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This work presents a novel reduced-order model (ROM) for the incompressible Navier-
Stokes equations with time-dependent boundary conditions. This ROM is velocity-only, 
i.e. the simulation of the velocity does not require the computation of the pressure, and 
preserves the structure of the kinetic energy evolution.
The key ingredient of the novel ROM is a decomposition of the velocity into a field with 
homogeneous boundary conditions and a lifting function that satisfies the mass equation 
with the prescribed inhomogeneous boundary conditions. This decomposition is inspired 
by the Helmholtz-Hodge decomposition and exhibits orthogonality of the two components. 
This orthogonality is crucial to preserve the structure of the kinetic energy evolution. To 
make the evaluation of the lifting function efficient, we propose a novel method that 
involves an explicit approximation of the boundary conditions with POD modes, while 
preserving the orthogonality of the velocity decomposition and thus the structure of the 
kinetic energy evolution.
We show that the proposed velocity-only ROM is equivalent to a velocity-pressure ROM, 
i.e., a ROM that simulates both velocity and pressure. This equivalence can be generalized 
to other existing velocity-pressure ROMs and reveals valuable insights in their behaviour.
Numerical experiments on test cases with inflow-outflow boundary conditions confirm the 
correctness and efficiency of the new ROM, and the equivalence with the velocity-pressure 
formulation.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Turbulent flow is an ubiquitous phenomenon in fluid flows such as blood flow in arteries, ocean currents and air flow 
around wind turbines. Accurate numerical simulation of these turbulent flows requires computationally expensive methods 
such as Direct Numerical Simulation (DNS) [1] or Large Eddy Simulation (LES) [2]. The computational cost of these methods 
can sometimes be tolerated for a small number of simulations but becomes prohibitive when it comes to tasks that require 
many simulation runs such as in the case of optimization and uncertainty quantification studies.

To mitigate the computational costs, several techniques have been developed to reduce the complexity of the respective 
full order model (FOM) resulting in so-called reduced-order models (ROMs). Many of these techniques are projection-based, 
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i.e., they project the high-dimensional discretization of the model obtained from classical discretization methods such as 
Finite Elements, Finite Volumes or Finite Differences onto a low-dimensional space, the reduced basis space. Methods to 
obtain such reduced bases include sampling strategies [3] and Proper Orthogonal Decomposition (POD) [4].

The POD, which is also known as Karhunen-Loève expansion and Principal Component Analysis, is optimal in the sense 
that it extracts the reduced basis from given high-resolution data which minimizes the approximation error with respect 
to this data in the l2 norm [4]. However, several authors observed that ROMs resulting from the Galerkin projection of 
such POD reduced bases tend to exhibit instabilities when applied to fluid flow problems [5,6]. This observation is often 
related to energy dissipation at the smallest scales of turbulent flow, which are not included in the POD reduced basis [5]. 
Hence, approaches to address the ROM instability include methods that add such small scale effects either by introducing 
additional dissipation via closure modelling [7,8] or by using a POD based on a discrete equivalent of the H1 norm instead 
of the l2 norm in order to achieve a better representation of small scales in the reduced basis [9]. Alternative approaches 
use more dissipative ROM bases whose modes are weighted sums of the standard POD modes and randomly chosen higher-
order POD modes, which are assumed to represent the small scales [10,11].

Another cause of instability has been identified in the ROM pressure field. This pressure field can violate an inf-sup
condition at the ROM level, even if the inf-sup condition of the underlying FOM is satisfied [12,6]. When violating the 
condition, the ROM can exhibit spurious pressure modes that induce instability. Hence, many works have been developed 
to satisfy this condition on the ROM level [12,6,13–15]. At the same time, it has been shown that even for a linear ordinary 
differential equation (ODE), a stable FOM can result in an unstable POD-Galerkin ROM [16]. Consequently, POD-Galerkin 
ROM instabilities are not exclusively related to the incompressible Navier-Stokes equations.

A promising approach to avoid ROM instabilities, not specific to the incompressible Navier-Stokes equations, is the idea of 
preserving certain structure of the FOM such that stability is implied. A method widely used for compressible flows [17–20]
preserves the stability of an equilibrium point at the origin by performing POD with respect to energy-based inner products. 
For Hamiltonian systems, Proper Symplectic Decomposition was proposed as a modification of POD to obtain Galerkin ROMs 
that preserve symplecticity, so the Hamiltonian is time-invariant and the ROM is stable [21]. Alternative symplecticity-
preserving bases have been proposed that can be computed more efficiently [22] and recover the FOM Hamiltonian exactly 
[23]. The concept of symplecticity preservation has been extended to model reduction on nonlinear manifolds [24] and 
non-canonical Hamiltonian systems [25]. Furthermore, non-intrusive methods have been developed for canonical and non-
canonical Hamiltonian systems that preserve the Hamiltonian structure [26]. For mechanical systems, Lagrangian structure-
preserving methods have been proposed [27,28] and observed to be stable [28]. Stability-preserving methods have also been 
proposed for port-Hamiltonian systems [29,30] and second-order index-1 descriptor systems [31]. For metriplectic systems, 
a method has been proposed that preserves the metriplectic structure and is observed to be long-term stable [32]. For 
nonlinear conservation laws, stable ROMs have been proposed that preserve a semi-discrete entropy dissipation law [33].

For the incompressible Navier-Stokes equations, the POD-Galerkin ROM proposed in [34] achieves nonlinear stability by 
preserving the conservation of kinetic energy in the inviscid limit for homogeneous boundary conditions. In this work, this 
ROM is generalized to arbitrary time-dependent inhomogeneous boundary conditions, while possessing three properties: 
(i) structure preservation (consistency with the kinetic energy equation), (ii) velocity-only formulation (pressure-free), and 
(iii) arbitrary inhomogeneous boundary conditions (not separable in space- and time-dependent functions). To our best 
knowledge such a ROM formulation does not yet exist.

To achieve the first two properties, we propose the use of a specific lifting function. Classically, lifting functions are 
chosen as a velocity field that satisfies the prescribed inhomogeneous boundary conditions, so that the ROM can be solved 
with homogeneous boundary conditions [35–38]. Inspired by the Helmholtz-Hodge decomposition [39], we propose a lifting 
function that is orthogonal to the homogeneous velocity field. This orthogonality allows us to preserve the structure of the 
kinetic energy equation on the ROM level.

In addition, this choice of lifting function has the benefit that the pressure is eliminated from the formulation, lead-
ing to a velocity-only ROM, i.e., the ROM velocity can be simulated without requiring the computation of the pressure. 
An important benefit of eliminating the pressure is that our velocity-only ROM is not affected by the inf-sup instability 
mentioned above. We stress that the omission of the pressure is not an approximation as performed in some early works 
[40,41]. As shown in [42], merely neglecting the pressure in ROMs can lead to significant errors. In our ROM, in contrast, 
the elimination of the pressure is rigorous and exact. In fact, we show that the proposed velocity-only ROM is equivalent 
to a velocity-pressure ROM (for a specific choice of basis). This equivalence gives us valuable insights in the behaviour of 
the ROMs. Compared to other formulations that eliminate the pressure such as the streamfunction-vorticity formulation 
[43], our approach has the advantage of partial decoupling: while streamfunction and vorticity depend on each other, our 
lifting function does not depend on the remaining velocity component, but only on the prescribed boundary conditions. 
This partial decoupling has many advantages, for example, time integration errors do not accumulate in the lifting function.

Lastly, to be able to deal with arbitrary inhomogeneous time-dependent boundary conditions, we propose to approximate 
the boundary conditions by projection onto a POD basis. This explicit approximation of boundary conditions is necessary 
because standard hyper-reduction of the ROM ODE right-hand side [44,45] would not effect a sufficient efficiency improve-
ment in context of our proposed lifting function.

