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Abstract

Random intersection graphs containing an underlying community structure are a popular choice for mod-
elling real-world networks. Given the group memberships, the classical random intersection graph is obtained
by connecting individuals when they share at least one group.
We extend this approach and make the communities dynamic by letting them alternate between an active
and inactive phase. We analyse the new model, delivering results on degree distribution, local convergence,
giant component, and maximum group size, paying particular attention to the dynamic description of these
properties. We also describe the connection between our model and the bipartite configuration model, which
is of independent interest.

Keywords: Random intersection graphs, Bipartite generalised random graph, dynamic local weak conver-
gence, dynamic giant process;

1 Introduction and main results

1.1 Introduction

Networks are present in many areas of everyday life. We distinguish for instance social networks, such as
acquaintance networks, technological networks, such as the Worldwide Web, or biological networks such as
neural networks (see [27] for an extensive overview). Networks can be investigated in terms of many aspects, one
of them being the existence and shape of local communities.

Local communities are smaller structures that have, on average, more connections than the network as a
whole. They are crucial components of many real-life networks, such as social networks or the Internet, and
they naturally give rise to high clustering (see [40, Chapters 7 and 11]) - one of the most fiercely investigated
network’s properties, that many systems seem to share.

There are many reasons why communities appear in networks. It might be because of a set of common features
shared by a certain amount of individuals (for example the same nationality) or some underlying geometry (for
example living in the same city). In our model, we intuitively associate communities with social groups that
people can belong to, such as families, groups of friends, commuters on the same bus, etc. However, the model
can also be relevant to other types of networks with similar structures.

Due to their complexity, real-world networks are often modelled with the help of random graphs. There are
many ways of implementing a community structure such as described above. A classic choice is the random
intersection graph (RIG), first introduced in [45]. The distinctive feature of intersection graph models is a double
layer. We first establish a bipartite graph, with vertices on one side and communities on the other. After drawing
edges between the two groups, we obtain a resulting graph by connecting two vertices if and only if they both
belong to the same community. This procedure is called the one-node projection. Throughout the years, multiple
suggestions on how to generate such bipartite graphs with group memberships appeared [13]. This includes pre-
assigning the number of group memberships to every vertex and then connecting them to groups in a uniform
manner (uniform RIG [8, 43] or generalized RIG [9, 10, 11, 14, 28], generating group membership via the bipartite
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configuration model, i.e., assigning half-edges to individuals and groups and then connecting them uniformly at
random [22, 32, 33, 41], or performing independent percolation on the complete bipartite graph (binomial RIG
[26, 37, 45] or inhomogeneous RIG [12, 23]).

Our approach shares some similarities with the mentioned inhomogeneous RIG since we also assign weight
wi to every vertex i and the probability that vertex i belongs to a certain community depends on this weight.
However, we add a novel dynamic factor by letting all communities go through active and inactive phases. We
argue that such a modification is relevant for real-world networks since many of our regular social contacts
are temporary. For instance, we usually do not spend all our days with our colleagues, and we only meet our
closest friends a few times a week for a couple of hours. Other examples of temporary social interactions are
concerts or rides with public transport. Note that our model is also a natural generalization of static graphs with
communities, as the scenario in which all of the groups are present all the time is a special case.

The dynamics we implement in our model significantly differ from the well-investigated dynamic of graphs
whose size evolves in time, such as preferential attachment models [5, 30, 44, 48]. The size of our graph is static,
but the connections between individuals and communities (and hence, in the resulting graph the connections
between individuals themselves) keep evolving. This makes the model more similar to the graphs with dynamic
bond percolation [29, 46] or evolving configuration models [3, 4].

Contribution of the paper. In this paper, we investigate degree distribution, local convergence, and behavior
of the giant connected component. A main innovation of our work is the methodology required to give a dynamic
description of a bipartite generalized random graph. We investigate its dynamic local convergence and in partic-
ular, we introduce the concept of a dynamic giant component from the perspective of a uniformly chosen vertex,
looking at it as a process in time. We then show in which way it is related to the dynamic local limit. To our best
knowledge, the concept of dynamic local limit has only been discussed in the recent paper [24] where the authors
adopt a different approach and treat a different model. We also develop an auxiliary result on the equivalence
between our model and the bipartite configuration model described in [33], that can be of independent interest
(see Appendix). This result can be thought of as a bipartite/community version of the equivalence between the
configuration model and generalized random graph (see [30, Theorem 7.18] and also Section 2 in this paper).

Outline of the paper. We introduce our model and all necessary assumptions in Section 1.2. We state our
main results in Section 1.3 and provide a discussion in Section 1.4. We describe the overview of the proofs and
state some secondary results in Section 2. In Section 3 we prove the main results presented in Section 1.3. For
the conceptually straightforward proofs of the remaining results, we refer the reader to the Appendix.

1.2 Model and notation

In this section, we intuitively and formally introduce the model and list some necessary assumptions that will
hold throughout the paper.
Bipartite structure. As mentioned in the introduction, there are two layers to our model: the underlying
bipartite generalized random graph that we will call BGRGn(w), and the resulting dynamic random intersection
graph that we will call DRIGn(w). Let [n]k denote the set of subsets of size k of [n] = {1, ..., n}. BGRGn(w)
consists of the set of vertices [n] on the one hand and the set of groups ∪k≥2[n]k - a union of all k-element subsets
of [n] - with k ≥ 2, k ∈ N on the other. We intuitively think of them as left- and right-vertices respectively. To

differentiate degrees in the underlying and the resulting graph, we write d
(l)
i for the degree of vertex i ∈ [n] in

BGRGn(w) and d
(r)
a for the degree of a group a ∈ ∪k≥2[n]k in BGRGn(w). The connections are then formed by

making the left-vertices connect to active right-vertices (groups).

In the following, we explain in detail how these connections are formed and with what probabilities, and
what it means for a group a ∈ ∪k≥2[n]k to be active. The left-degrees here denote the (potential) number of
groups that vertices belong to and the right-degrees are the number of left-vertices connected to a particular
right-vertex, i.e., the group sizes. Hence,

d
(l)
i =

∞∑
k=2

∑
a∈[n]k:a∋i

1{a is ON}, (1.1)
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and, with |a| denoting the size of group a ∈ ∪k≥2[n]k,

d(r)a = |a| · 1{a is ON}. (1.2)

Group memberships. We quantify the number of all active groups as

∞∑
k=2

∑
a∈[n]k

1{a is ON}, (1.3)

and the number of all active groups a vertex i ∈ [n] is a part of as

∞∑
k=2

∑
a∈[n]k,a∋i

1{a is ON}. (1.4)

As one can see, we conceptually deviate from the popular strategy of fixing upfront a pia - a probability that a
vertex i is connected to a group a. Instead, we say that every combination of k vertices, with k ∈ [2, n], might
potentially form a group and we define the probability that such a group is active, depending on the choice of
vertices in question.

Group dynamics. Every group a ∈ ∪k≥2[n]k will alternate between an ON and OFF state. Each group a ∈ [n]k
behaves like a continuous-time Markov process with two states, which we refer to as ON and OFF. The holding
times, i.e., the time that a group spends in each of them, are exponentially distributed with rates

λa
ON = 1 and λa

OFF =
f(|a|)

∏
i∈a wi

ℓ
|a|−1
n

, (1.5)

respectively, where w = (wi)i∈[n] are the vertex weights, ℓn =
∑

i∈[n] wi and |a| denotes the size of a group

a ∈ [n]k. Naturally, f(|a|) is a function of a group’s size and can be chosen in a flexible way. Hence, the
stationary distribution π = [πON, πOFF] of these Markov chains is given by

πa
ON =

λa
OFF

λa
ON + λa

OFF

=
f(|a|)

∏
i∈a wi

ℓ
|a|−1
n + f(|a|)

∏
i∈a wi

and πa
OFF =

λa
ON

λa
ON + λa

OFF

=
ℓ
|a|−1
n

ℓ
|a|−1
n + f(|a|)

∏
i∈a wi

. (1.6)

Assumptions on weights. We first define what the empirical distribution of the weights is.

Definition 1.1 (Empirical vertex weights distribution). We define the empirical distribution function of the
vertex weights as

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x}, for x ≥ 0. (1.7)

Fn can be interpreted as the distribution of the weight of a uniformly chosen vertex. We denote the weight of
such a uniformly chosen vertex on in [n] by Wn = won . We impose the following conditions on the vertex weights:

Condition 1.2 (Regularity condition for vertex weight). There exists a distribution function F such that, as
n → ∞, the following conditions hold:

(a) Weak convergence of vertex weight:

Wn
d−→ W, (1.8)

where Wn and W have distribution functions Fn and F , respectively. Equivalently, for any x for which
x 7→ F (x) is continuous,

lim
n→∞

Fn(x) = F (x). (1.9)
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(b) Convergence of average vertex weight:

lim
n→∞

E[Wn] = E[W ], (1.10)

where Wn and W have distribution functions Fn and F , respectively. Further, we assume that E[W ] > 0.

(c) Convergence of second moment of vertex weight:

lim
n→∞

E[W 2
n ] = E[W 2], (1.11)

Remark 1.3. For the time being, we assume Condition 1.2(c), however, the results treated in this paper are
also true without it, which is very convenient for applications. We explain how Condition 1.2(c) can be lifted in
Remark B.11.

Assumptions on the function of a group’s size. We take f(|a|) = |a|!p|a|, where (pk)k≥2 is the probability
mass function of the group sizes. A particularly important case is a power-law group-size distribution where pk
is close to k−(α+1). We denote

µ =
∞∑
k=2

kpk, (1.12)

and assume µ < ∞. We also assume that the second moment of the group-size distribution is finite, so that
α > 2, i.e.,

µ(2) =

∞∑
k=2

k2pk < ∞. (1.13)

As explained below, these assumptions are necessary for the graph to be sparse, that is, the average degree
remains uniformly bounded.

Dynamic intersection graph. The resulting dynamic random intersection graph DRIGn(w) consists of the
set of vertices [n] = {1, ..., n}. It is formed from BGRGn(w) by drawing an edge between two vertices i, j ∈ [n] at
time s if they are in at least one active group together at time s. Hence, DRIGn(w) is a projection of BGRGn(w),
the random multi-graph given by the edge multiplicities

(
X(i, j)

)
i,j∈[n]

such that

X(i, j) =

∞∑
k=2

∑
a∈[n]k

1{i in a}∩{j in a}1{a is ON}. (1.14)

Let di(s) denote the degree of a vertex i ∈ [n] at time s in DRIGn(w). Then

di(s) =

∞∑
k=2

∑
a∈[n]k:a∋i

(|a| − 1)1{a is ON at time s}. (1.15)

Stationary vs dynamic. Due to the Markovian nature of our groups, BGRGn(w) and DRIGn(w) can be
examined in two scenarios: in the long run, under the stationary distribution, and dynamically, for every time
s ∈ [0, t] with t fixed, incorporating constant switching of the groups between the ON and OFF states. To make
it clear which situation we are referring to, we will name the graphs resulting from the stationary distribution
BGRGn(w) and DRIGn(w) and the dynamic graphs by

(
BGRGs

n(w)
)
s≥0

and
(
DRIGs

n(w)
)
s≥0

.

Uniformly chosen vertices. Throughout the paper we often discuss results with respect to a uniformly chosen
vertex. We denote a uniformly chosen vertex in the bipartite graph by V b

n and in the intersection graph by on.
Note that this notation does not specify whether we refer to the stationary, dynamic, or union graphs. If such
an indication is needed, then we will make it clear by stating an appropriate name of the graph, according to
the notation introduced in the previous paragraph. We also denote the degree of a uniformly chosen vertex in

BGRGn(w) by D
(l)
n and the degree of a uniformly chosen group by D

(r)
n . We denote the degree of a uniformly

chosen vertex in DRIGn(w) by Dn.
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1.3 Main results

In this section, we state our main results. We first investigate the behavior of our model in stationarity. We start
with the description of local convergence, i.e., the convergence of the neighborhood counts. We explain this
notion in more detail later in Section 2.2.1. We continue with the description of the giant component. Next, we
proceed to analyse the dynamic situation. We state our results on dynamic local convergence and dynamic giant
membership process. We close by discussing the dynamics of the largest group that is ON.

1.3.1 Stationarity

It turns out that under the stationary distribution and given appropriate conditions, our underlying graph -
BGRGn(w) - is equivalent to the bipartite configuration model, BCMn(d), introduced in [33] and investigated
further in [32]. Hence, it is possible to transfer the results on the local convergence and the giant component
from [33] and [32] to our model. The link between the two models and the transfer of results are explained in
detail in further sections. We now state its most important consequences: the results on the static local limit
and giant component.

Static local limit. Similarly, as in BCMn(d), the neighborhood of a uniformly chosen vertex in BGRGn(w)
resembles a mixture of two branching processes, each of them corresponding to offspring distributions of left-
and right-vertices of the root. Then, the neighborhood of a uniformly chosen vertex in DRIGn(w) resembles a
community projection (see 1.14) of this mixture. We summarise these statements in the following theorem, the
limiting objects themselves are later explained in detail in Section 2.2.2:

Theorem 1.4 (Local convergence of BGRGn(w) and DRIGn(w)). Consider BGRGn(w) under Condition 1.2.
As n → ∞, (BGRGn(w), V b

n ) converges locally in probability to (BPγ , 0), where (BPγ , 0) is a mixture of two
branching processes.
Consequently for DRIGn(w) under Condition 1.2, as n → ∞, (DRIGπ

n(w), on) converges locally in probability to
(CP, o), where (CP, o) is a random rooted graph.

We prove Theorem 1.4 in Appendix B.4.

Static giant component. Denote the giant component in DRIGn(w) by C1. The random variables D̃(l) and
D̃(r) are strongly connected to the offspring distributions present in the local limit of the underlying BGRGn(w)
and are explained in detail in Section 2.2.2. Denote Mn = #{a ∈ [n]k : a is ON} and Ak = #{a ∈ [n]k : a is ON}.
The following theorem gives a precise condition for the existence of the giant component in DRIGn(w).

Theorem 1.5 (Giant component in DRIGn(w)). Consider DRIGn(w). There exists ηl ∈ [0, 1], the smallest
solution of the fixed point equation

ηl = GD̃(r)(GD̃(l)(ηl)), (1.16)

and ξl = 1 −GD(l)(ηl) ∈ [0, 1] such that

|C1|
n

P−→ ξl. (1.17)

Furthermore, ξl > 0 exactly when

E[D̃(l)]E[D̃(r)] =
E[W 2](µ(2) − µ)

E[W ]
> 1. (1.18)

We call the above the supercritical case. In this case, C1 is unique.

We prove Theorem 1.5 in Appendix B.5.

1.3.2 Dynamic local convergence

We start with the description of the local limit of our graph in the dynamic scenario. This concept is rather new
in the study of the local convergence of graphs and to our best knowledge it has not been thoroughly investigated
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yet (see the discussion later on).

The concept behind dynamic local convergence explained. To examine the dynamic behavior, we first
look collectively at everything that happens during the time interval [0, t], for t fixed, and then develop a method
to withdraw information on the state of the graph for every s ∈ [0, t]. This yields one of our main results - the
convergence of the dynamic intersection graph seen as a stochastic process in time:

Theorem 1.6 (Dynamic local limit of DRIGs
n(w)). Under Condition 1.2, the dynamic intersection graph pro-

cess
((

DRIGs
n(w), on

))
s∈[0,t]

converges in a local weak sense to
(
(CPs, o)

)
s∈[0,t]

, where, for every s ∈ [0, t],(
(CPs, o)

)
s∈[0,t]

is a stochastic process of random rooted marked graphs.

We prove Theorem 1.6 in Section 3.7.

The limiting object. Due to the one-node projection needed to obtain DRIGs
n(w), the limiting object is also

rather involved and we fully explain what it is later (see Section 2). Now we only provide an informal description.

The limit (CPs, o) depends heavily on the limit of the marked bipartite union graph BGRG[0,t]
n (w), which is a

mixture of two marked branching processes: one corresponding to the offspring distribution of the left partition
and the other one to the offspring distribution of the right partition. The marks

(
σa
ON, σ

a
OFF

)
a

encoding activity

times of the edges (details in Section 2.3.4) are preserved in the limiting object as the limiting marks
(
taON, t

a
OFF

)
a
.

Because of the way the intersection graph is constructed, the limit (CP[0,t],
(
(taON, t

a
OFF)

)
, o) of the marked union

intersection graph DRIG[0,t]
n (w) is then a community projection of the limit of the marked bipartite union graph,

again preserving the edge marks. From there the limit of DRIGs
n(w) can be constructed for every s ∈ [0, t] from

(CP[0,t],
(
(taON, t

a
OFF)

)
, o), taking only the groups for which s ∈ [taON, t

a
OFF].

Dynamic degree. As mentioned earlier, if we know what happens to the graph during the time period [0, t],
we can extract the information on the degree of i ∈ [n] for every s ∈ [0, t].

Degree in DRIGs
n(w). For every i ∈ [n],

di(s) =
∑

a∈∪k≥2[n]k:a∋i,a ON in [0, t]

(|a| − 1)1{
s∈[σa

ON,σa
OFF]

}. (1.19)

Denote the number of groups of size k containing a vertex i at time s ∈ [0, t] by Cs
k(i). Since the degree

distribution is a functional of the local limit we deduce the following convergence of the degree process:

Corollary 1.7. As n → ∞, (
Ds

n

)
s∈[0,t]

d−→
( ∞∑

k=2

(k − 1)Cs
k(on)

)
s∈[0,t]

. (1.20)

1.3.3 Dynamic giant component

Denote the giant component in
(
DRIGs

n(w)
)
s≥0

at time s by C s
1 and the connected component of the root o at

time s in the limiting structure (CPs, o)s≥0 (see Theorem 1.6) by C s(o). We examine the behavior of the process
Jn(s) = 1{

on∈C s
1

}. From the behavior of the static giant (see Theorem 1.5), for all s,

Jn(s)
d−→ 1{

|C s(o)|=∞
}. (1.21)

However, we want to investigate the behavior of Jn(s) as a stochastic process in time. It turns out that this
question can be linked to local neighborhoods in our graph and answered thanks to local convergence:

Theorem 1.8 (Dynamic giant component). As n → ∞,(
1{

on∈C s
1

})
s∈[0,t]

d−→
(
1{

|C s(o)|=∞
})

s∈[0,t]
(1.22)

in the Skorokhod J1 topology.

We provide the proof of Theorem 1.8 in Section 3.8.
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1.3.4 Maximal group size

Define

K{0}
max = max

a∈∪k≥2[n]k:a is ON at time 0
|a|, (1.23)

and K
(0,t]
max is the maximum group size in the set of groups that switch ON in the time interval (0, t], respectively.

We define

K [0,t]
max = max{K{0}

max,K
(0,t]
max}, (1.24)

with K
{0}
max and K

(0,t]
max independent, as a consequence of the fact that different groups arrive independently. We

further define K
(s,t]
max for every s ∈ [0, t) as the maximum group size in the set of groups that switched ON in time

interval (s, t]. Hence, for every s ∈ [0, t),

K(0,t]
max = max{K(0,s]

max ,K
(s,t]
max}, (1.25)

and K
(0,s]
max ,K

(s,t]
max are independent. Now define

(
κ
(0,t]
max

)
t≥0

such that, for every t ≥ 0,

P(κ(0,t]
max ≤ k) = e−tk−αE[W ], (1.26)

and the evolution of the whole process is such that for every partition {0, s1, s2, ..., st−1, st} of the time interval
[0, st] it holds

κ(0,st]
max = max{κ(0,s1]

max , κ(s1,s2]
max , ..., κ(st−1,st]

max }, (1.27)

where, for non-overlapping time intervals (s1, t1] and (s2, t2], κ
(s1,t1]
max , κ

(s2,t2]
max are independent. We show that the

largest group size converges in distribution as a stochastic process to a limiting process
(
κ
(0,t]
max

)
t≥0

inheriting a

similar structure:

Theorem 1.9 (Maximum group size). If the group-size distribution is a power law, i.e.,
∑

l≥k pl ∝ k−α, with
α > 3, then, as n → ∞, (

K
[0,t]
max

n1/α

)
t≥0

d−→
(
κ(0,t]
max

)
t≥0

, (1.28)

in the Skorokhod J1 topology.

We prove Theorem 1.9 in Section 3.9.

Remark 1.10. Note that in the case of the maximal group present in the union graph, we do not run into the
same problem of creating connections that do not exist as was the case with degrees of vertices. Hence, the largest
group ever active in the union graph is at the same time the largest group ever active in the dynamic graph.

Remark 1.11. Note that one could also investigate a slightly different dynamic process, namely
(
n−1/αKs

max

)
s∈[0,t]

,

where Ks
max is the maximal group that is ON at time s. We conjecture that a proof of convergence of such a

process should be closely related to the proof of Theorem 1.9 that we present in the next section. However, the
dynamics of

(
n−1/αKs

max

)
s∈[0,t]

are significantly more involved: when the so far largest group switches OFF, then

the largest ON group becomes the previously second largest one. Hence, to analyse such a process it would be
necessary to keep track of the large ON groups as a process of infinite length.

1.4 Discussion

In this section, we comment on the advantages and limitations of our model and results and present open problems.

Dynamic factor. An undeniably interesting feature of our model is the introduction of temporary connections
between vertices. Intuitively, it makes sense that a dynamic model should describe real-world networks more ac-
curately. It would undoubtedly be interesting to investigate the truthfulness of this statement by comparing our
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model with other popular models through simulations. The dynamic we introduce is also interesting purely from
the perspective of random graph theory. The framework for the dynamic local limit we provide is an alternative
to the one in [24]. However, the limit itself is a rather complex construction and its interpretation is not very
straightforward.

Other work on bipartite graphs with group structure. To derive results on the static BGRGn(w), which
later on lead to results on DRIGn(w), we heavily rely on [32] and [33]. The authors of these papers derive
statements on local convergence and giant component in the bipartite configuration model with communities,
which can be transferred to our model by showing an appropriate relation between the bipartite configuration
model conditioned on simplicity and the bipartite generalized random graph conditioned on its degree sequence.
We provide more details in Section 2.

