
Game Engine Wizardry for Programming Mischief

Riemer van Rozen
rozen@cwi.nl

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Abstract

Programming grants individuals the capability to design,
create, and bring ideas to life. To improve their skills, pro-
grammers require powerful languages and programming
environments for understanding the impact of gradual code
changes. We investigate how modern game engine technol-
ogy can be leveraged for creating visual input and feedback
mechanisms that drive exploratory and live programming.
In this paper, we report experiences on creating a vi-

sual programming environment for Machinations, a domain-
specific language for game design. We share initial findings
on how to automate the development of graph- and tree-
based editors in Godot, an open source game engine. Our
results show that today’s game engine technology provides a
solid foundation for future programming language research.

CCS Concepts: • Software and its engineering→ Visual

languages; Integrated and visual development environments.

Keywords: programming environments, game engines, lan-
guage workbenches, live programming

ACM Reference Format:

Riemer van Rozen. 2023. Game Engine Wizardry for Programming

Mischief. In Proceedings of the 2nd ACM SIGPLAN International

Workshop on Programming Abstractions and Interactive Notations,

Tools, and Environments (PAINT ’23), October 23, 2023, Cascais, Por-

tugal. ACM, New York, NY, USA, 8 pages. h�ps://doi.org/10.1145/

3623504.3623570

1 Introduction

Visual programming environments have the potential to
make programming more accessible to programmers of all
backgrounds and skill levels. For instance, Domain-Specific
Languages (DSLs) have been shown to help non-programmers
raise their productivity, and improve the quality of their
work [26]. DSLs offer specific abstractions and notations that
provide increased expressiveness over particular problem
domains, e.g., banking, digital forensics and game design.

PAINT ’23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0399-7/23/10.

h�ps://doi.org/10.1145/3623504.3623570

Languageworkbenches andmeta-programming languages
provide techniques and approaches that support rapid proto-
typing of DSLs [9], especially compilers and interpreters, e.g.,
based on Visual Studio Code and the Language Server Proto-
col (LSP). However, generic language technology often has
limited support for visual programming environments, e.g.,
projectional editors [30], block-based editors [20], or web
interfaces [31]. Language engineers require tools and tech-
niques to speed up and simplify the development of visual
programming environments that are user friendly, aestheti-
cally pleasing, and easy to deploy, maintain and extend.

Game engines are collections of software libraries, toolkits
and cross-compilers that have been especially designed for
developing portable visual applications, games in particu-
lar. These engines represent the state of the art in 2D and
3D frameworks for creating visual simulations, Heads-Up
Displays (HUDs) and immersive interactive experiences.
To date, only a limited number of authors have explored

using game engines for creating DSLs [19, 27, 34]. We see a
research opportunity to bridge the gap between the techno-
logical spaces of game engine technology and Programming
Language (PL) research, language workbenches in particular.
We hypothesize that game engines are well-suited for

the automated development of interactive programming en-
vironments, especially visual DSLs. In particular, we aim
to learn how game engines can be used for creating visual
input and feedback mechanisms that support exploratory
programming, live programming and creative tinkering.

To shed light on this matter, we conduct a feasibility anal-
ysis and carry out a pilot study. First, we create a concise
overview of a limited number of well-known game engines
in Section 2. We assess strengths, weaknesses, opportunities
and threats. Based on our initial positive analysis, we select
Godot, a free open source game engine described in Section 3,
for further study. We investigate how Godot can facilitate
creating visual programming environments with graph- and
tree-based projectional editors.
We develop a live programming environment for Micro-

Machinations, a visual DSL for game design in Section 4. This
work adds a visual front-end based on Godot to the existing
language back-end based on the Cascade meta-language [28].
We report positive experiences and reflect on lessons learnt
in Section 5. Finally, we describe related work in Section 6,
and conclude with final remarks in Section 7.
This paper contributes: 1) a concise overview and anal-

ysis of well-known game engines as a means for creating

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

36

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3834-682X
https://doi.org/10.1145/3623504.3623570
https://doi.org/10.1145/3623504.3623570
https://doi.org/10.1145/3623504.3623570
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623504.3623570&domain=pdf&date_stamp=2023-10-19


PAINT ’23, October 23, 2023, Cascais, Portugal Riemer van Rozen

Table 1. Game Engines integrate programming languages

Engine Visual scripting Language support

CryEngine V Flow Graph C++, Lua, C#

GameMaker visual scripting tool GML

Godot Engine 4 VisualScript* GDScript, C, C++, C#, ...

