝(𝜃𝑐 |𝑋𝑐 , 𝑚)𝑝(𝑍𝑐 |𝑋𝑐 , 𝑚) (1)

where, 𝑍 is the hidden variable of model 𝑚. 𝑝(𝑍 |𝑋,𝑚) is the approx-
mate posterior distribution of model parameters, and 𝑝(𝜃|𝑋,𝑚) refers
o the solutions of VB posterior distribution. The VBGMM clustering
ethod is related to two parameters: (a) ‘‘prior type’’ (Dirichlet process

r Dirichlet distribution) and (b) ‘‘weight_concentration_prior’’, which
efers to the distribution of weights to each of the components based
n prior type [30]. The output components or clusters can be inferred
sing this ‘‘weight’’ parameter. Here, the weight parameter value is
elected as 1𝑒 + 2 and Dirichlet distribution is chosen as the prior type
f the model. This extra parameterization is necessary for variational
nference, but for the prior type ‘‘Dirichlet process’’, the inference
rocess may be slower.

Here, the performance evaluation of VBGMM clustering is per-
ormed using three metrics, namely unsupervised clustering accuracy
Acc), Normalized Mutual Information (NMI), and Rand Index (RI). Acc
2) refers to the best matching between cluster assignments from the
lustering method (𝑡𝑖) and ground truth labels (𝑦𝑖).

𝑐𝑐 = max
𝑚

∑𝑛
𝑖=1 1

{

𝑦𝑖 = 𝑚(𝑡𝑖)
}

𝑛
(2)

where 𝑛 is the number of samples and 𝑚 ranges overall possible one-
to-one mappings between clusters and labels. NMI (3) refers to the
reduction of entropy information for cluster assignments with respect
to the known ground truth labels.

𝑁𝑀𝐼(𝑦, 𝑚) =
𝐼(𝑦, 𝑚)

1
2 [𝐻(𝑦) +𝐻(𝑚)]

(3)

here the ground truth labels and cluster assignment are denoted by 𝑦
nd 𝑚, respectively. Mutual information between 𝑦 and 𝑚 is represented

by 𝐼 , and entropy is denoted by 𝐻(.). The Rand Index (RI) checks the
similarity between original and predicted class labels, represented as
follows:

𝑅𝐼 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(4)

where, TP, TN, FP, and FN signify true positive, true negative, false
positive and false-negative rates, respectively.

3. Results

This section is divided into five subsections: (A) behavioral results,
(B) integrated spatio-temporal VAE model analysis, (C) clustering re-
sults & performance analysis, (D) computational complexity analysis,
and (E) comparative analysis. The detailed analysis of each section is
mentioned below.

3.1. Behavioral results

As the task complexity level is related to the value of 𝑛 (𝑛 = 2,
3) in the 𝑛-back task, the subject needs to remember more numbers
of previous letters with the higher value of 𝑛. The Friedman test has
een performed to check whether the means of each workload level
re equal or not. The result (𝑝 < 0.05, 𝜒2 = 32.077, 𝑑𝑓 = 30) indicates

that a significant difference exists in mean values of different workload
levels. After the Friedman test, the Dunn–Bonferroni Posthoc test was
conducted to determine the difference between each pair of workload
levels. The Posthoc test (Table 1) validates that the mean differences
between each pair of workload levels are statistically significant (𝑝
value < 0.05).
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Fig. 2. Results of VAE training procedure with different combinations of spatial (Algorithm 3) and temporal VAE (Algorithm 2) models for best latent dimension=8 (refer to
Fig. 4(a)). (a) Model 1 (proposed) configuration: temporal VAE → L6-L12-L18, spatial VAE → C16(3,3)-C24(5,5), (b) Model 2 configuration: temporal VAE → L24-L48, spatial VAE
→ C16(3,3)-C16(5,5)-C32(7,7) and (c) Model 3 configuration: temporal VAE → L12-L24-L36-L48, spatial VAE → C8(3,3)-C16(5,5)-C24(7,7)-C36(7,7). Here, the convolutional layer
and the LSTM cells are denoted by C𝑥(𝑘, 𝑘) and 𝐿, respectively. 𝑥 and 𝑘 are represented as the filter number and kernel size.
Table 1
Result of Dunn–Bonferroni Posthoc test.

