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ABSTRACT
Demand shocks and fluctuations underscore the need for new approaches to coordinate collabora-
tion between firms to scale up production. This paper proposes an approach to formalise product
and process requirements via a collaboration ontology and applies semantic reasoning techniques
for process formation. Our approach contributes to production research by providing flexibility
in coordinating firms engaged in demand-driven collaboration. The proposed approach has four
core dimensions: (1) The Collaboration ontology builds on a set of product assembly requirements,
process steps, their input/output resources and semantic rules; (2) the ontology reasoner derives
resource dependencies between the steps; (3) the java tool interprets resource dependencies as
possible transitions in Business Process Management Notation (BPMN); (4) a workflow engine exe-
cutes the generated product assembly process. The approach and the ontology were validated in
an industrial aerospace tendering scenario demonstrating its practical relevance for firms seeking
demand-driven collaborations to react to production changes. Finally, we position and explain our
contributions to the body of knowledge in collaborative production engineering.
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1. Introduction

European low-volume high-variability manufacturing
industries, such as aerospace manufacturing, contend
with demand fluctuations and thus increasingly seek
novel ways to support demand-driven collaboration
between the supplying firms. During the last 15 years
of production and supply chain transformation, Airbus
has reduced direct supply relationships with more than
6,000 multi-tier suppliers in favour of risk-sharing part-
ners (Bernhard et al. 2007; Janke et al. 2007; Rossen et al.
2015), increasing reliance on large supply chain compa-
nies (system suppliers), as depicted in Figure 1. Small
and Medium-Sized Enterprises (SMEs) in the aerospace
industry are highly-specialised firms that need partner-
ships to deliver materials, standard parts, and support
services to any supply chain tier (SCE 2017). However,
they often cannot act as suppliers due to capacity or capa-
bility constraints and must form partnerships to bid for
work (Schirrmann and Drat 2018). SMEs increasingly
look for new collaborations to get more work; however,
the inertia of established buyer-supplier relationships
and process challenges associated with integrating new

CONTACT Nikolai Kazantsev nk622@cam.ac.uk Institute for Manufacturing (IfM), University of Cambridge, Alan Reece Building, 17 Charles Babbage
Rd, Cambridge CB3 0FS, UK

companies into a supply chain pose steep barriers for
SMEs to join new demand-driven collaboration oppor-
tunities (Schirrmann and Drat 2018; Turkina, Van Ass-
che, and Kali 2016). Particularly, SMEs perceive factors
impeding data sharing and coordination as significant
roadblocks to demand-driven collaboration (Kazantsev
et al. 2022). To tackle some of the stated challenges, this
paper studies the application of semantic technologies,
such as ontologies and automated reasoning, to facilitate
process formation and coordination of demand-driven
collaborations between supplier firms and help larger
firms to scale up their production capacities. We posi-
tion our research (including the semantic model and its
implementation) as a contribution towards supporting
the transition between a centralised and a distributed
supply chain setting and developing artefacts to sup-
port SMEs to fully engage in future distributed supply
chains, as illustrated in Figure 1. We used the Euro-
pean Aerospace industry development as a context for
this investigation. In particular, we worked on two large-
scale projects: Decentralised Agile Coordination Across
Supply Chains1 (2016–2019), and European Connected
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Figure 1. The changes in the aerospace industry require ontological support for demand-driven collaborations.

Factory Platform for Agile Manufacturing2 (2019–2022),
in a research partnership with the largest supplier cluster
to Airbus — The HANSE Aerospace cluster.3

Our work on demand-driven collaboration con-
tributes to the vision and research agenda of Industry
4.0 (Ivanov et al. 2020; Kagermann et al. 2013; Machado,
Winroth, and Ribeiro da Silva 2020; Smit et al. 2016),
in particular, in topics revolving around the integra-
tion of production processes along the entire value chain
(Kagermann et al. 2013;Moeuf et al. 2018). Future indus-
try value chain predictions envision more distributed
supply structures eventually replacing hierarchical sup-
ply chains (EY 2020). These predictions call for elim-
inating barriers to demand-driven collaboration across
supply chain tiers as a solution to quickly respond to
the fluctuating demand for products with high quality
and affordable costs. However, despite the importance of
approaches to support increases in the pace of industrial
transformations, few studies investigate the phenomenon
of demand-driven collaboration in production manage-
ment (Ivanov et al. 2020; Ivanov, Das, and Choi 2018;
Ivanov, Dolgui, and Sokolov 2019; Olsen and Tomlin
2020; Tang and Veelenturf 2019), and even a smaller
number of studies consider SMEs in the scope of other
suppliers (Mittal et al. 2018; Moghaddam and Nof 2018;
Panetto et al. 2019). These gaps underscore the impor-
tance of finding novelways to support collaborative prod-
uct assembly, engaging most supply chain participants,
such as SMEs. The innovation and added value created
by a long tail of small suppliers collaborating across sup-
ply chain tiers can play an essential tactical production
role, for example, in fulfilling specialised low-volume
jobs such as furnishing aircraft interiors tailored to a
specific flag carrier; and complementing overall produc-
tion capacity when dealing with sudden changes in the
volume of orders (order fluctuation).