Other work on dynamic local convergence. To our best knowledge, the only paper that treats dynamic
local convergence is a recent pre-print by Dort and Jacob [24]. The approach of the authors is different from
ours: we are taking a classic approach by treating the dynamic graph as a stochastic process on the space of
rooted graphs with a traditional local metric, whereas they define a metric that incorporates time. Contrary to
[24], we also consider the dynamic giant component.

Group sizes. One of the beneficial features of our model is the existence of big groups (see Theorem 1.9). Such
groups are an important factor in real-world social networks, which are highly clustered. We set the model in a
way that allows for flexibility in the choice of the group-size distribution, as one can consider various (pk)k≥2,
not necessarily heavy-tailed ones. We are aware that many of our proof techniques require pk to have a finite
second moment, which might not seem ideal. However, the finite second moment is needed to obtain a sparse
graph, i.e., a graph with a bounded average degree.

Choice of parameters and alternative interpretation. The model is quite flexible in the choice of param-
eters, as we do not determine the weight variables or the group-size distribution and only keep some general
assumptions about them. However, the model does not allow for the one-to-one transfer of degree distribution
from real-world data, as opposed to the bipartite configuration model with communities (from [33]). Moreover,
at first glance, choosing the stationary distribution as in (1.6) might seem un-intuitive. However, there is a nice
intuitive description of this model. Our model is very closely connected to a Poisson process dynamic: take a
situation, where we form a new group according to a Poisson process with intensity ℓn. When a group is formed,
we choose its size k ≥ 2 according to some size distribution pk. Lastly, from all the groups of the chosen size, we
pick the one to appear proportionally to products of weights, i.e., with probability∏

i∈a wi∑
b∈[n]k

∏
j∈b wj

,

for all a ∈ [n]k. It can be shown that our model and the model we just described yield the same degree sequences
and hence, produce very similar graphs. However, our model conditioned on its degree sequence has the advan-
tage of being uniform over all bipartite graphs with such degree sequence, which proves to be a very useful feature.

Equivalence with the bipartite configuration model. An interesting byproduct of our paper is a rela-
tionship between the underlying bipartite structure in our model and the bipartite configuration model. More
mathematical details regarding this equivalence are stated in the next section and in the Appendix. This raises
the question of whether the dynamic versions of these models are also equivalent.

Relationship to GRG. Note that by taking p2 = 1 we can obtain the classic generalized random graph
GRGn(w) from our model. Hence, our results also apply to the generalized random graph.

2 Overview of the proofs

In this section, we provide the ideas behind the proofs of our main results. We include shorter and straightforward
proofs. We also state the auxiliary results that we think might be of independent interest.
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2.1 Bipartite generalized random graphs and configuration models are equivalent

Two of the most popular approaches to modelling real-world networks are the generalized random graph and the
configuration model. The generalized random graph denoted GRG, was introduced in 2006 by Britton, Deijfen
and Martin-Löf (see [18]). In this model, each vertex i ∈ [n] is given a weight wi and the probability that there
is an edge between vertex i and vertex j is equal to

pij =
wiwj

ℓn + wiwj
,

with ℓn =
∑

i∈[n] wi, just like in our model. Naturally, assigning edge probabilities according to weights can also

be done in a different way. For a more general version see [16], for related models see the Chung-Lu model (for
instance [19]) or the Norros-Reitu model [42]. For an overview of results on the classic generalized random graph
see [30, Chapter 6].

In contrast, in the configuration model (CM), the degrees of the vertices are fixed upfront. The concept of
the configuration model originates in the early works of Bollobás (see [15]). Since then, various configuration
models have been proposed but in its most standard formulation, the configuration model refers to a uniform
pairing of half-edges, which can be represented in a form of a graph by assigning an appropriately determined
number of half-edges to every node and then connecting them uniformly to form edges. A graph obtained in this
way is uniform over the space of all graphs with a given degree sequence [40]. Such a model was popularised and
intensively studied by Molloy and Reed (see [38], [39]). For an overview of results for the classic configuration
model see [30, Chapter 7]. Again, there are many modifications of the classic configuration model such as the
configuration model with households [47].

Despite their differences, it turns out that under certain conditions the generalized random graph and the
configuration model are equivalent (see [30, Theorem 7.18]). Also note that the static BGRGn(w) introduced by
us can be perceived as a bipartite, multi-dimensional version of the generalized random graph (hence the name
BGRGn(w)), where also certain communities are present. It turns out that this model is accordingly equivalent
to a bipartite configuration model with communities BCMn(d), introduced and studied in [33] and [32], under
the same conditions that guarantee equivalence of the classic generalized random graph and the configuration
model. More precisely, it turns out that, under such conditions, both BGRGn(w) and BCMn(d) from [33] are
uniform random graphs, and hence have the same distribution.

This relationship is one of the most important building blocks in the proof of our results. Thanks to it, we
can transfer results proved in [32, 33] to our graph. As these auxiliary statements can be of independent interest,
we present them below:

Theorem 2.1 (BGRGn(w) conditioned on degree sequence is uniform). BGRGn(w) conditioned on {d(l)i (X) =

d
(l)
i ∀i ∈ [n], d

(r)
a (X) = d

(r)
a ∀a ∈ ∪k≥2[n]k}, is uniform over all bipartite graphs with degree sequence (d(l),d(r)) =(

(d
(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
.

An equivalent result follows for the BCMn(d) conditioned on simplicity:

Theorem 2.2 (BCMn(d) conditioned on being simple is uniform). For any degree sequence d = (d(l),d(r)) =(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
, and conditionally on the event {BCMn(d) is a simple graph}, BCMn(d) is a uniform

bipartite graph with degree sequence d.

As a natural consequence, BGRGn(w) conditioned on its degree and BCMn(d) conditioned on simplicity have
the same distribution. We properly state this result in the following theorem, however, we first note that under
some extra assumptions, an even stronger connection between the two graphs can be shown. As this connection
plays a crucial role in many of our proofs, we include it in the theorem. The mentioned assumptions are as
follows:

Condition 2.3 (Regularity conditions). The random variables D
(l)
n and D

(r)
n have distribution function F

(l)
n and

F
(r)
n respectively, given by

F (l)
n (x) =

1

n

∑
i∈[n]

1{d(l)
i ≤x} and F (r)

n (x) =
1

n

∑
a∈[n]k

1{d(r)
a ≤x}. (2.1)
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We impose the following assumptions on these distribution functions:

a) There exist random variables D(l), D(r) such that, as n → ∞ and for every l ≥ 0, k ≥ 2,

P(D(l)
n = l | Gn)

P−→ P(D(l) = l) and P(D(r)
n = k | Gn)

P−→ P(D(r) = k), (2.2)

where (· | Gn) denotes conditioning with respect to a realisation of a random graph. Moreover, E[D(l)] < ∞,
E[D(r)] < ∞ and, as n → ∞,

E[D(l)
n | Gn]

P−→ E[D(l)] and E[D(r)
n | Gn]

P−→ E[D(r)]. (2.3)

Additionally, we put a constraint on the second moment of degree random variables:

b) E
[(
D(l)

)2]
,E
[(
D(r)

)2]
< ∞ and, as n → ∞,

E
[(
D(l)

n

)2 | Gn

] P−→ E
[(
D(l)

)2]
and E

[(
D(r)

n

)2 | Gn

] P−→ E
[(
D(r)

)2]
. (2.4)

With all the above in mind, the following result relates BGRGn(w) and BCMn(d):

Theorem 2.4 (Relation between BGRGn(w) and BCMn(d)). Let d
(l)
i be the degree of left-vertex i in BGRGn(w),

d
(r)
a the degree of a group a in BGRGn(w), and D = (d(l),d(r)) =

(
(d

(l)
i )i∈[n], (d

(r)
a )a∈[m]

)
. Then,

P(BGRGn(w) = G | D = d) = P(BCMn(d) = G | BCMn(d) simple). (2.5)

Let En be a subset of multi-graphs such that P(BCMn(d) ∈ En)
P−→ 1 when D satisfies Condition 2.3. Assume

that the degree sequence D of BGRGn(w) satisfies Condition 2.3. Then also P(BGRGn(w) ∈ En) −→ 1.

The above theorem is a bipartite equivalent of the relationship between the classic generalised random graph
GRGn(w) and the configuration model CMn(d) (see for instance [30, Theorem 7.18]). Hence, the idea behind the
proof is also similar. We first show that BGRGn(w) conditioned on the degree sequence is uniform. After that,
we establish that BCMn(d) conditioned on simplicity is also uniform. Finally, we use both statements to prove
the desired result. The proofs of the auxiliary steps as well as of the final Theorem 2.4 can be found in Appendix A.

2.2 Static local limit and giant component

In this section, we investigate the local convergence of our graph under the stationary distribution. We intro-
duce and describe in more detail the limiting local objects of the underlying BGRGn(w) and of the resulting
DRIGn(w). Further on, we examine the proportion of vertices that are in the giant connected component. We
state a phase transition in the size of the largest component in terms of the model parameters and give the
explicit criterion under which a unique giant component exists.

2.2.1 Brief overview of local convergence

Before stating our results we briefly define local convergence in probability and local marked convergence in
probability. Local convergence was introduced in [6] and a few years later, independently, in [1]. It describes
the resemblance of the neighborhood of a vertex chosen uniformly at random to a certain limiting graph. To
formalise this resemblance we introduce the notion of neighborhood and isomorphism on graphs:

Definition 2.5 (Rooted graph, rooted isomorphism and r-neighborhood). (i) We call a pair (G, o) a rooted
graph if G is a locally finite, connected graph and o is a distinguished vertex of G. We denote the space of
rooted graphs by G⋆.

(ii) We say that the rooted graphs (G1, o1), (G2, o2) are rooted isomorphic if there exists a graph-isomorphism
between G1 and G2 that maps o1 to o2. We denote this isomorphism of rooted graphs by (G1, o1) ≃ (G2, o2).

(iii) For r ∈ N, we define Br(G, o), the (closed) r-ball around o in G or r-neighborhood of o in G, as the subgraph
of G spanned by all vertices of graph distance at most r from o. We think of Br(G, o) as a rooted graph
with root o.
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The notion of graph isomorphism enables defining a metric on the space of rooted graphs:

Definition 2.6. (Metric on rooted graphs) Let (G1, o1) and (G2, o2) be two rooted connected graphs, and write
Br(Gi, oi) for the neighborhood of vertex oi ∈ V (Gi). Let

R⋆ = sup{r : Br(G1, o1) ≃ Br(G2, o2)}, (2.6)

and define

dG⋆

(
(G1, o1), (G2, o2)

)
=

1

R⋆ + 1
. (2.7)

The space G⋆ of rooted graphs under the metric dG⋆
is separable and thus Polish (for proof see [31, Appendix

A]), which will later prove very useful in the case of dynamic local convergence. We now define local convergence:

Definition 2.7. (Local convergence in probability) Let Gn = (Vn, En) with size |Vn|
P→ ∞ be a sequence of random

graphs, and let on | Gn ∼ Unif [V(Gn)]. Let (G, o) denote a random element (with arbitrary distribution) of the
set of rooted graphs, which we call a random rooted graph. We say that (Gn, on) converges locally in probability
to (G, o), if for any fixed rooted graph (H⋆, o

′) and r ∈ N,

P(Br(Gn, on) ≃ (H⋆, o
′) | Gn) :=

1

|Gn|
∑

i∈V(Gn)

1{Br(Gn,i)≃(H⋆,o′)} (2.8)

P−→ P(Br(G, o) ≃ (H⋆, o
′)).

We say that (G, o) is the local limit in probability of (Gn)n≥1.

Thus, intuitively, local convergence is defined as the convergence of the proportion of vertices whose neighbor-
hoods have some specified structure. For further reading about local convergence, see for instance [31, Chapter
2-5] and the references therein for examples of local limits of various graph models. Since we will actually need a
more general setting of marked graphs and their convergence, we now briefly present some of the theory behind it.

Marked graphs and marked local convergence. Marks allow us to include additional information about
vertices and/or edges such as directions, colours, and so on. In particular, we use marks to indicate the belonging
of a vertex to a certain partition (of left- or right-vertices) in the underlying BGRGn(w) and to denote the on
and off times of edges in the dynamic graphs, based on the group activity.

Definition 2.8 (Marked graphs). Let G denote the set of all locally finite (multi)graphs on a countable (finite
or countably infinite) vertex set. A marked (multi)graph is a (multi)graph G = (V (G), E(G)), G ∈ G, together
with a set M(G) of marks taking values in a complete separable metric space Ξ, called the mark space. M maps
from V (G) and E(G) to Ξ. Images in Ξ are called marks. Each edge is given two marks, one associated with
(‘at’) each of its endpoints, in particular, for v ∈ V (G), Ξ(v) ∈ M, and for e ∈ E(G), Ξ(e) ∈ M2. Moreover, M
contains the special symbol ∅ which is to be interpreted as “no mark”. We denote the set of graphs with marks
from the mark set M by G(M).

We generalize Definitions 2.5 and 2.6 to the setting of marked rooted graphs:

Definition 2.9 (Rooted marked graph and r-neighborhood.). (i) We choose a vertex o in a marked graph
(G,M(G)) to be distinguished as the root. We denote the rooted marked graph by (G,M(G), o).
We also denote the set of rooted marked graphs by G⋆(M). We call a random element of G⋆(M) (with an
arbitrary joint distribution) a random rooted marked graph.

(ii) The (closed) ball Br(G,M(G), o) can be defined analogously to the unmarked graph ball (Definition 2.5
(iii)), by restricting the mark function to the subgraph as well.

Definition 2.10 (Metric on marked rooted graphs). Let dΞ be a metric on the space of marks Ξ. Let

R⋆ = sup{r : Br(G1, o1) ≃ Br(G2, o2), and there exists ϕ such that (2.9)

dΞ((m1(i),m2(ϕ(i))) ≤ 1/r ∀i ∈ V (Br(G1, o1)),

dΞ(m1(i, j),m2(ϕ(i, j))) ≤ 1/r ∀{i, j} ∈ E(Br(G1, o1))},
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with ϕ : V (Br(G1, o1)) −→ V (Br(G2, o2)) running over all isomorphisms between Br(G1, o1) and Br(G2, o2),
that map o1 to o2. Then define

dG⋆

(
(G1,M(G1), o1), (G2,M(G2), o2)

)
=

1

R⋆ + 1
. (2.10)

This turns G⋆(M) into a Polish space, i.e., a complete, separable metric space.

Definition 2.10 puts a metric structure on marked rooted graphs. With this metric topology in hand, we can
simply adapt all convergence statements to this setting. Hence, we generalize Definition 2.8 as follows:

Definition 2.11 (Local convergence in probability of marked graphs with continuous marks). Let (Gn,M(Gn))n∈N,

(Gn,M(Gn)) ∈ G⋆(M) be a sequence of (finite) random marked graphs such that |Gn|
P→ ∞ and let on ∼

Unif [V(Gn)]. Let P
(
· | (Gn,M(Gn))

)
denote conditional probability with respect to the marked graph (on is the

free variable). We say that (Gn,M(Gn), on)n∈N converges locally in probability to a (possibly) random element
(G,M(G), o) ∈ G⋆(M) if for any fixed rooted graph (H⋆,M(H⋆), o′) and r ∈ N, as n → ∞,

P

(
dG⋆

(
(Gn,M(Gn), on), (H⋆,M(H⋆), o′)

)
≤ 1

r + 1
| (Gn,M(Gn))

)
(2.11)

:=
1

|Gn|
∑

i∈V(Gn)

1{
dG⋆

(
(Gn,M(Gn),i),(H⋆,M(H⋆),o′)

)
≤ 1

r+1

} P−→ P

(
dG⋆

(
(G,M(G), o), (H⋆,M(H⋆), o′)

)
≤ 1

r + 1

)
.

We say that (G,M(G), o) is the local limit in probability of (Gn,M(Gn))n≥1.

2.2.2 Static local convergence of the dynamic random intersection graph

To prove static local convergence of DRIGn(w) we first look at static local convergence of BGRGn(w). The
authors of [33] and [32] derive results on the local convergence and the giant component of BCMn(d) under the
assumption that BCMn(d) fulfils Condition 2.3(i). From the previous section we know that under Condition
2.3(i)-(ii), results applying to BCMn(d) also apply to BGRGn(w). Hence, it suffices to show that our model
under stationarity and assuming Condition 1.2 fulfils Condition 2.3(i) and argue that Condition 2.3(ii) is in fact
not necessary to obtain local convergence and the giant component in BGRGn(w).
Due to the one-node projection present in [33] and in our model, the statements about the resulting intersection
graphs, i.e, of RIGC and DRIGn(w), automatically follow from results shown for BCMn(d) and BGRGn(w)
respectively. Since verification of the regularity conditions is quite elementary and the remaining results follow
directly from [33] and [32], the proofs of all static results can be found in Appendix B. Here we only describe the
limiting object and state the theorems.

The static limiting object (BPγ , 0). We start by introducing (BPγ , 0), the local limit in probability of
BGRGn(w). Naturally, as we are dealing with two types of vertices - the left and the right ones - a typical
neighborhood in this graph will be different depending on the type of the root. However, it is not possible to
determine whether a uniformly chosen root was a left- or a right-vertex just on the basis of its neighborhood.
Hence, we introduce marks to keep track of different types of vertices. Let Mb = {l, r} be the set of marks. We
mark left-vertices as l and right-vertices as r. Formally,

Eb
n =

{
l if i ∈ [n],

r if a ∈ [n]k≥2.
(2.12)

Now we introduce the limiting object (BPγ , Eγ , 0), equipped with the mark function Eb
n, while (BPγ , 0) is then

obtained by ignoring the mark function. Define a mixing variable γ as

P(γ = l) =
1

1 + Mn

n

and P(γ = r) =
Mn

n

1 + Mn

n

. (2.13)

Then, (BPγ , Eγ , 0) is a mixture of two marked ordered BP-trees, (BPl, El, 0) and (BPr, Er, 0):

(BPγ , Eγ , 0)
d
= 1{γ=l}(BPl, El, 0) + 1{γ=r}(BPr, Er, 0), (2.14)
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where (BPl, El, 0) describes the neighborhood of a left-vertex and (BPr, Er, 0) of a right one. Hence,

(BGRGn(w), El, V (l)
n )

P→ (BPl, El, 0) and (BGRGn(w), Er, V (r)
n )

P→ (BPr, Er, 0), (2.15)

where V
(l)
n and V

(r)
n denote vertices chosen uniformly from the set of all left- and right-vertices respectively. The

mixing variable γ can thus be re-interpreted as the random mark of the root.

Before we proceed, we need to introduce the size-biased version of a random variable:

Definition 2.12. For an N-valued random variable X with E[X] < ∞, we define its size-biased distribution X⋆

and the shift variable X̃ by their probability mass functions, for all k ∈ N,

P(X⋆ = k) =
kP(X = k)

E[X]
and P(X̃ = k) = P(X⋆ − 1 = k). (2.16)

Now we can continue with the description of the random ordered marked tree (BPl, El, 0) itself. We consider
a discrete-time branching process where the offspring of any two individuals are independent. We then give the
individuals in even and odd generations marks l and r, respectively. Generation 0 contains the root alone and the
root’s offspring distribution is D(l) (the limit of the degree of a uniformly chosen left-vertex, see Condition 2.3).
In consecutive generations, the offspring distribution of individuals marked with l will be D̃(l) and of individuals
marked with r will be D̃(r). (BPr, Er, 0) is defined analogously with reversed roles of l and r.

Static local limit of DRIGn(w). Having specified the local limit of the underlying BGRGn(w), we proceed to
the limit of the resulting graph DRIGn(w).

The static limiting object (CP, o). The limit that we denote by (CP, o) is a random rooted graph and
the “community projection” (see (1.14)) of (BPγ , Eγ , 0) in the same way that DRIGn(w) is the “community
projection” of the underlying BGRGn(w): it extracts only vertices marked as l and builds links between these
which were previously connected to the same vertex with mark r. Let us accentuate that even though the final
limit is not a tree, it relies on the tree-like structure of the underlying BGRGn(w). This constructs the local
limit (CP, o) of DRIGn(w).

2.2.3 Degree distribution

The average degree in DRIGn(w) is asymptotically a sum of rescaled Poisson variables whose rates depend on
the limiting weight variable W (see Condition 1.2):

Corollary 2.13 (Convergence of degree of a random vertex in DRIGn(w)). Let w satisfy Condition 1.2. Then,

Dn
d−→
∑
l≥2

(l − 1)Xl, (2.17)

where Xl is a mixed-Poisson variable with mixing distribution lplW .

Corollary 2.13 is a direct consequence of the static local convergence and we can actually prove a stronger
result about the degree distribution in the static graph. Define

Q
(n)
k =

1

n

∑
i∈[n]

1{di=k}. (2.18)

Then, the following theorem shows that
(
Q

(n)
k

)
k≥0

converges in total variation distance:

Theorem 2.14 (Degree sequence in DRIGn(w)). For every ε > 0,

P
( ∞∑

k=0

|Q(n)
k − qk| > ε

)
−→ 0, (2.19)

where qk = P
(∑

l≥2(l − 1)Xl = k
)
with

(
Xl

)
l≥2

- independent mixed-Poisson variables with mixing distribution

lplW , i.e., such that

P(Xl = k) = E
[
e−lplW

(lplW )k

k!

]
. (2.20)

13



Theorem 2.14 is proven in Appendix B.3.

We next investigate the sparsity of our model by investigating the average degree:

Theorem 2.15 (Convergence of average degree in DRIGn(w)). As n → ∞,

E[Dn | Gn]
P−→ (µ(2) − µ)E[W ]. (2.21)

The proof of this result (see Appendix B.3) shows why Conditions 1.12 and 1.13 are necessary for the sparsity
of our model.