Sample 1–Sample 2 Mean difference Std. error 𝑝 value

2-back-0-back 1.056 0.297 0.007
3-back-2-back 1.114 0.321 0.011
3-back-0-back 1.127 0.336 0.012

3.2. Integrated spatio-temporal VAE model analysis

This section is further divided into three subsections: (1) selection
of the VAE model & Spatial feature analysis, (2) effects of the latent
dimension of VAEs, and (3) effects of optimizer and learning rate. The
detailed discussions of each subsection are mentioned below.

3.2.1. Selection of the VAE model & spatial feature analysis
The construction of deep VAE models is illustrated in Algorithm

2 and Algorithm 3. Both algorithms are used only encoder parts of
VAEs. Two types of losses are associated during the training process of
VAE: reconstruction loss and Kullback–Leibler (KL) divergence. How-
ever, as the proposed model only uses the encoder’s output, only KL
divergence loss is considered. The KL divergence tends to regularize
the organization of the latent space by making the distributions re-
turned by the encoder close to a standard normal distribution. Hence,
the objective is to select the optimal VAE model such that the KL
divergence between the distribution of the encoder and input will be
minimized. KL divergence values of different temporal and spatial VAE
models are shown in Fig. 2. Different configurations of temporal and
spatial VAE models are constructed using Algorithm 2 and Algorithm
3 by changing the layer-wise LSTM units or layer-wise filters of the
CNN model. The training losses (KL divergence) of different model
combinations (temporal-spatial VAE) are shown in Fig. 2. Since the
first temporal and spatial VAE model combination (Model 1: Fig. 2(a))
incurs the lowest KL divergence loss, this configuration is selected
for the proposed IST-VAE model. The temporal VAE of the proposed
model is already analyzed with different combinations of LSTM layers
(Model 1: 3 layers, Model 2: 2 layers, and Model 3: 4 layers) in
Fig. 2. However, for generalization purposes, the temporal VAE is
also experimented with one-layer LSTM model (L128) and another
two-layered (L12-L18) LSTM model. Here, 𝐿 represents the number
of LSTM units. For the two differently configured temporal VAEs,
the configuration of the best spatial VAE (in Model 1 of Fig. 2) is
not changed while computing the combined latent features. For high
workload condition (i.e., cond 4), the IST-VAE model achieves the mean
clustering accuracy of 0.526 and 0.583, respectively, using these above-
mentioned single and two-layered LSTM models, which are much lesser
than the performance of three-layered LSTM model. Thus, the temporal
VAE with three-layered LSTM (Model 1 in Fig. 2) is selected for the
proposed IST-VAE. Each deep model is trained on 100 epochs. During
training, the Adam optimizer (learning rate of 0.02) is used. A batch
5

Fig. 3. Spatial localization maps of input topographical images using the Grad-CAM
method. The localization feature maps are obtained by the Grad-CAM method from the
last convolution layer of the proposed spatial VAE model. In the color bar, the brighter
color represents the workload class-specific informative brain region.

size of 32 was chosen during the training of the IST-VAE model. The
hyperparameters (learning rate, batch size, number of epochs, number
of hidden layers, number of neurons/layers etc.) of the IST-VAE model
are tuned using the Random search method [42]. Like Grid search, the
Random search does not exhaustively examine all conceivable param-
eter combinations; instead, it selectively draws hyperparameter values
from predefined distributions in a random manner. Thus, this approach
discovers effective hyperparameters quicker than the exhaustive grid
search method.