An ontology is ‘an explicit specification of a shared
conceptualisation’ (Gruber 1995, 908). Related technolo-
gies for automated reasoning are suitable approaches

to coordinate interactions between supply chain firms.
However, they have not fully realised their potential in
operations research compared to computer science and
information systems domains. Applying knowledge rep-
resentation mechanisms to manage global production
networks’ complexity will become mainstream and drive
productivity gains in manufacturing. The early works
potential of ontological relationships and axioms to sup-
port reasoning has been a subject of renewed interest
in Industry 4.0 research for automated team, product,
and process composition (Cisneros-Cabrera et al. 2021;
Liu et al. 2022), resource management for aerospace
manufacturing (Arista et al. 2022), aircraft manufactur-
ing system design (Arista et al. 2023) and Reconfig-
urable Manufacturing System design (Arista et al. 2023).
Further semantic technologies and related toolsmay sup-
port the exploration of the broader field of collabora-
tion design. The work reported in this paper tackles the
following research question:

RQ: ‘How to support demand-driven collaboration using
semantic technologies formanufacturing process forma-
tion and coordination?’

To answer the RQ, we build on ideas from Collaboration
Engineering (CE) − a well-established practice of coor-
dinating repeatable group work of domain experts with-
out the ongoing support of external facilitators (Briggs
et al. 2013; De Vreede and Briggs 2019). Such group
work employs a logical model of collaboration, including
key concepts, relations, and inter-dependencies (Knoll
et al. 2010) to tackle the uncertainties of ‘not-so-well-
structured [collaboration] settings’ (Kolfschoten and De
Vreede 2009). Notably, we adopt the lens of coor-
dination theory (Crowston 1997; Malone and Crow-
ston 1990) to manage resource dependencies between
actors, resources and process steps and execute a col-
laboration process guided by the collaboration ontol-
ogy. The advantage of an ontology for production
settings is that it provides machine-readable inter and
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intra-organisational information exchange mechanisms
enabling the standardisation of production resource
interfaces, information flows, and the automation of gov-
ernance rules to guide available process steps to support
the enactment ofmanufacturing goals (e.g. call for tender
in production). The process is triggered by a tendering
event/goal and involves process mapping and allocating
resources complying with dependencies and constraints.

This paper contributes to production research with
an approach to coordinate production in response to a
new specific order in low-volume high-variability man-
ufacturing, such as aerospace manufacturing. It is an
extension of the conference paper Kazantsev et al. (2022),
which briefly presented an ontology-guided approach for
coordination; and Kazantsev (2022) – a PhD thesis that
conceptualised the idea for supporting demand-driven
SME collaborations. A key innovation of our approach
is using an ontology to guide production process forma-
tion and coordination of demand-driven collaboration.
First, we use a product data model, such as a Bill of
Materials (BOM) (Vanderfeesten, Reijers, and Van der
Aalst 2011), to derive product assembly requirements,
such as hierarchical relationships between semi-parts,
resource needs and production steps. These elements are
implemented into an ontology as classes and properties.
Second, we use the Web Ontology Language (OWL) and
the Semantic Web Rule Language (SWRL)4 to define
rules that convert resource requirements between pro-
cess steps as dependencies. Third, we interpret these
dependencies as potential ways to link the process steps
together using the BPMN notation, such as swim lanes,
tasks, logical elements, and events. Fourth, we develop
a web prototype5 to demonstrate how the derived pro-
cess will serve as an input to a workflow engine. The
ontology-guided approach makes production processes
more transparent and flexible by guiding process assem-
bly, which can be applied to various industries. The
dimensions of the ontology-guided approach are illus-
trated in Figure 2.

This paper is organised as follows: Section 2 presents
the background of this study. Section 3 outlines the
research methodology. Section 4 presents key findings,
including the ontology and the approach to process for-
mation & coordination. Section 5 summarises research
results and outlines managerial implications, limitations,
and future work.

2. Background and related work

2.1. Interoperability in production research

Interoperability is ‘[an] ability of systems [of compa-
nies] to understand functionalities of each other’ (Chen,
Doumeingts, and Vernadat 2008). Earlier work focus-
ing on interoperability for industrial production resulted
in developing the European interoperability framework,
followed by initiatives in the context of Industry 4.0,
notably the Reference Architectural Model for Industry
4.0 — RAMI (Schweichhart 2016). Although interop-
erability is considered one of the critical principles of
Industry 4.0 (Smit et al. 2016), the existing literature
on Industry 4.0 adoption identifies interoperability as
one of the critical concerns for SMEs (Kazantsev et al.
2018; Sampath and Hegde 2013). When manufacturing
SMEs attempt to collaborate and form a new supply rela-
tionship, the coordination of work, the integration of
processes and systems, and the compliance with indus-
try governance rules pose new interoperability chal-
lenges. Existing workflow management and industrial
process management tools are limited in their support
for new ad-hoc collaborations created on demand based
on rapidly changing production requirements since, in
most nascent collaboration process design scenarios, the
semantics of information and material flows cannot be
specified in advance. A key interoperability challenge is
enabling partners’ information systems to process and
infer meaning from the business collaboration concepts
(e.g. client, product, semi-part, goal, activity, and others).