Open 3D Engine Script Canvas Lua

Unity Bolt visual scripting C#

Unreal 5 Visual Blueprints C++

visual programming environments; and 2) an assessment of
Godot in the development of Vie, a tiny Live game engine
for Machinations, specifically for a) realizing its preliminary
requirements, and b) creating its visual front-end.
Our results show that today’s game engine technology,

Godot in particular, provides an excellent foundation for
future research on visual and interactive programming envi-
ronments. Game engines provide us with the means, motive
and opportunity for programming mischief.

2 Game Engines

Language workbenches and meta-programming languages
offer tools and techniques for developing meta-programs,
programs that work on other programs, e.g., compilers and
interpreters [9]. These tools are often based on Java, e.g.,
Rascal, Spoofax and Jetbrains MPS [9]. We wish to learn if
and how game engines can be integrated with this generic
language technology for developing visual DSLs.We conduct
a feasibility analysis to assess if game engines are suitable
for developing visual programming environments.

To accomplish this, we create a concise overview of well-
known game engines about: a) support for programming
languages; b) features for creating UIs; and c) software li-
censes. We weigh the pros and cons of applying engines, and
assess strengths, weaknesses, opportunities and threats.

2.1 Overview of game engines

Game engines are software libraries, tools, and compilers for
creating interactive 2D and 3D simulations [13]. Especially
suitable for game development, these engines can also be
used to create other interactive visual programs with fast,
user-friendly, and aesthetically pleasing interfaces. Figure 1
shows well-known game engines and their support for pro-
gramming languages. We briefly describe each game engine.

2.1.1 CryEngine. CryEngine, originally developed around
the 3D shooter Far Cry, is a proprietary game engine that in-
cludes many visual tools [12]. The toolset includes a terrain
editor, behavior trees, and flow graphs, to name a few.

2.1.2 GameMaker. GameMaker is the odd one out in our
short list. Intended for making 2D games only, this propri-
etary platform by YoYo games is aimed at indie game develop-
ers and educators alike [18, 21]. The GameMaker Language
a C-like language for adding behaviors.

2.1.3 Godot. Godot is a free 2D and 3D game engine for
cross-platform game development [17]. Godot comes with
support for C, C++ and C#. Godot also includes a script
language designed for novices called GDScript, a dynamically
typed language that resembles Python. Due to lack of interest,
its visual language VisualScript was discontinued at v3.0. The
sources of Godot are released under the MIT license.

2.1.4 Open 3D Engine. Open 3D Engine (O3DE) is a 3D
game engine, a free open source continuation of Amazon
Lumberyard now developed by the Open 3D Foundation [8].
O3DE includes Lua [14], a multi-paradigm embeddable lan-
guage that is often used for scripting in games. Supported
by the Linux foundation, its sources are available under the
Apache 2.0 license.

2.1.5 Unreal Engine 5. Unreal Engine 5 is a real-time 3D
engine and creation tool for “visuals and immersive experi-
ences” owned by Epic Games [11]. Originally developed for
Unreal, a 3D shooter, this engine has seen many iterations
and is widely applied.

2.1.6 Unity. Unity is a commercial game engine with sup-
port for creating 2D and 3D applications [25]. Unity remains
a popular choice game among developers for its intuitive
APIs and cross platform compilation.

2.2 Weighing pros and cons

Game engines have compelling benefit. Each of these engines,
except perhaps GameMaker, has the necessary features for
creating multi-faceted tools and programming environments.
We relate key technical concerns to applied research needs.

2.2.1 Documentation. Engines often have high quality
and up to date documentation with examples and expla-
nations. For instance, show cases illustrate examples that
demonstrate engine capabilities and features. Usability is a
prime concern, and so is educating junior developers.

2.2.2 2D and 3D. Engines usually offer state of the art 2D
and 3D frameworks. A projectional editor will mostly use
the 2D APIs, and can potentially integrate 3D visualizations.

2.2.3 Toolkits. Engines offer rich toolkits to support de-
sign and development processes, e.g., in asset stores. This
includes programming environments, visual editors and as-
set editors created using the engine itself. Some are DSLs
in their own right. These are evidence that supports our hy-
pothesis. These examples make DSL development feasible.

2.2.4 Cross-compilation. Most engines have compilers
that can target various platforms, e.g., Windows, Linux, iOS
and Android. Developers have a single point of maintenance
and enjoy platform independence. Using game engines, cross-
platform compilation comes at no additional cost.

2.2.5 Mobile devices. Engines have built-in support for
gestures and touch APIs for tablets and mobile phones.

37



Game Engine Wizardry for Programming Mischief PAINT ’23, October 23, 2023, Cascais, Portugal

Figure 1. Godot showing a scene graph built from parts

2.2.6 Deployment. For commercial software, time tomar-
ket is essential. Most engines therefore integrate with app
stores and market places, enabling rapid deployment.
Of course, reusing this digital infrastructure can also be

beneficial for deploying open source software. The deploy-
ment of language technology andDSLs can be a time consum-
ing process. Using game engines, this process can become
more straightforward.