2.2.4 Static giant component

Since real-world networks tend to be highly connected and a large fraction of individuals very often lies in a single
connected component, it is useful to study the behavior of this component. We denote the cluster or connected
component of a vertex i ∈ [n] in the graph G = ([n], E) by C (i). We denote the graph distance in G, i.e., the
minimal number of edges in a path linking i and j, by distG(i, j). We define

Definition 2.16 (Giant connected component).

C (i) = {j ∈ [n] : distG(i, j) < ∞}. (2.22)

Let C1 denote the largest connected component, i.e., let C1 satisfy

|C1| = max
i∈[n]

|C (i)|, (2.23)

where |C (i)| denotes the number of vertices in C (i) and we break ties arbitrarily.

Of course, it can happen that there are two or more maximal clusters in a graph. For that reason, the unique-
ness of the giant is often investigated. Another popular question is the existence of a component containing a
linear proportion of vertices - the so-called giant component problem. It was first studied by Erdős and Rényi
([25]) and has since been investigated on multiple other models (for instance the Chung-Lu model [20, 21], or
configuration model [17, 35, 38, 39]).

Due to the structure of intersection graphs, the giant component exists when it exists in the underlying
bipartite graphs. Hence, the results on the giant component in DRIGn(w) follow from the results on the giant
component in BGRGn(w). Similarly, as in the case of local convergence, thanks to the link between our model
under stationarity and the BCMn(d) and the fact that regularity conditions we impose on the weights variables
imply regularity conditions of degrees in BGRGn(w), we are allowed to transfer the statements on the giant
component for BCMn(d) and RIGC, proven in [32]. We again state the results and prove them in more detail in
Appendix B.5).

Static giant component in the BGRGn(w). We start with the bipartite graph. Denote the giant component
in BGRGn(w) by C1,b. Its giant is studied in the next theorem:

Theorem 2.17 (Giant component in BGRGn(w)). Under the supercriticality condition E[D̃(l)]E[D̃(r)] > 1, as
n → ∞,

|C1,b ∩ V(l)|
n

P−→ ξl, (2.24)

where ξl = 1 −GD(l)(ηl) ∈ [0, 1] and ηl ∈ [0, 1] is the smallest solution of the fixed point equation

ηl = GD̃(r)(GD̃(l)(ηl)). (2.25)

We prove Theorem 2.17 in Appendix B.5.

Static giant component in the DRIGn(w). The statement on the giant in DRIGn(w) follows immediately.
See Theorem 1.5.
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Remark 2.18. The fact that the fixed point equation (1.16) shows up here can be intuitively explained as follows:
For a vertex to be in giant component its local neighborhood has to survive. In the results on the local convergence
we showed that local neighborhoods are locally tree-like and are well approximated by branching processes with
offspring distributions D̃(l) and D̃(r). Hence, the fixed point equation follows from the general theory of branching
processes and their extinction probability.

2.3 The union graph

Having shown multiple results for the static situation, we proceed to the dynamic part. In Section 1.3 we ex-
plained that in order to describe the graph dynamically for every time point s, it is helpful to first look collectively
at everything that happens during a time interval [0, t], for t fixed. For that reason, we create a union graph

BGRG[0,t]
n (w) (and accordingly, a resulting DRIG[0,t]

n (w)) which includes any group that was ON at time t = 0,
but also all the groups that ever switched on within the time interval (0, t].

Group probabilities in BGRG[0,t]
n (w). Note that

P(a ON within [0, t]) = πa
ON + πa

OFFP(a switches ON within (0, t]) (2.26)

= πa
ON + πa

OFF

(
1 −P(a never ON within (0, t])

)
= πa

ON + πa
OFF

(
1 − e−tλa

OFF
)

=
f(|a|)

∏
i∈a wi

ℓ
|a|−1
n + f(|a|)

∏
i∈a wi

+
ℓ
|a|−1
n

ℓ
|a|−1
n + f(|a|)

∏
i∈a wi

(
1 − e

−t
f(|a|)

∏
i∈a wi

ℓ
|a|−1
n

)
≤ πa

ON(1 + t),

using the fact that 1 − e−x ≤ x. Hence, we see that even though the group probability in the union graph is
somewhat complicated, it can be bounded from above by πa

ON(1 + t), which is similar to the group probability in

the static graph. Thus, instead of deriving convergence results directly for BGRG[0,t]
n (w), it is more convenient

to couple it with a graph that is closer to the static graph.

2.3.1 The rescaled bipartite graph BGRG(t)
n (w)

Remember that since BGRGn(w) is uniform and fulfils the required degree regularity conditions, we can relate
it to the BCMn(d) model from [32] and [33] and hence deduce its local convergence. It is not difficult to see that
a graph with group ON probability P(a is ON) = πa

ON(1 + t) would also satisfy equivalent regularity conditions.
However, a graph with P(a is ON) = πa

ON(1+t),P(a is OFF) = 1−πa
ON(1+t) will not exactly be uniform (which

is easy to see after analysing the proofs of Proposition A.1 and Theorem 2.1 in Appendix A) ). Therefore, we
define a graph with group probability also closely related to πa

ON(1 + t), but with a more convenient structure:

Definition of BGRG(t)
n (w). We introduce BGRG(t)

n (w), a graph following the same dynamic as the static
BGRGn(w) but with slightly modified group probabilities: we fix the holding times to be exponentially dis-
tributed with rates

λa
ON = 1 and λa

OFF =
(1 + t)f(|a|)

∏
i∈a wi

ℓ
|a|−1
n

. (2.27)

Hence, the new stationary distribution π(t) = [π
(t)
ON, π

(t)
OFF] is given by

π
a,(t)
ON =

(1 + t)f(|a|)
∏

i∈a wi

ℓ|a|−1 + (1 + t)f(|a|)
∏

i∈a wi
and π

a,(t)
OFF =

ℓ
|a|−1
n

ℓ
|a|−1
n + (1 + t)f(|a|)

∏
i∈a wi

, (2.28)

for every a ∈ [n]k. We again impose Condition 1.2 on the weights w = (wi)i∈[n] and assume finite first and
second moment of the group-size distribution p|a|, taking f(|a|) = |a|!p|a| (see (1.12) and (1.13)). It turns out

(see Remark B.14) that BGRG(t)
n (w) conditioned on its degree sequence is uniform and that its degree sequences

fulfil the same regularity conditions as the degree sequences of BGRGn(w). The limiting variables of left- and
right-degrees are also analogous to the limiting degree variables in BGRGn(w), with Poisson parameters rescaled

by a factor t+ 1 (for an explicit statement of the regularity conditions see Remark B.14). Hence, BGRG(t)
n (w) is

just like BGRGn(w) with slightly bigger group probabilities and thus, it asymptotically behaves in the same way.

To draw the same conclusion about the union graph BGRG[0,t]
n (w) it then suffices to show it is asymptotically

equivalent to BGRG(t)
n (w), which we explain further in the next section.
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2.3.2 Asymptotic equivalence of multi-graphs

In this section, we briefly introduce the theory of asymptotic equivalence of graph sequences. In particular, we
extend the condition determining when two inhomogeneous random graphs are asymptotically equivalent to the
case of random multi-graphs. We start by introducing the notion of asymptotic equivalence for general random
variables. We say that (X ,F) is a measurable space when X is the state space (the space of all possible outcomes)
and F the set of all possible events. We are particularly interested in finite measurable spaces, in which case X
is a finite set and F can be taken to be the set of all subsets of X .

Definition 2.19 (Asymptotic equivalence of sequences of random variables). Let (Xn,Fn) be a sequence of
measurable spaces. Let Pn and Qn be two probability measures on (Xn,Fn). We say that the sequences

(
Pn

)
n≥1

and
(
Qn

)
n≥1

are asymptotically equivalent if, for every sequence En ∈ Fn of events, limn→∞ Pn(En)−Qn(En) =

0. Thus,
(
Pn

)
n≥1

and
(
Qn

)
n≥1

are asymptotically equivalent when they have asymptotically equal probabilities.

In the following theorem, we give a criterion guaranteeing that two bipartite multigraph sequences are asymp-
totically equivalent. The section follows from results by [34]. We denote (pa)a∈[n]k for the group probabilities in
some bipartite graph BRGn(p) for which the probability that a group a is present equals pa and all groups exist
independently of each other.

Theorem 2.20 (Asymptotic equivalence of bipartite multi-graphs). Let BRGn(p) and BRGn(q) be two random
graphs with group probabilities p = (pa)a∈[n]k≥2

and q = (qa)a∈[n]k≥2
respectively. If there exists ε̂ > 0 such that

maxa∈∪k≥2[n]k qa ≤ 1 − ε̂, then BRGn(p) and BRGn(q) are asymptotically equivalent if

lim
n→∞

∑
a∈∪k≥2[n]k

(pa − qa)2

qa
= 0. (2.29)

Remark 2.21. If additionally there exists ε > 0 such that maxa∈∪k≥2[n]k pa ≤ 1 − ε, BRGn(p) and BRGn(q)
are asymptotically equivalent if and only if

lim
n→∞

∑
a∈∪k≥2[n]k

(pa − qa)2

pa ∧ qa
= 0. (2.30)

In particular, BRGn(p) and BRGn(q) are asymptotically equivalent when they can be coupled in such a way
that P(BRGn(p) ̸= BRGn(q)) = o(1). Indeed, there is a strong relationship between the asymptotic equivalence
and coupling, which becomes obvious after the proof. We prove Theorem 2.20 in Section 3.1.

Having explained what is meant by asymptotic equivalence, we state our main equivalence result:

Theorem 2.22 (Asymptotic equivalence of BGRG[0,t]
n (w) and BGRG(t)

n (w)). Under Condition 1.2, the random

graphs BGRG[0,t]
n (w) and BGRG(t)

n (w) are asymptotically equivalent.

We prove Theorem 2.22 in Section 3.2. Thanks to the equivalence, all results that we derive for BGRG(t)
n (w)

automatically hold for BGRG[0,t]
n (w).

2.3.3 Local limit of union graphs

We now state the results on the local convergence of the union graph, starting with the bipartite one:

Local limit of BGRG[0,t]
n (w). Following the appropriate statement for the rescaled graph BGRG(t)

n (w), we
conclude that the bipartite union graph behaves very regularly and fulfils the equivalent of Condition 2.3 (i).

Moreover, the limiting variables of left- and right-degrees in BGRG[0,t]
n (w), denoted further on as D̃(l),[0,t] and

D̃(r),[0,t] respectively, are just the limiting variables of left- and right-degrees in BGRGn(w) with Poisson pa-
rameters and proportion of groups of size k rescaled by a factor t + 1. Hence, the union graph asymptotically
behaves in the same way as the stationary graph with accordingly larger edge probabilities.

The limiting object (BP[0,t]
γ , o). The local limit of BGRG[0,t]

n (w) is again a mixture of two branching processes

corresponding to two types of vertices and everything is analogous to the limit of BGRGn(w), with D(l),[0,t]
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and D(r),[0,t] taking the place of D(l) and D(r) as the offspring distribution of the root, D̃(l),[0,t] replacing D̃(l)

as the offspring distribution of the rest of the l−vertices and D̃(r),[0,t] taking the place of D̃(r) as the offspring
distribution of the rest of the r−vertices.

Local limit of DRIG[0,t]
n (w). The local limit (CP[0,t], o) of DRIG[0,t]

n (w) can be constructed from the local

limit of BGRG[0,t]
n (w) via the appropriate community projection in exactly the same way as the local limit of

DRIGn(w) was constructed via the community projection from the local limit of BGRGn(w) (see the previous
section):

Theorem 2.23 (Local limit of BGRG[0,t]
n (w) and DRIG[0,t]

n (w)). Assume that Condition 1.2 holds. Then(
BGRG[0,t]

n (w), V b
n

)
converges locally in probability to (BP[0,t]

γ , o), where (BP[0,t]
γ , o) is described above. Also(

DRIG[0,t]
n (w), on

)
converges locally in probability to (CP[0,t], o), where (CP[0,t], o) is described above.

We prove Theorem 2.23 in Section 3.3. From this analysis we also obtain results on the degrees D
[0,t]
n and its

expectation as in Corollary 2.13 & Theorem 2.14. We refrain from stating those.

2.3.4 Marked union graph

Edge marks. We remark that the union graph is already dynamic, as it takes dynamically appearing groups into
account. However, it does not equal the actual dynamic graph, as it does not take into account whether certain
groups were actually active at the same time. Therefore it might show connections that were actually never
made at any time in [0, t]. Yet, it enables tracking the actual interactions between vertices. For this purpose,

we add marks along the edges of BGRG[0,t]
n (w) indicating the switch on and switch off times within [0, t]. These

times are determined by the activity of the groups responsible for the creation of these edges. We first mark the
groups (right-vertices): write σa

ON to denote the exact time that a group a switches on within [0, t] and σa
OFF

to denote the first time it switches off in (0, t]. Hence, the new mark-set is Md = {l, r, [0,∞) × (0,∞)}. We

then transfer the marks to the edges, i.e., every edge in BGRG[0,t]
n (w) copies the marks of the right-vertex it is

adjacent to.

The above marks are also well-behaved. The marks of group a present in the union graph are independent
for different a and they converge in distribution with respect to the probability measure of the union graph to
some limiting marks (taON, t

a
OFF):

Lemma 2.24 (Convergence of the law of the edge marks.). Let FON,OFF
n|t denote the joint law of

(
σa
ON, σ

a
OFF

)
for a ∈ ∪k≥2[n]k, conditioned on the fact that such a ∈ ∪k≥2[n]k is ON during [0, t], i.e.,

FON,OFF
n|t (s1, s2) = P(σa

ON ≤ s1, σ
a
OFF ≤ s2|ON at some point in [0, t]), (2.31)

where s1 ∈ [0, t] and s2 ≥ s1. Then, as n → ∞,

FON,OFF
n|t (s1, s2) −→ FON,OFF

t (s1, s2), (2.32)

with

FON,OFF
t (s1, s2) =

1 − e−s2+s1 + s1
1 + t

.

Consequently, (
σa
ON, σ

a
OFF

) d−→ (taON, t
a
OFF), (2.33)

where (taON, t
a
OFF) has joint cumulative distribution function FON,OFF

t .

We prove Lemma 2.24 in Section 3.

The limit of the marked union graph. Lemma 2.24 is crucial in showing the dynamic local convergence.
Thanks to the facts that edge marks are independent, as all the groups switch on and off independently of each
other, and that they converge in distribution to limiting marks (taON, t

a
OFF) (as shown in Lemma 2.24) we know

that they converge jointly for all groups and all s ∈ [0, t]. Hence, the marked bipartite union graph will converge

to the marked limit of BGRG[0,t]
n (w), which will imply that also the marked intersection union graph converges:
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Theorem 2.25 (Local limit of marked BGRG[0,t]
n (w) and DRIG[0,t]

n (w)).
(
BGRG[0,t]

n (w),
(
(σa

ON, σ
a
OFF)

)
a∈[M

[0,t]
n ]

, V b
n

)
converges locally in probability to (BP[0,t]

γ ,
(
(taON, t

a
OFF)

)
, o), where (BP[0,t]

γ ,
(
(taON, t

a
OFF)

)
, o) is a marked version

of (BP[0,t]
γ , o). It follows that

(
DRIG[0,t]

n (w),
(
(σa

ON, σ
a
OFF)

)
a∈[M

[0,t]
n ]

, on
)
converges locally in probability to

(CP[0,t],
(
(taON, t

a
OFF)

)
, o), where (CP[0,t],

(
(taON, t

a
OFF)

)
, o) is a marked version of (CP[0,t], o).

We prove Theorem 2.25 in Section 3.5.

2.4 Dynamic local convergence

Switching pace. Note that we defined σa
ON and σa

OFF as first switch-on and switch-off times within [0, t] and
we did not comment on the possibility that some groups might switch ON again during this period of time. We
address this issue by arguing that it is unlikely to encounter such a group in a neighborhood of a uniformly
chosen vertex, which is the subject of the following lemma:

Lemma 2.26 (Existence of groups that switch on more than once in the union graph). Denote the neighbourhood

of a uniformly chosen vertex in BGRG[0,t]
n (w) by B

[0,t]
r (V

(l)
n ). As n → ∞,

P
(
∃a ∈ B[0,t]

r (V (l)
n ) : a ON twice in [0, t]

))
−→ 0. (2.34)

We prove Lemma 2.26 in Section 3.6.
Lemma 2.26 implies that groups that switch on more than once in the union graph do not contribute significantly
to the structure of a neighborhood of a uniformly chosen vertex. Hence, the union graph neglecting these groups
is a good approximation of the actual situation and it can be used to construct the dynamic graph. We sum up
this statement in the following corollary:

Corollary 2.27. Denote the neighborhood of a uniformly chosen vertex in BGRGs
n(w) by Bs

r(V
(l)
n ) and the

neighborhood of a uniformly chosen vertex in BGRG[0,t]
n (w) restricted to groups that switch ON only once in [0, t]

and are present at time s by B̃
s,[0,t]
r (V

(l)
n ). As n → ∞, for every finite r > 0 and every s ∈ [0, t], the event{

Bs
r(V (l)

n ) = B̃s,[0,t]
r (V (l)

n )
}

(2.35)

holds with high probability.

We refrain from formally proving Corollary 2.27 and instead provide a short justification here: the fact that

B̃
s,[0,t]
r (V

(l)
n ) is contained in Bs

r(V
(l)
n ) follows immediately. The other direction follows directly from Lemma 2.26.

Thus, for every s ∈ [0, t], BGRGs
n(w) is a subgraph of BGRG[0,t]

n (w) containing only these groups that are
active at time s, i.e., the groups a with (σa

ON, σ
a
OFF) such that s ∈ [σa

ON, σ
a
OFF]. DRIGs

n(w) is then a community
projection (see (1.14)) of such a BGRGs

n(w). Hence, the convergence of the union graph and joint convergence of
edge marks, guaranteed by the independence of the marks and their convergence in distribution, yield convergence
of finite-dimensional distributions of the dynamic graph BGRGs

n(w) for every s ∈ [0, t]. Thanks to that, we can
describe local limits of

(
BGRGs

n(w)
)
s∈[0,t]

and consecutively of
(
DRIGs

n(w)
)
s∈[0,t]

.

When looking at
(
BGRGs

n(w)
)
s∈[0,t]

as a process in time, we choose a random root on only once and then

we investigate its evolution in time. Since such a process encounters jumps with respect to the local metric,
convergence of finite-dimensional distributions is not sufficient to deduce the convergence of the entire process.
However, if we treat

(
BGRGs

n(w)
)
s∈[0,t]

for every s ∈ [0, t] as a function from the compact space of [0, t] into the

Polish space of rooted graphs with the dG⋆
metric, it suffices to add a suitable tightness criterion to deduce the

dynamic convergence of the process in time (see [36, Chapter 16]). Details are given in the proof of Theorem 1.6
in Section 3.7.

2.5 Dynamic giant component

We want to show that the process Jn(s) = 1{
on∈C s

1

} converges for all s ∈ [0, t] to another appropriate indicator

process. Since both of these processes encounter jumps, we need to use the Skorokhod J1 topology in order to
obtain the desired convergence. The Skorokhod J1 topology on D[0, t] - the space of càdlàg functions on [0, t] -
is given by the metric d0 (see [7, Eq. 12.16]), which takes care of the time deformation present in processes with
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jumps. For more explanation, see a well-known characterization of convergence in D[0, t] (see [7]).

The most important step in our proofs of conditions from Lemma C.1 is localization of the giant, i.e., notic-

ing that the sequence of processes
(
Jn(s)

)
s∈[0,t]

is close in distribution to the sequence of processes
(
J
(r)
n (s)

)
s∈[0,t]

,

with

J (r)
n (s) = 1{

∂B
Gs

n
r (on )̸=∅

}, (2.36)

where ∂B
Gs

n
r (on) denotes the set of vertices at distance r from the root in

(
BGRGs

n(w)
)
s≥0

at time s. Indeed,

for two distinct time points s1, s2 ∈ [0, t],

P(Jn(s1) = Jn(s2) = 1) = P(J (r)
n (s1) = J (r)

n (s2) = 1) (2.37)

+ P(Jn(s1) = Jn(s2) = 1) −P(J (r)
n (s1) = J (r)

n (s2) = 1).

Note that∣∣P(Jn(s1) = Jn(s2) = 1) −P(J (r)
n (s1) = J (r)

n (s2) = 1)
∣∣ ≤ P(Jn(s1) = Jn(s2) = 1,¬

(
J (r)
n (s1) = J (r)

n (s2) = 1
)
)

= P(Jn(s1) = Jn(s2) = 1, J (r)
n (s1) ̸= 1 OR Jn(s1) = Jn(s2) = 1, J (r)

n (s2) ̸= 1) ≤ 2P
(
J (r)
n (s1) ̸= Jn(s1)

)
,

where the last step follows from stationarity. Taking n → ∞, thanks to the static local limit and our result on
the static giant component (see Theorem 2.17), i.e., the fact for any s:

|C s
1 |
n

n→∞−→ µ
(
|C s(o)| = ∞

)
, (2.38)

we obtain

lim
n→∞

P
(
J (r)
n (s1) ̸= Jn(s1)

)
= P

(
1{

∂BGs
r (o)̸=∅

} ̸= 1{
|C s(o)|=∞

}), (2.39)

which after taking additionally r → ∞ yields

lim
r→∞

lim sup
n→∞

∣∣P(Jn(s1) = Jn(s2) = 1) −P(J (r)
n (s1) = J (r)

n (s2) = 1)
∣∣ = 0.

Thus,

lim
n→∞

P(Jn(s1) = Jn(s2) = 1) = lim
r→∞

lim
n→∞

P(J (r)
n (s1) = J (r)

n (s2) = 1).

Thanks to this link, we can deduce the convergence of the dynamic giant process from the dynamic local weak
convergence (see Theorem 1.6), which states that, as n → ∞,(

J (r)
n (s)

)
s∈[0,t]

d−→
(
J (r)(s)

)
s∈[0,t]

. (2.40)

In the proof of Theorem 1.8 we show how to extend the above argument to all finite-dimensional distributions. As
a result, the convergence of all finite-dimensional distributions derived via localization paired with the tightness
of the process will guarantee convergence of

(
Jn(s)

)
s∈[0,t]

. We remark that this technique is not restricted to our

model and it can be applied to any other dynamic graph for which (2.38) and (2.40) hold.