This article is organized as follows. In Section 2, we introduce the continuous formulation and our finite volume 
discretization of the incompressible Navier-Stokes equations. In Section 3, we present our novel velocity-only ROM for 
time-dependent boundary condition. In Section 4, we show that this ROM preserves the structure of the kinetic energy 
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evolution. In Section 5, we show the ROM’s equivalence to a velocity-pressure ROM. In Section 6, we test the novel ROM in 
two test cases involving time-dependent inflow boundary conditions.

2. Preliminaries: continuous equations and full-order model

2.1. The incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations describe the conservation of mass and momentum of a fluid in a domain 
� ⊂Rd over a time interval [0, T ], and can be expressed as

∇ · u = 0 in � × [0, T ], (1)

∂

∂t
u + ∇ · (u ⊗ u) = − 1

ρ
∇p + ν∇2u + f in � × [0, T ], (2)

with divergence-free initial condition

u(x,0) = u0(x) in �, (3)

where the vector field u : � × [0, T ] → Rd describes the velocity, the scalar field p : � × [0, T ] → R the pressure, ν is the 
kinematic viscosity, ρ the (constant) density (which will be absorbed in the pressure in subsequent equations), and f a 
forcing term (possibly space- and time-dependent). A set of boundary conditions which is appropriate to ensure uniqueness 
of the solution u (see [46, Section 3.8]) is assumed to be prescribed.

2.2. Full order model: finite volume discretization

The Navier-Stokes equations (1)-(2) in d = 2 dimensions are spatially discretized with the second-order finite volume 
method on a staggered grid proposed in [34] and depicted in Fig. 1. The extension to d = 3 is straightforward, and all the 
methods described in the subsequent sections also apply to that case.

The u- and v-component of velocity, and the pressure p are discretized by uh(t) ∈ RNu , vh(t) ∈ RNv and ph(t) ∈ RN p , 
respectively, where Np = Nx × N y is the number of “pressure finite volumes” and Nu, Nv ≈ Np are the numbers of “ve-
locity component finite volumes” which depend on the type of boundary conditions. The velocity component vectors are 
aggregated in one velocity vector V h(t) ∈RNV , NV = Nu + Nv . The spatial discretization of (1)-(2) can be summarized as

Mh V h(t) = yM(t) := FM ybc(t), (4)

�h
d

dt
V h(t) = F C D

h (V h(t), ybc(t)) − Gh ph(t). (5)

Here, �h ∈ RNV ×NV is a diagonal matrix with the sizes of the velocity component finite volumes corresponding to the 
entries of V h on its diagonal. The matrix Mh ∈RN p×NV describes the mass equation (1) such that each row of (4) represents 
conservation of mass over the finite volume around a pressure point pi, j as depicted in Fig. 1,

ui+1/2, j�y − ui−1/2, j�y + vi, j+1/2�x − vi, j−1/2�x = 0, (6)

using the midpoint rule.
The vector ybc(t) ∈RNbc constitutes the time-dependent parametrization of inhomogeneous boundary conditions. In this 

work, we only consider time-dependence of inflow boundary conditions. Hence, ybc(t) comprises the prescribed Dirichlet 
velocity values at finite volume faces on inflow boundaries and Nbc is the number of such faces. However, the construction 
of ybc(t) can be generalized to test cases with other types of time-dependent boundary conditions. Note that Nbc scales 
only by O

(
h−d+1

)
, while NV and Np scale by O

(
h−d

)
upon decreasing the mesh size h.

The matrix FM ∈ RN p×Nbc maps the vector ybc(t) to the mass equation right-hand side yM(t) ∈ RN p . The term 
F C D

h (V h(t), ybc(t)) contains the discretized convection, diffusion and forcing terms as well as all boundary condition contri-
butions. The discretized forcing term f (t) ∈ RNV is assumed fixed and time-independent, hence neither f (t) nor t appear 
as an argument of F C D

h . The term Gh ph is the discretization of the (integrated) pressure gradient ∇p in (2) and Gh ∈RNV ×N p

satisfies the discrete compatibility relation between the divergence and gradient operator

Gh = −MT
h , (7)

for all types of boundary conditions. This is a crucial property of the staggered grid discretization that will be used at 
several points in the construction of our new energy-consistent ROM approach for time-dependent boundary conditions.

To solve the system (4)-(5), we apply the discrete divergence operator Mh to the �−1
h -premultiplied momentum equation 

(5) and insert the mass equation (4) to get the Poisson equation for the pressure,
3
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Fig. 1. Staggered grid. Velocity values are located on the faces of the pressure finite volumes.

Lh ph(t) := Mh�
−1
h Gh ph(t) = − d

dt
yM(t) + Mh�

−1
h F C D

h (V h(t), ybc(t)). (8)

As a result, when integrating the velocity V h(t) according to the momentum equation (5), the pressure ph(t) computed 
from (8) ensures the velocity to satisfy the mass equation (4).

Note that this approach requires the invertibility of Lh . As described in [47], Lh is singular for certain boundary conditions 
and the pressure ph is only defined up to an additional constant. However, by adding a constraint, we can construct an 
invertible matrix L̄h ∈RN p×N p such that the unique solution to the regularized Poisson equation

L̄h ph = − d

dt
yM(t) + Mh�

−1
h F C D

h (V h(t), ybc(t)) (9)

is also a solution to the Poisson equation (8). For boundary conditions for which Lh is singular, we therefore compute ph
via (9) to simulate the FOM (4)-(5).

To avoid the need to distinguish between cases with Lh singular and invertible in our notation, we consider (9) the 
equation to be solved within the FOM simulation, where we set L̄h := Lh for boundary conditions for which Lh is invertible. 
In both cases, the inverse of L̄h satisfies

Lh L̄−1
h y = y for all y ∈ Im(Lh), where Im(FM) ⊂ Im(Mh) = Im(Lh), (10)

and

yT L̄−T
h z = yT L̄−1

h z. (11)

In other words, within the image space of Mh , L̄−1
h is symmetric and acts as an inverse to Lh .

Suitable time discretizations of the system consisting of (5) and (9) are, for example, described in [47,48].

3. Novel velocity-only and energy-consistent ROM for time-dependent boundary conditions

3.1. Lifting function inspired by Helmholtz-Hodge decomposition

To construct a ROM for the FOM described in Section 2.2, we generalize the ideas in [34, Section 4] to time-dependent 
boundary conditions. We decompose the FOM velocity,

V h(t) = V h,hom(t) + V inhom(t), (12)

such that the time-dependent lifting function V inhom(t) satisfies the mass equation,
4
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Mh V inhom(t) = yM(t), (13)

and consequently, the homogeneous component V h,hom(t) satisfies the homogeneous mass equation,

Mh V h,hom(t) = 0. (14)

The choice of the lifting function V inhom(t) is of pivotal importance. Inspired by the Helmholtz-Hodge decomposition 
[39], we choose the lifting function as

V inhom(t) = �−1
h GhL̄−1

h yM(t) = �−1
h GhL̄−1

h FM ybc(t). (15)

This choice has three decisive properties. First, the lifting function indeed satisfies the mass equation with the inhomoge-
neous right-hand side, (13). This property implies the homogeneous mass equation (14) for the homogeneous component 
V h,hom(t). We use this homogeneous mass equation to construct a velocity-only ROM in the next section.

Second, the lifting function is a linear function of the boundary condition vector ybc(t). We use this property to compute 
the ROM efficiently for arbitrary time-dependent boundary conditions in Section 3.3.