2.2.7 Long term support. Maintenance and software de-
pendencies are key concerns. As substantial investments,
engines likely receive extensive maintenance and support.

2.2.8 Vendor lock-in. A tight coupling between game en-
gines and software poses the risk of vendor lock-in. Our
intended use, generating UIs, aims to decouple DSL specifi-
cations from the engine code.

2.2.9 Language support. A challenge is that many lan-
guage workbenches are based on Java which is not supported
by these game engines. The Godot community has added
support for Rust, Nim, Haskell, Clojure, Swift, and D. Java is
not yet supported, but might be added.

2.2.10 Proprietary products. Many engines are propri-
etary paid products with royalty systems that have long term
costs. Godot and O3DE are free open source projects, which
makes them attractive for community efforts.

2.3 Generic Language Technology

We aim to leverage game engines in language-parametric
technology for developing visual programming environments.
To investigate if this is feasible, we carry out a pilot study.

We select Godot for a deeper investigation for its extensive
2D support, clear documentation and open source license.
We apply Godot to the development of a live programming
environment for Machinations, a visual DSL for game design.

3 Godot Game Engine

Before we assess Godot as a platform for developing visual
programming environments we first give a concise overview.

The entity component model is a well-known solution for
varying modular structures that originates from game devel-
opment [2]. This pattern ensures a loose coupling between
entities and components for flexible and extensible designs.
Godot instead has a more traditional OO model [16].
The main data structure of a program is its scene graph.

Godot includes a visual scene editor, shown in Figure 1. This
graph consists of graphical components that can be flexibly
added and removed (top left). Control nodes are the base
type of every interactive 2D component, e.g., Label, Panel,
TextEdit, LineEdit and Tabs. The center view shows what
the scene looks like. Using the editor, programmers can com-
pose components and modify properties, including positions
and spacing (right), into scenes with reusable interfaces and
behaviors. Scenes can express components of UIs, e.g., editor
menus, graph editors or debug windows.
Scenes can be packed into “prefab” components. At run

time, packed scenes can be efficiently instantiated. Of course,
the graphs can still be modified, pruned and extended.

Scene nodes, specifically control nodes, communicate via
events. These can register event handlers on the graph to
receive notifications, and decorate the graph with timers
and callbacks. The engine determines when events trigger,
hiding the control flow from the programmer. For handling
notifications, programmers can connect scripts.

For scripting, Godot provides GDScript, a script language
specifically designed for novice programmers. Godot also
offers C# support with the .NET SDK and the .NET-enabled
version of Godot. Earlier versions shipped Mono. As an al-
ternative, developers can use JetBrains Rider, a powerful C#
IDE together with Godot. Godot has excellent documentation
that is continually updated as new features are added.
Next, we apply Godot in the creation of an interactive

visual programming environments for Machinations. Please
note that we have used Godot 3.5.1 for compiling a prototype
for iOS. At the time of writing, the current version is 4.2.

4 Machinations

Machinations is a visual notation for game design that fore-
grounds elemental feedback loops associated with emergent
gameplay [1]. Micro-Machinations (MM) is a textual and vi-
sual programming language that addresses several technical
limitations of its evolutionary predecessor [29]. In particular,
MM introduces a live programming approach for acceler-
ating the game development process with an embeddable
interpreter that enables modifying digital games at run time.
We investigate how Godot can be leveraged to create a

visual programming environment that integrates this inter-
preter. In particular, we assess its uses for designing visual
input and feedback mechanisms that drive live programming.

38



PAINT ’23, October 23, 2023, Cascais, Portugal Riemer van Rozen

1
max 1

Vie

Heart

0
max 1

0

Apples Swap Bunnies

0
max 1

3

Enter Leave

Figure 2.Micro-Machinations diagram of Vie and her bunny

We describe Vie, a tiny live game engine for simultane-
ously prototyping and playtesting a game’s mechanisms.
The prototype demonstrates that Godot offers the necessary
foundations for creating visual editors of graph based DSLs.

4.1 Micro-Machination

Micro-Machinations programs, or diagrams, are directed
graphs that control the internal economy of running digi-
tal games. When set in motion through runtime events and
player interactions, the nodes act by pushing or pulling eco-
nomic resources along its edges.
We introduce the notation by means of a design theme

intended for young children. The theme features a girl, bun-
nies and apples. Game designers and children can explore
this design space together, guided by creative tinkering and
imagination. Figure 2 shows an example game economy.