2.6 Dynamic largest group

We investigate the behavior of the process
(
n−1/αK

[0,t]
max

)
t≥0

, where K
[0,t]
max is the maximum group size in the time

interval [0, t]. It is an increasing process describing the largest group observed by a certain time point t. As such,
the process in question also encounters jumps, just like the previous dynamic processes we have described, and
hence, to deduce its convergence, we once again use the theory of convergence in Skorokhod topology.

3 Proofs of the main results

Here we provide proofs of all mentioned results, unless we stated we would prove them in the Appendix.
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3.1 Proof of the condition for asymptotic equivalence for bipartite multi-graphs

Proof of Theorem 2.20. The proof of (2.29) for simple random graphs can be found in [30, Theorem 6.18], which
follows [34, Corollary 2.12]. The multi-graph version follows analogously, as BRGn(p) and BRGn(q) can be
entirely encoded by the group presence, just like simple random graphs are encoded by the edge presence, i.e., the
asymptotic equivalence of two graphs BRGn(p) and BRGn(q) is equivalent to the asymptotic equivalence of their
group variables, which are independent Bernoulli random variables with success probabilities p = (pa)a∈∪k≥2[n]k

and q = (qa)a∈∪k≥2[n]k .

3.2 Proof of asymptotic equivalence of the union graph and the rescaled graph

Proof of Theorem 2.22. Recall (2.26) and (2.28). To verify condition (2.29) we first compute

0 ≤ π
a,[0,t]
ON − π

a,(t)
ON ≤

(1 + t)f(|a|)
∏

i∈a wi

ℓ|a|−1 + f(|a|)
∏

i∈a wi
−

(1 + t)f(|a|)
∏

i∈a wi

ℓ|a|−1 + (1 + t)f(|a|)
∏

i∈a wi
(3.1)

≤
(1 + t)2f2(|a|)

(∏
i∈a wi

)2
ℓ|a|−1

(
ℓ|a|−1 + (1 + t)f(|a|)

∏
i∈a wi

) ,
where we have used the fact that 1 − e−x ≤ x. Hence, by the fact that k! < kk,∑

a∈∪k≥2[n]k

(
π
a,[0,t]
ON − π

a,(t)
ON

)2
π
a,(t)
ON

≤ (1 + t)3
∞∑
k=2

∑
j1<...<jk∈[n]

(k!)3(pk)3(wj1 · · ·wjk)3(
ℓk−1
n

)3 (3.2)

≤ (1 + t)3
∞∑
k=2

k4p3k
1

ℓk−1
n

(
k2

ℓn

)k−2(
E[W 3

n ]

E[Wn]

)k

= o(1),

which can be shown using suitable truncation arguments: one with respect to the group size and one with respect
to the weights. For the first truncation, we can fix a sequence bn → ∞ and show that the contribution from
groups a with |a| > bn vanishes. Then take bn = o(

√
n) to bound (3.2) for a with |a| ≤ bn. For the second

truncation, we eliminate vertices with large weights in a similar manner. For more technical details see Appendix
B, where analogous truncation arguments occur frequently. Hence, for some sequence εn, as n → ∞,

P

( ∑
a∈∪k≥2[n]k

(
π
a,[0,t]
ON − π

a,(t)
ON

)2
π
a,(t)
ON

≥ εn

)
−→ 0. (3.3)

The desired equivalence of BGRG[0,t]
n (w) and BGRG(t)

n (w) follows.

3.3 Proof of local convergence of the union graph

Proof of Theorem 2.23. Convergence of BGRG0
n(w) follows from convergence of the stationary graph BGRGn(w).

For time interval [0, t], we prove convergence of the union graph by showing that it is asymptotically equivalent

to BGRG(t)
n (w) (see Theorem 2.22). The latter, in turn, converges as it fulfils the same conditions (see Remark

B.14) that guaranteed convergence of BGRGn(w) (described in Section 2.2, proven in Appendix B). Hence, it
also turns out that the limiting degree sequences in the union graph satisfy similar properties as the ones in the
static graph, with the Poisson parameter and proportion of groups of size k rescaled by the factor t + 1. Hence,
the bipartite union graph asymptotically behaves like the static graph with slightly larger edge probabilities and
converges locally in probability to a related limiting object with accordingly larger offspring distributions.

3.4 Proof of the law of the marks

Proof of Lemma 2.24. We compute the law of the marks of a fixed group a taking into account starting in ON
and OFF state:

P(σa
ON ≤ s1, σ

a
OFF ≤ s2|ON in [0, t]) =

P(σa
ON ≤ s1, σ

a
OFF ≤ s2, ON in [0, t])

P(ON in [0, t])
(3.4)

=
P(σa

ON ≤ s1, σ
a
OFF ≤ s2)

P(ON in [0, t])
=

P(σa
ON = 0, σa

OFF ≤ s2) + P(OFF at 0, σa
ON ≤ s1, σ

a
OFF ≤ s2)

P(ON in [0, t])
.
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We compute all three ingredients separately.
Step 1.

P(σa
ON = 0, σa

OFF ≤ s2) = πa
ONP(a goes OFF in (0, s2]) = πa

ON(1 − e−s2). (3.5)

Step 2.

P(OFF at 0, σa
ON ≤ s1, σ

a
OFF ≤ s2) = πa

OFFP(a goes ON in (0, s1], goes OFF in (σa
ON, s2] ). (3.6)

The second term can be computed as

P(a goes ON in (0, s1] and goes OFF in (σa
ON, s2] ) (3.7)

=

∫ s1

0

P(Exp(λa
ON) ≤ s2 − Exp(λa

OFF) | Exp(λa
OFF) = x)fExp(λa

OFF)
(x)dx

=

∫ s1

0

(1 − e−λa
ON(s2−x))λa

OFFe
−λa

OFFxdx.

Splitting the terms and using the fact that
∫ s1
0

λa
OFFe

−λa
OFFxdx = P(Exp(λa

OFF) ≤ s1) we obtain

P(a goes ON in (0, s1] and goes OFF in (σa
ON, s2] ) (3.8)

= P(Exp(λa
OFF) ≤ s1) − λa

OFF

∫ s1

0

e−(s2−x)e−λa
OFFxdx

= 1 − e−λa
OFFs1 − λa

OFFe
−s2

λa
OFF − 1

(1 − e−s1(λ
a
OFF−1)).

Hence,

P(OFF at 0, σa
ON ≤ s1, σ

a
OFF ≤ s2) = πa

OFF

(
1 − e−λa

OFFs1 − λa
OFF

λa
OFF − 1

(e−s2 − e−s1λ
a
OFFes1−s2)

)
. (3.9)

Step 3. For the probability in the denominator of (3.4) recall once more (2.26).

Gathering all three steps together, the expression in (3.4) becomes

P(σa
ON ≤ s1, σ

a
OFF ≤ s2 | ON in [0, t]) (3.10)

=
πa
ON(1 − e−s2)

πa
ON + πa

OFF

(
1 − e−λa

OFFt
) +

πa
OFF

(
1 − e−λa

OFFs1 − λa
OFF

λa
OFF−1 (e−s2 − e−s1λ

a
OFFes1−s2)

)
πa
ON + πa

OFF

(
1 − e−λa

OFFt
) .

We will now take the limit of the two fractions separately as n → ∞. We simplify

πa
ON(1 − e−s2)

πa
ON + πa

OFF

(
1 − e−λa

OFFt
) =

1 − e−s2

1 + 1/(λa
OFF)

(
1 − e−λa

OFFt
) (3.11)

As we know, limn→∞ λa
OFF = limn→∞

f(|a|)
∏

i∈a wi

ℓ
|a|−1
n

= 0. Substituting x =
f(|a|)

∏
i∈a wi

ℓ
|a|−1
n

we obtain

lim
n→∞

λa
OFF

−1(1 − e−λa
OFFt

)
= lim

x→0

1 − e−xt

x
= lim

x→0

te−xt

1
= t, (3.12)

so that

lim
n→∞

πa
ON(1 − e−s2)

πa
ON + πa

OFF

(
1 − e−λa

OFFt
) =

1 − e−s2

1 + t
. (3.13)

Now we compute the limit as n → ∞ of the second term in (3.10). We again simplify, dividing by πa
OFF, to

obtain

1 − e−λa
OFFs1 +

λa
OFF

1−λa
OFF

(e−s2 − e−s1λ
a
OFFes1−s2)

λa
OFF + 1 − e−λa

OFFt
(3.14)

=
1 − e−λa

OFFs1

λa
OFF + 1 − e−λa

OFFt
+

λa
OFF(e−s2 − e−s1λ

a
OFFes1−s2)

(1 − λa
OFF)(λa

OFF + 1 − e−λa
OFFt)

= An + Bn.
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Then, using the same substitution as previously,

lim
n→∞

An = lim
x→0

1 − e−xs1

x + 1 − e−xt
= lim

x→0

s1e
−xs1

1 + te−xt
=

s1
1 + t

, (3.15)

and

lim
n→∞

Bn = lim
x→0

xe−s2 − xe−s1xes1−s2

1 − e−xt − x2 + xe−xt
=

e−s2 − es1−s2

1 + t
. (3.16)

Combining,

lim
n→∞

πa
OFF

(
1 − e−λa

OFFs1 − λa
OFF

λa
OFF−1 (e−s2 − e−s1λ

a
OFFes1−s2)

)
πa
ON + πa

OFF

(
1 − e−λa

OFFt
) =

s1 + e−s2 − es1−s2

1 + t
. (3.17)

Thus, by (3.10),

lim
n→∞

P(σa
ON ≤ s1, σ

a
OFF ≤ s2 | ON in [0, t]) =

1 − es1−s2 + s1
1 + t

, (3.18)

as required.

3.5 Proof of local limit of marked union graphs

Proof of Theorem 2.25. Theorem 2.23 shows local convergence of the unmarked BGRG[0,t]
n (w), which means that

for any fixed rooted graph (H⋆, o
′) and r ∈ N,

P(Br(G[0,t]
n , V (l)

n ) ≃ (H⋆, o
′) | Gn) :=

1

|Gn|
∑
i∈[n]

1{Br(G
[0,t]
n ,i)≃(H⋆,o′)}

P−→ P(Br(BP[0,t]
γ , o) ≃ (H⋆, o

′)),

where we have written (G
[0,t]
n , o) instead of BGRG[0,t]

n for the sake of simplicity of notation in this proof. If
the marked version of the union graph converges locally in probability, then for any fixed marked rooted graph
(H⋆, (m̄1, m̄2), o′) and r ∈ N,

P

(
dG⋆

(
(G[0,t]

n ,
(
(σa

ON, σ
a
OFF)

)
a∈∪k≥2[n]k

, V (l)
n ), (H⋆, (m̄1, m̄2), o′)

)
≤ 1

r + 1
| (G[0,t]

n ,
(
(σa

ON, σ
a
OFF)

)
a∈∪k≥2[n]k

)
:=

1

n

∑
i∈[n]

1{
dG⋆

(
(G

[0,t]
n ,
(
(σa

ON,σa
OFF)

)
a∈∪k≥2[n]k

,i),(H⋆,(m̄1,m̄2),o′)
)
≤ 1

r+1

}
P−→ P

(
dG⋆

(
(BP[0,t]

γ ,
(
(taON, t

a
OFF)

)
, o), (H⋆, (m̄1, m̄2), o′)

)
≤ 1

r + 1

)
.

Note that the edge marks are independent since all the groups switch on and off independently of each other.
Hence, if the marks converge in distribution to some limiting marks they will converge jointly for all groups and
all s ∈ [0, t]. In Lemma 2.24 we showed that they indeed converge and also that the marks of all groups present
within [0, t] are also identically distributed. This implies that we can couple each pair of marks with their limiting
marks so that they are appropriately close to each other. Hence, the proportion of vertices whose neighborhoods
look like (H⋆, (m̄1, m̄2), o′) must converge to the probability that neighborhoods in (Br(BP[0,t]

γ ,
(
(taON, t

a
OFF)

)
, o)

look like (H⋆, (m̄1, m̄2), o′), which precisely means that the marked version of BGRG[0,t]
n (w) converges. Next, the

convergence of the marked intersection graph follows from the convergence of the underlying bipartite structure,
as community projection preserves marked graphs’ distance.

3.6 Proof of the switching pace of the groups in the union graph

Proof of Lemma 2.26. For any finite r > 0, we investigate

P
(
∃a ∈ B[0,t]

r (V (l)
n ) : a ON twice in [0, t]

)
= E

[
P
(
∃a ∈ B[0,t]

r (V (l)
n ) : a ON twice in [0, t] | G[0,t]

n

)]
, (3.19)
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where we denote the r-neighbourhood of a uniformly chosen vertex in BGRG[0,t]
n (w) by B

[0,t]
r (V

(l)
n ) and for

simplification we write G
[0,t]
n instead of BGRG[0,t]

n (w) to denote conditioning on the union graph. Applying the
union bound yields

P
(
∃a ∈ B[0,t]

r (V (l)
n ) : a ON twice in [0, t] | G[0,t]

n

)
≤ 1 ∧

∑
a∈B

[0,t]
r (V

(l)
n )

P
(
a ON twice in [0, t] | G[0,t]

n

)
(3.20)

We first apply a suitable truncation (for more details see similar cases, for instance, proof of Theorem B.4
or Remark B.11): we truncate the maximum vertex weight by an and the maximum group size by bn, with
an = log(n), bn = log(n) to obtain∑

a∈B
[0,t]
r (V

(l)
n )

P
(
a ON twice in [0, t] | G[0,t]

n

)
(3.21)

=
∑

a∈B
[0,t]
r (V

(l)
n )

P
(
a ON twice in [0, t] | G[0,t]

n

)
1{maxi wi≤an,maxa |a|≤bn} + oP(1),

where the maximums are taken w.r.t. a vertex i ∈ B
[0,t]
r (V

(l)
n ) and group a ∈ B

[0,t]
r (V

(l)
n ). The remainder is small

since Condition 1.2 implies that our union graph is sparse, and hence observing large groups and vertices with
large weights in a uniformly chosen r-neighborhood is unlikely. We now compute

P(a switches ON twice in [0, t] | G[0,t]
n ) =

P(a switches ON twice in [0, t] | a active in [0, t])

P(a active in [0, t])
(3.22)

=
P(a switches ON twice in [0, t])

P(a active in [0, t])
,

where the first equality follows from the independence of groups. We have

P(a switches ON twice in [0, t]) = πa
ONP(a switches OFF and ON again in [0, t]) (3.23)

+ πa
OFFP(a switches ON, then OFF and ON again in [0, t]).

Recall that the times that groups spend in the ON and OFF states are exponentially distributed with rates
Exp(λa

ON) and Exp(λa
OFF) respectively. Hence, using the fact that for all x, 1 − e−x ≤ x,

P(a switches OFF and ON again in [0, t]) = P(Exp(λa
ON) + Exp(λa

OFF) ≤ t) (3.24)

≤ P(Exp(λa
OFF) ≤ t) =

(
1 − e−λa

OFFt
)
≤ tλa

OFF ∧ 1,

and, applying the same inequality again,

P(a switches ON, then OFF and ON again in [0, t]) = P(Exp(λa
OFF) + Exp(λa

ON) + Exp′(λa
OFF) ≤ t) (3.25)

≤ P(Exp(λa
OFF) + Exp′(λa

OFF) ≤ t) = 1 − e−tλa
OFF − tλa

OFFe
−tλa

OFF ≤ tλa
OFF(1 − e−tλa

OFF) ≤ (tλa
OFF)2 ∧ 1.

Substituting (3.24) and (3.25) into (3.23) and using the facts that πa
ON ≤ λa

ON, π
a
OFF ≤ 1 yields

P(a switches ON twice in [0, t]) ≤ (t + t2)(λa
OFF)2 ∧ 1. (3.26)

To obtain the probability in the denominator of (3.22) recall (2.26). Combining all of the above, we arrive at the
bound

P(a switches ON twice in [0, t] | G[0,t]
n ) ≤ c(t)λa

OFF ∧ 1, (3.27)

where c(t) is a constant. Thus, substituting (3.27) into (3.20) and invoking (3.21) yields

E

[
P
(
∃a ∈ B[0,t]

r (V (l)
n ) : a ON twice in [0, t] | G[0,t]

n

)]
(3.28)

≤ E

[( ∑
a∈B

[0,t]
r (V

(l)
n )

(λa
OFF ∧ 1) · 1{maxi wi≤an,maxa |a|≤bn}

)
∧ 1

]
.
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Note that by the local limit of BGRG[0,t]
n (w) shown in Theorem 2.23 we know that |B[0,t]

r (V
(l)
n )| is tight. We also

know that λa
OFF is small for n large for a group a with maxi∈a wi ≤ an and |a| ≤ bn. Therefore, as n → ∞,∑

a∈B
[0,t]
r (V

(l)
n )

(
λa
OFF ∧ 1

)
1{maxi∈a wi≤an,max |a|≤bn}

P−→ 0. (3.29)

Hence, by applying the dominated convergence theorem to (3.28) we conclude

P
(
∃a ∈ B[0,t]

r (V (l)
n ) : a ON twice in [0, t]

))
= o(1). (3.30)

3.7 Proof of dynamic local limit of the intersection graph

Proof of Theorem 1.6. We first show the dynamic local weak convergence of
(
BGRGs

n(w)
)
s∈[0,t]

, i.e.,((
BGRGs

n, V
(l)
n

))
s∈[0,t]

d−→
(

(BPs
γ , o)

)
s∈[0,t]

. (3.31)

The proof follows in two steps: we first show convergence of finite-dimensional distributions and then tightness -
the two conditions for weak convergence of processes from compact space to separable and complete space given
in literature [36, Lemma 16.2, Theorem 16.3]. For the convenience of the reader, we reproduce these results in
Appendix C (see Lemma C.2 and Theorem C.3).

Condition (i): Convergence of finite-dimensional distributions. Once more, for the sake of simplicity of
notation, throughout the proof we abbreviate BGRGs

n(w) to Gs
n. We need to show that for all s1 ≤ s2 ≤ ... ≤

sk ∈ [0, t]

P(∀j ∈ [k] : Br(Gsj
n , V (l)

n ) ≃ (Hj , o) | Gn) =
1

n
E

[ ∑
i∈[n]

1{
Br(G

sj
n ,i)≃(Hj ,o)

}] (3.32)

−→ P(∀j ∈ [k] : Br(BPsj
γ , o) ≃ (Hj , o)).

The convergence follows immediately from the convergence of the marked union graph. Indeed, if the marked
union graph converges, appropriate marked-graph isomorphisms must hold. In particular, since marks converge,

P
(
s ∈ [σa

ON, σ
a
OFF]

)
−→ P

(
s ∈ [taON, t

a
OFF]

)
. (3.33)

Thus indeed, if a neighborhood of a uniformly chosen vertex in the marked union graph resembles a neigh-
borhood in a marked (BP[0,t]

γ , o), then for every s ∈ [0, t] a neighborhood of a uniformly chosen vertex in

a subgraph of BGRG[0,t]
n (w) restricted to groups a such that s ∈ [σa

ON, σ
a
OFF] must resemble a subgraph of

(BP[0,t]
γ ,

(
(taON, t

a
OFF)

)
, o) incorporating accordingly only right-vertices a such that s ∈ [taON, t

a
OFF].

Condition (ii): Tightness of the process. Since for random processes between a compact and a Polish space,
the convergence of finite-dimensional distributions combined with tightness (which, in separable and complete
spaces, is equivalent to relative compactness in distribution) yields process convergence (see Appendix C for a
brief summary of results we use, taken from [36], Chapter 16), it remains to show that our dynamic graph process
is tight, with respect to its local topology. This translates to verifying if for all 0 < s1 < s < s2 < t, ε, η > 0
there exists n0 ≥ 1 and δ > 0 such that for all n ≥ n0

P

(
sup

(s,s1,s2)∈Sδ

min
[
dG⋆

(
(Gs1

n , V (l)
n ), (Gs

n, V
(l)
n )
)
,dG⋆

(
(Gs

n, V
(l)
n ), (Gs2

n , V (l)
n )
)]

> ε

)
≤ η, (3.34)

with Sδ = {(s, s1, s2) : s ∈ [s1, s2], |s2 − s1| ≤ δ}. Note that the above is equivalent to

P

(
∃s ∈ [s1, s2], s2 − s1 < δ : B1/ε(G

s1
n , V (l)

n ) ̸≃ B1/ε(G
s
n, V

(l)
n ), B1/ε(G

s
n, V

(l)
n ) ̸≃ B1/ε(G

s2
n , V (l)

n )

)
≤ η. (3.35)
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We partition [0, t] into intervals of length δ and introduce

Sl = {two jumps in the neighbourhood of V (l)
n in the l-th interval of length δ}. (3.36)

Note that thanks to the stationarity, the probability of a jump in [0, s] and then another jump in [s, δ] can be
bounded by the probability of two jumps in [0, δ]. Hence,

(3.35) ≤ P(

t/δ⋃
l=1

Sl) ≤
t

δ
P(S1), (3.37)

where S1 is then accordingly the event of two jumps in the time interval [0, δ]. Recall that the only aspect that
can cause changes in neighborhoods is group activation and deactivation. Note that the groups that changed
their status within [0, t] must in particular be active during [0, t], which means they are in the union graph

BGRG[0,t]
n (w). Therefore, as it turns out to be useful for the upper bound, we now condition event S1 on the

union graph. For simplicity, we denote the union graph by G
[0,t]
n . We also denote the r-neighborhood of V

(l)
n in

the union graph by B
[0,t]
r (V

(l)
n ). We compute

P(S1 | G[0,t]
n ) =P(∃a1 ̸= a2 ∈ B

[0,t]
1/ε (V (l)

n ) : a1, a2 switch OFF in [0, δ] | G[0,t]
n ) (3.38)

+ P(∃a1 ̸= a2 ∈ B
[0,t]
1/ε (V (l)

n ) : a1 switches OFF, a2 switches ON in [0, δ] | G[0,t]
n )

+ P(∃a1 ̸= a2 ∈ B
[0,t]
1/ε (V (l)

n ) : a1, a2 switch ON in [0, δ] | G[0,t]
n ).