Gradient-Class Activation Mapping (Grad-CAM) visualization tech-
nique utilizes gradients from the final convolutional layer to generate
a coarse localization map, indicating the spatial areas where electrodes
are positioned [43]. The feature map obtained by Grad-CAM from the
last convolution layer contains high-level features and spatial infor-
mation [43]. Thus, spatial localization maps extracted from the last
convolution layer of the proposed spatial VAE model highlight the spa-
tial information of scalp topographical images. Three randomly selected
topographical images of each workload level and their spatial localiza-
tion feature maps (obtained from Grad-CAM) are shown in Fig. 3. The
brighter color in the localized map indicates the activated/informative
region in the brain for the workload class. For the 0-back class, high
activation is observed in the right frontal and left parietal brain lobes,
whereas a high activation is observed only in the left parietal brain lobe
for the 2-back task. Only the right frontal brain area is activated for the
complex task (3-back).
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Table 2
Results of the LSO experiment of the proposed model based on best latent feature vector (refer to Fig. 4(a)). Note: Accuracy (Acc), Normalized mutual information (NMI), and
Rand index (RI). Workload conditions are: Cond 1: 0-back vs. 2-back, Cond 2: 0-back vs. 3-back, Cond 3: 2-back vs. 3-back, Cond 4: 0-back vs. 2-back vs 3-back. Best clustering
accuracy (Acc) is marked with bold.

Subjects Cond 1 Cond 2 Cond 3 Cond 4

ACC NMI RI ACC NMI RI ACC NMI RI ACC NMI RI

Sub 1 0.988 0.869 0.882 0.771 0.803 0.643 0.886 0.901 0.832 0.792 0.722 0.801
Sub 2 0.965 0.802 0.723 0.602 0.556 0.627 0.785 0.568 0.622 0.707 0.779 0.639
Sub 3 0.989 0.823 0.798 0.781 0.765 0.711 0.987 0.876 0.933 0.658 0.593 0.689
Sub 4 0.981 0.844 0.811 0.689 0.623 0.598 0.773 0.782 0.675 0.734 0.767 0.597
Sub 5 0.992 0.881 0.827 0.708 0.646 0.602 0.926 0.891 0.912 0.845 0.723 0.698
Sub 6 0.979 0.913 0.933 0.856 0.798 0.766 0.978 0.821 0.856 0.798 0.767 0.803
Sub 7 0.987 0.893 0.922 0.932 0.898 0.853 0.836 0.804 0.866 0.933 0.887 0.813
Sub 8 0.952 0.833 0.721 0.779 0.736 0.799 0.988 0.786 0.877 0.784 0.763 0.722
Sub 9 0.985 0.923 0.907 0.658 0.558 0.561 0.982 0.996 0.893 0.813 0.724 0.766
Sub 10 0.978 0.883 0.743 0.723 0.593 0.634 0.923 0.866 0.794 0.834 0.798 0.771
Sub 11 0.981 0.923 0.899 0.738 0.792 0.635 0.993 0.962 0.902 0.592 0.632 0.602
Sub 12 0.982 0.995 0.949 0.689 0.568 0.637 0.985 0.936 0.903 0.906 0.853 0.778
Sub 13 0.977 0.889 0.836 0.934 0.884 0.865 0.813 0.723 0.668 0.756 0.623 0.644
Sub 14 0.974 0.936 0.811 0.941 0.742 0.833 0.998 0.922 0.798 0.823 0.846 0.755
Sub 15 0.978 0.973 0.944 0.863 0.722 0.744 0.906 0.789 0.802 0.956 0.845 0.811
Sub 16 0.985 0.962 0.884 0.778 0.652 0.689 0.882 0.797 0.791 0.689 0.65 0.627
Sub 17 0.984 0.923 0.889 0.924 0.881 0.857 0.592 0.623 0.556 0.592 0.56 0.522
Sub 18 0.972 0.856 0.923 0.899 0.865 0.798 0.658 0.612 0.605 0.782 0.705 0.732
Sub 19 0.986 0.902 0.823 0.952 0.872 0.822 0.856 0.798 0.831 0.785 0.685 0.653
Sub 20 0.985 0.853 0.771 0.851 0.782 0.749 0.962 0.889 0.901 0.807 0.748 0.656
Sub 21 0.968 0.828 0.745 0.798 0.712 0.698 0.946 0.902 0.879 0.822 0.765 0.689
Sub 22 0.991 0.923 0.887 0.923 0.836 0.789 0.956 0.872 0.778 0.736 0.638 0.611
Sub 23 0.986 0.905 0.899 0.911 0.844 0.792 0.962 0.892 0.762 0.802 0.736 0.633
Sub 24 0.977 0.825 0.786 0.836 0.768 0.812 0.933 0.862 0.736 0.845 0.766 0.744
Sub 25 0.983 0.893 0.843 0.893 0.824 0.872 0.955 0.923 0.879 0.889 0.798 0.765
Sub 26 0.979 0.901 0.916 0.928 0.798 0.812 0.936 0.868 0.902 0.836 0.813 0.796