The game introduces Vie (pronounced /vi/), a girl who has
lost her bunny. She can get him back by collecting and ex-
changing apples. Four pool nodes, shown as circles, abstract
from the in-game resources: Vie, Apples, Heart and Bunnies.
The integers inside represent current and maximum (max)
amounts. The edges are resource connections that define the
rate at which resources can flow between source and target
nodes. Three interactive nodes, indicated by double lines,
define interactive mechanisms a player can activate.
Every time Vie enters, she brings an apple. Enter is an

interactive source node, shown as a triangle pointing up, the
only place where resources can originate. When activated, it
produces Vie and an apple.

Vie has to leave before she can collect more apples. Leave
is an interactive drain node, shown as a triangle pointing
down, the only place where resources can disappear. When
activated, it consumes the Vie resource.
When Vie has collected three apples, she can exchange

them for her bunny. Swap is an interactive converter node,
appearing as a triangle pointing right with a vertical line
through the middle. Converters can be rewritten as a com-
bination of a drain, a trigger and a source. When the drain
consumes the costs of the conversion, the trigger activates
the source, which then produces the benefits. When acti-
vated, this converter consumes three apples and produces a
heart and a bunny. All is well that ends well when Vie leaves
reunited with her bunny.

User Interface

Editors Bindings

Machinations Interpreter

Event API Model

Figure 3. Vie tool architecture and components

4.2 Vie: a tiny live game engine

Micro-Machinations has introduced a live programming ap-
proach that accelerates game design [29]. This approach
proposes an embeddable interpreter to power the internal
economies of digital games. Designers can simultaneously
prototype and playtestmechanisms inside running economies,
e.g., by modifying the diagram and by activating nodes.

We address the need for a visual live programming front-
end that integrates visual game prototypes. We define pre-
liminary requirements of Vie: a tiny live game engine.

4.2.1 Functional requirements. Designers require a live
programming environment for simultaneously prototyping
and playtesting a game’s mechanisms. They need immediate
and continuous feedback for understanding the relationships
between mechanisms, UI elements and gameplay. We formu-
late preliminary requirements for each of these concerns.

Mechanics Editor. Designers need to prototype mecha-
nisms before assessing the gameplay. They require an editor
to flexibly design, modify, and test the dynamics of game-
economic mechanics. The editor allows designers to:

R1 Create diagrams by adding nodes and edges on a can-
vas, by moving elements, and zooming in and out.

R2 Modify and edit the properties of a nodes and edges.
R3 Activate nodes for enacting their effects.
R4 Observe visual feedback about the success of nodes,

triggers and the flow of resources in a diagram.

UI Editor. Designers prototype user interfaces to make
themechanics playable. They require an editor and aminimal
set of visual components to design, bind, place and position:

R5 Buttons that activate interactive nodes.
R6 Labels that show current amounts of resources in pools.
R7 Sprites that relate imagery to current pool amounts.

Interactive Game Prototype. For playtesting a game’s
mechanisms, designers require a game prototype that facili-
tates experiencing gameplay. The tool provides an integrated
game simulation that enables designers and players to:

R8 Press buttons for activating mechanisms.
R9 Observe labels with textual amounts.
R10 Observe sprites representing game state.

Next, we describe technical challenges for creating the
Vie programming environment.

4.3 Objectives

We aim to create a visual live programming environment for
Micro-Machinations based on the Model View Controller

39



Game Engine Wizardry for Programming Mischief PAINT ’23, October 23, 2023, Cascais, Portugal

ProgramElement
– name: String
– visible: bool

Edge Node

– type: NodeType

FlowEdge

– amount: int

Trigger

Behavior
– when: When
– act: Act
– how: How

Pool

– at: int
– max: int

Converter
– s: Node
– d: Node
– t: Trigger

Source

Drain

Engine

– change: bool

NodeInst
– triggered: bool
– amount: int

elements*

src

tgt

state

*

work

*

behavior

engines *

node

(a) Static meta-model

(b) Run-time

meta-model

Figure 4. Partial meta-model of Micro-Machinations (dia-
gram appears in van Rozen [28])

(MVC) paradigm , as illustrated by Figure 3. We study how
to leverage Godot in the creation of Vie, a tiny live game
engine that satisfies the requirements of Section 4.2.1.
In particular, we investigate how to integrate the Micro-

Machinations interpreter, which has been created using the
Cascade framework [28]. Cascade expresses DSLs and run-
time transformations, and compiles to C#. The event-based
runtime serves as a controller that manages the abstract syn-
tax and the run-time states (Model). The technical challenge
we have to address is adding a user interface (View).