Semantic technologies such as domain ontologies have
been proposed to address industrial collaboration inter-
operability challenges. The Top-Level Ontology (TLO) is
‘an ontology created to represent the categories shared
across a broad range of domains’ (ISO 21838-1:2021).
For example, TLO supports digital twin interoperability
(D’Amico et al. 2022). OntoCommons6 is a European
project dedicated to standardising data documentation
across all domains related to materials and manufac-
turing. Mainly, OntoCommons works with TLOs: BFO,
DOLCE, and EMMO. Industrial Ontologies Foundry
Core (IOF-Core7) is another example of an organisa-
tion that is trying to gather mid-level ontologies aligned
to BFO (ISO 21838-2). Although the domain-neutral
Top-Level Ontologies (TLO), or foundational ontologies,
can support any domain by definition, they lack specific

Figure 2. Ontology-guided approach to process formation and coordination.



4 N. KAZANTSEV ET AL.

Figure 3. a. The coordination framework for managing resource dependencies between process steps (Lee, Wyner, and Pentland 2008).
b. The resource dependencies between process steps (Malone and Crowston 1994).

domain knowledge, such as classes, properties and rules;
therefore, they need to be extended by the mid-level
ontologies. For example, IOF is creating such mid-level
ontologies: IOF Core and an ontology for Supply Chain8,
yet this work does not fully cover the domain of demand-
driven collaborations in manufacturing, characterised by
dynamism and flexibility.

2.2. Coordination theory

Coordination theory (CT) studies how actors perform
interdependent activities to achieve goals (Crowston
1997; Malone and Crowston 1990), i.e. to manufacture
a product. Processes consume and produce resources
(semi-parts and products) and have resource depen-
dencies (Lee, Wyner, and Pentland 2008). To manage
these dependencies, responsible actors apply coordina-
tion mechanisms (Crowston 1997), depending on the
related context (Crowston, Rubleske, andHowison 2015).
While production process steps must be executed to sat-
isfy production requirements, coordination mechanisms
are secondary to resolving inter-dependencies between
them, Figure 3a.

The theory distinguishes resource dependencies:
‘flow’, ‘shared input’ and ‘shared output’, which require
different coordination mechanisms. ‘Flow’ dependency
implies that the resource must be produced when needed
(issued notification for the consumer), usable (e.g. stan-
dardised, tested), and available for a consumer (i.e. trans-
ferred to the consumer). ‘Shared input’ stipulates that two
or more actors require the same resource, and someone
must prioritise resource allocation. Finally, ‘shared out-
put’ happens when two or more actors collectively

develop a resource. A coordination mechanism for this
dependency is either (a) to pick one activity or (b) to
arrange iterations between these activities (once activities
add value to the product), as depicted in Figure 3b.

2.3. Ontology as amodel and contract for
collaborations

Process taxonomies and ontologies can structure design
knowledge and resolve unmanaged or partially managed
dependencies (Crowston 1997; Malone and Crowston
1994). Ontologies are formal representations of concep-
tualisations of domains of interest; conceptualisation is
an abstract, simplified view of some knowledge we wish
to capture (Greco et al. 2004; Gruber 1995). A typical
ontology consists of typed objects (nodes) and proper-
ties (links), where the meaning is explicit and enables
reuse, revolutionising how large organisations utilise and
share their data (Noy et al. 2019). An advantage of for-
mal semantics is that it enables automated reasoning:
(1) Determines whether an ontology is consistent and
fits the guidelines and (2) Infers additional information
based on the axioms that define the ontology. Semantic
technologies increase software quality and reusability by
eliminating the programming logic needed for seman-
tic processing and inferencing from being hardwired into
application software code. By deriving knowledge from
the domain, the specification of the production pro-
cess can be automated (Greco et al. 2004; Rajsiri et al.
2008) to conceptualise manufacturing resource exchange
of plants (Lin et al. 2011), simulate logistics (Jiang, Peng,
and Liu 2010), or even whole supply chain management
(Yan et al. 2010).
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2.4. Research gap and contribution

Semantic and knowledge-based technologies, such as
ontologies and automated reasoning for distributed deci-
sion support across multiple local instances, support a
promising way to create a collaboration process between
firms on demand and resolve coordination problems.
By applying knowledge-based tools, we can manage the
complexity of production networks, transforming con-
ventional buyer-supplier contracts into flexible, demand-
driven sourcing relationships (Benitez, Ayala, and Frank
2020; Schmidt et al. 2021).