Hence,

P(S1 | G[0,t]
n ) =

(
1 − e

−δ#{a∈B
[0,t]

1/ε
(V (l)

n )})2
(3.39)

+
(
1 − e

−δ#{a∈B
[0,t]

1/ε
(V (l)

n )})(
1 − e

−δ
∑

a∈B
[0,t]
1/ε

(V
(l)
n )

λa
OFF)

∧ 1

+
(
1 − e

−δ
∑

a∈B
[0,t]
1/ε

(V
(l)
n )

λa
OFF)2 ∧ 1.

Fix a large constant bδ, and consider

E =
{
|B[0,t]

1/ε (V (l)
n )| ≤ bδ

}
. (3.40)

Given E ,

P(S1 | G[0,t]
n ) ≤ 3δ2b2δ . (3.41)

Recall that in Theorem 2.23 we derived local convergence of the union graph, which guarantees that the neigh-
bourhood of a uniformly chosen vertex in the union graph is bounded. Thus, for every ε > 0, we can find a bδ
sufficiently large, such that P(E ) ≥ 1−ε. After taking the expectation of (3.41) with respect to the union graph,
and substituting the result into (3.37), we obtain

P

(
∃s ∈ [s1, s2], s2 − s1 < δ : B1/ε(G

s1
n , V (l)

n ) ̸≃ B1/ε(G
s
n, V

(l)
n ), B1/ε(G

s
n, V

(l)
n ) ̸≃ B1/ε(G

s2
n , V (l)

n ); E

)
(3.42)

≤ t

δ
E
[
3δ2b2δ1E

]
= 3tE

[
b2δ1E

]
δ,

which, for every bδ, can be made arbitrarily small by taking δ small. As we argued that for such a choice of bδ,
event E holds with probability at least 1− ε, we conclude that (3.35) holds by taking δ and ε small as a function
of η.

Consequence. For every s ∈ [0, t], DRIGs
n(w) can be built from BGRGs

n(w) via a community projection, which
preserves graph isomorphism and tightness. Hence, its convergence follows from the just shown convergence of
BGRGs

n(w), and its local limit, (CPs, o), is a community projection of the limit of BGRGs
n(w).

Remark 3.1. In the proof of Theorem 1.6 we show dynamic local weak convergence. However, we argue that
in the same manner, we could derive dynamic local convergence in probability. Indeed, note that neighborhood
processes of two distinct uniformly chosen vertices are i.i.d. stochastic processes, and hence, their convergence
can be derived in the same way as in the proof above. The authors of [24] prove this result rigorously (see [24,
Lemma 3.10]).
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3.8 Proof of convergence of the dynamic giant membership process

Proof of Theorem 1.8. Note again that the giant component in the intersection graph is strictly connected to
the giant component in the underlying bipartite structure. Hence, in this proof, we only focus on the underlying
bipartite structure. To show the desired convergence it suffices to show that

(
Jn(s)

)
s∈[0,t]

and
(
J (s)

)
s∈[0,t]

satisfy

Conditions (i)-(iii) from Lemma C.1.
Condition (i): Convergence of finite-dimensional distributions. Note that thanks to our results on the
static giant component (see Theorem 2.17),

P(Jn(s) = 1) = P(on ∈ C s
1 ) =

E[|C s
1 |]

n

n→∞−→ µ
(
|C s(o)| = ∞

)
, (3.43)

where (Gs, o) is the limiting, rooted graph at time s. Furthermore, as a consequence of the dynamic local weak
convergence (Theorem 1.6), as n → ∞,(

J (r)
n (s)

)
s∈[0,t]

=
(
1{

∂B
Gs

n
r (on )̸=∅

})
s∈[0,t]

d−→
(
1{

∂BGs
r (o) ̸=∅

})
s∈[0,t]

=
(
J (r)(s)

)
s∈[0,t]

, (3.44)

with ∂B
Gs

n
r (on) = {i ∈ [n] : d(o, v) = r}, i.e., the set of vertices of graph distance r from the root. Since we know

what is happening in local neighborhoods jointly for all s ∈ [0, t] we try to link the distribution of
(
Jn(s)

)
s∈[0,t]

to the distribution of
(
J
(r)
n (s)

)
s∈[0,t]

. For any r > 0 and for all {s1, ..., sk} ∈ [0, t],

P(Jn(s1) = ... = Jn(sk) = 1) = P(J (r)
n (s1) = ... = J (r)

n (sk) = 1) (3.45)

+ P(Jn(s1) = ... = Jn(sk) = 1) −P(J (r)
n (s1) = ... = J (r)

n (sk) = 1).

We look at the difference of probabilities in (3.45):∣∣P(Jn(s1) = ... = Jn(sk) = 1) −P(J (r)
n (s1) = ... = J (r)

n (sk) = 1)
∣∣ (3.46)

≤ P(Jn(s1) = ... = Jn(sk) = 1,¬
(
J (r)
n (s1) = ... = J (r)

n (sk) = 1
)
)

= P
(
Jn(s1) = ... = Jn(sk) = 1,

k⋃
i=1

{
J (r)
n (si) ̸= 1

})
= P

( k⋃
i=1

{
Jn(s1) = ... = Jn(sk) = 1, J (r)

n (si) ̸= 1
})

≤ P
( k⋃
i=1

{
J (r)
n (si) ̸= Jn(si)

})
.

Note that by the static local limit and (3.43),

lim
r→∞

lim
n→∞

P
( k⋃
i=1

{
J (r)
n (si) ̸= Jn(si)

})
≤ k · lim

r→∞
lim
n→∞

P(J (r)
n (s) ̸= Jn(s)) = 0. (3.47)

Hence,

lim
r→∞

lim
n→∞

∣∣P(Jn(s1) = ... = Jn(sk) = 1) −P(J (r)
n (s1) = ... = J (r)

n (sk) = 1)
∣∣ = 0, (3.48)

and thus,

lim
n→∞

P(Jn(s1) = ... = Jn(sk) = 1) = lim
r→∞

lim
n→∞

P(J (r)
n (s1) = ... = J (r)

n (sk) = 1). (3.49)

However, by (3.44),

P(J (r)
n (s1) = 1, ..., J (r)

n (sk) = 1)
n→∞−→ P(J (r)(s1) = 1, ...,J (r)(sk) = 1) (3.50)
r→∞−→ µ(|CGs1

(o)| = ... = |CGsk
(o)| = ∞).

Hence,

P(Jn(s1) = ... = Jn(sk) = 1)
r→∞−→ µ(|CGs1

(o)| = ... = |CGsk
(o)| = ∞).
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Similarly, for another combination of values of the finite-dimensional distribution,

P(Jn(s1) = ... = 1, Jn(sk) = 0) = P(J (r)
n (s1) = ... = 1, J (r)

n (sk) = 0) (3.51)

+ P(Jn(s1) = ... = 1, Jn(sk) = 0) −P(J (r)
n (s1) = ... = 1, J (r)

n (sk) = 0).

We again look at the difference in the second line:

P(Jn(s1) = ... = 1, Jn(sk) = 0) −P(J (r)
n (s1) = ... = 1, J (r)

n (sk) = 0) (3.52)

≤ P
(
(Jn(s1) = ... = 1, Jn(sk) = 0),¬(J (r)

n (s1) = ... = 1, J (r)
n (sk) = 0)

)
= P

(
(Jn(s1) = ... = 1, Jn(sk) = 0), (J (r)

n (s1) ̸= 1 or ... or J (r)
n (sk) ̸= 0)

)
,

which would again imply that for at least some si ∈ [0, t] we have P(J
(r)
n (si) ̸= Jn(si)), so by the same argument

as previously we have that the above vanishes. Hence, we can use the same argument to show the convergence
of all finite-dimensional distributions.

Condition (ii): Tightness of the limiting process. We want to show that, for all ε > 0, as δ → 0,

P
(
|J (t) − J (t− δ)| > ε

)
−→ 0. (3.53)

Since
(
J (s)

)
s∈[0,t]

is an indicator process, the difference in absolute value between any two points of the process

equals either 0 or 1. Hence P
(
|J (t)−J (t−δ)| > ε

)
is equivalent to P

(
|J (t)−J (t−δ)| = 1

)
, which is equivalent

to P(J (t− δ) = 0,J (t) = 1) +P(J (t− δ) = 1,J (t) = 0). We investigate these two factors separately. From the
proof of condition (i),

lim
δ→0

P(J (t− δ) = 0,J (t) = 1) = lim
δ→0

lim
n→∞

P(Jn(t− δ) = 0, Jn(t) = 1) (3.54)

= lim
δ→0

lim
r→∞

lim
n→∞

P(J (r)
n (t− δ) = 0, J (r)

n (t) = 1).

We compute

P(J (r)
n (t− δ) = 0, J (r)

n (t) = 1) = P

(
∂B

Gt−δ
n

r (V (l)
n ) = ∅, ∂B

Gt
n

r (V (l)
n ) ̸= ∅

)
(3.55)

which means that the boundary of the r-neighborhood of a uniformly chosen vertex is empty at time t − δ but
non-empty at time point t. For that to happen there has to be a change in groups’ statuses. Similarly as in the
proof of Theorem 1.6 we use the link with the union graph:

P

(
∂B

Gt−δ
n

r (V (l)
n ) = ∅, ∂B

Gt
n

r (V (l)
n ) ̸= ∅ | G[0,t]

n

)
= P(∃a ∈ B[0,t]

r (V (l)
n ) : a switches ON in [t− δ, t] | G[0,t]

n )

(3.56)

=

(
1 − e

−δ
∑

a∈B
[0,t]
r (V

(l)
n )

λa
OFF

)
∧ 1.

Hence,

P(J (r)
n (t− δ) = 0, J (r)

n (t) = 1) ≤ E
G

[0,t]
n

[
δ|B[0,t]

r (V (l)
n )|

]
, (3.57)

which can be bounded in the same way as the terms in (3.39) and hence converges to 0 as δ → 0. We can

compute the complementary probability, P
(
∂B

Gt−δ
n

r (V
(l)
n ) ̸= ∅, ∂B

Gt
n

r (V
(l)
n ) = ∅

)
, using similar reasoning. Note

that, conveniently, the probability of switching off is the same for all groups. Thanks to this and the independence
of groups we obtain

P
(
∂B

Gt−δ
n

r (V (l)
n ) ̸= ∅, ∂B

Gt
n

r (V (l)
n ) = ∅ | Gt−δ

n

)
= P(all a ∈ ∂B

Gt−δ
n

r (V (l)
n ) switch OFF| Gt−δ

n ) (3.58)

=
∏

a∈∂B
G

t−δ
n

r (V
(l)
n )

(1 − e−δ),
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and thus,

P
(
∂B

Gt−δ
n

r (V (l)
n ) ̸= ∅, ∂B

Gt
n

r (V (l)
n ) = ∅

)
= EGt−δ

n

[
(1 − e−δ)#{a:a∈∂B

Gt−δ
n

r (V (l)
n )}

]
. (3.59)

With arguments similar to those used before, we can show that the above vanishes as δ → 0 and n → ∞.
Combining (3.56) and (3.59) we conclude that condition (3.53) holds.

Condition (iii): Tightness of the original process. We want to show that for any ε, η > 0 there exists
n0 ≥ 1 and δ > 0 such that, for all n ≥ n0,

P

(
sup

(s,s1,s2)∈Sδ

min
(∣∣∣Jn(s) − Jn(s1)

∣∣∣, ∣∣∣Jn(s2) − Jn(s)
∣∣∣) > ε

)
≤ η, (3.60)

with Sδ = {(s, s1, s2) : s ∈ [s1, s2], |s2 − s1| ≤ δ}. Note that since
(
Jn(s)

)
s∈[0,t]

is an indicator process,

min
(∣∣∣Jn(s) − Jn(s1)

∣∣∣, ∣∣∣Jn(s2) − Jn(s)
∣∣∣) > ε if and only if

∣∣∣Jn(s) − Jn(s1)
∣∣∣ =

∣∣∣Jn(s2) − Jn(s)
∣∣∣ = 1, which is

equivalent to Jn(s) ̸= Jn(s1), Jn(s2) ̸= Jn(s). This means two mutually exclusive events might occur: either
Jn(s1) = Jn(s2) = 1 and Jn(s) = 0, or the opposite Jn(s1) = Jn(s2) = 0 and Jn(s) = 1. Note that we can skip

the supremum since for any s ∈ [s1, s2] the value of
∣∣∣Jn(s) − Jn(s1)

∣∣∣ and
∣∣∣Jn(s2) − Jn(s)

∣∣∣ is at most 1. Taking

this all into consideration, (3.60) becomes

P
(
∃ s, s1, s2 : Jn(s1) = Jn(s2) = 1, Jn(s) = 0 or Jn(s1) = Jn(s2) = 0, Jn(s) = 1

)
(3.61)

with s ∈ [s1, s2] and s1, s2 such that s2 − s1 < δ. We apply the same approach as in the proof of tightness for
Theorem 1.6: we partition [0, t] into intervals of length δ and denote

P(Rl) = P(two jumps of
(
Jn(s)

)
s∈[0,t]

in the l-th interval of length δ). (3.62)

Then, by stationarity,

(3.61) = P(

t/δ⋃
l=1

Rl) ≤
t

δ
P(R1). (3.63)

From the proof of the Condition (i) from Lemma C.1 we know that for some n0 big enough for all n ≥ n0 and
some s ∈ [0, δ]

P
(
Jn(0) = Jn(δ) = 1, Jn(s) = 0

)
= lim

r→∞
P
(
J (r)
n (0) = J (r)

n (δ) = 1, J (r)
n (s) = 0

)
(3.64)

= lim
r→∞

P

(
1{

∂B
G0

n
r (V

(l)
n ) ̸=∅

} = 1{
∂B

Gδ
n

r (V
(l)
n )̸=∅

} = 1,1{
∂B

Gs
n

r (V
(l)
n )̸=∅

} = 0

)
,

and naturally, the analogous will hold for the complementary probability P
(
Jn(0) = Jn(δ) = 0, Jn(s) = 1

)
.

Hence, from the proof of tightness from Theorem 1.6 it follows that

P(R1) ≤ P(S1) = o(δ), (3.65)

with

P(Sl) = P(two jumps in the neighbourhood of V (l)
n in the l-th interval of length δ). (3.66)

Thus, the required condition holds.

Conclusion. Since all three conditions of Lemma C.1 hold, the convergence follows.
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3.9 Proof of convergence of the size of the largest group in [0, t]

Proof of Theorem 1.9. The proof consists of two parts. We start by deriving convergence in distribution for

K
[0,t]
max/n

1
α and afterwards proceed to show that

(
K

[0,t]
max/n

1
α

)
t≥0

and the limiting process
(
κ
(0,t]
max

)
t≥0

satisfy condi-

tions of Lemma C.1, which will yield the desired convergence.

Part 1: Convergence in distribution. To shorten the computations in the next part of the proof, we first

derive convergence in distribution of the random variable K
[0,t]
max/n

1
α . We compute

P(K [0,t]
max ≤ kn1/α) = P(max{K{0}

max,K
(0,t]
max} ≤ kn1/α) =

∏
l>kn1/α

∏
a∈[n]l

πa
OFF ·P(a never ON in (0, t]).

Hence,

P(K [0,t]
max ≤ kn1/α) =

∏
l>kn1/α

∏
a∈[n]l

ℓl−1
n

ℓl−1
n + l!pl

∏
i∈a wi

×
∏

l>kn1/α

∏
a∈[n]l

e
− l!pl

∏
i∈a wi

ℓ
l−1
n

t
. (3.67)

Note that ∏
l>kn1/α

∏
a∈[n]l

e
− l!pl

∏
i∈a wi

ℓ
l−1
n

t
=

∏
l>kn1/α

e
−t

∑
j1<...<jl∈[n]

l!pl
∏

i∈a wi

ℓ
l−1
n

=
∏

l>kn1/α

e
− l!pltℓn

l!

∑
j1,...,jl∈[n]

wj1
...wjl
ℓln = e−tℓn

∑
l>kn1/α pl + oP(1) = e−tℓn(kn

1/α)−α

+ oP(1),

which plugged into (3.67) yields

P(K [0,t]
max ≤ kn1/α) = e−tℓn(kn

1/α)−α ∏
l>kn1/α

∏
a∈[n]l

ℓl−1
n

ℓl−1
n + l!pl

∏
i∈a wi

+ oP(1). (3.68)

We have that

lim
n→∞

∏
l>kn1/α

∏
a∈[n]l

ℓl−1
n

ℓl−1
n + l!pl

∏
i∈a wi

= lim
n→∞

∏
l>kn1/α

∏
a∈[n]l

1

1 +
l!pl

∏
i∈a wi

ℓl−1
n

= 1. (3.69)

Further, since E[Wn] → E[W ] as n → ∞,

lim
n→∞

ℓn(kn1/α)−α = lim
n→∞

ℓn
kαn

= lim
n→∞

E[Wn]

kα
=

E[W ]

kα
, (3.70)

we obtain for every t ≥ 0

lim
n→∞

P

(
K

[0,t]
max

n1/α
≤ k

)
= e−tk−αE[W ]. (3.71)

Note that g(k) = e−tk−αE[W ] is a CDF of the Fréchet distribution.
Part 2: Verifying conditions of Lemma C.1. We again check if our processes fulfil conditions (i) − (ii) of
Lemma C.1.
Condition (i): Convergence of the finite-dimensional distribution. We want to show that for all
{s1, ..., st} ∈ [0, t] and k1, k2, ..., kt ∈ N, as n → ∞,

P

(
K

[0,s1]
max

n1/α
≤ k1,

K
[0,s2]
max

n1/α
≤ k2, ...,

K
[0,st]
max

n1/α
≤ kt

)
−→ P

(
κ(0,s1]
max ≤ k1, κ

(0,s2]
max ≤ k2, ..., κ

(0,st]
max ≤ kt

)
. (3.72)

Note that for every si, sj ∈ [0, t] : si < sj it holds that P(K
[0,si]
max > K

[0,sj ]
max ) = 0. Thus, computing the joint

distribution function for every non-decreasing sequence k1, k2, ..., kt ∈ N is straightforward. For other sequences,
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we perform the following loop:

i = 1, (3.73)

ki = min{k1, k2, ..., kt},
m̄ = arg min ki,

Remove {k1, k2, ..., km̄−1} from the sequence,

Iterate for {km̄+1, ..., kt}.

Denote the modified k1, k2, ..., kt by k̄1, k̄2, ..., k̄t and note that the modified version is a non-decreasing sequence.
It follows that

P

(
K

[0,s1]
max

n1/α
≤ k1,

K
[0,s2]
max

n1/α
≤ k2, ...,

K
[0,st]
max

n1/α
≤ kt

)
= P

(
K

[0,s1]
max

n1/α
≤ k̄1,

K
[0,s2]
max

n1/α
≤ k̄2, ...,

K
[0,st]
max

n1/α
≤ k̄t

)
. (3.74)

Hence, we further assume that we are working with non-decreasing sequences. Note that, by definition (see
(1.25)), for a partition {0, s1, s2, ..., st−1, st} of the time interval [0, st] it holds

K [0,st]
max = max{K [0,s1]

max ,K(s1,s2]
max , ...,K(st−1,st]

max }. (3.75)

Thus,

P(K [0,s1]
max ≤ k1n

1/α,K [0,s2]
max ≤ k2n

1/α, ...,K [0,st]
max ≤ ktn

1/α) (3.76)

=P(K [0,s1]
max ≤ k1n

1/α,max{K [0,s1]
max ,K(s1,s2]

max } ≤ k2n
1/α, ...,max{K [0,s1]

max ,K(s1,s2]
max , ...,K(st−1,st]

max } ≤ ktn
1/α)

=P(K [0,s1]
max ≤ k1n

1/α,K [0,s1]
max ≤ k2n

1/α,K(s1,s2]
max ≤ k2n

1/α, ...,K [0,s1]
max ≤ ktn

1/α,K(s1,s2]
max ≤ ktn

1/α

, ...,K(st−1,st]
max ≤ ktn

1/α)

=P(K [0,s1]
max ≤ k1n

1/α,K(s1,s2]
max ≤ k2n

1/α, ...,K(st−1,st]
max ≤ ktn

1/α).

Note that for non-overlapping time intervals,
(
K

(si,si+1]
max

)
i

are all independent. Hence, using the computation
from Part 1 we obtain

P(K [0,s1]
max ≤ k1n

1/α,K(s1,s2]
max ≤ k2n

1/α, ...,K(st−1,st]
max ≤ ktn

1/α) = P(K [0,s1]
max ≤ k1n

1/α)

t∏
i=2

P(K(si−1,si]
max ≤ kin

1/α)

= P(K [0,s1]
max ≤ k1n

1/α)

t∏
i=2

( ∏
l>kin1/α

∏
a∈[n]l

P
(
a never ON in (si−1, si]

))
(3.77)

= e−s1E[Wn]k
−α
1

∏
l>k1n1/α

∏
a∈[n]l

ℓl−1
n

ℓl−1
n + l!pl

∏
i∈a wi

t∏
i=2

e−(si−si−1)E[Wn]k
−α
i

n→∞−→ e−s1E[W ]k−α
1

t∏
i=2

e−(si−si−1)E[W ]k−α
i .

Note that, since k1 ≤ k2 ≤ ... ≤ kt,

e−s1E[W ]k−α
1

t∏
i=2

e−(si−si−1)E[W ]k−α
i = P(κ(0,s1]

max ≤ k1)

t∏
i=2

P(κ(si−1,si]
max ≤ ki) (3.78)

= P(κ(0,s1]
max ≤ k1, κ

(s1,s2]
max ≤ k2, ..., κ

(st−1,st]
max ≤ kt)

= P(κ(0,s1]
max ≤ k1,max{κ(0,s1]

max , κ(s1,s2]
max } ≤ k2, ...,max{κ(0,s1]

max , κ(s1,s2]
max , ..., κ(st−1,st]

max } ≤ kt)

= P(κ(0,s1]
max ≤ k1, κ

(0,s2]
max ≤ k2, ..., κ

(0,st]
max ≤ kt).