4.3.1 Technical challenges. Technical challenges:

T1 Create user interfaces by defining scene graphs of vi-
sual components for mechanics, UI, and gameplay.

T2 Modify programs, and activate run-time behaviors,
using event APIs of the Cascade interpreter.

T3 Render the view by connecting callbacks that trigger
when models are updated to modify the scene graphs.

T4 Display visual feedback about the effects of events
by highlighting behaviors (activation, success, failure,
triggers and flow) using colors and timers.

4.4 Tool Design

The language design of Micro-Machinations is based on the
meta-model of Figure 4. This class diagram shows the struc-
ture of its abstract syntax and run-time states. Programs, or
Abstract Syntax Graphs (ASGs), are instances of the static
meta-model. Run-time states, on the other hand, are in-
stances of the run-time meta-model.
The C# interpreter has an event driven design. Based on

the Cascade framework, it offers a scheduling API for mak-
ing gradual changes, e.g., for adding nodes or edges, deleting

them, or changing the type of a node. Several advanced fea-
tures support live programming, including run-time state
migrations [28]. When designers modify the program, the
interpreter migrates the run-time state by updating current
amounts of pool nodes. A publish-subscribe mechanism al-
lows registering external observers that trace events and
side-effects. When events happen, the interpreter notifies
these components that changes have occurred.

4.4.1 Tool. We design a visual tool that consists of tabs
and an output window. Figures 5 and 6 show the different
tabs of the tool. We explain them one by one.

4.4.2 Mechanics Editor. We design a Mechanics Editor
that realizes requirements R1–R4 described in Section 4.2.1.
We create the following scene graphs, and add C# code that
binds them to the APIs of the interpreter.

Mechanics. Mechanics is the tab containing a GraphEdit,
Palette and NodeEditor components. GraphEdit is Godot’s
reusable graph editor component, which combines with
GraphNode. The MachNode scene inherits from GraphN-
ode, and contains labels and sprites for displaying Machi-
nations nodes. A script enables observing a specific node,
and updating the visibility and values based on callbacks.
The center of these nodes contains a button that binds the
API for scheduling node activations. We also bind events to
timers that temporarily change visual appearances to signal:
1) node success and failure; 2) triggers; and 3) resource flow.
Figure 5 shows an example of visual feedback.

NodeEditor. The NodeEditor scene is a Panel consisting
of RichTextLabels, OptionButtons and LineEdit components.
A script enables observing a selected node, which binds the
API to the interpreter. The controls schedule events to the in-
terpreter back-end. Properties become visible as appropriate,
and values update based on callbacks.

Pale�e. The Palette scene consists of four Buttons with
Sprites on them. Clicking a button creates exactly one new
node of that type in the GraphEdit area by clicking a location.

4.4.3 User Interface Editor. The UI editor that satisfies
requirements R5–R7. Like the mechanics editor, the HUD
editor consists of a panel, an editor and a GraphEdit area.
Here, three classes inherit from GraphNode for sprites, but-
tons and labels. These nodes can be placed on the GraphEdit
area. Their 2D location determines where these elements
appear in the game simulation. The UI contains sprites for
Vie, Apples, Heart and Bunnies.

4.4.4 Game. The game simulation satisfies requirements
R8–R9 of Section 4.2.1. The Game tab consists of a Panel
with Buttons, RichTextLabels and Sprites. The Mechanics
and UI Design define its looks and behavior.

40



PAINT ’23, October 23, 2023, Cascais, Portugal Riemer van Rozen

Figure 5. Vie mechanics editor showing Swap activated and succeeding, generating flows of resources

(a) User interface editor showing the UI design

(b) Running game showing Vie with her bunny

Figure 6. Vie user interface editor and a live game simulation

4.5 Live Programming Scenario

We revisit the theme of Vie and her bunny, and use the proto-
type to explore this design space. We recreate the diagram of
Figure 2, which is just one of many potentially fun scenarios
we can explore. After all, Vie affords exploring any design
we like. We can perform the following activities in any order.

DesigningMechanics. Using theMechanics editor, shown
in Figure 5, we design an internal game economy. By first
tapping in the Machinations panel on the left, we then tap
on the canvas on the right to add the nodes. We drag the
nodes into suitable places. We add resource edges using the
tip of our finger on the connectors appearing on the nodes.
Using the Node Editor, we set maximum amounts and make
nodes interactive.