Mean 0.980 0.890 0.848 0.821 0.750 0.738 0.899 0.833 0.805 0.789 0.737 0.704
3.2.2. Effects of latent dimension of VAEs
The image and EEG signal dimensions of the proposed IST-VAE

model are 𝑀1: 80 × 60 × 3 = 14 400 and 𝑀2 = 30 (no. of EEG
hannels), respectively. As the outputs of two latent features (from
emporal and spatial VAEs) are merged into an embedded feature space,
hus, the resultant latent dimension (𝑀) in the embedded feature space
hould be lower than 𝑀2 (as 𝑀2 < 𝑀1). For simplicity, the experiment
s analyzed between 0-back vs. 2-back workload levels. The proposed
odel is trained for all subjects using the leave-subject-out (LSO) test

cross different latent dimensions. In Fig. 4(a), the average cluster-
ng performance is evaluated based on the multimodal latent feature
output of Algorithm 4) of the IST-VAE model with different latent
imensions (by changing the different 𝑒𝑝𝑠 value of Algorithm 1). It can
e noted that the maximum clustering performance is achieved with
= 8. Clustering performance varies with different latent dimensions

f Temporal and Spatial VAEs (variable 𝑀2 in Algorithm 2 and 𝑀1
n Algorithm 3). The larger value of 𝑀 may preserve more informa-
ion but simultaneously minimize the discrimination power of learned
epresentation, which decreases the clustering performance [44]. The
ame latent dimension (i.e., 𝑀 = 8) is maintained for other workload
onditions.

.2.3. Effects of optimizer and learning rate
In this section, hyperparameters of the proposed IST-VAE model are

uned to obtain the best clustering performance. The convergence of
eep neural networks largely depends on selecting the proper optimizer
nd learning rate (lr). The VAE model is trained using the leave-subject-
ut (LSO) method to avoid the overfitting issue. The proposed VAE
odel is trained with different optimizers and its learning rate (lr).

Next, the clustering accuracy is computed for each subject of the test
set. The process is repeated for all the subjects. The mean clustering
accuracy of different optimizers (adam, stochastic gradient descent:
SGD, adadelta, and RMSprop) and their learning rates lr (0.01 to 0.1) is
reported in Fig. 4(b). It can be noted that the Adam optimizer with the
lr of 0.02 achieves the maximum clustering accuracy. So, the Adam
6

optimizer with the same lr is used for other workload conditions.
Fig. 4. Evaluation of clustering performance: (a) based on different latent dimensions,
(b) based on different optimizers and their learning rates for workload condition 0-
back vs. 2-back. Note: Mean clustering accuracy (MACC), Mean Normalized Mutual
Information (MNMI), and Mean Rand Index (MRI).

However, the experiment result of the 0-back vs. 2-back workload
condition is presented for simplicity.

3.3. Clustering results & performance analysis

This section is divided into two subsections: (1) Output analysis
of the VBGMM clustering method and (2) performance analysis of
VBGMM based on other datasets. A detailed description of each section
is mentioned below.