However, previous works partially explore these ideas,
not including ontology implementation and the corre-
sponding process assembly system guided by ontology
(Dourish et al. 1996; Vanderfeesten, Reijers, and Van der
Aalst 2011). The established ontologies in the manufac-
turing domain focus on integrating cross-organisational
systems; however, to our knowledge, they mainly deal
with encoding pre-defined collaboration process struc-
tures. Therefore, the research efforts have yet to develop
the notion of ontology-guided demand-driven collabo-
rations fully. By deriving resource exchange across man-
ufacturing supply chains (Lin et al. 2011), the proposed
approach derives resource dependencies between the
process steps to construct and coordinate process execu-
tion. This solution can also simulate collaborative pro-
cesses involving alternative team compositions (Jiang,
Peng, and Liu 2010), spanning several supply chain tiers
or across supply chains (Yan et al. 2010). Ontology-
guided coordination could help firms better react to
market demands (Horváth and Szabó 2019) and utilise
capacities in the case of disruptions.

Our solution also contributes to potential standardis-
ation efforts aimed at cross-company processes and data
exchanges focusing on industrial collaborations (Müller,
Veile, and Voigt 2020). Furthermore, due to the need to
support the efforts of the ontological community, such as
IOF, in developing a supply chain domain ontology, we
propose our approach as a genericmechanism that can be
incorporated into any supply chain ontology for convert-
ing classes and properties describing material flows into
a process ready for execution in the workflow engine.

3. Methodology

3.1. Research context

The findings reported in this paper originate from
research conducted in the context of a large-scale
Industry 4.0 digital manufacturing project funded by the
European Union under the Horizon 2020 research and
innovation programme (grant agreement no. 723336)
to help small innovative suppliers to integrate into

aerospace supply chains and traditional industrial pro-
cesses. The DIGICOR (Decentralised Agile Coordina-
tion Across Supply Chains) project9 involved a consor-
tiumof 11 organisations fromGermany, theNetherlands,
Greece, the United Kingdom, the Czech Republic, and
Italy, encompassing an Association of Aerospace SMEs
(AAS) and a significant aerospace corporation (MAC).
The goal of DIGICOR was to develop an open plat-
form, tools, and services for the setup and coordina-
tion of production networks to facilitate the collaborative
integration of non-traditional yet innovative SMEs into
the supply chain of large manufacturers (OEMs). The
main production scenario driving the development of
an ontology-guided approach involved low-volume and
high-variability manufacturing of highly complex prod-
ucts such as modules of commercial aircraft. These out-
puts are further developed in the − EFPF (European
Connected Factory Platform for AgileManufacturing).10

For requirements management, we used the following
data collection techniques: (i) paper-and-pencil inter-
views with 17 CEOs of SMEs representing a spectrum
of aviation and space-oriented service SMEs; (ii) in-
depth interviews with two industrial experts from MAC
and AAS, who had more than 20 years of experience
in the aerospace industry; (iii) presentations with dis-
cussions during the leading experts in aerospace manu-
facturing (e.g. project workshops 2017–2019 in Prague,
Hamburg and Brussels); (iv) participation in the round
tables organised by AAS and MAC at the world’s lead-
ing event for airlines and aerospace supply chains, such
as ‘International Supplier Expo Aircraft Interiors 2018-
2019. All data was transcribed from the audio recording
of the meeting. We used thematic analysis, a qualitative
method, to find common themes in the dataset (Braun
and Clarke 2006). The analysis of data and requirements
unveiled barriers impeding data sharing and coordina-
tion between SMEs as significant roadblocks to demand-
driven collaboration (Kazantsev et al. 2022), which could
be improved by collaboration process support, as shown
in Table 1.

We used these three barriers to guide the design
goals for developing an ontology to support coordina-
tion between the firms. Notably, the high costs of data
interchange with customers (Barrier 1) suggest the need
for shared processes between suppliers enabling interop-
erability and information sharing and reducing the time
needed to establish data exchanges in a demand-driven
collaboration. Creating such an environment can also
respond to Barrier 2 by increasing the ability to utilise
partners’ data, awareness, and earlier mitigation of risks.
Finally, Barrier 3 may be resolved by enforcing interop-
erability between the firms engaged in demand-driven
collaborations.
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Table 1. The thematic analysis (excerpt) about coordination bar-
riers (Kazantsev et al. 2022).

Overarching
Theme Barriers N

Representative
proof

quotations

Barriers
impeding data
sharing and
coordination

1. Costs of data
sharing with
customers

6 ‘direct IT interface to the
[OEM] systems’ [is limited],
‘time-consuming calibration
because of missing
knowledge for operating
devices of customers’.

2. Lack of ability to
utilise partners’
data

7 ‘unfit technological delivery
specifications’, ‘missing
standards and interfaces in
communication’, ‘proprietary
IT systems without adequate
standards for data transfer’,
and ‘optimisation in
information flows and
communication for structured
data exchange.’

3. Cost of lack of
coordination

30 ‘Chinese whispers effects in
communication’, ‘long
production cycles of suppliers
[shift] estimated delivery
time and [therefore] delivery
requirements of customers
[are getting] not compatible.’