Third, as in the Helmholtz-Hodge decomposition, the components in (12) are orthogonal, namely with respect to the 
�h-inner product,

V T
h,hom�h V inhom = V T

h,hom�h�
−1
h GhL̄−1

h yM(t) = (Mh V h,hom)T L̄−1
h yM(t) = 0. (16)

This property guarantees the energy consistency of the ROM as described in Section 4.

3.2. Velocity-only ROM

To approximate the homogeneous velocity V h,hom(t), we construct a POD basis with respect to the �h-inner product 
computed from snapshots V j

h,hom = V j
h − V inhom(t j), where V j

h is the time-discrete approximation of the velocity V h(t)

defined by the FOM (4)-(5) at time step t j . Due to the homogeneous mass equation (14), the resulting �h-orthonormal POD 
basis �hom ∈RNV ×Rhom satisfies

Mh�hom = 0, (17)

as described in [34]. Hence, we can construct the low-dimensional approximation V r,hom(t) = �homahom(t) ≈ V h,hom(t)
such that the ROM V r(t) = V r,hom(t) + V inhom(t) satisfies the mass equation,

Mh V r(t) = yM(t). (18)

To determine the coefficient vector ahom(t) ∈ RRhom , we replace V h(t) by V r(t) in the momentum equation (5) and 
project onto �hom,

�T
hom�h

d

dt
V r(t) = d

dt
ahom(t) + �T

hom�h
d

dt
V inhom(t) = �T

hom F C D
h (V r(t), ybc(t)) − �T

homGh ph(t). (19)

Due to the divergence-gradient duality (7) and property (17), the pressure term vanishes, so the ODE (19) simplifies to

d

dt
ahom(t) + �T

hom�h
d

dt
V inhom(t) = �T

hom F C D
h (�homahom(t) + V inhom(t), ybc(t)). (20)

This ODE does not contain the pressure ph anymore, so our ROM is velocity-only, i.e., the pressure is not needed to simulate 
the velocity. This property is very useful for two reasons: First because we avoid additional computational costs, second 
because we avoid pressure-related inf-sup-instabilities [12].

The steps taken so far also hold for other choices of lifting functions, e.g., [36,37]. For the next simplification of ODE 
(20), however, we exploit the specific definition of our lifting function, (15), namely the orthogonality property (16). Due to 
property (17), this orthogonality property is inherited by the POD basis �hom, i.e.,

�T
hom�h V inhom(t) = 0. (21)

Due to this orthogonality, the left-hand side of (20) simplifies to d
dt ahom, so the ODE for the ROM coefficient ahom(t)

becomes

d

dt
ahom(t) = �T

hom F C D
h

(
�homahom(t) + V inhom(t), ybc(t)

)
(22)

The initial condition is given by the projection of the FOM initial condition, ahom(0) = �T V h(0).
hom

5
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3.3. Efficient evaluation of the ODE right-hand side

To simulate our novel ROM, we have to discretize the ODE (22) in time and evaluate the right-hand side. As a naive 
approach, we could first evaluate the FOM-like right-hand side F C D

h (�homahom(t) + V inhom(t), ybc(t)) and then perform the 
projection onto �hom, both during the online phase of the ROM simulation. However, the computational costs would depend 
on the FOM dimensions and hence deteriorate the computational complexity of the ROM in the online phase substantially.

Common ways of avoiding such prohibitive costs are hyper-reduction techniques such as the discrete interpolation 
method (DEIM) [44] and gappy POD [45]. Instead of evaluating the complete FOM-dimensional vector F C D

h (�homahom(t) +
V inhom(t), ybc(t)), these methods only require a small number of entries to construct an approximation of this vector. 
However, the definition of our lifting function V inhom(t) (15) contains the inverse L̄−1

h , requiring the solution of a Poisson 
equation with computational complexity O

(
N2

p

)
. Consequently, sampling a few entries of V inhom(t) is already prohibitively 

expensive.
Instead of applying hyper-reduction to the right-hand side of (22) as a whole, we therefore propose to approximate only 

the boundary condition vector ybc(t). In detail, we propose to replace the boundary condition vector ybc(t) in the ODE (22)
and in the definition of the lifting function (15) with a linear approximation

ỹbc(t) = �bcabc(t) ≈ ybc(t), (23)

with �bc ∈ RNbc×Rbc , abc(t) ∈ RRbc and Rbc 	 Nbc. One option to construct this approximation is to apply hyper-reduction 
techniques such as DEIM [44]. In that case, the basis �bc would be computed via a POD of snapshots of ybc(t) during 
the offline phase. The coefficient vector abc(t) would be computed based on the evaluation of only Rbc entries of ybc(t)
with complexity O

(
R2

bc

)
at each time step during the online phase. However, such a DEIM coefficient vector is only an 

approximation to the optimal coefficient. Actually, the best approximation to ybc(t) within the space spanned by the basis 
�bc is given by �bc�

T
bc ybc(t). Hence, we can improve the accuracy of the approximation ỹbc(t) by computing the coefficient 

vector via the projection onto �bc, abc(t) = �T
bc ybc(t), instead of performing DEIM. This computation would be prohibitively 

expensive when performed during the online phase. However, we can maintain the online efficiency by computing abc(t j)

for all required time steps t j already in the offline phase. This approach requires that ybc(t) is known a priori, which we 
assume in this work. If ybc(t) would not be known a priori, we suggest to resort to computing abc(t) via DEIM [44].

The replacement of the boundary condition vector ybc(t) by the approximation (23) introduces an error in the ROM. 
In particular, the resulting ROM V r(t) = �homahom(t) + Ṽ inhom(t) does not satisfy the mass equation with respect to the 
original boundary conditions (18), but with respect to the approximated boundary conditions,

Mh V r(t) = ỹM(t) := FM ỹbc(t). (24)

The coefficient ahom(t) is defined by the ODE

d

dt
ahom(t) = �T

hom F C D
h

(
�homahom(t) + Ṽ inhom(t),�bcabc(t)

)
, (25)

where the approximated lifting function Ṽ inhom(t) is defined by

Ṽ inhom(t) = �−1
h GhL̄−1

h FM�bcabc(t) =: Finhomabc(t). (26)

The main advantage of this approximation is the drastic reduction of the number of (regularized) Poisson solves required 
for computing the lifting function due to the linear dependence on ybc(t) in the definition (15). Indeed, to precompute 
the matrix Finhom ∈RNV ×Rbc , we need to solve only Rbc (regularized) Poisson equations for the Rbc columns of the matrix 
FM�bc.

Note that this approximated lifting function satisfies the same orthogonality property as the exact lifting function, (21),

�T
hom�h Ṽ inhom(t) = 0. (27)

We will use this orthogonality property in Section 4 to derive energy consistency.

3.4. Exact offline decomposition using matricized third-order tensors

To evaluate the right-hand side of the approximated ODE (25) efficiently, we extend the offline precomputation approach 
in [34]. This approach exploits the low-dimensional structure of the terms �homahom(t), Finhomabc(t) and �bcabc(t) as 
well as the fact that the nonlinearities in F C D

h are only second order polynomials. In detail, we formulate these second 
order polynomials as precomputable “matricized” third order tensors. For example, we can write the term quadratic in 
�homahom(t) as C̄2 (�homahom(t) ⊗ �homahom(t)) with C̄2 ∈RNV ×N2

V and the Kronecker product ⊗. Then, we find

�T
homC̄2 (�homahom(t) ⊗ �homahom(t)) = �T

homC̄2 (�hom ⊗ �hom) (ahom(t) ⊗ ahom(t)) (28)
6
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where �T
homC̄2 (�hom ⊗ �hom) ∈ RRhom×R2

hom can be precomputed offline. Similarly, we can precompute operators in 
RRhom×R2

hom and RRhom×(Rhom Rbc) for the term quadratic in �bcabc(t) and the mixed term linear in both, �homahom(t) and 
�bcabc(t), respectively. Hence, the resulting method has an online complexity scaling in O

(
R3

hom + R2
hom Rbc + Rhom R2

bc

)
.