3.3.1. Output analysis of the VBGMM clustering method
This section highlights the output analysis of the VBGMM clustering

method and subject-wise clustering results of different workload levels.
The merged latent feature (i.e., the combination of temporal and
spatial latent features) created in Algorithm 4 is used as input for
clustering. The LSO experiment (the training and testing set consists
of entirely different subjects) is performed to evaluate the subject-wise
variation across various workload levels. In the LSO experiment, the
EEG signals and images of scalp topographical maps of 25 subjects
are used as a training set. The testing set comprised the remaining
subject’s topographical maps and EEG data. After the LSO experiment,
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Fig. 5. VBGMM cluster representation (using UMAP plot) of S1 for different workload levels and latent dimensions: (a) latent dimension = 6, (b) latent dimension = 8, and (c)
latent dimension = 10. The ordering of workload conditions (for all figures) are as follows: 0-back vs. 2-back, 0-back vs. 3-back, 2-back vs. 3-back, and all the workload levels
(0-back vs. 2-back vs. 3-back). The parameters of the VBGMM method are as follows: weight concentration prior = 1e−1, weight concentration prior type = Dirichlet process, and
maximum iteration to converge = 100.
the trained latent feature vector of VAE is used for the training of
VBGMM, and the predicted latent feature vector is used to evaluate
clustering performance. The training parameters of VBGMM are as
follows: maximum iterations = 150, weight_concentration_prior = 0.01,
weight_concentration_priortype = Dirichlet process, covariance_type
=full, and mean_precision_prior = 0.1. The LSO experiment is per-
formed for all subjects with different train-test sets, and the result is
shown in Table 2. The average clustering performance result (MACC
and MNMI) based on the latent features generated from the proposed
IST-VAE (output of Algorithm 4) and two unimodal VAE models’
(outputs of Algorithm 2 and Algorithm 3) is displayed in Table 3.
The result shows that the proposed model achieves the best clustering
performance regardless of workload conditions. The best mean cluster-
ing accuracy for the 0 vs. 2-back condition for the VBGMM clustering
method is 98.0%, whereas the subject-wise best clustering accuracy for
the subject S5 is 99.2% (refer to Table 2).

In manifold learning, the high-dimensional data can be repre-
sented in low-dimensional space for better visualization. Through the
non-linear mapping operation, uniform manifold approximation and
projection (UMAP) transforms higher-dimensional data into a lower-
dimensional manifold with the fastest execution time [45]. The UMAP
cluster plots (Fig. 5) of the VBGMM clustering method are shown for
three different latent dimensions (6, 8, and 10) of the IST-VAE model.
The different-sized latent dimensions are obtained by changing the 𝑒𝑝𝑠
variable in Algorithm 1. The clustering quality is highly dependent
on the learned representation of data [21]. It can be noted that the
cluster representation for latent dimension 8 is better than other latent
dimensions (6 and 10). For latent dimension 8, clusters are clearly
distinguished for the lowest workload level (0-back vs. 2-back in
Fig. 5(b)), but with the more number of workload levels, some clusters
get overlapped (0-back vs. 2-back vs. 3-back in Fig. 5(b)) for the
complicated pattern of brain signals. For latent dimensions 6 (Fig. 5(a)),
and 10 (Fig. 5(c)), the learned representation of the IST-VAE model
is poor, resulting a scattered or overlapped clusters for all workload
conditions.
7

Table 3
Performance analysis of the VBGMM clustering method using the latent features (output
of Algorithm 4) of proposed IST-VAE and unimodal temporal/ spatial VAEs (outputs
of Algorithm 2, Algorithm 3). For workload conditions, refer to Table 2. Note: Mean
Accuracy (MAcc), Mean Normalized mutual information (MNMI).