Designing a User Interface. Designing the UI, shown
in Figure 6a, is straightforward. Several nodes are added
automatically by the interpreter as convenient side-effects.
For instance, the interpreter automatically ads labels and
sprites for pool nodes. When we create an interactive node,

Table 2. Vie’s UI packages, file counts and volume in SLOC

Package C# bindings Visual scenes

Files SLOC Files SLOC

Tool 1 171 1 19

Mechanics Editor 6 1234 5 434

User Interface Editor 7 1085 9 883

Gameplay Simulator 4 407 4 469

sum 18 2897 19 1805

the interpreter adds a buttons if it does not yet exist. We drag
and drop these controls into suitable locations.

Playing the Game. Meanwhile, one game instance is
always running. By pressing the buttons in sequence, we
playtest if Vie can collect apples and if she can exchange
them for her bunny. Figure 6b shows this is indeed the case.

4.6 Implementation

The implementation of Vie consist of three main parts: the
scene graphs, the MM interpreter, and the bindings between
the APIs of the two. Table 2 shows volume in Source Lines of

41



Game Engine Wizardry for Programming Mischief PAINT ’23, October 23, 2023, Cascais, Portugal

Lines Of Code (SLOC) of the scene graphs and the bindings1.
The Godot project also integrates the existing sources of the
MM interpreter. These are compiled from a Cascade spec-
ification of 2330 SLOC, and measure 33.6 KSLOC of mostly
generated C# code. We created the scenes visually, but we
also show the volume of the .tscn files, 1805 SLOC total.
The bindings consist of 2897 SLOC of hand-written C#.

We have compiled Vie for MacOS and iOS and tested the
prototype works well on a laptop and a mobile phone.

4.7 Analysis

Creating the UI of Vie in Godot is not hard. We spent a few
days on learning how to use Godot, and creating the design.
Most of the work went into the C# binding the event API
of the interpreter to the UI elements. Creating these was
straightforward because both Godot and Cascade have event
APIs. The technical difficulty is in the MM interpreter.

GraphNode and GraphEdit can be used for creating graph-
based interfaces. The mini-map, the grid, and zoom and snap
functionality are built-in and customizable. However, there
are also limitations. Edges are not represented as first class
components, but as integers in a list, which complicates
mapping the view to the model.

In addition, edges are not arrows. The type and direction
of an edge is determined by specific connection points on the
GraphNodes. Due to this limitation, we represent triggers
and flow edges with different colors and connection points.

5 Discussion

5.1 Projectional editors

Of course, we have just described the creation of one vi-
sual programming environment in Godot. We are currently
investigating how to do this for other DSLs too.

The Vie prototype only includes graph-based editors and
tree editors of fixed sizes. Other languages require editors
for dynamically sized trees. In Godot, such an editor can be
created by adding components in a vertical container, and
adjusting their left-hand margins based on the nesting level
in the tree. A cursor can be introduced for navigating the
list, and selecting, adding and removing elements.

5.2 Metaprogramming

In addition, the conceptual gap between Cascade, the meta-
language of the MM interpreter, and Godot is relatively nar-
row. Both frameworks are event-driven and integrate C#.

Of course, this not generally the case. For instance, some
languages operate on immutable data or are not inherently
event-driven. These cases require first computing differences
before rendering updates to the views. Naturally, this can be
automated too, e.g., using GumTree [10].
In addition, many meta-programming languages require

Java. None of the popular engines we discussed support Java.

1We measured SLOC using cloc-1.96 – h�ps://github.com/AlDanial/cloc

Creating a binding between an engine and a programming
language represents a substantial amount of work. Work has
been done to integrate Kotlin 1.7.10, which supports desktop
(Linux, MacOS, Windows) and Android applications2.

5.3 Towards generic language technology

Based on our preliminary findings, we assert that Godot
can provide a solid foundation for developing visual pro-
gramming environments. Since other engines have similar
capabilities, those too may be suitable.
We have not yet automated the development of visual

programming environments. We created the UI of the Vie
prototype by hand. Further investigation is necessary to
ascertain to what extent programming environments can
be generated, and how generic language technology can
support this. Open challenges are:

1. Generating API bindings that exchange events be-
tween the DSL back-end and the UI front-end.

2. Introducing scene templates that can be mapped to
DSL features for generating scenes.

3. Defining variation points for tweaking default views.

Since sizes, offsets and sprites are key, the generated pro-
gramming environments will likely have limitations. How-
ever, the approach supports rapid prototyping and deploy-
ment of unpolished but usable prototypes.