3.5. Pressure recovery

As discussed in Section 3.2, our proposed ROM is velocity-only, so no computation of the pressure is needed to simulate 
the velocity. However, we can compute the pressure pr(t) of the ROM as a post-processing step by inserting the ROM 
velocity V r(t) and the boundary condition approximation ỹbc(t) into the (regularized) FOM Poisson equation (9)

L̄h pr(t) = − d

dt
ỹM(t) + Mh�

−1
h F C D

h (V r(t), ỹbc(t)). (29)

This pressure is consistent in the sense that the (regularized) Poisson equation (29) has the same structure as the (regu-
larized) FOM Poisson equation (8). Consequently, the ROM pressure pr(t) converges to the FOM pressure ph(t) if the ROM 
velocity V r(t) converges to the FOM velocity V h(t) and the boundary condition approximation ỹbc(t) converges to the exact 
boundary condition vector ybc(t).

4. Kinetic energy evolution

A distinctive property of our proposed ROM is its kinetic energy consistency, i.e., the ROM kinetic energy evolution has 
the same structure as the FOM kinetic energy evolution. We define the FOM kinetic energy as Kh(t) = 1

2 ‖V h(t)‖2
�h

, leading 
to the kinetic energy evolution

d

dt
Kh(t) = V h(t)

T F C D
h (V h(t), ybc(t)) + yM(t)T ph(t), (30)

using the momentum equation (5) and the mass equation (4).
The key property leading to a kinetic energy evolution with the same structure for our proposed ROM is the orthogonality 

of V r,hom(t) and Ṽ inhom(t), given by equation (27). Due to this orthogonality the ROM kinetic energy can be decomposed 
into two terms,

Kr(t) = 1

2
‖V r(t)‖2

�h
= 1

2
‖ahom(t)‖2

2 + 1

2
‖Ṽ inhom(t)‖2

�h
. (31)

The time-derivative of the first term (the energy of the homogeneous component) is given by

d

dt

1

2
‖ahom(t)‖2

2 = ahom(t)T d

dt
ahom(t) = ahom(t)T �T

hom F C D
h (V r(t), ỹbc(t)), (32)

using the momentum equation (25). Furthermore, the time-derivative of the second term (the energy of the approximated 
lifting function (15)) can be written as

d

dt

1

2
‖Ṽ inhom(t)‖2

�h
= Ṽ inhom(t)T �h

d

dt
Ṽ inhom(t) =

(
�−1

h GhL̄−1
h ỹM(t)

)T
�h

d

dt

(
�−1

h GhL̄−1
h ỹM(t)

)
(33)

= − ỹM(t)T L̄−T
h Mh�

−1
h GhL̄−1

h

d

dt
ỹM(t) = − ỹM(t)T L̄−1

h

d

dt
ỹM(t), (34)

where we use the divergence-gradient duality (7), the symmetry of Lh and �h , the definition of Lh (8), and the inverse and 
symmetry properties of L̄−1

h (10)-(11).
Insertion of the Poisson equation for the ROM pressure (29) leads to

d

dt

1

2

∥∥∥Ṽ inhom(t)
∥∥∥2

�h

= − ỹM(t)T
[
−pr(t) + L̄−1

h Mh�
−1
h F C D

h (V r(t), ỹbc(t))
]

(35)

= ỹM(t)T pr(t) + Ṽ inhom(t)T F C D
h (V r(t), ỹbc(t)). (36)

Here, we have again used the divergence-gradient duality (7), the symmetry of Lh and �h , the symmetry property of L̄−1
h

(11), and identified the definition of the lifting function (15),

− ỹM(t)T L̄−1
h Mh�

−1
h = − ỹM(t)T L̄−T

h Mh�
−1
h =

(
�−1

h GhL̄−1
h ỹM(t)

)T = Ṽ inhom(t)T . (37)

Altogether, the kinetic energy evolution of the ROM can be written as

d

dt
Kr(t) = V r(t)

T F C D
h (V r(t), ỹbc(t)) + ỹM(t)T pr(t). (38)
7
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This ROM energy evolution has exactly the same structure as the FOM energy evolution (30), which is our definition of 
consistency.

This energy consistency will be useful to transfer stability statements from the FOM to the ROM. Namely, if we as-
sume that a bound on the kinetic energy can be derived from the FOM kinetic energy evolution with respect to certain 
approximated boundary conditions ỹbc(t), then the same derivation could be used to obtain a bound for the ROM kinetic en-
ergy. Note, however, that stability (energy) bounds for the incompressible Navier-Stokes equations including time-dependent 
boundary conditions are still an open topic [49,50], so this is a suggestion for future research.

As indicated above, the orthogonality property (27) is key to achieve this energy consistency. In Appendix A, we show 
that a different choice of the lifting function would spoil the energy consistency so that FOM energy bounds could not 
directly be transferred to the ROM.

To preserve the energy-consistency on the time-discrete level, one could use energy-conserving Runge-Kutta methods 
[48]. However, in our setting of time-dependent boundary conditions, the kinetic energy is not a conserved quantity and 
energy-conserving methods do not (and should not) yield a constant energy. Instead, we opt for using high-order explicit 
methods, which are an accurate and computationally attractive alternative, also given the fact that we are using an exact 
third-order tensor representation of the convective terms. As shown in Appendix B, the difference between explicitly and 
implicitly integrated ROM velocities is quite small.

5. Equivalent velocity-pressure ROM

5.1. Velocity-pressure ROM

Our proposed ROM has the appealing property that it is velocity-only. However, we can interpret this ROM as a velocity-
pressure ROM, as well. This interpretation provides further insight in the relation between time-dependent boundary 
conditions and the role of the pressure.

The velocity-pressure ROM that we consider comprises the velocity approximation V r(t) = �a(t) ≈ V h(t) with the �h-
orthonormal basis � ∈ RNV ×R V and the coefficient vector a(t) ∈ RR V , and the pressure approximation pr(t) = �b(t) ≈
ph(t) with the basis � ∈ RN p×R p and the coefficient vector b(t) ∈ RR p . In the next section, we will specify the choice of 
bases such that the resulting velocity-pressure ROM is equivalent to the velocity-only ROM proposed in Section 3. In general, 
however, the bases can also be chosen differently.

We insert these approximations in the mass equation (4) projected by the pressure basis � and in the momentum 
equation (5) projected by the velocity basis �, leading to:

�T Mh�a(t) = �T ỹM(t) := �T FM ỹbc(t) (39)

�T �h�
d

dt
a(t) = d

dt
a(t) = �T F C D

h (�a(t), ỹbc(t)) − �T Gh�b(t). (40)

The initial condition a(t0) = a0 is defined via the constrained optimization problem of minimizing ‖�a0 − V h(t0)‖�h such 
that a0 satisfies the projected mass equation (39) at t = t0.

Analogously to the FOM described in Section 2, we solve this system by solving the reduced Poisson equation for b(t),

Lrb(t) := �T Mh��T Gh�b(t) = −�T d

dt
ỹM(t) + �T Mh��T F C D

h (�a(t), ỹbc(t)). (41)

Then, due to the pressure term in the ODE (40), a(t) computed from this ODE is guaranteed to satisfy the projected mass 
equation (39). In contrast to the FOM, the system matrix Lr of this reduced Poisson equation is not high-dimensional and 
sparse, but low-dimensional and dense. Hence, the system is solved (by employing a precomputed LU-factorization) with 
a computational complexity of O

(
R2

p

)
at each time step in the online phase. This approach requires the invertibility of 

the system matrix Lr = �T Mh��T Gh�. We will guarantee this invertibility by choosing the bases � and � suitably, as 
explained in the next section.