3.2. Researchmethod

The design science research method (DSRM) (Hevner
2007; March and Smith 1995) from the Information Sys-
tems field was followed to develop the research artefacts
and findings reported in this paper. DSRM is gaining
popularity in the operations and supply chain fields of
study due to its methodological support for constructing
processes and optimisation approaches. DSRM is suitable
when developing an equally valuable artefact for research
and practice (Gregor and Hevner 2013; Hevner 2007).
DSRM advocates for multiple iterations with the end-
users informed by theoretical underpinnings, which

reduces the mismatch between designed artefacts and
end users’ expectations for functionality and quality.
DRSM (March and Smith 1995) directed the research
steps addressing the proposed research question and
facilitated the construction of purposeful artefacts – the
approach, the ontology, and the process assembly and
inference engine implemented using SWRL rules to form
a collaboration process. During the researchmethod exe-
cution, we often switched between collecting production
requirements (relevance cycle), elicited in collabora-
tion with the aerospace SME cluster and investigating
the gaps and theoretical underpinnings for our designs
(design cycle) in the extant literature (rigour cycle). The
main research steps are positioned as cycles, depicted in
Figure 4:

• The Relevance cycle collected requirements from the
EU-funded project DIGICOR (2016-2019) for devel-
oping an ontology-guided approach. Requirements
for the ontology have been analysed, and reuse has
been sought from existing ontologies. We started
with the early experimentationwith available top-level
ontologies but then realised the need to develop a
solution that could be incorporated into any ontology
with classes and properties specifying processes and
resources.Mainly, we built upon the EnterpriseOntol-
ogy (Uschold et al. 1998), the Collaboration Ontology
(CO) (Mehandjiev, Stalker, and Carpenter 2008), the
ontology for small series production by (Inden et al.
2013, 158) and the Process model ontology (DeBel-
lis and Neches 2022, 1062). We extended the ontology
for small series production by (Inden et al. 2013, 158)
by incorporating process steps, resources and SWRL
rules.We drafted an interactive dashboard11 to engage
with the SME cluster managers to explain the inter-
face of the solution and get feedback. The assembly

Figure 4. Design Science process, adapted from (Hevner 2007).
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design inherited features from the SupplyChainOper-
ational Reference (SCOR/DCOR) model, especially
embedding the key Level-1 processes.

• The Design cycle enabled the iterative development
of the ontology-guided approach. Using coordina-
tion theory (Malone and Crowston 1994), we asserted
input and output resources as properties for each pro-
cess step, not the sequence between the steps per se.
(This contrasts with the former ontology (DeBellis
and Neches 2022), which directly mapped the ‘Next’
property between two process steps, making connec-
tions static). We made several iterations of ontology
development (as part of the design cycle), includ-
ing validating the ontology with the end users. This
validation guaranteed that the ontology requirements
were met and that the ontology-guided approach
to supporting coordination answered the RQ, mak-
ing process formation and coordination flexible and
dynamic. Thus, the proposed artefacts addressed a
real business problem – how to support demand-
driven collaborations in production (Kazantsev et al.
2022).
(1) ◦ Comparison with the established ontologies: To

show the advantages of our design and compare it
with extant literature, we identified only one com-
parable ontology for a similar domain, proposed
by (Inden et al. 2013); however, this ontology
does not allow the construction of a coordina-
tion process via reasoning. In contrast, our ontol-
ogy constructs a sequence of steps using resource
dependencies between process steps, a unique
contribution to flexibility in B2B collaborations.
The proposed ontology described in this paper
extends earlier work on mapping semantic links
to process steps (DeBellis 2019) by incorporating
constructs derived from coordination theory;

(2) ◦ Checking for inconsistencies: The authors com-
pleted a Bunge-Wand-Webber checklist12, one of
the most popular methods for constructing valid
ontologies (Lukyanenko 2020). OWL has formal
semantics, a decidable subset of First Order Logic
(FOL); therefore, we checked for logical incon-
sistencies using an automated reasoner (DeBellis
andNeches 2022). In addition, we used one of the
ontology testing tools called the OntOlogy Pitfall
Scanner (OOPS)13,14 (Poveda-Villalón, Gómez-
Pérez, and Suárez-Figueroa 2014), which is a tool
capable of identifying ‘anti-patterns’, i.e. these
issues may indicate the ontology does not follow
accepted best practices, and that the reasoner will
not catch (DeBellis and Neches 2022). For exam-
ple, through OOPS, we found that there was a
need for an Open Source licence on the ontology

(therefore, the CCA4.0 licencewas added). Other
minor changes included prefixes, domains or
ranges for object properties, data properties, and
redundant superclass removal;

(3) ◦Data (ontology) sharing: we uploaded the ontol-
ogy toWeb Protege15 and enabled link sharing, so
anyone with a link can access the inferred version
and provide feedback. The ontology was shown
at the thematic session devoted to ‘Ontology-
Based Development of Industrial Systems’ at the
MIM 2022 conference and was highlighted by the
session’s chairs – experts in aerospace ontology
engineering.