6 Related work

Game engines are a topic in related work. Andrade gives a
limited overview of game engines [3]. Zhu and Wang give
a model-driven engineering perspective on games [33]. In
a much larger study, van Rozen sheds additional light on
the topic, discussing model-driven engineering, automated
game design and meta-programming [27].
There is a rich tradition of tools for modifying (or mod-

ding) games [23]. Some games also integrate forms of end
user programming. For instance, in “Baba is You” players
modify mechanisms and solve puzzles by pushing program
blocks into place [6]. Similarly, we aim to integrate program-
ming environments with the applications they can modify.
Alternatives to game engines are 2D frameworks. These

include Qt [5], Tcl/Tk [32], Eclipse Modeling Framework
(EMF) [24], to name a few. While appropriate for certain
technological spaces, or maintenance scenarios, these frame-
works are incomparable to the feature sets of game engines.
Another avenue to achieve portability is creating an inter-
active web site. Browser frameworks include Angular, Vue,
Svelte, Elm, and many more3.

Generic language technology aims to facilitate the creation
of interactive visual programming environments. Cicchetti
et al. survey multi-view modeling approaches [7]. Several
generic approaches integrate web-based UI frameworks with

2h�ps://godot-kotl.in – Last visited July 14th 2023.
3h�ps://angular.io. h�ps://vuejs.org. h�ps://svelte.dev. h�ps://elm-lang.org

42

https://github.com/AlDanial/cloc
https://godot-kotl.in
https://angular.io
https://vuejs.org
https://svelte.dev
https://elm-lang.org


PAINT ’23, October 23, 2023, Cascais, Portugal Riemer van Rozen

meta-programming environments to support interactive ex-
periences. For instance, the Salix framework of Rascal [15]
performs Elm-like rendering and updating4, similar to the
game loop. Freon uses Svelte for creating projectional ed-
itors [31]. Kogi instead derives block-based editors, based
on Google Blockly, from context-free grammars [20]. In con-
trast, the Sandblox system automatically derives structured
editors from Tree-sitter grammars on Squeak/Smalltalk [4].
Unlike web libraries, game engines are not limited to the
browser. Engines offer a reusable, portable and maintainable
alternative for developing generic solutions.

An important facet of visual programming environments
is rapidly providing understandable feedback. Live program-
ming studies how to speed up programming cycles by pro-
viding immediate and continuous feedback [22]. The Cas-
cade framework enables creating interpreters of DSLs whose
users enjoy the benefits of live programming, but still lacks
visual interfaces [28]. This pilot study has performed initial
steps towards generic language technology for visual live
programming environments.

7 Conclusion

Language engineers need tools and techniques that speed
up and simplify the development of visual programming
environments. We have studied how game engines can be
used for creating visual input and feedback mechanisms
that support exploratory and live programming, and creative
tinkering. To find out, we have conducted a feasibility analy-
sis and carried out a pilot study. We have investigated how
Godot facilitates creating a live programming environment
for Micro-Machinations, a visual DSL for game design. Our
results show that today’s game engine technology, Godot
in particular, provides an excellent foundation for future re-
search on visual and interactive programming environments.

References
[1] Ernest Adams and Joris Dormans. 2012. Game Mechanics: Advanced

Game Design. New Riders.

[2] Toni Alatalo. 2011. An Entity-Component Model for Extensible Virtual

Worlds. IEEE Internet Comput. 15, 5 (2011).

[3] António Andrade. 2015. Game Engines: A Survey. EAI Endorsed Trans.

Serious Games 2, 6 (2015).

[4] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and

Robert Hirschfeld. 2023. Structured Editing for All: Deriving Usable

Structured Editors from Grammars. In Conference on Human Factors

in Computing Systems, CHI 2023. ACM.

[5] Jasmin Blanchette andMark Summerfield. 2006. C++ GUI programming

with Qt 4. Prentice Hall Professional.

[6] M. Charity, Ahmed Khalifa, and Julian Togelius. 2020. Baba is Y’all:

Collaborative Mixed-Initiative Level Design. In Conference on Games,

CoG 2020. IEEE.

[7] Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. 2019.

Multi-view Approaches for Software and System Modelling: a System-

atic Literature Review. Softw. Syst. Model. 18, 6 (2019).

4h�ps://github.com/usethesource/salix

[8] Open 3D Engine Contributors. 2023. O3DE Documentation. h�ps:

//docs.o3de.org/ (CC BY 4.0) Last visited: July 10th 2023.

[9] Sebastian Erdweg, Tijs van der Storm, et al. 2013. The State of the

Art in Language Workbenches. In Software Language Engineering, SLE

2013 (LNCS), Vol. 8225. Springer.

[10] Jean-Rémy Falleri et al. 2014. Fine-grained and accurate source code

differencing. In Automated Software Engineering, ASE ’14. ACM.

[11] Epic Games. 2023. Unreal Engine 5.2 Documentation. h�ps://docs.

unrealengine.com/ Last visited: July 10th 2023.