Analogously to the discussion in Section 3.3 for the velocity-only ROM, computing the right-hand side of the ODE (40) for 
the exact boundary condition vector ybc(t) would in general be prohibitively expensive. Hence, we have replaced the exact 
boundary condition vector ybc(t) in (39)-(41) by the lower-dimensional approximation ỹbc(t) := �bcabc(t) as described in 
Section 3.3.

5.2. Equivalence to the proposed velocity-only ROM

The following proposition states that the velocity-pressure ROM (39)-(40) is equivalent to the velocity-only ROM 
(25)-(26) if we choose the bases � and � appropriately.

Proposition 5.1 (Equivalence of velocity-only and velocity-pressure ROM). If the �h-orthonormal velocity basis � ∈RNV ×R V and the 
pressure basis � ∈RN p×R p are chosen such that
8
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a) the image space of � is equivalent to the union of the image spaces of �hom in equation (17) and Finhom as defined in equation 
(26).

b) for all t ∈ [0, T ], there exists a solution to the unprojected mass equation

Mh�a(t) = ỹM(t), (42)

c) R p = rank(Mh�),
d) and �T Mh� has rank R p,

then the velocity of the velocity-pressure ROM, V r,velocity−pressure(t) = �a(t), is for all t ∈ [0, T ] equivalent to the velocity of the 
velocity-only ROM, V r,velocity−only(t) = �homahom(t) + Ṽ inhom(t) described in Section 3.

Proof. First of all, Assumption (a) implies that there exists an orthonormal matrix Q ∈ RR V ×R V such that � =
[�hom �inhom]Q. Here, �inhom ∈ RNV ×R inhom with R inhom = rank(Finhom) is an �h-orthonormal basis with the same im-
age space as Finhom which can be computed from Finhom, e.g., via a Gram-Schmidt-orthonormalization. We can decompose 

the matrix Q =
[

Q1
Q2

]
with Q1 ∈RRhom×R V and Q2 ∈RR inhom×R V . Then, we write the velocity-pressure ROM velocity as

V r,velocity−pressure(t) = �a(t) = �homQ1a(t) + �inhomQ2a(t) =: �homa1(t) + �inhoma2(t). (43)

We proceed to show that the velocity components of the two ROMs are equivalent, namely

a1(t) = ahom(t) for all t ∈ [0, T ], (44)

and

�inhoma2(t) = Ṽ inhom(t) for all t ∈ [0, T ]. (45)

For this purpose, we note that the decomposition (43) separates the modes in �hom, which lie in the kernel of Mh , from 
those in �inhom, which lie outside the kernel of Mh . Consequently, equations (39) and (42) simplify to

�T Mh�inhoma2(t) = �T ỹM(t), (46)

and

Mh�inhoma2(t) = ỹM(t), (47)

respectively. Let, for a fixed t , â2 and ā2 be the solutions to (46) and (47), respectively (their existence follows from 
Assumption (b)). Then, premultiplying (47) by �T , we find

�T Mh�inhomā2 = �T yM(t) = �T Mh�inhomâ2. (48)

By construction of �inhom, we have rank(Mh�) = rank(Mh�inhom) = R inhom. Because of Assumption (c), R p = R inhom, and 
because of Assumption (d), rank(�T Mh�inhom) = rank(�T Mh�) = R inhom. Hence, �T Mh�inhom ∈RR inhom×R inhom is invertible, 
so (48) implies ā2 = â2. Hence, the solution â2 to the projected mass equation (46) also satisfies the unprojected mass 
equation (47). This solution â2 to the unprojected mass equation is unique. To show this uniqueness, let ǎ2 be a second 
solution to (47). Then, we find

Mh�inhom(â2 − ǎ2) = yM(t) − yM(t) = 0. (49)

Since Mh�inhom has full column rank, we infer â2 − ǎ2 = 0, so the two solutions are equivalent. This uniqueness implies the 
equivalence of the inhomogeneous velocity components (45) because Finhom has the same image space as �inhom and both 
terms satisfy the unprojected mass equation for all t ∈ [0, T ].

What remains to be shown is the equivalence of the homogeneous velocity components (44). For this purpose, we 
premultiply the momentum equation (40) by Q1 to find

d

dt
Q1a(t) = d

dt
a1(t) = �T

hom F C D
h (�homa1(t) + Ṽ inhom(t), ỹbc(t)), (50)

where Q1�
T = �T

hom and the pressure term �T
homGh�b(t) disappears due to equation (17). This ODE is equivalent to the 

velocity-only ODE (25). As both ODEs have the same initial condition, they also have the same solution, so we find (44).
Altogether, we hence find

V r,velocity−pressure(t) = V r,velocity−only(t) for all t ∈ [0, T ]. � (51)
9
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The requirements of the proposition are met, for example, by the choice � = [�hom �inhom] and � = Mh�inhom. For this 
choice, we have Q = I. Note that this choice also guarantees the invertibility of Lr .

The proof of the proposition provides an explanation why eliminating the pressure in the velocity-only ROM is possible. 
As can be seen from ODEs (40) and (50), the pressure term does not affect the coefficients of the homogeneous modes 
(a1(t)) but only those of the inhomogeneous modes (a2(t)). Since these inhomogeneous coefficients are uniquely determined 
by the mass equation (39), they do not require simulating ODE (40), so the pressure is superfluous. This observation is in 
line with the common understanding that the pressure is a (vector of) Lagrange multiplier(s) enforcing the velocity to 
satisfy the mass equation. This understanding also implies that the pressure does not affect the velocity beyond enforcing 
the mass equation. Indeed, the error between the approximated pressure pr(t) = �b(t) and the FOM pressure ph(t) does 
not introduce an additional error in the ROM velocity.

In practice, the velocity-pressure formulation is slightly more expensive than the velocity-only formulation because the 
ODE system is integrated in time for R V = Rhom + R inhom instead of only Rhom coefficients and additionally the pressure 
coefficients have to be computed by solving the reduced Poisson equation (41) at every time step. Hence, the ROM described 
in Section 3 remains the method of choice.

Analogously to [51], we can decompose the velocity-pressure ROM velocity into a homogeneous and an inhomogeneous 
component using a Q R decomposition for arbitrary choices of � and � provided that Lr is invertible. Provided the dis-
cretization satisfies the gradient-divergence duality (7), this decomposition can be formulated as a velocity-only ROM. Due 
to the stability problems of the QR decomposition described in [51], this velocity-only ROM would in general not be useful 
in practice.

5.3. Comparison with standard POD velocity-pressure ROMs

A common choice for the velocity basis � in the velocity-pressure ROM defined by (39) and (40) is the ordinary POD 
basis. The resulting ROM does not in general meet the requirements of Proposition 5.1 because the POD basis does not 
necessarily satisfy Assumption (b). Consequently, this standard POD velocity-pressure ROM is in general not equivalent to 
the proposed velocity-only ROM. In fact, such a standard POD velocity-pressure ROM can suffer from inf-sup instabilities [6]
whereas the proposed velocity-only ROM cannot.