Conditions IST-VAE Spatial VAE Temporal VAE

MACC MNMI MACC MNMI MACC MNMI

Cond 1 0.980 0.890 0.822 0.782 0.843 0.801
Cond 2 0.821 0.750 0.689 0.665 0.742 0.703
Cond 3 0.899 0.833 0.726 0.623 0.771 0.724
Cond 4 0.789 0.737 0.623 0.556 0.649 0.623

Table 4
VBGMM clustering result based on other 𝑛-back datasets. Idle state of [47] denotes
0-back state.

Dataset 1 [46] Dataset 2 [47]

Conditions MACC MNMI Conditions MACC MNMI

0-1 back 0.923 0.878 0-1 back 0.911 0.802
0-2 back 0.917 0.852 0-2 back 0.802 0.723
1-2 back 0.825 0.773 1-2 back 0.769 0.703
0-1-2 back 0.703 0.683 0-1-2 back 0.733 0.705

3.3.2. Performance analysis of VBGMM based on other datasets
For generalization, the proposed model has been implemented to

two publicly open-access 𝑛-back datasets [46,47]. Each open-access
dataset has a different workload condition. The LSO experiment is
performed for each dataset, and the VBGMM clustering result (Table 4)
is produced based on the MACC and MNMI matrices. It can be observed
that the proposed model achieves the best clustering performance
(MACC: 0.923, MNMI: 0.878) for the workload level (0-back vs. 1-back)
on the dataset [46]. Therefore, it can be stated that the proposed model
is capable of accurately estimating different workload conditions across
various datasets.
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Table 5
Performance analysis of VBGMM using proposed multimodal spatio-temporal features
and other latent feature estimation methods. Workload conditions are mentioned in
Table 2. Note: AutoEncoder (AE), sparse autoencoder (SAE), Denoising AutoEncoder
(DAE), Convolutional autoencoder (CAE), LSTM autoencoder (LAE), Proposed: IST-VAE

Conditions Mean clustering accuracy

PCA AE SAE CAE LAE DAE Proposed

Cond 1 0.475 0.536 0.663 0.709 0.732 0.829 0.980
Cond 2 0.458 0.507 0.612 0.673 0.741 0.765 0.821
Cond 3 0.512 0.529 0.589 0.625 0.656 0.633 0.899
Cond 4 0.388 0.428 0.546 0.612 0.536 0.707 0.789

Table 6
Comparison of the proposed VBGMM with different clustering techniques for all
workload conditions (refer to Table 2).

Methods MACC

Cond 1 Cond 2 Cond 3 Cond 4

IST-VAE + K-means 0.563 0.513 0.602 0.523
IST-VAE + DB-Scan 0.803 0.823 0.746 0.692
IST-VAE + Hierarchical 0.742 0.646 0.563 0.502
IST-VAE + Optics 0.708 0.801 0.731 0.712
IST-VAE + Birch 0.803 0.692 0.727 0.704
IST-VAE + GMM 0.789 0.724 0.743 0.733
IST-VAE + Spectral 0.713 0.687 0.609 0.538
IST-VAE + VBGMM 0.980 0.821 0.899 0.789

3.4. Computational complexity analysis

This section discusses the computational complexity of the proposed
model. In the proposed model, the LSTM and CNN-based VAE models
are used to extract temporal and spatial latent features from inputs.
The time complexity of the single LSTM network is 𝑂(𝑡𝑊 ), where 𝑡
and 𝑊 are the time step and weights, respectively [48]. Here, each
weight is associated with a single node. The computational complexity
of the CNN model is 𝑂(𝑁), where 𝑁 ×𝑁 is the input image size [49].
The concatenation of latent features (Algorithm 4) and the encoding
operation (Algorithm 1) takes 𝑂(1) time. The complexity of the VBGMM
clustering algorithm is 𝑂(𝑠𝐷3), where 𝑠 and 𝐷 are the numbers of iter-
ations and feature dimensions [50]. Therefore, the overall complexity
of the proposed model is 𝑂(𝑡𝑊 +𝑁 + 𝑠𝐷3).