This proves the desired convergence from (3.72).

Condition (ii): Tightness of the limiting process. We want to show that

lim
δ→0

P
(∣∣κ(0,t]

max − κ(0,t−δ]
max

∣∣ > ε
)

= 0, (3.79)
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which is equivalent to

lim
δ→0

P
(
κ(0,t]
max > κ(0,t−δ]

max + ε
)

= 0. (3.80)

By the proof of condition (i)

lim
δ→0

P
(
κ(0,t]
max > κ(0,t−δ]

max + ε
)

= lim
δ→0

lim
n→∞

P
(
K [0,t]

max > K [0,t−δ]
max + εn1/α

)
. (3.81)

We compute

P
(
K [0,t]

max > K [0,t−δ]
max + εn1/α

)
=

∞∑
k=2

P(group bigger than k + εn1/α arrives in (t− δ, t])P(K [0,t−δ]
max = k) (3.82)

=

∞∑
k=2

(
1 − e

−δℓn
∑

l>k+εn1/α pl
)
P(K [0,t−δ]

max = k) ≤ δℓn

∞∑
k=2

(k + εn1/α)−αP(K [0,t−δ]
max = k)

≤ δℓn

∞∑
k=2

(εn1/α)−αP(K [0,t−δ]
max = k) =

δℓn
εαn

=
δE[Wn]

εα
.

Substituting into (3.81) yields

lim
δ→0

P
(
κ(0,t]
max > κ(0,t−δ]

max + ε
)

= lim
δ→0

lim
n→∞

δE[Wn]

εα
= lim

δ→0

δE[W ]

εα
= 0. (3.83)

Condition (iii): Tightness of the original process. We want to show that for any ε, η > 0 there exists
n0 ≥ 1 and δ > 0 such that, for all n ≥ n0,

P

(
sup

a,s1,s2:s∈[s1,s2],s2−s1<δ

min

(∣∣∣∣∣K [0,s]
max

n1/α
− K

[0,s1]
max

n1/α

∣∣∣∣∣,
∣∣∣∣∣K [0,s2]

max

n1/α
− K

[0,s]
max

n1/α

∣∣∣∣∣
)

> ε

)
≤ η. (3.84)

Note that

P

(
sup

s∈[s1,s2],s2−s1<δ

min

(∣∣∣∣∣K [0,s]
max

n1/α
− K

[0,s1]
max

n1/α

∣∣∣∣∣,
∣∣∣∣∣K [0,s2]

max

n1/α
− K

[0,s]
max

n1/α

∣∣∣∣∣
)

> ε

)
(3.85)

≤ P

(
∃s ∈ [s1, s2], s2 − s1 < δ : min

(∣∣∣K [0,s]
max −K [0,s1]

max

∣∣∣, ∣∣∣K [0,s2]
max −K [0,s]

max

∣∣∣) > εn1/α

)
.

For the minimum of two terms to be bigger than εn1/α, both of them have to be bigger than εn1/α. As we are
dealing with a non-decreasing random variable, this can only happen if a group which is bigger by εn1/α than
the so far largest group arrives in (s1, s] and then the same happens in (s, s2]. Once again we partition [0, t] into
intervals of length δ and apply stationarity to deduce

P

(
sup

s∈[s1,s2],s2−s1<δ

min

(∣∣∣∣∣K [0,s]
max

n1/α
− K

[0,s1]
max

n1/α

∣∣∣∣∣,
∣∣∣∣∣K [0,s2]

max

n1/α
− K

[0,s]
max

n1/α

∣∣∣∣∣
)

> ε

)
≤ t

δ
P(T1), (3.86)

where Tl is the event that the dynamic largest group process encounters two jumps in the l-th time interval of
lenght δ. We compute

P(T1) ≤ P(K [0,s]
max > K [0,s1]

max + εn1/α,K [0,s2]
max > K [0,s]

max + εn1/α) (3.87)
∞∑
k=2

∞∑
l=k+1

P(a : |a| > l + εn1/α arrives in (s1, s])P(a : |a| = l + εn1/α arrives in (s, s2])P(K [0,t−δ]
max = k).

From previous points we know that for l ≥ 2 P(a : |a| > l + εn1/α arrives in (s1, s]) ≤ δℓn(εn1/α)−α. Substituting
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this bound in the above calculation yields

P(T1) ≤
∞∑
k=2

∞∑
l=k+1

δℓn(εn1/α)−αP(a : |a| = l + εn1/α arrives in (s, s2])P(K [0,s1]
max = k) (3.88)

= δℓn(εn1/α)−α ≤
∞∑
k=2

P(a : |a| > k + εn1/α arrives in (s, s2])P(K [0,s1]
max = k)

≤
(
δℓn(εn1/α)−α

)2

=
δ2(E[Wn])2

ε2α

Note that for n0 big enough we have that E[Wn] is close to E[W ] for any n ≥ n0. Hence, if we take δ < ηε2α

(E[W ])2

the condition will hold for any pair η, ε > 0.
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configuration model”. In: Ann. Inst. Henri Poincaré Probab. Stat. 55.3 (2016), pp. 1509–1530. doi: 10.
1214/18-AIHP926.
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Közl. 5 (1960), pp. 17–61.

[26] J. A. Fill, E. R. Scheinerman, and K. B. Singer-Cohen. “Random intersection graphs when m = ω(n): an
equivalence theorem relating the evolution of the G(n,m, p) and G(n, p) models”. In: Random Structures
Algorithms 16.2 (2000), pp. 156–176. doi: 10.1002/(SICI)1098-2418(200003)16:2<156::AID-RSA3>3.
3.CO;2-8.

[27] M. Girvan and M. E. J. Newman. “Community structure in social and biological networks”. In: Proc. Natl.
Acad. Sci. USA 99.12 (2002), pp. 7821–7826. doi: 10.1073/pnas.122653799.

[28] E. Godehardt and J. Jaworski. “Two models of random intersection graphs for classification”. In: Ex-
ploratory data analysis in empirical research. Stud. Classification Data Anal. Knowledge Organ. Springer,
Berlin, 2003, pp. 67–81.
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A Proof of the link between BGRGn(w) and BCMn(d) from [33]

Here we prove the theorem that lies at the heart of our results - the fact that, under certain conditions, BGRGn(w)
and BCMn(d(l),d(r)) are equivalent. The proof follows in four steps: First, we show that the BGRGn(w)
conditioned on its degree sequence is uniform. Secondly, we show that BCMn(d(l),d(r)) conditioned on simplicity
is uniform. We also state regularity conditions that allow us to draw an even stronger link between the two models.
Finally, we conclude that under such circumstances BGRGn(w) and BCMn(d(l),d(r)) are equivalent.

A.1 BGRGn(w) conditioned on degree sequence is uniform

We adapt the derivation of a similar result for GRGn(w). (See [30, Section 6.6]). Note that BGRGn(w) is
entirely determined by the group activity, i.e., if we know which group is active we automatically know which
vertices are in it. Hence, we can encode the probability of BGRGn(w) taking a particular form via a sequence
of indicator random variables: Take x = (xa)a∈∪k≥2[n]k - a sequence of 0s and 1s - and X = (Xa)a∈∪k≥2[n]k -
sequence of independent random variables describing the existence of particular groups i.e.,

P(Xa = 1) = 1 −P(Xa = 0) = πa
ON. (A.1)

Then, we have the following identification of the law of BGRGn(w):

Proposition A.1 (BGRGn(w) as a function of left- and right-degrees.). The probability that the sequence
X = (Xa)a∈∪k≥2[n]k takes a form x = (xa)a∈∪k≥2[n]k can be expressed as a function of left- and right-degree

sequences (d(l),d(r)) =
(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
:

P(X = x) = H
(
(d(l)(x), d(r)(x))

))
·
( ∏

a∈∪k≥2[n]k

(1 + λa
OFF)

)−1

, (A.2)

where d
(l)
i (x) =

∑
a∈[n]k:a∋i xa, d

(r)
a (x) = |a| · xa and H satisfies

H
(
(d(l)(x), d(r)(x))

))
=
∏
i∈[n]

w
d
(l)
i (x)

i

∏
a∈∪k≥2[n]k

f
(
d
(r)
a (x)

)
ℓ
d
(r)
a (x)

(
1− 1

|a|

)
n

. (A.3)

Proof. Taking X = (Xa)a∈∪k≥2[n]k and x = (xa)a∈∪k≥2[n]k as above, we obtain

P(X = x) =
∏

a∈∪k≥2[n]k

(πa
ON)xa(1 − πa

ON)1−xa (A.4)

=
∏

a∈∪k≥2[n]k

(∏
i∈a

f(|a|)
1

|a|wi

ℓ
|a|−1
|a|

n

)xa ∏
a∈∪k≥2[n]k

1

1 +
f(|a|)

∏
i∈a wi

ℓ
|a|−1
n

.

Note that
∏

i∈a f(|a|)wi

ℓ
|a|−1
n

= λa
OFF and hence we can abbreviate

P(X = x) =
( ∏

a∈∪k≥2[n]k

(1 + λa
OFF)

)−1 ∏
a∈∪k≥2[n]k

(∏
i∈a

wi

)xa
(
f(|a|)
ℓ
|a|−1
n

)xa

. (A.5)

We observe that∏
a∈∪k≥2[n]k

(∏
i∈a

wi

)xa

=
∏

a∈∪k≥2[n]k

∏
i∈a

wxa
i =

∏
i∈[n]

∏
a:a∋i

wxa
i =

∏
i∈[n]

w

∑
a∈[n]k:a∋i xa

i =
∏
i∈[n]

w
d
(l)
i (x)

i (A.6)

is a function of the left-degrees. Similarly, extending the definition of the function of group-size distribution by
fixing f(0) = 1, ∏

a∈∪k≥2[n]k

(f(|a|)
ℓ
|a|−1
n

)xa

=
∏

a∈∪k≥2[n]k

(f(|a|))xa

ℓ
(|a|−1)xa
n

=
∏

a∈∪k≥2[n]k

f
(
d
(r)
a (x)

)
ℓ
d
(r)
a (x)

(
1− 1

|a|

)
n

(A.7)

is a function of the right-degrees, as d
(r)
a (x) = |a| · xa. After substituting (A.6) and (A.7) into (A.5) the claim

follows.
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Given Proposition A.1 it is not difficult to show that the static bipartite graph conditioned on its degree
sequence is uniform:

Theorem 2.1 (BGRGn(w) conditioned on degree sequence is uniform). BGRGn(w) conditioned on {d(l)i (X) =

d
(l)
i ∀i ∈ [n], d

(r)
a (X) = d

(r)
a ∀a ∈ ∪k≥2[n]k}, is uniform over all bipartite graphs with degree sequence (d(l),d(r)) =(

(d
(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
.

Proof. With x = (xa)a∈∪k≥2[n]k satisfying d
(l)
i (x) = d

(l)
i for all i ∈ [n] and d

(r)
a (x) = d

(r)
a for all groups a we can

write

P(X = x | d(l)i (X) = d
(l)
i ∀i ∈ [n], d(r)a (X) = d(r)a ∀a) (A.8)

=
P(X = x)

P(d
(l)
i (X) = d

(l)
i ∀i ∈ [n], d

(r)
a (X) = d

(r)
a ∀a ∈ [n]k)

=
P(X = x)∑
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i (y)=d

(l)
i ∀i∈[n],d

(r)
a (y)=d
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a ∀a∈[n]k}

P(X = y)

=
G(a)−1H

(
(d(l)(x), d(r)(x))

)∑
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i (y)=d
(l)
i ∀i∈[n],d

(r)
a (y)=d
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a ∀a∈[n]k}

G(a)−1H
(
(d(l)(x), d(r)(x)

)
=

H
(
(d(l), d(r))

)∑
{y:d(l)

i (y)=d
(l)
i ∀i∈[n],d

(r)
a (y)=d

(r)
a ∀a∈[n]k}

H
(
(d(l), d(r))

)
=

1

#{y : d
(l)
i (y) = d

(l)
i ∀i ∈ [n], d

(r)
a (y) = d

(r)
a ∀a ∈ [n]k}

,

which means that the distribution is uniform over all bipartite graphs with the prescribed left- and right-degree
sequences.

A.2 Bipartite graph with communities conditioned on simplicity is uniform

Note: BCMn(d) from [33] does not have a community structure. Hence, we prove the equivalence between
BGRGn(w) and BCMn(d) with complete communities. Before proving the main result, i.e., the fact that the
bipartite configuration model is uniform given simplicity, we need an auxiliary proposition (which is analogous
to a similar result for CMn(d) - see [30, Proposition 7.7]):

Proposition A.2. (The law of BCMn(d)) Denote by G = (xia)i∈[n],a∈[n]k a bipartite multigraph on left-vertices

i ∈ [n] and right-vertices a ∈ [n]k, such that d
(l)
i =

∑
a∈∪k≥2[n]k

xia and d
(r)
a =

∑
i∈[n] xia, where xia is the number

of edges between i ∈ [n] and a ∈ [n]k. Then,

P(BCMn(d) = G) =
1

hn!

∏
i∈[n] d

(l)
i !
∏

a∈∪k≥2[n]k
d
(r)
a !∏

i∈[n],a∈[n]k
xia!

, (A.9)

with hn =
∑

i∈[n] d
(l)
i =

∑
a∈∪k≥2[n]k

d
(r)
a . By d in BCMn(d) we mean a double degree sequence (d(l),d(r)) =(

(d
(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
.

Remark A.3. Note that [32, (2.38)] yields the same formula as (A.9). However, the authors of [32] deliver this
result in a form of a remark, giving justification rather than formal proof. We provide a formal proof.

Proof. We start by computing the number of all possible matchings between the left and right sides. Imagine we
want to assign a right-half-edge to every left-half-edge uniformly at random. For the first fixed left-half-edge we
have hn choices of available right-half-edges. For the second left-half-edge, hn − 1 choices, and so on. It is not
hard to see that the number of all such matchings is hn!. Hence,

P(BCMn(d) = G) =
1

hn!
#N(G), (A.10)
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where N(G) is the number of configurations that, after identifying the vertices, result in the multigraph G.
Note that permuting half-edges incident to vertices will give rise to the same pairs of left- and right-vertices,
hence the same multigraph G, but yet, when it comes to half-edges, it is a different configuration. The number of

such permutations is
∏

i∈[n] d
(l)
i ! ·

∏
a∈∪k≥2[n]k

d
(r)
a !. However, some of these permutations yield the same half-edge

pairings. If two half-edges of the left-vertex i ∈ [n] are paired to two half-edges of the right-vertex a ∈ [n]k and we
permute all of them, we will have the same half-edges being matched again. Thus, we divide by

∏
i∈[n],a∈[n]k

xia!
to compensate for the ’double-counting’ caused by multiple connections.

Using this result we can prove the main theorem of the section (which is an adaptation of a similar result for
CMn(d) - see [30, Proposition 7.15]):

Theorem 2.2 (BCMn(d) conditioned on being simple is uniform). For any degree sequence d = (d(l),d(r)) =(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
, and conditionally on the event {BCMn(d) is a simple graph}, BCMn(d) is a uniform

bipartite graph with degree sequence d.

Proof. Since, by (A.9), P(BCMn(d) = G) is the same for every simple graph G, also conditional probability
P(BCMn(d) = G | BCMn(d) is simple) is the same for every simple graph G. Hence, for any degree sequence

(d(l),d(r)) =
(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
and conditionally on the event {BCMn(d) is a simple graph}, BCMn(d)

is a uniform simple graph with degree sequence (d(l),d(r)) =
(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
.

A.3 Relation between BGRGn(w) and BCMn(d).

Thanks to Theorems 2.1 and 2.2 we can show that the static bipartite generalized random graph and the bipartite
configuration model under certain conditions yield a certain graph G with the same probability. However, as
we mentioned in the proof overview section, if we assume a few regularity conditions on the degree sequences,
we can deduce a stronger link determining when certain events happen with high probability for BCMn(d) and
BGRGn(w). The necessary regularity conditions are as follows:

Condition 2.3 (Regularity conditions). The random variables D
(l)
n and D

(r)
n have distribution function F

(l)
n and

F
(r)
n respectively, given by

F (l)
n (x) =

1

n

∑
i∈[n]

1{d(l)
i ≤x} and F (r)

n (x) =
1

n

∑
a∈[n]k

1{d(r)
a ≤x}. (2.1)

We impose the following assumptions on these distribution functions:

a) There exist random variables D(l), D(r) such that, as n → ∞ and for every l ≥ 0, k ≥ 2,

P(D(l)
n = l | Gn)

P−→ P(D(l) = l) and P(D(r)
n = k | Gn)

P−→ P(D(r) = k), (2.2)

where (· | Gn) denotes conditioning with respect to a realisation of a random graph. Moreover, E[D(l)] < ∞,
E[D(r)] < ∞ and, as n → ∞,

E[D(l)
n | Gn]

P−→ E[D(l)] and E[D(r)
n | Gn]

P−→ E[D(r)]. (2.3)

Additionally, we put a constraint on the second moment of degree random variables:

b) E
[(
D(l)

)2]
,E
[(
D(r)

)2]
< ∞ and, as n → ∞,

E
[(
D(l)

n

)2 | Gn

] P−→ E
[(
D(l)

)2]
and E

[(
D(r)

n

)2 | Gn

] P−→ E
[(
D(r)

)2]
. (2.4)

If we assume these conditions for BCMn(d), the following is a natural consequence of Theorem 2.2 (analogously
to a similar result for CMn(d) - see [30, Corollary 7.17]):

Corollary A.4. (Uniform graphs with given degree sequence and BCMn(d)). Assume that (d(l),d(r)) =(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
satisfies Condition 2.3. Then, an event En occurs with high probability for a uniform

simple bipartite random graph with degrees d = (d(l),d(r)) =
(
(d

(l)
i )i∈[n], (d

(r)
a )a∈∪k≥2[n]k

)
when it occurs with

high probability for BCMn(d).
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Proof. Let UGn(d) denote a uniform simple bipartite random graph with degrees d = (d(l),d(r)). Let En be a sub-
set of multi-graphs that limn→∞ P

(
BCMn(d) ∈ Ec

n

)
= 0. We need to prove that then also limn→∞ P

(
UGn(d) ∈

Ec
n

)
= 0. By Theorem 2.2,

P
(
(UGn(d) ∈ Ec

n

)
= P(BCMn(d) ∈ Ec

n | BCMn(d) is simple) (A.11)

=
P(BCMn(d) ∈ Ec

n,BCMn(d) is simple)

P(BCMn(d) is simple)

≤ P(BCMn(d) ∈ Ec
n)

P(BCMn(d) is simple)
.

By assumption we have that limn→∞ P(BCMn(d) ∈ Ec
n) = 0. Moreover, by [2, Theorem 1.10 (1.45)], for which

the conditions are satisfied by Condition 2.3, it follows

lim inf
n→∞

P(BCMn(d) is simple) > 0, (A.12)

so that P
(
(UGn(d) ∈ Ec

n

)
→ 0.

Now we can prove the final result on the link between the two models (which is analogous to a similar result
for GRGn(w) and CMn(d) - see [30, Theorem 7.18]):

Theorem 2.4 (Relation between BGRGn(w) and BCMn(d)). Let d
(l)
i be the degree of left-vertex i in BGRGn(w),

d
(r)
a the degree of a group a in BGRGn(w), and D = (d(l),d(r)) =

(
(d

(l)
i )i∈[n], (d

(r)
a )a∈[m]

)
. Then,

P(BGRGn(w) = G | D = d) = P(BCMn(d) = G | BCMn(d) simple). (2.5)

Let En be a subset of multi-graphs such that P(BCMn(d) ∈ En)
P−→ 1 when D satisfies Condition 2.3. Assume

that the degree sequence D of BGRGn(w) satisfies Condition 2.3. Then also P(BGRGn(w) ∈ En) −→ 1.

Proof. Equality in (2.5) follows from Theorems 2.1 and 2.2 for every simple bipartite graph G with degree
sequence D(d(l),d(r)). These results imply that BGRGn(w) as well as BCMn(d) are uniform simple random
graphs. Further, by (2.5) we have that

P(BGRGn(w) ∈ En | D = d) = P(BCMn(d) ∈ En | BCMn(d) simple).

We rewrite

P(BGRGn(w) ∈ Ec
n) = E

[
P(BGRGn(w) ∈ Ec

n | D)
]

(A.13)

= E
[
P(BCMn(d) ∈ Ec

n | BCMn(d) simple)
]

≤ E

[
P(BCMn(d) ∈ Ec

n)

P(BCMn(d) simple)
∧ 1

]
,

where E is the expectation w.r.t the degree sequence D. We assumed that P(BCMn(d) ∈ Ec
n)

P−→ 0. Since D
satisfies Condition 2.3 in probability, by [2, Theorem 1.10 (1.45)] it follows

lim inf
n→∞

P(BCMn(d) is simple) > 0. (A.14)

Hence, by the dominated convergence theorem, we conclude that P(BGRGn(w) ∈ Ec
n) −→ 0.

B Regularity conditions static bipartite graph and consequences

Theorem 2.4 shows that if the degree sequences of BCMn(d) and BGRGn(w) satisfy Condition 2.3(i)-(ii), then
it can be deduced that if some event En happens with high probability for BCMn(d), it also happens with high
probability for BGRGn(w). The results derived for BCMn(d) in [33] and [32] hold precisely under Conditions
2.3(i)-(ii). Hence, if BGRGn(w) also satisfies these regularity conditions, we can transfer all the results on the
local convergence and the giant component from [33] and [32].