On the other hand, the important insight that Proposition 5.1 does give, is that the proposed velocity-only ROM is equiv-
alent to a velocity-pressure ROM, which differs from the standard POD velocity-pressure ROM only in the choice of velocity 
basis � (and possibly pressure basis �). To compare these differing velocity bases, let us define the best approximation 
error over the snapshots V j

h ,

ε(φ) =
K∑

j=1

∥∥∥V j
h − φφT �h V j

h

∥∥∥2

�h

. (52)

Then, the standard POD bases with R V = Rhom and R V = Rhom + Rbc modes, �[Rhom] and �[Rhom+R inhom] satisfy the relation

ε
(
�[Rhom+R inhom]

) ≤ ε ([�hom �inhom]) ≤ ε
(
�[Rhom]

)
, (53)

assuming exact boundary conditions ỹbc(t) = ybc(t). The proof can be found in Appendix C.
If the ROM errors are dominated by these best approximation errors, we can consequently expect the accuracy of the 

proposed velocity-only ROM to lie in between the standard POD velocity-pressure ROMs with R V = Rhom + R inhom and with 
R V = Rhom modes, provided that the standard POD velocity-pressure ROMs are stable.

As explained in the previous section, velocity-pressure ROMs with R V = Rhom + R inhom modes are slightly more expensive 
than the velocity-only ROM with Rhom and Rbc modes. Also, velocity-pressure ROMs with R V = Rhom modes are slightly 
more expensive than the velocity-only ROM due to the need to solve Poisson equations for the pressure.

The accuracy per computation time of the proposed velocity-only ROM is consequently similar to standard POD velocity-
pressure ROMs. While the latter are known to be prone to instabilities, the velocity-only ROM is energy-consistent and does 
not suffer from inf-sup instability. Furthermore, while standard POD velocity-pressure ROMs only satisfy a projected mass 
equation, the velocity-only ROM satisfies the unprojected mass equation with respect to explicitly approximated boundary 
conditions.

6. Numerical experiments

In our numerical experiments, we investigate our proposed velocity-only ROM regarding convergence behaviour, mass 
conservation and energy consistency. Furthermore, we verify the equivalence to the velocity-pressure ROM described in 
Section 5.2 and analyse the runtime.
10
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Fig. 2. Sketch of testcase setup with actuator disk and time- and space-dependent boundary conditions.

6.1. Setup

6.1.1. Testcases
We consider two testcases based on [48, Section 6.4.2] modelling air flow around a wind turbine. The simulation domain 

is [0, 10] ×[−2, 2] with an actuator disk of length 1 at x = 2 as depicted in Fig. 2. On the top (y = ymax = 2), on the bottom 
(y = ymin = −2) and on the right (x = 10), we prescribe outflow boundary conditions

(−pI + ν∇u) · n = −p∞ I · n (54)

with p∞ = 0 and ν = 10−2 m2

s . In contrast to [48, Section 6.4.2], we consider inflow on the left boundary (x = 0) which is 
not only time- but also space-dependent. For the first testcase varying angle, we consider inflow with constant magnitude 1 
but time- and space-dependent angle,

ub(y, t) = cos (α(y, t)) , vb(y, t) = sin (α(y, t)) , with α(y, t) = π

6
sin

(
y − t

2

)
. (55)

As we will see in Section 6.1.3, these boundary conditions can be approximated well by a lower dimensional approximation 
ỹbc(t) as described in Section 3.3. In contrast, the second testcase exemplifies the extreme and in practice unlikely case that 
the boundary conditions cannot be reduced effectively. For this second testcase moving mode, we move the parabolic inflow 
field uparabolic(y) = 1

10 (y − ymin)(ymax − y) uniformly such that it enters the simulation domain from the bottom at tstart

and leaves it at the top at tend,

ub(y, t) = uparabolic

(
y + t − tend

tend − tstart
(ymax − ymin)

)
for tstart ≤ t ≤ tend. (56)

This inflow does not have a tangential component, so vb = 0.
For both testcases, the Poisson matrix Lh is invertible, so L̄h = Lh in the FOM Poisson equation (8) and in the definition 

of the lifting function (26).
The actuator disk represents a momentum sink and is modelled as a constant force f = 0.25 acting in negative x-

direction and we consider the time intervals [0, 4π ] and [0, 20], respectively.

6.1.2. Numerical methods
We discretize the simulation domain with a uniform 200 × 80 staggered grid. For time integration, we use the explicit 

fourth-order Runge-Kutta method RK4 [52] and discretize for both testcases the respective time interval equidistantly with 
time step size �t = tend

800 .
The initial condition is given by V 0

h = V 0
inhom which is computed according to (15) based on the respective boundary 

conditions. For the moving mode testcase, this definition results in V 0
h = 0 while the initial condition for the varying angle

testcase is a nonzero function.
The POD bases �hom and �bc are constructed from the snapshot matrices

Xhom =
[

V 0
h,hom . . . V j

h,hom . . . V 800
h,hom

]
and Xbc =

[
ybc

(
t0

)
. . . ybc

(
t j

)
. . . ybc

(
t800

)]
, (57)

where V j
h,hom is the time discrete approximation of V h,hom

(
t j

)
with t j = j · �t .

We compute the coefficient vector abc(t) = �bc�
T
bc ybc(t) during the offline precomputation phase for all required time 

steps, as described in Section 3.3.
The numbers of ROM modes Rhom and Rbc can be chosen independently of each other. In the numerical experiments 

here, however, we choose Rhom = Rbc = R for convenience only, and consider velocity-only ROMs for different values of R .
11
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Fig. 3. Singular values of the snapshot matrices Xbc for the two testcases divided by largest singular value.

Fig. 4. Singular values of the snapshot matrices Xhom for the two testcases.

6.1.3. Singular value decays
First, we investigate the singular value decays of the snapshot matrices which we construct our ROM bases from. As 

can be seen in Fig. 3a, only 23 singular values of the boundary condition vector snapshot matrix Xbc have a significant 
magnitude for the varying angle testcase. In fact, only 5 modes are required to capture at least 99% of the snapshot energy 
[26].

In contrast, Fig. 3b shows that 80 singular values of Xbc for the moving mode testcase, which we designed to have 
irreducible boundary conditions, have a relative magnitude larger than 10−4. This number equals the number of grid points 
at the inflow boundary and the number of nonzero entries in yM , so these entries do not exhibit any lower-dimensional 
coherent structure. Here, 29 modes are required to capture at least 99% of the snapshot energy.

Similarly, the decays of singular values of the velocity snapshot matrices Xhom shown in Fig. 4 differ considerably for 
large mode numbers. While only 164 singular values are larger than machine precision (when divided by the largest singular 
value), for the varying angle testcase, 684 singular values are larger than this relative threshold for the moving mode testcase. 
For small mode numbers, however, both decays are similarly fast, and only 13 and 14 modes capture at least 99% of the 
snapshot energy, respectively.

6.2. Results

6.2.1. Boundary condition approximation accuracy
Before investigating the proposed ROM itself, we investigate the accuracy of the boundary condition approximation for 

the two test cases. As can be seen in Fig. 5, the best approximations are accurate up to machine precision for Rbc ≥ 23
and Rbc ≥ 80, respectively. This observation is perfectly in line with Fig. 3 that shows 23 and 80 significant singular values. 
For the approximations via DEIM, we observe accuracy up to machine precision for Rbc = 23 and Rbc = 80, but large errors 
if the numbers of modes are increased further. These large errors are likely due to the fact that these numbers of modes 
exceed the rank of the corresponding snapshot matrix, causing high sensitivity to machine precision errors. When using 
12
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Fig. 5. Relative boundary condition vector approximation error ‖ ỹbc(t
j )−ybc(t

j )‖�h

average j

[
‖ybc(t j )‖�h

] for the two test cases for boundary condition DEIM approximations (solid 

lines) and best approximations (dashed lines) with Rbc = R modes.

the DEIM approach, it is consequently important to know the rank of the snapshot matrix Xbc. In the following, we set 
Rbc = min(R, 23) for the test case varying angle and Rbc = R for the test case moving mode.