(4) ◦ Receiving feedback from the industry: From the
words of the SME cluster managers, We drafted a
collaborative tendering in BPMN and compared
our ontology-guided results to the suggested one,
removing the algorithm so that it derives the cor-
rect elements.16

• The Rigour cycle used the notion of resource allo-
cation as a basis for coordinating process execution
(Crowston 1997), which provided a theoretical foun-
dation for this study. Our design allows process steps
to be dynamically configured by specifying resources
needed for their coordination. We resolved resource
dependencies by applying coordination mechanisms
and facilitating demand-driven collaborations. Itera-
tions with the existing literature and domain knowl-
edge (rigour cycle) enabled us to fill gaps in the theory,
as illustrated in Figure 4.

4. Findings

The suggested ontology-guided approach consists of four
steps. First, the product and process specifications are
derived from the Bill of Materials and the Bill of Pro-
cesses. They are asserted as classes and properties of the
collaboration ontology, which builds on product assem-
bly requirements, process steps, input/output resources,
and semantic rules. Second, the semantic module inter-
prets resource requirements as suggested links between
process steps. Third, the semantic links between the pro-
cess steps are interpreted as a potential process by con-
verting the chunks of classes connected into the BPMN
notation. The control flows, and logical junctions (AND,
XOR) are specified based on resource dependencies.
Fourth, the newly generated process is uploaded to a
workflow engine. Figure 5a shows the conceptual model
of the proposed approach.

Figure 5b shows a technical model of how the Bill
of Materials is used in the ontology to derive a process
in the BPMN notation. Specifically, we show the onto-
logical layers (left) that indicate the abstraction levels of
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Figure 5. a. The conceptual model of an ontology-guided approach to process formation. b. The technical model of an ontology-guided
approach to process formation. The grey blocks reflect ontological parts, and the blue areas – are process parts. A process is derived from
the resource dependencies to deliver a product, as guided by ontology. The figure shows the technical model of an ontology-guided
approach to process formation, that interconnects the bill of materials via ontology to process formation and execution. c. A flowchart of
how the ontology can ‘operationalise’ product delivery. The figure shows a flowchart of ontology operationalising product delivery.
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these changes. The right part shows that the table (Bill
of Materials) is fed to the ontology, structured as Make-
Assemble-Deliver classes, and derives a process for the
team selected to fulfil a manufacturing order. This pro-
posed approach is closely related to the SCORmodel and
supports demand-driven collaborations between supply
chain members.

Figure 5c displays an algorithm referring to guidance
that the ontology provides for a collaboration process
between firms, represented as an entity of the Actor class.
The Process steps can be asserted to actors, thus, creating
conditions for a process formation. The algorithm’s out-
come (an assembled BPMN process) can be executed in
major workflow engines.

4.1. Dimension 1: ontology specification: classes
and properties

First, following the Supply Chain Operation Reference
model (SCOR), we divided the Bill of Processes into three
process steps sub-classes:

• MakePart process steps have no input resources and
can trigger process formation. Their outputs (parts)
are inputs to AssembleProduct processes.

• AssembleProduct process steps consume input
resources (parts or products) and produce output
resources (product), thus iteratively developing the
product.

• DeliverProduct process step consumes the
ordered product (per BoM/BoP) as an input resource
and ensures product transfer to the customer accord-
ing to procurement specifications and quality checks.

Second, following Coordination Theory, we asserted
properties specifying resources which can be produced by
other processes belonging to the Collaboration members
(for example, a lead supplier or partner):

• hasInputResource specifies resource needs
(input) per each process.

• hasOutputResource specifies the outputs of each
process.

4.2. Dimension 2: ontology specification: SWRL
functions to infer resource dependencies

In contrast to the asserted properties added manually,
the SWRL functions automatically add new properties
between the process steps (classes) by checking the
resource dependency between the steps (e.g. flow, shared
input, or shared output). Thus, the inferred properties
are derived from the ontology based on the asserted
connections.

The first SWRL rule (1) infers the hasFlowDepen-
dency between two process steps – ‘?TaskA’17,
producing a resource and ‘?TaskB’, requiring the
produced ‘?resource’. However, due to the Open-
world assumption, OWL does not assume that two
objects are different unless there is some axiom that
implies they must be. Therefore, we specify that for
hasFlowDependency, process steps need to be dis-
tinct (differentFrom):

hasOutputResource (?taskA, ?resource)
^ hasInputResource (?taskB,
?resource) ^ differentFrom(?taskA,
?taskB)

-> hasFlowDependency (?taskA, ?taskB)
(1)

The second SWRL rule derives how the ontology sup-
ports inference on the process steps towards iteratively
developing the shared output (hasSharedOutput- i.e.
indicates a need to predefine the number of iterations for
developing the product by two or more process steps).
For example, the code below indicates two process steps,
‘?taskA’ and ‘?taskB’ engaged in the iterative development
of the same resource?draft into the property hasShared-
Output:

Task (?taskA) ^ hasOutputResource
(?taskA, ?draft) ^ isInputResourceOf
(?draft, ?taskB) ^ hasOutputResource
(?taskB, ?draft2)

-> hasSharedOutput (?taskB, ?taskA)
(2)

The third SWRL rule indicates process steps simulta-
neously calling for the same resources. Since these pro-
cess steps compete for the same resource; therefore, the
resource needs to be prioritised for one of the process
steps (symmetric property hasSharedInput):

Task (?taskA) ^ hasInputResource
(?taskA, ?draft) ^ isInputResourceOf
(?draft, ?taskB) ^ differentFrom
(?taskA, ?taskB)

-> hasSharedInput (?taskB, ?taskA)
(3)

4.3. Dimension 3: interpreting resource
dependencies as process transitions

The inferred resource dependencies could be used to
construct a process. For example, hasFlowDependency
points to the next possible activity that uses the produced
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resource. At the same time, other properties (hasShared-
Output, hasSharedInput) indicate the need for a decision
which can bemademanually by a collaboration facilitator
or by using Artificial Intelligence. Several possible pro-
cess steps allow the process owner to decide (e.g. agree,
disagree) and optionality for the next step (e.g. sending
the tender by post or email). The Collaboration ontol-
ogy with inferred properties (orange dashed links) is
illustrated in Figure 6. Grey-coloured links represent the
asserted properties.

For example, we used a formation of a new collab-
orative tendering process between the actors: The Lead
supplier and the Invited partner. Lead suppliers can form
teams on the collaboration platforms (Cisneros-Cabrera
et al. 2021; Liu et al. 2022), yet they cannot manu-
ally coordinate how to write collaborative tender doc-
umentation. The lead supplier receives Calls for tender
(as an input resource), prepares a tender draft (output
resource), receives input from the partner on the tender,
incorporates the input, ensures that the partner agrees
with the documentation, and if it is agreed, then sub-
mits tender. Finally, the Invited partner provides input to
the tender and votes for tender submission. If the Invited
partner disagrees with the tendering document, the Lead
supplier invites an alternative partner.

In order to arrange these steps into a sequence,
all individuals (process steps) were asserted to the

collaboration ontology, which infers new semantic rela-
tionships (sequences between process steps), Figure 7.
The bold yellow links indicate the inferred property
‘hasFlowDependency’, which was identified between
‘t1CreateTenderDraftTask’ and ‘t222MakeInputTask’,
based on resource interdependencies, and indicates a
potential transition (sequence) between these steps. The
purple connection line indicates the instances of a
class/subclass, while the yellow dashed line exemplifies
the inferred property ‘hasFlowDependency’.

4.4. Dimension 4: BPMN visualisation and
execution in aworkflow engine

We developed a web tool in JAVA that derives actors,
process steps, and the inferred properties from the ontol-
ogy and, using the algorithm (Figure 5c), visualises the
BPMN diagram for a workflow editor, Figure 8. The new
inferred properties ‘hasFlowDepenedency’ suggest the
potential sequences between the process steps belonging
to a Lead supplier or Invited partner; therefore, all process
steps are arranged by their resource dependencies. For
example, if there are two ‘hasFlowDependency’ between
the process steps, the XOR element is added, inviting the
process owner to make a selection.

Unlike conventional static process management app-
roaches, ontology-guided coordination enabled actors,

Figure 6. Classes and properties of an experimental ontology: asserted properties hasInputResource/hasOutputResource, inferred
property:hasFlowDependency.
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Figure 7. The inferred property ‘hasFlowDependency’ enables to guide production process formation based on resource dependencies
between process steps (excerpt).

Figure 8. The derived BPMN process of collaborative tendering.18

process steps and resource dependencies from the ontol-
ogy to visualise the process based on the resource
demand of each step. In addition, the ontology-guided
approach allowed for the process’s dynamic formation,
which can adjust each time the resource requirements

change, thus ensuring flexible process design and coor-
dination of demand-driven collaboration. Finally, the
process can be quickly updated for three or more
actors or replace steps until the resource requirements
are met.
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5. Discussion and conclusion

The work reported in this paper advances production
research in approaches and tools to facilitate demand-
driven collaborations. We propose semantic constructs
and reasoningmechanisms to interconnect suppliers and
facilitate their collaborative work on tendering docu-
ments or awarded manufacturing orders. Furthermore,
where the existing pool of suppliers cannot complete the
order and external suppliers are needed, our semantic
approach can enable demand-driven collaborations with
newpartners, which is a timely and essential contribution
to collaborative industrial engineering.