Here, we show that the degree sequence of BGRGn(w) indeed satisfies the required conditions. We will also
argue why it is possible to drop Condition 2.3(ii). Before proceeding to the proofs, we state one consequence of
Condition 1.2 that we frequently make use of in the following sections:

Corollary B.1. Condition 1.2 (a)− (b) implies that maxi∈[n] wi = o(n) and Condition 1.2 (a)− (c) implies that
maxi∈[n] wi = o(

√
n).
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B.1 Convergence of left degrees in BGRGn(w)

Throughout this section we assume Condition 1.2(c), however, we later argue it can be lifted. To show the
convergence of the left degrees in BGRGn(w), we first need the following auxiliary result:

Theorem B.2 (Poisson approximation of the number of k-cliques containing a vertex). Let Ck(i) denote the
number of groups of size k containing vertex i ∈ [n].There exists a coupling (Ĉk(i), Ẑi,k) of Ck(i) and a Poisson
random variable Zi,k with parameter kpkwi, such that

P(Ĉk(i) ̸= Ẑi,k) ≤ 2(k(k − 1)pk)2w2
i

ℓn

(
k − 1

ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k−1

. (B.1)

Proof. We adapt the proof of a similar result for GRGn(w). (See the proof of [30, Theorem 6.7].). Note that it
holds that

Ck(i) =
∑

a∈[n]k:a∋i

1{a is ON} (B.2)

Hence, Ck(i) is a sum of independent Bernoulli random variables and by [33, Theorem 2.10] we know that there
exists a Poisson random variable Ŷi,k with parameter

λi,k =
∑

a∈[n]k:a∋i

πa
ON (B.3)

and a random variable Ĉk(i) with the same distribution as Ck(i), such that

P(Ĉk(i) ̸= Ŷi,k) ≤
∑

a∈[n]k:a∋i

(
πa
ON

)2
. (B.4)

We have

∑
a∈[n]k:a∋i

(
πa
ON

)2
=

∑
a∈[n]k:a∋i

(
k!pkwi

∏
j∈a,j ̸=i wj

ℓk−1
n + k!pkwi

∏
j∈a,j ̸=i wj

)2

≤ (k!pk)2w2
i

∑
a∈[n]k:a∋i

(∏
j∈a,j ̸=i wj

ℓk−1
n

)2

(B.5)

≤ (k!pk)2w2
i

(∑
j∈[n] w

2
j

)k−1

(k − 1)!(ℓ2n)k−1
=

(k − 1)!(kpk)2w2
i

ℓk−1
n

(
E[W 2

n ]
)k−1(

E[Wn]
)k−1

.

Let εi,k = kpkwi − λi,k ≥ 0. Take V̂i,k ∼ Poi(εi,k) and write Ẑi,k = Ŷi,k + V̂i,k. By the Markov inequality,

P(Ŷi,k ̸= Ẑi,k) = P(V̂i,k ̸= ∅) = P(V̂i,k ≥ 1) ≤ E[V̂i,k] = εi,k. (B.6)

We note that

εi,k = kpkwi − λi,k =
k!pkwi

(k − 1)!
· 1 −

∑
j1<...<jk−1∈[n]

π
{i,j1,...,jk−1}
ON (B.7)

=
k!pkwi

(k − 1)!

∑
j1,...,jk−1

wj1 · · ·wjk−1

ℓk−1
n

−
∑

j1<...<jk−1∈[n]

k!pkwiwj1 · · ·wjk−1

ℓk−1
n + k!pkwiwj1 · · ·wjk−1

=
∑

j1<...<jk−1∈[n]

k!pkwiwj1 · · ·wjk−1

(
1

ℓk−1
n

− 1

ℓk−1
n + k!pkwiwj1 · · ·wjk−1

)

=
∑

j1<...<jk−1∈[n]

(k!pk)2w2
iw

2
j1
· · ·w2

jk−1

ℓk−1
n (ℓk−1

n + k!pkwiwj1 · · ·wjk−1
)
≤

∑
j1<...<jk−1∈[n]

(k!pk)2w2
iw

2
j1
· · ·w2

jk−1

ℓ
2(k−1)
n

≤ (k − 1)!(kpk)2w2
i

ℓk−1
n

(∑
j∈[n] w

2
j

)k−1

ℓk−1
n

.
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Using the fact that k! ≤ kk this yields

P(Ĉk(i) ̸= Ẑi,k) ≤ P(Ĉk(i) ̸= Ŷi,k) + P(Ŷi,k ̸= Ẑi,k) (B.8)

≤ 2(k − 1)!(kpk)2w2
i

ℓk−1
n

(∑
j∈[n] w

2
j

)k−1

ℓk−1
n

≤ 2(k(k − 1)pk)2

(
k − 1

ℓn

)k−2
w2

i

ℓn

(
E[W 2

n ]

E[Wn]

)k−1

,

which proves the desired result.

Thanks to the coupling derived above we conclude that the degree of a uniformly chosen left-vertex converges:

Theorem B.3 (Left-degree in bipartite graph BGRGn(w)). Let D
(l)
n denote the degree of a uniformly chosen

left-vertex in BGRGn(w). Then, as n → ∞,

D(l)
n

d−→ D(l), (B.9)

where D(l) is a mixed-Poisson variable with mixing parameter Wµ, with µ =
∑

k kpk.

Proof. We adapt the proof of a similar result for GRGn(w). (See the proof of [30, Corollary 6.9].). We have that

d
(l)
i =

∑∞
k=2 Ck(i) for any vertex i ∈ [n]. Fix a sequence bn → ∞ as n → ∞. Note that,

E

[ ∑
k>bn

Ck(i)

]
≤
∑
k>bn

kpkwi

∑
j1,...,jk−1

wj1 · · ·wjk

ℓk−1
n

= wi

∑
k>bn

kpk = o(1), (B.10)

for every i ∈ [n] and every bn → ∞ since we assumed
∑∞

k=2 kpk < ∞. We conclude that d
(l)
i is close to

∑bn
k=2 Ck(i).

We know from Theorem B.2, the assumption
∑∞

k=2 k
2pk < ∞ and the fact that maxi∈[n] wi = o(

√
n), that for

all k ∈ [2, bn], Ck(i) is close in distribution to a Poisson variable with parameter kpkwi if we choose bn = o(n).
Hence, for a uniformly chosen vertex on from [n], the number of groups of size k containing this vertex, for all
k ∈ [2, bn] with bn at most o(n), is close to a Poisson variable with parameter kpkwon , where won is the weight
of a uniformly chosen vertex. Such a variable follows a mixed-Poisson distribution with mixing distribution
won , and won is distributed like Wn. We know that a mixed-Poisson random variable converges to a limiting
mixed-Poisson random variable when the mixing distribution converges. Since we have assumed convergence of
Wn to a limiting variable W in Condition 1.2, it follows that for all k ∈ [2, bn] with bn at most o(n), Ck(on)

converges to a Poisson random variable with parameter kpkW . Thus, truncated D
(l)
n has the same distribution as

the sum over k ∈ [2, bn) of independent Poisson variables with parameters kpkW , which, as n → ∞, converges to

a Poisson variable with parameter Wµ. Since the difference between D
(l)
n and truncated D

(l)
n is small as n → ∞,

we conclude D
(l)
n also converges to a Poisson variable with parameter Wµ.

Below we use the second-moment method to show that also the expected degree of a uniformly chosen left-
vertex converges.

Theorem B.4. Let D
(l)
n denote the degree of a uniformly chosen left-vertex in BGRGn(w). Then, as n → ∞,

E[D(l)
n | Gn]

P−→ µE[W ]. (B.11)

Proof. Note that E[D
(l)
n | Gn] = 1

n

∑
i∈[n] d

(l)
i is the same as 1

n

∑
a∈∪k≥2[n]k

d
(r)
a = 1

n

∑
a∈∪k≥2[n]k

|a| · 1{a is ON},

which is a sum of independent variables. To avoid more assumptions on the moments of the group-size distribu-
tion, we fix a sequence bn → ∞ as n → ∞ and use truncation with respect to the group size, i.e,

∞∑
k=2

∑
a∈[n]k

|a|1{a is ON} =

bn∑
k=2

∑
a∈[n]k

|a|1{a is ON} +

∞∑
k=bn+1

∑
a∈[n]k

|a|1{a is ON}. (B.12)

For further notational convenience, denote wa =
∏

i∈a wi. We compute

E
[ 1

n

∞∑
k=bn+1

∑
a∈[n]k

|a|1{a is ON}
]

=
1

n

∑
k>bn

k
∑

a∈[n]k

k!pkwa

ℓk−1
n + k!pkwa

≤ ℓn
n

∑
k>bn

kpk = o(1), (B.13)
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for every bn → ∞, since we have assumed
∑

k kpk < ∞. Hence, the contribution from groups larger than bn will
vanish in probability, i.e.,

∞∑
k=2

∑
a∈[n]k

|a|1{a is ON} =

bn∑
k=2

∑
a∈[n]k

|a|1{a is ON} + oP(1). (B.14)

Note that

k!pkwa

ℓk−1
n + k!pkwa

=
k!pkwa

ℓk−1
n

− (k!pk)2(wa)2

ℓk−1
n (ℓk−1

n + k!pkwa)
. (B.15)

Hence,

E[
1

n

∑
i∈[n]

d
(l)
i ] ≤ 1

n

bn∑
k=2

k
∑

a∈[n]k

k!pkwa

ℓk−1
n

≤ ℓn
n

∞∑
k=2

kpk = E[Wn]µ
n→∞−→ E[W ]µ. (B.16)

Further, using the fact that k! ≤ kk,∑
a∈[n]k

(k!pk)2(wa)2

ℓk−1
n (ℓk−1

n + k!pkwa)
≤
∑

a∈[n]k

(k!pk)2(wa)2

(ℓk−1
n )2

(B.17)

≤ k!(pk)2

(∑
i∈[n] w

2
i

)k
ℓk−2
n ℓkn

= (kpk)2

(
k

ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

,

and thus

E[
1

n

∑
i∈[n]

d
(l)
i ] ≥ ℓn

n

bn∑
k=2

kpk − 1

n

bn∑
k=2

k(kpk)2

(
k

ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

(B.18)

≥ ℓn
n

bn∑
k=2

kpk − bn
n

bn∑
k=2

(kpk)2

(
bn
ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

=
ℓn
n

bn∑
k=2

kpk − o(1)
n→∞−→ E[W ]µ,

if we choose bn = o(n) and since we have assumed µ(2) =
∑

k k
2pk < ∞. Using the independence and the fact

that the variance of an indicator random variable is smaller or equal to its expectation we compute

Var[
1

n

∑
i∈[n]

d
(l)
i ] ≤ ℓn

n2

∞∑
k=2

k2pk =
E[Wn]

n

∞∑
k=2

k2pk = o(1), (B.19)

since we have assumed
∑∞

k=2 k
2pk < ∞. Taking n large enough so that

∣∣E[ 1n
∑

i∈[n] d
(l)
i ] − µE[W ]

∣∣ ≤ ε
2 , by

Chebyshev’s inequality

P

(∣∣∣∣ 1n ∑
i∈[n]

d
(l)
i − µE[W ]

∣∣∣∣ > ε
)
≤ P

(∣∣∣∣ 1n ∑
i∈[n]

d
(l)
i −E

[
1

n

∑
i∈[n]

d
(l)
i

]∣∣∣∣ > ε

2

)
(B.20)

≤ 4

ε2
Var

[
1

n

∑
i∈[n]

d
(l)
i

]
= o(1).

Remark B.5. The above shows why Assumptions (1.12) and (1.13) are necessary.

B.2 Convergence of right degrees in BGRGn(w)

We want to show that the degree of a uniformly chosen right-vertex converges. We first need two auxiliary results:
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Theorem B.6 (Convergence of the number of groups of fixed size). Denote Ak = #{a : |a| = k}. For k ≥ 2,

Ak

n

P−→ pkE[W ]. (B.21)

Proof. To prove the desired statement we use the second-moment method. We have

Ak =
∑

a∈[n]k

1{group a is ON}, (B.22)

and thus,

E[Ak] =
∑

a∈[n]k

πa
ON =

∑
j1<...<jk∈[n]

k!pkwj1 · · ·wjk

ℓk−1
n + k!pkwj1 · · ·wjk

. (B.23)

Using (B.15) we arrive at

E

[
Ak

n

]
≤ 1

n · k!

∑
j1,...,jk∈[n]

k!pkwj1 · · ·wjk

ℓk−1
n

=
pkℓn
n

∑
j1,...,jk∈[n]

wj1 · · ·wjk

ℓkn
= pkE[Wn] −→ pkE[W ],

as n → ∞. Since k is fixed, by (B.15) and (B.17),

E

[
Ak

n

]
≥ pkE[Wn] − (kpk)2

n

(
k

ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

= pkE[Wn] − o(1), (B.24)

since we have assumed µ(2) =
∑

k k
2pk < ∞. Therefore,

pkE[Wn] − o(1) ≤ E

[
Ak

n

]
≤ pkE[Wn]. (B.25)

Moreover, since Ak is a sum of indicator random variables it holds that Var[Ak] ≤ E[Ak], which yields, for all
k ≥ 2,

Var

(
Ak

n

)
=

1

n2
Var[Ak] ≤ pkE[Wn]

n
= o(1). (B.26)

Take n big enough so that
∣∣E[Ak

n

]
− pkE[W ]

∣∣ ≤ ε
2 . Then

P

(∣∣∣∣Ak

n
− pkE[W ]

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣Ak

n
−E

[Ak

n

]∣∣∣∣ > ε

2

)
≤ 4

ε2
Var

[
Ak

n

]
= o(1).

Theorem B.7 (Convergence of the groups to vertices ratio). Recall Mn = #{a ∈ [n]k : a is ON} =
∑∞

k=2 Ak.
As n → ∞,

Mn

n

P−→ E[W ]. (B.27)

Proof. We have

Mn =

∞∑
k=2

∑
a∈[n]k

1{a is ON} =

∞∑
k=2

Ak =

bn∑
k=2

Ak +
∑
k>bn

Ak, (B.28)

where bn is a sequence diverging to infinity as n → ∞. Note that, using (B.15),

E

[∑
k>bn

Ak

n

]
≤ E[Wn]

∑
k>bn

pk = o(1), (B.29)
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for each bn → ∞. Thus,

Mn =

bn∑
k=2

Ak + oP(1). (B.30)

Again by (B.15),

E

[
Mn

n

]
=

bn∑
k=2

E

[
Ak

n

]
≤ ℓn

n

∞∑
k=2

pk = E[Wn] −→ E[W ], (B.31)

and on the other hand, by (B.15) and (B.17),

E

[
Mn

n

]
≥ E[Wn]

bn∑
k=2

pk − 1

n

bn∑
k=2

(kpk)2

(
k

ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

= E[Wn]

bn∑
k=2

pk − o(1)
n→∞−→ E[W ], (B.32)

if we choose bn = o(n). Further, since each Ak is a sum of independent indicators,

1

n2
Var(Mn) =

1

n2

bn∑
k=2

Var(Ak) ≤ 1

n2

∞∑
k=2

E[Ak] ≤ ℓn
n2

= o(1). (B.33)

Taking again n big enough so that
∣∣E[Mn

n

]
−E[W ]

∣∣ ≤ ε
2 . Then

P

(∣∣∣∣Mn

n
−E[W ]

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣Mn

n
−E

[Mn

n

]∣∣∣∣ > ε

2

)
≤ 4

ε2
Var

(
Mn

n

)
= o(1).

With the above, we can conclude convergence of the degree of a uniformly chosen right-vertex:

Theorem B.8 (Convergence of the degree of a uniformly chosen group). Recall that we denote the degree of a

uniformly chosen group a ∈ [n]k≥2 by D
(r)
n . As n → ∞,

P(D(r)
n = k | Gn)

P−→ pk. (B.34)

Proof. Note that P(D
(r)
n = k | Gn) = Ak/Mn. From Theorems B.6 and B.7 we know that n−1Ak and n−1Mn

converge in probability, which implies convergence of the joint vector (n−1Ak, n
−1Mn. Hence, the convergence

of the ratio is guaranteed by the continuous mapping theorem:

Ak

Mn
=

Ak

n
Mn

n

P−→ pkE[W ]

E[W ]
= pk. (B.35)

It also follows easily that the expected degree of a uniformly chosen right-vertex converges.

Corollary B.9 (Convergence of the first moment of the degree of a uniformly chosen group). It follows from
the previous that

E[D(r)
n | Gn]

P−→ µ. (B.36)

Proof. Note that

E[D(r)
n | Gn] =

∑∞
k=2

∑
a∈[n]k

d
(r)
a

Mn
=

∑∞
k=2 kAk

Mn
(B.37)

It is easy to show by the second-moment method and suitable truncation that
∑∞

k=2 kAk/n
P−→ µE[W ] and we

already showed that Mn

n

P−→ E[W ]. The claim follows again thanks to the joint convergence and continuous
mapping theorem.
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B.3 Convergence of the degree distribution in DRIGn(w)

Remark B.10. Note that the construction of DRIGn(w) allows for multiple edges, as two vertices i, j ∈ [n]
might meet in more than one group. However, it is easy to show that it will not happen with high probability in
a neighborhood of a uniformly chosen vertex and hence is negligible as long as local convergence is concerned.

B.3.1 Expected average degree

Theorem 2.15 (Convergence of average degree in DRIGn(w)). As n → ∞,

E[Dn | Gn]
P−→ (µ(2) − µ)E[W ]. (2.21)

Proof of Theorem 2.15. Write E[Dn | Gn] = 1
n

∑
i∈[n] di, where di is the degree of vertex i ∈ [n]. Since we want

to use the second-moment method and di, dj of some i, j ∈ [n] are not independent, it is more convenient to
express E[Dn | Gn] in terms of groups, which are independent. Note that

∑
i∈[n] di is nothing else than twice

the number of all edges in DRIGn(w). As DRIGn(w) is constructed from BGRGn(w), it is a collection of
k-cliques, whose ON or OFF status is determined by the ON and OFF processes of groups a ∈ ∪n≥2[n]k present
in BGRGn(w). Hence,

∑
i∈[n]

di =

∞∑
k=2

∑
a∈[n]k

2 · |a|(|a| − 1)

2
1{a is ON} =

∞∑
k=2

∑
a∈[n]k

|a|(|a| − 1)1{a is ON}, (B.38)

since the number of edges in a k-clique equals k(k − 1)/2. To avoid more assumptions on the moments of the
group-size distribution, we once more fix a sequence bn → ∞ as n → ∞ and use truncation with respect to the
group size, i.e,

∞∑
k=2

∑
a∈[n]k

|a|(|a| − 1)1{a is ON} =

bn∑
k=2

∑
a∈[n]k

|a|(|a| − 1)1{a is ON} +
∑
k>bn

∑
a∈[n]k

|a|(|a| − 1)1{a is ON}. (B.39)

Once again denote wa =
∏

i∈a wi. Using upper bounds derived in previous proofs we compute

E
[ 1

n

∑
k>bn

∑
a∈[n]k

|a|(|a| − 1)1{a is ON}
]

=
1

n

∑
k>bn

k(k − 1)
∑

a∈[n]k

k!pkwa

ℓk−1
n + k!pkwa

(B.40)

≤ ℓn
n

∑
k>bn

k(k − 1)pk = o(1),

for every bn → ∞, since we have assumed
∑

k k
2pk < ∞. Hence, the contribution from groups larger than bn

will vanish in probability, i.e.,

∞∑
k=2

∑
a∈[n]k

|a|(|a| − 1)1{a is ON} =

bn∑
k=2

∑
a∈[n]k

|a|(|a| − 1)1{a is ON} + oP(1). (B.41)

Thus, again applying previously derived upper bounds,

E[
1

n

∑
i∈[n]

di] =
1

n

bn∑
k=2

∑
a∈[n]k

|a|(|a| − 1)E
[
1{a is ON}

]
+ o(1) =

1

n

bn∑
k=2

k(k − 1)
∑

a∈[n]k

πa
ON + o(1) (B.42)

≤ ℓn
n

bn∑
k=2

k(k − 1)pk + o(1) ≤ E[Wn](µ(2) − µ) + o(1)
n→∞−→ EW (µ(2) − µ).
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On the other hand, using (B.15),

E[
1

n

∑
i∈[n]

di] ≥ E[Wn]

bn∑
k=2

k(k − 1)pk − 1

n

bn∑
k=2

k(k − 1)(kpk)2

(
k

ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

(B.43)

≥ E[Wn]

bn∑
k=2

k(k − 1)pk − b2n
n

bn∑
k=2

(kpk)2

(
bn
ℓn

)k−2(
E[W 2

n ]

E[Wn]

)k

= E[Wn]

bn∑
k=2

k(k − 1)pk − o(1)
n→∞−→ EW (µ(2) − µ),

if we choose bn = o(n). We now compute the variance:

Var

(
1

n

∑
i∈[n]

di

)
=

1

n2

bn∑
k=2

∑
a∈[n]k

|a|2(|a| − 1)2Var
[
1{a is ON}

]
≤ 1

n2

bn∑
k=2

∑
a∈[n]k

|a|2(|a| − 1)2E
[
1{a is ON}

]
≤ ℓn

n2

bn∑
k=2

k2(k − 1)2pk ≤ ℓnb
2
n

n2

bn∑
k=2

k(k − 1)pk = o(1), (B.44)

if we choose bn = o(
√
n). Thus, taking n big enough so that

∣∣E[ 1n
∑

i∈[n] di] − (µ(2) − µ)E[W ]
∣∣ ≤ ε

2 , we obtain

P

(∣∣∣∣ 1n ∑
i∈[n]

di − (µ(2) − µ)E[W ]

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ 1n ∑
i∈[n]

di −E
[ 1

n

∑
i∈[n]

di
]∣∣∣∣ > ε

2

)
≤ 4

ε2
Var

(
1

n

∑
i∈[n]

di

)
= o(1).

B.3.2 Degree sequence

Theorem 2.14 (Degree sequence in DRIGn(w)). For every ε > 0,

P
( ∞∑

k=0

|Q(n)
k − qk| > ε

)
−→ 0, (2.19)

where qk = P
(∑

l≥2(l − 1)Xl = k
)
with

(
Xl

)
l≥2

- independent mixed-Poisson variables with mixing distribution

lplW , i.e., such that

P(Xl = k) = E
[
e−lplW

(lplW )k

k!