6.2.2. Convergence
First, we investigate whether the ROM converges to the FOM for increasing number of modes. As can be seen in Fig. 6 the 

relative velocity error clearly decreases monotonously for increasing number of ROM modes. Consequently, our velocity-only 
ROM for time-dependent boundary conditions indeed provides a convergent approximation to the FOM for both boundary 
condition approximation approaches.

6.2.3. Mass conservation
Second, we investigate to which extent our proposed ROM violates the original mass equation (18). As explained in Sec-

tion 3.3, the proposed ROM satisfies the mass equation exactly, but with respect to the approximated boundary conditions. 
The difference between the two is shown in Fig. 7, effectively indicating how well the mass equation right-hand side y M(t)
is approximated by ỹM(t).

Indeed, as can be seen in Fig. 7 the mass conservation violation decreases for increasing number of boundary condition 
approximation modes. For the testcase varying angle, the mass conservation violation is in the order of machine precision 
for R ≥ 20. In contrast, for the moving mode testcase, R = 80 modes are required to achieve a similar mass conservation 
accuracy. Even for R = 40 modes, the mass conservation violation is larger than 10−4. This observation can directly be 
explained by the singular value decay depicted in Fig. 3b, which shows that the 80 largest singular values all have a relative 
magnitude larger than 10−4. Note however, that in this case the boundary conditions were chosen on purpose to be highly 
‘irreducible’ with POD and as such this can be seen as a limiting case, which is very unlikely in practice. Furthermore, the 
violation of the exact mass equation seems not to impair the accuracy of the actual solution V r , as can be observed by 
comparing Fig. 6a to 6b.

6.2.4. Energy consistency
Third, we investigate whether the structural correspondence of the FOM and ROM kinetic energy evolutions derived in 

Section 4 is accompanied by small energy errors in practice.
13
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Fig. 6. Relative velocity error ‖V j
h−V j

r ‖�h

average j

[
‖V j

h‖�h

] for the two testcases for boundary condition DEIM approximations (solid lines) and best approximations 
(dashed lines).

Fig. 7. Mass conservation violation ‖Mh V j
r − yM (t j)‖2 for the two testcases for boundary condition DEIM approximations (solid lines) and best approxima-

tions (dashed lines).

Indeed, Fig. 8 shows that the relative kinetic energy errors are approximately at the same order of magnitude as the 
corresponding relative velocity errors depicted in Fig. 6.

6.2.5. Verification of ROM equivalence
Next, we verify the ROM equivalence demonstrated in Section 5.2. For this purpose, we simulate the same testcases 

as in the previous experiment but now with the velocity-pressure ROM (39)-(40) with the bases � = [�hom �inhom] and 
� = Mh�inhom as described in Section 5.2. Here, we compute �inhom via a QR decomposition of Finhom. Hence, the numbers 
of modes of the velocity-pressure ROM are given by Rbc = R inhom = R p = R and R V = Rhom + R inhom = 2R . As can be seen 
in Fig. 9, the error between the two ROMs ranges for all values of R between 10−18 and 10−10. Hence, the ROM equivalence 
is confirmed up to machine precision.

6.2.6. Runtime analysis
Fig. 10 shows the computation time of the ROM in comparison with the FOM. For all considered numbers of modes, 

we observe a significant speed-up of the ROM online phase compared to the FOM simulations. As in [34], this speed-up 
amounts to approximately two orders of magnitude for moderate numbers of modes. The offline precomputations, on the 
other hand, have significant costs and even exceed the FOM simulation costs for R = 80.
14
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Fig. 8. Relative kinetic energy error 
∣∣∣K j

h−K j
r

∣∣∣
average j

[
K j

h

] for both testcases for boundary condition DEIM approximations (solid lines) and best approximations 

(dashed lines).

Fig. 9. ROM equivalence error 
∥∥∥V j

r,velocity−only − V j
r,velocity−pressure

∥∥∥
�h

for both testcases for boundary condition DEIM approximations (solid lines) and best 
approximations (dashed lines).

However, when used in practice for a parametric study, the ROM would already pay off for a small number of ROM 
simulations.

7. Conclusion

In this paper we have generalized the energy-conserving ROM for the incompressible Navier-Stokes equations proposed 
by Sanderse [34] to arbitrary time-dependent boundary conditions. Our ROM is velocity-only, which avoids computing the 
pressure and pressure-related inf-sup instability, and it preserves the structure of the kinetic energy evolution. The ROM 
is based on a Helmholtz-Hodge-inspired decomposition that separates the velocity into two orthogonal components: i) a 
velocity that satisfies the mass equation with homogeneous boundary conditions and ii) a lifting function that satisfies the 
mass equation with the prescribed time-dependent boundary conditions. The homogeneous component is defined by the 
Galerkin-projected momentum equation. Due to the divergence-free projection basis, the pressure term disappears form the 
momentum equation resulting in the proposed velocity-only ROM.

To allow efficient simulation of the ROM, we approximate the prescribed boundary conditions by a lower-dimensional 
approximation via POD. The resulting ROM satisfies the mass equation with respect to these approximated boundary con-
ditions. Our numerical experiments show that the error introduced by this boundary condition approximation does not 
dominate the velocity error. In these experiments, we use as many modes to approximate the boundary conditions as we 
use to approximate the homogeneous velocity field. In future research, different choices of these mode numbers should be 
investigated as well.

We have theoretically shown that the orthogonality of the components leads to a ROM kinetic energy evolution that has 
the same structure as the FOM kinetic energy evolution. Our numerical experiments confirm that the proposed ROM is able 
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Fig. 10. Computation time for testcase moving mode with Rhom = R inhom = Rbc = R .

to accurately mimic the kinetic energy evolution. In future work, the structural equivalence of the kinetic energy evolution 
can be used to derive bounds on the kinetic energy and hence to derive nonlinear stability results.

Furthermore, we have proven the important result that the proposed velocity-only ROM is equivalent to a velocity-
pressure ROM, when employing a specific choice of basis functions, and confirmed this equivalence in our numerical 
experiments. This equivalence can function as a key concept to understand the role of the pressure in ROMs for the in-
compressible Navier-Stokes equations. It gives important insights into the behaviour of the velocity-pressure ROM regarding 
the choice for the number of velocity, pressure and boundary condition modes. While this ROM equivalence is based on the 
assumption of the discrete gradient-divergence duality, future research should investigate whether discretizations that do 
not exhibit this property also allow for a similar equivalence statement.

In numerical experiments, we have shown the convergence of the ROM upon increasing the number of ROM modes and 
the accuracy of the boundary condition approximation. Instead of performing a hyper-reduction technique for the convective 
term, we have used an exact offline decomposition. Scaling cubically in the number of modes, this offline decomposition is 
limited to small numbers of modes. For moderate numbers of modes, the speed-up of the ROM online phase compared to 
the FOM is approximately two orders of magnitude. If larger numbers of modes are required that prohibit this cubic scaling, 
we suggest to incorporate energy-conserving hyper-reduction methods [53].

In future work, it should be investigated how the proposed method performs in practically relevant testcases involving 
higher Reynolds numbers and generalization over parameter spaces, varying boundary and initial conditions as well as 
longer time intervals. In case of higher Reynolds numbers, it might be useful to combine our approach with methods that 
improve the representation of dissipative small scales [10,11]. For such combinations, we suggest to keep the lifting function 
unchanged and only adapt the construction of the homogeneous velocity approximation.
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Appendix A. Importance of orthogonal lifting function

To comprehend the importance of the orthogonality between the lifting function Ṽ inhom(t) and the homogeneous veloc-
ity basis �hom (27), we consider an alternative pair of a lifting function V̂ inhom(t) and a homogeneous velocity basis �̂hom
that are not �h-orthogonal.