3.5. Comparison study

Several comparison studies are performed in this section, namely,
(1) a comparison among deep models for cluster analysis, (2) a com-
parison among clustering methods, (3) a comparison among deep clus-
tering methods, and (4) a comparative analysis among existing studies.
The detailed discussions of each subsection are mentioned below.

3.5.1. Comparison among deep models for cluster analysis
Table 5 compares the VBGMM clustering results using the proposed

multimodal latent feature and other latent feature estimation methods,
such as PCA and deep latent features (extracted from different AE-
based deep models). In Convolutional autoencoder (CAE) and LSTM
autoencoder (LAE), clustering performance is evaluated using deep
spatial and temporal latent features (i.e., outputs of the CNN and
LSTM-based encoders), respectively. The best LSTM and CNN model
configuration (refer to Fig. 2(a)) is used in LAE and CAE models. In the
denoising autoencoder (DAE), noise is added to the input topographical
image with the optimal noise factor of 0.8 [44]. Then, the reconstructed
robust (noise-free) spatial feature (from the decoder of DAE) is used as
a latent feature for clustering. For Sparse Autoencoder (SAE), an L2
regularizer was utilized with a weight decay factor of 0.003 [51]. The
autoencoder model only consists of dense layers. The encoder part is
8

only utilized for extracting latent features in all the autoencoder models T
Table 7
Comparison of the proposed model with existing deep clustering techniques for all
workload conditions (refer to Table 2). Note: Semantic Clustering by Adopting Nearest
neighbors (SCAN), Not too Deep (N2d) clustering, Deep Embedded Clustering (DEC),
and Discriminatively Boosted Clustering (DBC)

Deep clustering methods MACC

Cond 1 Cond 2 Cond 3 Cond 4

N2D [52] 0.712 0.663 0.623 0.573
SCAN [53] 0.845 0.768 0.757 0.702
DEC [34] 0.782 0.745 0.702 0.663
DBC [54] 0.801 0.773 0.745 0.712
Proposed method 0.980 0.821 0.899 0.789

except for the DAE. The configuration of all autoencoders are as fol-
lows: SAE/AE→ D(128)-D(32)-D(8), DAE → C16(3,3)-M(2)-C32(3,3)-

(2)-DC32(3,3)-U(2)-DC16(3,3)-U(2)-DC8(3,3), CAE→ C16(3,3)-M(4)-
C24(5,5)-M(2)-F-D(8), LAE→ L(6)-L(12)-L(18)-D(8), where C𝑥(𝑘, 𝑘):
onvolutional layer with 𝑥 filters (𝑘 = filter size), DC: deconvolution,
(𝑛) : max-pooling (width), 𝐹 : flatten, 𝐷: dense, 𝑈 : upsampling,

: LSTM layer. The CAE, DAE, SAE, and AE used the topographical
mages, whereas LAE used the preprocessed EEG signal for training.
t can be identified that the proposed model achieves the best clus-
ering results among all the AE-based models across all the workload
onditions.

.5.2. Comparison among clustering methods
This section highlights the effectiveness of the proposed VBGMM

lustering methods over other clustering methods for all the workload
onditions. Here, all the clustering methods are evaluated based on
atent features (i.e., the output of Algorithm 4) extracted from the
roposed IST-VAE model, and the comparison (Table 6) is performed
ased on the average clustering accuracy. It can be shown that VBGMM
utperforms all other clustering algorithms. VBGMM outperforms den-
ity or partition-based clustering techniques because of the overlapping
istribution of the input data.

.5.3. Comparison among deep clustering methods
This section highlights the comparison between the proposed mul-

imodal deep clustering method and some popular deep clustering
ethods for the experimental dataset. The spatial topographical im-

ges are only used in the image-based deep clustering methods. The
omparison is shown in Table 7. As the proposed model captures both
he temporal and spatial features for clustering, it enhances the cluster
uality. For all of the experimental conditions, the proposed deep
lustering performs better than other deep clustering methods.

