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Abstract

Using recent developments on the theory of locally decodable codes, we prove
that the critical size for Szemerédi’s theorem with random differences is bounded
from above by N1− 2

k
+o(1) for length-k progressions. This improves the previous best

bounds of N1− 1
dk/2e+o(1) for all odd k.
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1 Introduction
Szemerédi [14] proved that dense sets of integers contain arbitrarily long arithmetic pro-
gressions, a result which has become a hallmark of additive combinatorics. Multiple proofs
of this result were found over the years, using ideas from combinatorics, ergodic theory
and Fourier analysis over finite abelian groups.

Furstenberg’s ergodic theoretic proof [12] opened the floodgates to a series of powerful
generalizations. In particular, it led to versions of Szemerédi’s theorem where the common
differences for the arithmetic progressions are restricted to very sparse sets. We say that
a set D ⊆ [N ] is `-intersective if any positive-density set A ⊆ [N ] contains an (` + 1)-
term arithmetic progression with common difference in D. Szemerédi’s theorem implies
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that for large enough N0, the set {0, 1, . . . , N0} is `-intersective for N ≥ N0. Non-trivial
examples include a special case of a result of Bergelson and Leibman [3] showing that the
perfect squares are `-intersective for every `, and a special case of a result of Wooley and
Ziegler [17] showing the same for the prime numbers minus one.

The existence of such sparse intersective sets motivated the problem of showing whether,
in fact, random sparse sets are typically intersective. The task of making this quantitative
falls within the scope of research on threshold phenomena. We say that a property of
subsets of [N ], given by a family F ⊆ 2[N ], is monotone if A ∈ F and A ⊆ B ⊆ [N ] imply
B ∈ F . The critical size m∗ = m∗(N) of a property is the least m such that a uniformly
randomm-element subset of [N ] has the property with probability at least 1/2. (This value
exists if F is non-empty and monotone, as this probability then increases monotonically
with m). A famous result of Bollobás and Thomason [4] asserts that every monotone
property has a threshold function; this is to say that the probability

p(m) = Pr
A∈([N ]

m )[A ∈ F ]

spikes suddenly from o(1) to 1− o(1) when m increases from o(m∗) to ω(m∗).1 In general,
it is notoriously hard to determine the critical size of a monotone property.

This problem is also wide open for the property of being `-intersective, which is clearly
monotone, and for which we denote the critical size by m∗`(N). Bourgain [5] showed that
the critical size for 1-intersective sets is given by m∗1(N) � logN ; at present, this is the
only case where precise bounds are known. It has been conjectured [11] that logN is the
correct bound for all fixed `, and indeed no better lower bounds are known for ` ≥ 2. It
was shown by Frantzikinakis, Lesigne and Wierdl [10] and independently by Christ [9] that

m∗2(N)� N
1
2
+o(1). (1)

The same upper bound was later shown to hold for m∗3(N) by the first author, Dvir and
Gopi [6]. More generally, they showed that

m∗`(N)� N1− 1
d(`+1)/2e+o(1), (2)

which improved on prior known bounds for all ` ≥ 3. The appearance of the peculiar ceiling
function in these bounds is due to a reduction for even ` to the case ` + 1. The reason
for this reduction originates from work on locally decodable error correcting codes [13]. It
was shown in [6] that lower bounds on the block length of (`+ 1)-query locally decodable
codes (LDCs) imply upper bounds on m∗` . The bounds (2) then followed directly from the
best known LDC bounds; see [7] for a direct proof of (2), however.

For the same reason, a recent breakthrough of Alrabiah et al. [1] on 3-query LDCs
immediately implies an improvement of (1) to

m∗2(N)� N
1
3
+o(1).