[12] CRYTEK GmbH. 2019. CRYENGINE VManual. h�ps://docs.cryengine.

com/ Last visited: July 10th 2023.

[13] Jason Gregory. 2018. Game Engine Architecture. CRC Press.

[14] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, andWaldemar Ce-

les Filho. 2007. The Evolution of Lua. In History of Programming

Languages Conference (HOPL-III). ACM.

[15] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A

Domain Specific Language for Source Code Analysis andManipulation.

In Source Code Analysis and Manipulation, SCAM 2009. IEEE.

[16] Juan Linietsky. 2021. Why isn’t Godot an ECS-based game engine?

godotengine.org/article/why-isnt-godot-ecs-based-game-engine

[17] Juan Linietsky, Ariel Manzur, and the Godot community. 2023. Godot

Engine 4.2 documentation. h�ps://docs.godotengine.org/

[18] YoYo Games Ltd. 2023. GameMaker Manual. h�ps://manual.

yoyogames.com Last visited: July 10th 2023.

[19] Sonja Maier and Daniel Volk. 2008. Facilitating Language-Oriented

Game Development by the Help of Language Workbenches. In Future

Play 2008. ACM.

[20] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert

Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape

for Block-based Editors. In Software Language Engineering. ACM.

[21] Mark H. Overmars. 2004. Teaching Computer Science through Game

Design. Computer 37, 4 (2004).

[22] Patrick Rein, Stefan Ramson, et al. 2019. Exploratory and Live, Pro-

gramming and Coding - A Literature Study Comparing Perspectives

on Liveness. Art Sci. Eng. Program. 3, 1 (2019).

[23] Walt Scacchi. 2011. Modding as anOpen Source Approach to Extending

Computer Game Systems. Int. J. Open Source Softw. Process. 3, 3 (2011).

[24] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.

2008. EMF: Eclipse Modeling Framework. Pearson Education.

[25] Unity Technologies. 2023. Unity User Manual 2022.3 (LTS). h�ps:

//docs.unity3d.com/ Last visited: July 10th 2023.

[26] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific

Languages: An Annotated Bibliography. SIGPLAN Notices 35, 6 (2000).

[27] Riemer van Rozen. 2021. Languages of Games and Play: A Systematic

Mapping Study. ACM Comput. Surv. 53, 6 (2021).

[28] Riemer van Rozen. 2023. Cascade: AMeta-Language for Change, Cause

and Effect. In Software Language Engineering, SLE 2023. ACM.

[29] Riemer van Rozen and Joris Dormans. 2014. Adapting GameMechanics

with Micro-Machinations. In Foundations of Digital Games. SASDG.

[30] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. 2014.

Towards User-Friendly Projectional Editors. In Software Language

Engineering, SLE 2014 (LNCS), Vol. 8706. Springer.

[31] Jos Warmer and Anneke Kleppe. 2022. Freon: An Open Web Native

Language Workbench. In Software Language Engineering. ACM.

[32] Brent B Welch, Ken Jones, and Jeffrey Hobbs. 2003. Practical program-

ming in Tcl and Tk. Prentice Hall Professional.

[33] Meng Zhu and Alf IngeWang. 2020. Model-driven Game Development:

A Literature Review. ACM Comput. Surv. 52, 6 (2020).

[34] Meng Zhu, Alf Inge Wang, and Hallvard Trætteberg. 2016. Engine-

Cooperative Game Modeling (ECGM): Bridge Model-Driven Game

Development and Game Engine Tool-chains. In Advances in Computer

Entertainment Technology, ACE 2016. ACM.

Received 2023-07-17; accepted 2023-08-07

43

https://github.com/usethesource/salix
https://docs.o3de.org/
https://docs.o3de.org/
https://docs.unrealengine.com/
https://docs.unrealengine.com/
https://docs.cryengine.com/
https://docs.cryengine.com/
godotengine.org/article/why-isnt-godot-ecs-based-game-engine
https://docs.godotengine.org/
https://manual.yoyogames.com
https://manual.yoyogames.com
https://docs.unity3d.com/
https://docs.unity3d.com/

	Abstract
	1 Introduction
	2 Game Engines
	2.1 Overview of game engines
	2.2 Weighing pros and cons
	2.3 Generic Language Technology

	3 Godot Game Engine
	4 Machinations
	4.1 Micro-Machination
	4.2 Vie: a tiny live game engine
	4.3 Objectives
	4.4 Tool Design
	4.5 Live Programming Scenario
	4.6 Implementation
	4.7 Analysis

	5 Discussion
	5.1 Projectional editors
	5.2 Metaprogramming
	5.3 Towards generic language technology

	6 Related work
	7 Conclusion
	References