]
. (2.20)

Proof. We adapt the proof of a similar result for GRGn(w). (See the proof of [30, Theorem 6.10].) Since (qk)k≥0

is a probability mass function, ∑
k≥0

|Q(n)
k − qk| = 2dTV(Q(n), q)

P−→ 0, (B.45)

if and only if maxk≥0 |Q(n)
k − qk|

P−→ 0. Therefore we have to show that P(maxk≥0 |Q(n)
k − qk| ≥ ε) vanishes for

every ε > 0. Note that,

P(max
k≥0

|Q(n)
k − qk| ≥ ε) ≤

∑
k≥0

P(|Q(n)
k − qk| ≥ ε). (B.46)

We also have that E[Q
(n)
k ] = P(Dn = k) and by the previous theorem we know that limn→∞ P(Dn = k) = qk.

Hence, for n sufficiently large,

max
k

|E[Q
(n)
k ] − qk| ≤

ε

2
. (B.47)
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Thus, for n sufficiently large,

P(max
k≥0

|Q(n)
k − qk| ≥ ε) ≤

∑
k≥0

P(|Q(n)
k −E[Q

(n)
k ]| ≥ ε

2
) ≤ 4

ε2

∑
k≥0

Var(Q
(n)
k ), (B.48)

where the last follows from the Chebychev inequality. We have

Var(Q
(n)
k ) ≤ 1

n2

∑
i∈[n]

[P(di = k) −P(di = k)2] (B.49)

+
1

n2

∑
i,j∈[n],i̸=j

[P(di = dj = k) −P(di = k)P(dj = k)].

We have that ∑
k≥0

1

n2

∑
i∈[n]

[P(di = k) −P(di = k)2] ≤
∑
k≥0

1

n2

∑
i∈[n]

P(di = k) =
1

n
= o(1). (B.50)

We want to show that the second term vanishes too. Note that di =
∑

a:a∋i(|a| − 1)1{a is ON}. Hence, the
correlation between di and dj is due to groups containing both i and j. We write

di\j =

∞∑
k=2

∑
a∈[n]k:a∋i,a ̸∋j

(|a| − 1)1{a is ON}, (B.51)

and we define dj\i analogously. We also define

di,j =

∞∑
k=2

∑
a∈[n]k:a∋i,j

(|a| − 1)1{a is ON}. (B.52)

Then (di, dj) has the same law as (di\j + di,j , dj\i + di,j). Now let us introduce random variable 1̂{a is ON} such

that 1̂{a is ON}
d
= 1{a is ON} and 1̂{a is ON} independent of

(
1{a is ON}

)
a∈∪k≥2[n]k

. Thus,

d̂i,j =

∞∑
k=2

∑
a∈[n]k:a∋i,j

(|a| − 1)1̂{a is ON}
d
= di,j , (B.53)

and then (di\j + di,j , dj\i + d̂i,j) are independent random variables with the same marginals as di, dj . Hence

P(di = dj = k) = P
(
(di\j + di,j , dj\i + di,j) = (k, k)

)
, (B.54)

P(di = k)P(dj = k) = P
(
(di\j + di,j , dj\i + d̂i,j) = (k, k)

)
.

Therefore,

P(di = dj = k) −P(di = k)P(dj = k) (B.55)

= P
(
(di\j + di,j , dj\i + di,j) = (k, k)

)
−P

(
(di\j + di,j , dj\i + d̂i,j) = (k, k)

)
≤ P

([
(di\j + di,j , dj\i + di,j) = (k, k)

]
\
[
(di\j + di,j , dj\i + d̂i,j) = (k, k)

])
= P

(
(di\j + di,j , dj\i + di,j) = (k, k), (di\j + di,j , dj\i + d̂i,j) ̸= (k, k)

)
.

When the above happens, it must be that di,j ̸= d̂i,j , so there exists such a ∋ i, j that 1{a is ON} ̸= 1̂{a is ON}. If

then, for some a, 1̂{a is ON} = 1, then 1{a is ON} = 0 and di\j + di,j = k; If 1{a is ON} = 1, then 1̂{a is ON} = 0

and dj\i + d̂i,j = k − (|a| − 1). Hence,

P(di = dj = k) −P(di = k)P(dj = k) ≤
∑
a∋i,j

P(a is ON)[P(di = k) + P(dj = k − |a| + 1)]. (B.56)
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This yields∑
k≥0

Var(Q
(n)
k ) ≤ o(1) +

∑
k≥0

1

n2

∑
i,j∈[n],i̸=j

∑
a∋i,j

P(a is ON)[P(di = k) + P(dj = k − |a| + 1)] (B.57)

≤ o(1) +
2

n2

∑
i,j∈[n]

∑
a∋i,j

|a|!p|a|wa

ℓa−1
n

,

where once again we denote wa =
∏

v∈a wv. Since

∑
a∋i,j

|a|!p|a|wa

ℓa−1
n

=

∞∑
l=2

∑
v1<...<vl−2

l!plwiwjwa

ℓl−1
n

(B.58)

=
wiwj

ℓn

∞∑
l=2

l(l − 1)pl
∑

v1,...,vl−2

wv1 ...wvl

ℓl−2
n

=
wiwj

ℓn
(µ(2) − µ),

we obtain ∑
k≥0

Var(Q
(n)
k ) ≤ o(1) +

2

n2

∑
i,j∈[n]

wiwj

ℓn
(µ(2) − µ) (B.59)

= o(1) + (µ(2) − µ)
1

n2

∑
i∈[n]

w2
i

ℓn
= o(1) +

(µ(2) − µ)E[W 2
n ]

n2
= o(1).

Remark B.11 (Eliminating conditions on higher moments by weight truncation). Note that Theorem 2.4 is
only valid for the BGRGn(w) with weights (wi)i∈[n] satisfying Condition 1.2(a)-(c), as it requires a finite second
moment of the degree of a uniformly chosen vertex. However, we argue that the local convergence statement can
easily be extended to the BGRGn(w) not satisfying the latter via a truncation argument. To do so, we adapt a
similar argument for GRGn(w). (See the proof of [31, Theorem 4.23]). Namely, we can truncate the weights of

all vertices by some K > 0, i.e., introduce BGRG(K)
n (w) with weights

(
w

(K)
i

)
i∈[n]

such that

w
(K)
i = wi ∧K. (B.60)

Note that if (wi)i∈[n] in BGRGn(w) satisfies Conditions 1.2(a)-(b), then
(
w

(K)
i

)
i∈[n]

in BGRG(K)
n (w) satisfies

Conditions 1.2(a)-(c). Hence, the second moments of D
(l),(K)
n and D

(r),(K)
n are finite and all results on BCMn(d)

can be transferred to BGRG(K)
n (w) thanks to Theorem 2.4. This means that (BGRG(K)

n (w), V
(l)
n ) converges locally

in probability to some limiting (G, o). We now show that this implies that also (BGRGn(w), V
(l)
n ) converges locally

in probability to (G, o). By local convergence, for any fixed rooted graph (H⋆, o
′) and r ∈ N,

1

n

∑
i∈[n]

1{Br(G
(K)
n ,i)≃(H⋆,o′)}

P−→ P(Br(G, o) ≃ (H⋆, o
′)). (B.61)

We write

1

n

∑
i∈[n]

1{Br(Gn,i)≃(H⋆,o′)} =
1

n

∑
i∈[n]

1{Br(Gn,i)≃(H⋆,o′),Br(Gn, i) contains only j such that wj ≤ K} (B.62)

+
1

n

∑
i∈[n]

1{Br(Gn,i)≃(H⋆,o′),Br(Gn, i) contains j with wj > K},

and note that

lim
K→∞

E

[
1

n

∑
i∈[n]

1{Br(Gn,i)≃(H⋆,o′),Br(Gn, i) contains j with wj > K}

]
(B.63)

≤ lim
K→∞

P(Br(Gn, V
(l)
n ) contains j : wj > K) = o(1),
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by Conditions 1.2(a)-(b). Thus, for K large enough,

1

n

∑
i∈[n]

1{Br(Gn,i)≃(H⋆,o′)}
d
=

1

n

∑
i∈[n]

1{Br(Gn,i)≃(H⋆,o′),Br(Gn, i) contains only j : wj ≤ K} + oP(1) (B.64)

=
1

n

∑
i∈[n]

1{Br(G
(K)
n ,i)≃(H⋆,o′)}

+ oP(1)
P−→ P(Br(G, o) ≃ (H⋆, o

′)).

Having shown local convergence of BGRGn(w), we transfer the result on the giant component in a similar

manner. Denote the size of the giant component in BGRG(K)
n (w) by |C (K)

max | and the size of the giant component
in BGRGn(w) by |Cmax|. Transferring results from [32] we obtain, as n → ∞,

|C (K)
max |
n

P−→ ξ. (B.65)

Naturally,

|Cmax|
n

≥ |C (K)
max |
n

P−→ ξ = µ
(
|C (o)| = ∞

)
. (B.66)

On the other hand, denote Z≥k = 1
n

∑
i∈[n] 1{|C (i)|≥k} and note that on the event {Z≥k ≥ 1},

|Cmax|
n

≤ Z≥k

n
. (B.67)

By local convergence in probability,

1

n
Z≥k = E

[
1{

|C (V
(l)
n )|≥k

} | Gn

]
P−→ ξ≥k = µ

(
|C (o)| ≥ k

)
, (B.68)

Note that limk→∞ ξ≥k = ξ. Thus, for every ε > 0,

lim sup
n→∞

P

(
|Cmax|

n
≤ ξ + ε

)
≤ lim

n→∞
P

(
1

n
Z≥k ≥ ξ + ε

)
(B.69)

≤ lim
k→∞

lim
n→∞

P

(
1

n
Z≥k ≥ ξ≥k + ε

)
= 0,

and the desired statement follows. Hence indeed, the most important results that we treat in this paper, i.e.,
local convergence and the existence of giant component, are also true for BGRGn(w) only satisfying Conditions
1.2(a)-(b).

B.4 Static local convergence of BGRGn(w) and DRIGn(w)

Local convergence of BCMn(d). Having verified that BGRGn(w) fulfils the necessary regularity conditions we
can now conveniently transfer results on the local convergence from [33]. For the comfort of the reader, we quote
the statement of the original result on the local convergence of BCMn(d) ([33, Theorem 2.14]), which states that
under Condition 2.3, as n → ∞, (BCMn, V

b
n ) converges locally in probability to (BPγ , 0). The limiting object

- (BPγ , 0) - is a mixture of two branching processes with the root 0. The two processes are needed because of
the bipartite structure of BCMn(d) - each of them corresponds to contributions made to the limit by left- and
right-vertices respectively. As the structures of local limits of BCMn(d) and BGRGn(w) are very similar, we do
not describe the first one in more detail and direct the reader to Section 2.2 where the latter is explained.

Local convergence of RIGC. In [33] the local convergence of the resulting intersection graph is a consequence
of the convergence of the underlying bipartite graph. Thus, the same will take place for our model.

Again for the reader’s convenience, we first quote the statement of the original result from [33] (see [33, Theo-
rem 2.8]: Under Condition 2.3, as n → ∞, (RIGCn, V

l
n) converges locally in probability to (CP, o). As we already

mentioned, the convergence of RIGC follows from the convergence of BCMn(d). Therefore, the limiting object
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(CP, o) is a community projection of the limiting object (BPγ , 0) just like RIGCn is a community projection of
BCMn(d) (see (2.2) in [33]).

Static local limit of BGRGn(w) and DRIGn(w). We proceed by stating the local limit of BGRGn(w) and
DRIGn(w).

Theorem 1.4 (Local convergence of BGRGn(w) and DRIGn(w)). Consider BGRGn(w) under Condition 1.2.
As n → ∞, (BGRGn(w), V b

n ) converges locally in probability to (BPγ , 0), where (BPγ , 0) is a mixture of two
branching processes.
Consequently for DRIGn(w) under Condition 1.2, as n → ∞, (DRIGπ

n(w), on) converges locally in probability to
(CP, o), where (CP, o) is a random rooted graph.

Proof. Thanks to Theorem 2.4 and the fact that BGRGn(w) fulfils Condition 2.3(i), we can transfer [33, Theorem
2.8] to BGRGn(w), obtaining the above. The limiting left- and right-degrees D(l) and D(r) are the ones derived
in the verification of Condition 2.3(i).

The result for DRIGn(w) is equivalent to [33, Theorem 2.8] and it is a consequence of the relationship between
the resulting DRIGn(w) and the underlying BGRGn(w). The convergence of intersection graphs is preserved by
the community projection that transforms the underlying bipartite structures into them. Hence, naturally, the
local limit of DRIGn(w) is a community projection (see (1.14)) of the local limit of BGRGn(w).

B.5 Static giant component

B.5.1 Giant component in BGRGn(w)

In [32] results on the giant component of BCMn(d) are again shown under Condition 2.3. Hence, thanks to
Theorem 2.4 we can transfer them to our situation. We start with the giant component of the underlying
bipartite graph. For the reader’s convenience, we state the original result from [32] adapted to the notation we
use in this paper.

Theorem B.12 (The largest component of the BCM [32, Theorem 2.11]). Consider BCMn = BCM(d(l),d(r))

under Condition 2.3 and further assume that V̄2 + Ā2 < 2, where V̄k = 1
n#{i ∈ [n] : d

(l)
i = k} and Āk =

1
Mn

#{a : |a| = k}. Under the supercriticality condition E[D̃(l)]E[D̃(r)] > 1, we have that ξl > 0, ηl < 1 and
ηr = GD̃(l)(ηl) < 1. Then, as n → ∞,

|C1,b ∩ V(l)|
n

P−→ξl, (B.70)

|C1,b ∩ V(l)
k |

n

P−→pk(1 − ηkl ). (B.71)

Given this, we obtain Theorem 2.17.

Proof of Theorem 2.17. The result is automatically transferred from Theorem B.12. We are allowed to do that
because in Theorem 2.4 we linked BCMn(d) satisfying Conditions 2.3 to BGRGn(w) satisfying Conditions 2.3
and we also showed that BGRGn(w) satisfies these regularity conditions earlier in this section. Note that the
condition V̄2 + Ā2 < 2 made in [32] is always satisfied in our model (as V0 > 0) and does not have to be assumed
for Theorem 2.17 to hold.

B.5.2 Giant component in DRIGn(w)

Once again, we want to transfer results from [32], namely the result on the giant component in the resulting
intersection graph. Again for the comfort of the reader, we quote the original result with notation adapted to
our convention:

Theorem B.13 (Size of the largest component [32, Theorem 2.6]). Consider DRIGn(w) under Condition 2.3,

and further assume that V̄2 + Ā2 < 2, where V̄k = 1
n#{i ∈ [n] : d

(l)
i = k} and Āk = 1

Mn
#{a : |a| = k}. Then,

there exists ηl ∈ [0, 1], the smallest solution of the fixed point equation

ηl = GD̃(r)(GD̃(l)(ηl)), (B.72)
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and ξl = 1 −GD(l)(ηl) ∈ [0, 1] such that

|C1|
n

P−→ ξl. (B.73)

Furthermore, ξl > 0 exactly when

E[D̃(l)]E[D̃(r)] > 1, (B.74)

In this case, C1 is unique.

Hence, we obtain that our model has a giant component as well when
E[W 2](µ(2)−µ)

E[W ] > 1:

Proof of Theorem 1.5. The convergence in (1.17) is a consequence of Theorem 2.17 and it can be transferred
because of the graph equivalence from Theorem 2.4. However, since, as in the case of RIGC, the giant component
in the resulting graph will exist only if the giant component in the underlying graph exists this result can be also
deduced from Theorem 2.17. Note again that the condition V̄2 + Ā2 < 2 made in [32] is always satisfied in our
model (as V0 > 0) and does not have to be assumed for Theorem 1.5 to hold. A nice feature of our model is the
fact that we have a more explicit form of the limiting left- and right-degrees than the authors of [33] and [32].
Hence, we can derive the equality in (1.18): By definition of the shift random variable D̃(r) (see (2.12)),

E[D̃(r)] =
∑
k=1

kP(D̃(r) = k) =
∑
k=1

k(k + 1)
P(D(r) = k + 1)

E[D(r)]
=

1

µ

∑
k=1

k(k + 1)pk+1 (B.75)

=
1

µ

∑
l=2

(l − 1)lpl =
µ(2) − µ

µ
,

where we have used (B.34) and (B.36) when substituting explicit expressions for the probability mass function
and expected value of the random variable D(r). Similarly,

E[D̃(l)] =
∑
k=1

k(k + 1)
P(D(l) = k + 1)

E[D(l)]
. (B.76)

We know by Corollary B.3 that D(l) is a mixed-Poisson variable with rate Wµ. Hence, we need to condition on
the weight variable W to compute its expectation:

E[D(l)] = E
[
E(Poi(wµ) | W

]
= E[µW ] = µE[W ]. (B.77)

Plugging it into (B.76) yields

E[D̃(l)] =
1

µE[W ]

∑
k=1

k(k + 1)P(D(l) = k + 1) (B.78)

=
1

µE[W ]

∑
l=2

(l − 1)lE
[
E
[
P(Poi(wµ) = l) | W

]]
.

After substituting P(Poi(wµ) = l) =

(
wµ
)l

e−wµ

l! we obtain

E[D̃(l)] =
1

µE[W ]

∑
l=2

(l − 1)lE
[
E
[(wµ)le−wµ

l!
| W

]]
=

1

µE[W ]
E

[
E

[∑
l=2

(
Wµ

)l
(l − 2)!

e−Wµ | W
]]

(B.79)

=
1

µE[W ]
E
[
E
[
e−Wµ · eWµ(Wµ)2 | W

]]
=

µ2E[W 2]

µE[W ]
=

µE[W 2]

E[W ]
.

Therefore, the condition (1.18) becomes

E[W 2](µ(2) − µ)

E[W ]
> 1. (B.80)
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Remark B.14 (Results for BGRG(t)
n (w)). We claim that BGRG(t)

n (w) fulfils the same conditions that guaran-
teed convergence of the BGRGn(w), i.e., uniformity and regularity conditions of the degree sequences. Indeed,
note that by replacing f(|a|) = |a|!p|a| by f(|a|) = (1 + t)|a|!p|a|, all the proofs from Appendix B follow analo-
gously. Hence, we do not explicitly repeat them here. However, for the comfort of the reader we now state the
corresponding regularity conditions as the limiting variables are necessary to understand some of our statements
on the union graph:

1. Denote the degree of a uniformly chosen left-vertex in BGRG(t)
n (w) by D

(l),(t)
n . Then, as n → ∞,

D(l),(t)
n → D(l),(t) and E[D(l),(t)

n | Gn]
P−→ µ(1 + t)E[W ], (B.81)

where D(l),(t) is a Poisson variable with parameter Wµ(1 + t), with µ =
∑

k kpk.

2. Denote the degree of a uniformly chosen right-vertex in BGRG(t)
n (w) by D

(r),(t)
n . Then, as n → ∞,

P(D(r),(t)
n = k | Gn)

P−→ pk and E[D(r),(t)
n | Gn]

P−→ µ. (B.82)

Naturally, the above automatically transfers to BGRG[0,t]
n (w), as it is asymptotically equivalent to BGRG(t)

n (w).

C Convergence of processes with jumps

To prove dynamic results for processes of giant membership and size of the largest group we apply a well-known
criterion for convergence of processes in Skorokhod J1 topology, that we now quote with a minor change of
replacing D[0, 1] with D[0, t]:

Theorem C.1 ([7, Thm 13.3]). Assume a sequence of processes
(
Xn(s)

)
s∈[0,t]

and a process
(
X (s)

)
s∈[0,t]

in

D[0, t], equipped with the d0 metric, satisfy the following conditions:

(i) For all {s1, ..., sk} ∈ [0, t] :
(
Xn(s1), ..., Xn(sk)

) d−→
(
X (s1), ...,X (sk)

)
as n → ∞.

(ii) X (t) −X (t− δ)
P−→ 0 as δ → 0.

(iii) For every ε, η > 0 there exists n0 ≥ 1 and δ > 0 such that for all n ≥ n0

P

(
sup

s,s1,s2:s∈[s1,s2],s2−s1<δ

min
(∣∣∣Xn(s) −Xn(s1)

∣∣∣, ∣∣∣Xn(s2) −Xn(s)
∣∣∣) > ε

)
≤ η. (C.1)

Then
(
Xn(s)

)
s∈[0,t]

d−→
(
X (s)

)
s∈[0,t]

as n → ∞ in Skorokhod J1 topology.

To extend the notion of local convergence to the dynamic setting we have to take care of the jumps with
respect to the local topology, which is less straightforward than the jumps we described before (for instance jumps
of indicator processes). However, the fact that the space of rooted graphs equipped with the local topology is
Polish allows us to apply the theory of convergence of processes from a compact space to a separable space from
[36]. For the comfort of the reader, we now quote the appropriate statements.

We start by introducing the notation. Fix two metric spaces (K, d) and (S, p), where K is compact and
S is separable and complete, and consider the space C(K,S) of continuous functions from K to S, endowed
with the uniform metric ρ̄(x, y) = supt∈K ρ(xt, yt). The following lemma characterizes conditions necessary for
convergence in C(K,S):

Lemma C.2 ([36, Lemma 16.2]). Let X,X1, X2, ... be random elements in C(K,S). Then Xn converges weakly
to X iff Xn converges to X for all finite-dimensional distributions and (Xn) is relatively compact in distribution.

For random elements in sufficiently regular metric spaces, the condition of relative compactness in the above
lemma can be replaced by tightness. This key result in the theory of weak convergence is the subject of the
following theorem:

Theorem C.3 ([36, Theorem 16.3]). For any sequence of random elements ξ1, ξ2, ... in a metric space S, tightness
implies relative compactness in distribution, and the two conditions are equivalent when S is separable and
complete.
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