1Our (standard) asymptotic notation is defined as follows. Given a parameter n which grows without
bounds and a function f : R+ → R+, we write: g(n) = o(f(n)) to mean g(n)/f(n) → 0; g(n) = ω(f(n))
to mean g(n)/f(n) → ∞; g(n) � f(n) to mean that g(n) ≤ Cf(n) holds for some constant C > 0 and
all n; and g(n) � f(n) to mean both g(n)� f(n) and f(n)� g(n).
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For technical reasons, their techniques do not directly generalize to improve the bounds
for q-query LDCs with q ≥ 4, although they could potentially lead to improvements for all
odd q ≥ 3 (but not for even q). Here, we use the ideas of [1] to directly prove upper bounds
on m∗` . Due to the additional arithmetic structure in our problem, it is possible to simplify
the exposition and, more importantly, apply the techniques to improve the previous best
known bounds for all even ` ≥ 2. In particular, we remove the ceiling (raise the roof)
in (2).

Theorem 1.1. For every integer ` ≥ 2, we have that

m∗`(N)� N1− 2
`+1

+o(1).

2 Outline of the argument
We now give an outline of the proof of Theorem 1.1. Fix an integer k ≥ 3 and a positive
parameter ε > 0, and suppose N is sufficiently large relative to k and ε. Given a sequence
of differences D = (d1, . . . , dm) ∈ [N ]m and some set A ⊆ [N ], let ΛD(A) be the normalized
count of k-APs with common difference in D which are contained in A:

ΛD(A) = Ei∈[m]Ex∈[N ]

k−1∏
`=0

A(x+ `di).

Let m ≥ 1 be an integer, and suppose

PrD∈[N ]m
(
∃A ⊆ [N ] : |A| ≥ εN, ΛD(A) = 0

)
≥ 1/2. (3)

By a standard averaging argument originally due to Varnavides [16], we can conclude from
Szemerédi’s theorem that

Λ[N ](A)�k,ε 1 for all A ⊆ [N ] with |A| ≥ εN (4)

(where we identify [N ] with the sequence (1, 2, . . . , N) ∈ [N ]N). Noting that ED′∈[N ]mΛD′(A) =
Λ[N ](A), by combining inequalities (3) and (4) we conclude that

ED∈[N ]m max
A⊆[N ]: |A|≥εN

∣∣ΛD(A)− ED′∈[N ]mΛD′(A)
∣∣�k,ε 1.

From this last inequality, a simple “symmetrization argument” given in [6] implies

ED∈[N ]mEσ∈{−1,1}m max
A⊆[N ]: |A|≥εN

∣∣∣∣Ei∈[m]Ex∈[N ] σi

k−1∏
`=0

A(x+ `di)

∣∣∣∣�k,ε 1;

the appearance of the expectation over signs σ ∈ {−1, 1}m is crucial to our arguments. By
an easy multilinearity argument, we can replace the set A ⊆ [N ] (which can be seen as a
vector in {0, 1}N) by a vector Z ∈ {−1, 1}N :

ED∈[N ]mEσ∈{−1,1}m max
Z∈{−1,1}N

∣∣∣∣Ei∈[m]Ex∈[N ] σi

k−1∏
`=0

Z(x+ `di)

∣∣∣∣�k,ε 1; (5)



On the threshold for Szemerédi’s theorem with random differences 234

here and in what follows we use the convention that Z(y) = 0 for all y > N when Z ∈
{−1, 1}N . The change from {0, 1}N to {−1, 1}N is a convenient technicality so we can
ignore terms which get squared in a product.

This last inequality (5) is what we need to prove the result for even values of k using the
arguments we will outline below. For odd values of k, however, this inequality is unsuited
due to the odd number of terms inside the product. The main idea from [1] to deal with
this case is to apply a “Cauchy-Schwarz trick” to pass from (5) to the inequality

ED∈[N ]mEσ∈{−1,1}m max
Z∈{−1,1}N

∑
i∈L,j∈R

∑
x∈[N ]

σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj)�k,ε m
2N, (6)

where (L,R) is a suitable partition of the index set [m] and we assume (without loss of
generality) that m is sufficiently large depending on ε and k.