For this purpose, let us assume that the lifting function V̂ inhom(t) satisfies the approximated mass equation

Mh V̂ inhom(t) = ỹM(t), (A.1)

but not the definition (26). We define the difference between the two lifting functions �(t) = V̂ inhom(t) − Ṽ inhom(t).
For simplicity, we assume that the approximated boundary condition vector equals the exact boundary condition vector, 

ỹbc(t) = ybc(t) and hence Ṽ inhom(t) = V inhom(t). Then, we can compute the homogeneous velocity basis �̂hom as the �h-

orthonormal POD basis of snapshots V̂
j
h,hom of the homogeneous velocity field V̂ h,hom(t) = V h(t) − V̂ inhom(t).

Then, V̂ r,hom(t) = �̂homâhom(t) approximates V̂ h,hom(t), where âhom(t) is defined by replacing V h(t) in the momentum 
equation (5) by V̂ r(t) = V̂ r,hom(t) + V̂ inhom(t), and projecting onto �̂hom,

�̂T
hom�h

d

dt

(
V̂ h,hom(t) + V̂ inhom(t)

)
= �̂T

hom F C D
h

(
V̂ r(t), ỹbc(t)

)
− �̂T

homGh ph(t). (A.2)

By construction, we have Mh�̂hom = 0, so the pressure term vanishes. However, we generally do not have orthogonality of 
components,

�̂T
hom�h V̂ inhom(t) = �̂T

hom�h�(t) =: �r(t). (A.3)

Hence, the evolution of âhom(t) is given by

d

dt
âhom(t) = �̂T

hom F C D
h

(
V̂ r(t), ỹbc(t)

)
− d

dt
�r(t). (A.4)

The pressure p̂r(t) corresponding to V̂ r(t) can be retrieved from

L̄h p̂r(t) = − d

dt
ỹM(t) + Mh�

−1
h F C D

h

(
V̂ r(t), ỹbc(t)

)
. (A.5)

Then, the kinetic energy K̂r(t) = 1
2

∥∥∥V̂ r

∥∥∥2

�h

has the evolution

d

dt
K̂r(t) = V̂ r(t)F C D

h

(
V̂ r(t), ỹbc(t)

)
+ ỹM(t)T p̂r(t) (A.6)

+
(
�r(t)

T �̂T
hom − �T

)
F C D

h

(
V̂ r(t), ỹbc(t)

)
+ �(t)T �h

d

dt
V̂ inhom(t) (A.7)

+ V̂ inhom(t)T �h
d

dt
�(t) − �(t)T �h

d

dt
�(t) − �r(t)

T d

dt
�r(t). (A.8)

Hence, this kinetic energy evolution does not have the same structure as the energy evolutions (30) and (38), because of 
the additional terms in (A.7) and (A.8). Note that the lifting function Ṽ inhom(t) defined by (26) is the only lifting function 
that satisfies the approximated mass equation (A.1) and is �h-orthogonal to all homogeneous velocities, i.e.

V T �h Ṽ inhom(t) = 0 for all Mh V = 0. (A.9)

Hence, any lifting function V̂ inhom(t) that satisfies (A.1) and (A.9) implies �(t) = 0, so the additional terms (A.7) and (A.8)
vanish.

Appendix B. Effect of time integration method: energy-conserving Runge-Kutta methods

We investigate the effect of using an energy-conserving, implicit Runge-Kutta method [48], the implicit midpoint rule, 
instead of the explicit fourth-order Runge-Kutta method used in Section 6. As can be seen in Fig. B.11, the difference be-
tween the explicitly and implicitly integrated ROMs is quite small compared to the velocity error of the explicitly integrated 
ROMs depicted in Fig. 6.

As discussed in Section 4, energy-conserving Runge-Kutta methods do no conserve the kinetic energy for the considered 
test cases since the underlying ODEs conserve kinetic energy neither. In addition, Fig. B.12 shows that the relative kinetic 
energy errors do not vanish even when an energy-conserving Runge-Kutta method is used.
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Fig. B.11. �h -norm of velocity difference, ‖V j
r,explict − V j

r,implicit‖�h , of ROMs integrated in time with explicit RK4 and with implicit midpoint for the two 
testcases with boundary condition best approximation and Rhom = Rbc = R .

Fig. B.12. Relative kinetic energy error 
∣∣∣K j

h−K j
r

∣∣∣
average j

[
K j

h

] for both testcases, integrated in time with implicit midpoint with boundary condition best approximation 
and Rhom = Rbc = R .

Appendix C. Best approximation error relations between the proposed velocity-only ROM and a standard POD 
velocity-pressure ROM

We repeat and prove the statement in Section 5.3 about best approximation errors of standard POD bases and the 
proposed velocity-only ROM basis.

Proposition C.1 (Best approximation errors of velocity-only ROM and standard POD velocity-pressure ROMs).
Let, as in (52),

ε(φ) =
K∑

j=1

∥∥∥V j
h − φφT �h V j

h

∥∥∥2

�h

, (C.1)

the best approximation error over a set of snapshots 
{

V j
h

}K

j=1
. Then, the �h-orthonormal POD bases over the set of snapshots 

{
V j

h

}K

j=1
with R V = Rhom and R V = Rhom + R inhom modes, �[Rhom] and �[Rhom+R inhom] , satisfy relation (53),

ε
(
�[Rhom+R inhom]

) ≤ ε ([�hom �inhom]) ≤ ε
(
�[Rhom]

)
, (C.2)

with R inhom , �hom ∈RNV ×Rhom and �inhom ∈RNV ×R inhom as used in the proof of Proposition 5.1, and the assumption that ỹbc(t) =
ybc(t) for all t ∈ [0, T ].
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Proof. We use the well-known optimality property of POD bases [4] that the �h-orthonormal POD basis � ∈RNV ×R V min-
imizes ε(φ) over all �h-orthonormal φ ∈RNV ×R V . Since �[Rhom+R inhom] and [�hom �inhom] both have the same dimension, 
this optimality property implies

ε
(
�[Rhom+R inhom]

) ≤ ε ([�hom �inhom]) . (C.3)

To prove the second inequality, we use that

�T
hom�h�inhom = 0 (C.4)

and, thanks to the assumption that ỹbc(t) = ybc(t) for all t ∈ [0, T ],
V inhom(t j) ∈ span(�inhom) for all j = 1, . . . , K , (C.5)

where t j is chosen such that V j
h = V j

h,hom + V inhom(t j). Then, we find

�inhom�T
inhom�h V j

h = V inhom(t j), (C.6)

and hence

V j
h − [�hom �inhom][�hom �inhom]T �h V j

h = V j
h,hom − �hom�T

hom�h V j
h,hom, (C.7)

for all j = 1, . . . , K , and

ε([�hom �inhom]) =
K∑

j=1

∥∥∥V j
h,hom − �hom�T

hom�h V j
h,hom

∥∥∥2

�h

. (C.8)

Since �hom is the �h-orthonormal POD basis over the set of snapshots 
{

V j
h,hom

}K

j=1
, the POD optimality property implies 

that �hom minimizes ε([φ �inhom]) over all �h-orthonormal φ ∈RNV ×R V . Hence, we find

ε([�hom �inhom]) ≤ ε([�[Rhom] �inhom]). (C.9)

Furthermore, due to the monotonicity of ε upon adding modes, we find

ε([�[Rhom] �inhom]) ≤ ε(�[Rhom]), (C.10)

which completes the proposition statement. �
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