.5.4. Comparative analysis among existing studies
In this section, the comparison is performed between the proposed

odel and the studies that used the same experimental dataset [36].
he comparison (refer to Table 8) is performed based on the meth-
ds and results of those studies. It can be concluded that the low-
imensional latent feature performs better than the traditional EEG
eatures (PSD, ERD) for the same experimental dataset. Thus, the
roposed model achieves better accuracy than other models.

. Discussion

This study combines a multimodal deep VAE model and the VBGMM
lustering method for workload classification. In this paper, the
BGMM-based probabilistic clustering method is employed since it
merges as a suitable choice for addressing the stochastic nature of
uman responses [59]. The performance of a proposed IST-VAE model
argely depends on the VAE model structure and hyperparameters.
he proposed multimodal deep clustering is evaluated with the three
ifferent workload conditions with varying degrees of task complexity.

he proposed model achieves 98.0% and 99.2% as the best mean
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Table 8
Comparative study among the proposed method and other studies based on the same
experimental dataset. Note: ERD: event-related desynchronization, ERS: event-related
synchronization, DWT: discrete wavelet transform, DNN: Deep Neural Network, FBC:
Functional Brain Connectivity, The highest accuracy of the proposed models is shown
in the ‘‘Acc’’ column.

Study Methods Acc(%)

Saadati et al. [55] ERD/ERS + Hybrid DNN 0.74
Saadati et al. [56] ERD/ERS + Hybrid CNN 0.69
Khanam et al. [57] DWT features and SVM 0.87
Cao et al. [58] PSD, FBC + SVM 0.77
Proposed method Temporal-spatial VAE models +VBGMM 0.98

clustering accuracy and subject-wise clustering accuracy, respectively
(refer to Table 2). The performance of the proposed deep IST-VAE
framework also outperforms unimodal-based VAE models (Table 3) and
other AE-based deep models (Table 5). The result indicates that the
fusion of low dimensional temporal and spatial EEG features can effec-
tively identify the workload levels of the 𝑛-back task. For generalization
purposes, the proposed model is examined on two open-access 𝑛-back
atasets (refer to Table 4), and promising results are found for both
atasets. According to comparison studies, the proposed VBGMM clus-
ering approach performs better than traditional well-known clustering
ethods (refer to Table 6). The proposed multimodal-based clustering
ethod can efficiently classify the different workload levels. Thus, the
roposed model can be effectively used to identify human behavior
hile accomplishing EEG-based cognitive tasks.

. Conclusion & future work

In this paper, two modalities (temporal and spatial) of EEG are fused
o estimate the workload levels of a participant efficiently. Four distinc-
ive algorithms (Encode, Temporal VAE, Spatial VAE, and Multimodal
ntegration) are developed and used to build the multimodal workload
stimation framework. The latent feature creation process for the tem-
oral and spatial encoders is performed by Algorithm 1. The selection of
proper latent feature dimension is of utmost importance in DRL-based

lustering applications, as changing the latent feature’s dimension can
ffect the clustering performance. The clustering performance with
ifferent latent dimensions is plotted in Fig. 4(a). In Algorithm 2
nd Algorithm 3, both temporal and spatial encoders (using deep
AE) extract the layer-wise temporal/spatial meaningful information

or classification. Moreover, the LSTM and CNN-based VAEs used in
lgorithm 2 and Algorithm 3 are applicable for sequence learning
ontexts with long-term dependency problems [17]. As the extracted
ow-dimensional latent feature contains significant information related
o the problem context, merging both of these feature vectors into a
ommon embedded feature vector highlights more relevant information
han the uni-modal approach. As the clustering efficiency especially
epends on learned feature representation [21], thus, the VBGMM
lustering method can efficiently estimate workload-specific clusters
sing the merged latent feature (output of Algorithm 4) having the
emporal and spatial knowledge of input data.

The experimental dataset consists of the EEG and NIRS data of 26
ubjects; however, the experiment is conducted only on EEG signals. In
he near future, sensor-level multimodal capabilities (EEG and NIRS)
an be implemented in the proposed model to enhance its performance.
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