From now on we assume that k is odd,2 and write k = 2r + 1. For i, j ∈ [m], denote
Pi(x) = {x + di, x + 2di, . . . , x + 2rdi} and Pij(x) = Pi(x) ∪ Pj(x). From inequality (6) it
follows that we can fix a “good” set D ∈ [N ]m satisfying

Eσ∈{−1,1}m max
Z∈{−1,1}N

∑
i∈L,j∈R

σiσj
∑
x∈[N ]

∏
y∈Pij(x)

Z(y)�k,ε m
2N (7)

and for which we have the technical conditions∣∣{i ∈ L, j ∈ R : |Pij(0)| 6= 4r
}∣∣�k m

2/N and (8)

max
x∈[N ]

m∑
i=1

2r∑
`=1

1{`di = x} �k logN, (9)

which are needed to bound the probability of certain bad events later on.
The next key idea is to construct matrices Mij for which the quantity

Eσ∈{−1,1}m
∥∥∥∥ ∑
i∈L,j∈R

σiσjMij

∥∥∥∥
∞→1

(10)

is related to the expression on the left-hand side of inequality (7). The reason for doing
so is that this allows us to use strong matrix concentration inequalities, which can be used
to obtain a good upper bound on the expectation (10); this in turn translates to an upper
bound on m as a function of N , which is our goal. Such uses of matrix inequalities go back
to work of Ben-Aroya, Regev and de Wolf [2], in turn inspired by work of Kerenidis and
de Wolf [13] (see also [8]).

The matrices we will construct are indexed by sets of a given size s, where (with
hindsight) we choose s = bN1−2/kc. For i ∈ L, j ∈ R, define the matrix Mij ∈ R([N ]

s )×([N ]
s )

by
Mij(S, T ) =

∑
x∈[N ]

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r, S4T = Pij(x)

}
2The even case is similar but simpler. We focus on the odd case here since this is where we obtain new

bounds.
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if |Pij(0)| = 4r, and Mij(S, T ) = 0 if |Pij(0)| 6= 4r. From the definition of this matrix, it
is not hard to deduce from inequality (7) a lower bound on the expectation (10): one can
show that

Eσ∈{−1,1}m
∥∥∥∥ ∑
i∈L,j∈R

σiσjMij

∥∥∥∥
∞→1

�k,ε

(
N − 4r

s− 2r

)
m2N. (11)

Now we need to compute an upper bound for the expectation above. The key ingredient
for this is the following non-commutative version of Khintchine’s inequality, which can be
extracted from a result of Tomczak-Jaegermann [15]:

Theorem 2.1. Let n, d ≥ 1 be integers, and let A1, . . . , An be any sequence of d × d real
matrices. Then

Eσ∈{−1,1}n
∥∥∥∥ n∑
i=1

σiAi

∥∥∥∥
2

≤ 10
√

log d

( n∑
i=1

‖Ai‖22
)1/2

.

In order to apply this inequality, it is better to collect the matricesMij into groups and
use only one half of the random signs σi (another idea from [1]). For i ∈ L, σR ∈ {−1, 1}R,
we define the matrix

MσR
i =

∑
j∈R

σjMij.

Applying Theorem 2.1 to the expression

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
2

(for some fixed σR ∈ {−1, 1}R) and using properties (8) and (9) to bound the sum∑
i∈L ‖M

σR
i ‖22, one can show (with some effort) that

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
2

�k,ε

√
log

(
N

s

)
·m1/2(logN)k

m

N1−2/k (12)

holds whenever m ≥ N1−2/k (recall that we choose s = bN1−2/kc).
Finally, we note that∥∥∥∥ ∑

i∈L,j∈R

σiσjMij

∥∥∥∥
∞→1

=

∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
∞→1

≤
(
N

s

)∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
2

.

Averaging over all signs σ ∈ {−1, 1}m and combining inequalities (11) and (12), we con-
clude that m �k,ε N

1−2/k(logN)2k+1. As we started with the assumption (3), this shows
that m∗k−1(N)� N1−2/k(logN)2k+1 as wished.
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