Ontologies represent a conceptualisation of the real-
world products and relationships representing companies’
capabilities, CfT requirements, and other concepts
essential for forming and maintaining supply-chain col-
laborations. The ontology-guided approach provides
interoperability among SME suppliers from different
domains once their processes and resources are included
in the shared ontology. It increases SME readiness to col-
laborate on demand (Perks et al. 2017), thus supporting
the work to reduce ripple effects (Dolgui, Ivanov, and
Sokolov 2018). We provide the ontological underpinning
of a demand-driven collaboration, which allows engag-
ing small and medium-sized enterprises into negotiation
whilst forming a flexible collaboration process model.
We focus on a new way to build a collaboration process,
using input and output resource requirements of each
process step, rather than the strict sequential dependency
common in workflow and process management tools
(Jensen 2013;VanDerAalst, VanHee, and vanHee 2004).
This paper tackles the research question: ‘How to support
demand-driven collaboration using semantic technologies
for manufacturing process formation and coordination. In
the process of addressing the RQ, we have taken the
following steps:

1. Designed the collaboration ontology for forming
on-demand collaborations and described its applica-
tion in natural production settings, where resource
dependencies between processes of different levels
mediate the formation and coordination of demand-
driven collaborations (Kazantsev et al. 2022).

2. Conceptualised and designed the ontology-guided
collaboration approach, where three classes arrange
process steps: (MakePart, AssembleProduct and
DeliverProduct).The ontology-guided approach sup-
ports the agile process formation required in Indus-
try 4.0 supply network scenarios (Ivanov et al. 2020;
Moeuf et al. 2018) and supports the creation of
collaborative production processes on the fly that

suppliers could use without any collaboration facili-
tator (De Vreede and Briggs 2019).

3. Articulated a real-world application of Coordination
Theory constructs (Malone and Crowston 1994) in
product assembly in a demand-driven collabora-
tion. We implemented the constructs into the ontol-
ogy for production research, encompassing process
steps and properties. It enables forming production
processes based on resource dependencies, enabling
more flexibility during execution.

To the best of our knowledge, this is the first approach
that uses technologies from the Semantic Web, specif-
ically the Web Ontology Language (OWL) and the
Semantic Web Rule Language (SWRL), to formalise
the collaborative relations between companies and form
manufacturing collaboration processes in the context of
Industry 4.0 nascent supply chains. One of this work’s
innovations is using the Semantic Web Rule Language
(SWRL) to automate the computation of flow dependen-
cies between processes based on their inputs and out-
puts. SWRL provides a powerful forward chaining rules
engine that allows the definition of logical axioms. These
rules are excellent for capturing and enforcing constraints
in process management systems. Production and sup-
ply chain managers that engaged with our research team
appreciated the flexibility and iterative development of a
collaboration assembly process.

5.1. Managerial and policy implications

Our ontology constructs a coordinated production pro-
cess using semantic reasoning, a unique contribution
contrasting us from available manufacturing ontologies.
At any point in the process, the ontology provides the
relevant information either to the orchestrator (e.g. lead
supplier) for manual decision-making or to the work-
flow engine (e.g. digital tool) for automated decision-
making based on resource needs. The information from
the ontology is critical to enabling a flexible process
model for a team of suppliers, which allows replacing
partners and rearranging steps until the resource require-
ments are satisfied. Our approach differs from other
process formation methods, which are predefined and
unable to support the dynamic formation of teams. In
contrast, ontology-guided digital tools can enable a new
generation of workflow systems.

The proposed ontology-guided approach allows the
reconfiguration of processes based on resource require-
ments and coordinationmechanisms tomanage resource
interdependencies. Notably, we argue that the derived
resource dependencies have an advantage over the static
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assignment of the following steps, as the coordination
via resources enables flexibility and dynamics for process
formation and reconfiguration. Furthermore, it enables
dynamic connections between process steps and adds
options for process designers.Our paper shows a scenario
that applies a collaboration ontology with predefined
classes, properties, and SWRL rules for facilitating and
better structuring demand-driven collaborations. The
collaboration ontology has shown practical relevance in
underpinning the Industry 4.0 digital collaboration plat-
form DIGICOR by embracing the concepts required for
collaborativemanufacturing in Industry 4.0, such as goal,
value-added activity, resource and dependency, ontology-
guided semantic reasoning, and decision-making sup-
porting the selection of teams and operationalisation
goals. The proposed approach enables flexible collabora-
tion process formation complying with formalised coor-
dination constraints. This provides an essential addition
to process management systems research, arguing for
using resource-based rather than solely sequence-based
dependencies for connecting process steps. The resource-
based design features enable flexibility for collaborative
process construction. Based on feedback from SME clus-
ter members from our consortium that evaluated our
approach, reducing collaboration barriers using seman-
tic technologies will facilitate the setup of new (nascent)
collaborations and widen business opportunities.

5.2. Limitations and future work

The limitations of our approach include testing the ontol-
ogy within the aerospace domain, which implies gaps in
validation with other production sectors (e.g. automotive
or food manufacturing). Furthermore, we did not deploy
the ontology in a large-scale production setting to test
scalability and run-time performance. Finally, our work
was mainly confined to collaboration process assembly
to tackle production goals in the bill of materials of
manufacturing tenders.

Future work will explore the potential of ontological
relationships and axioms to support collaboration opti-
misation. For example, automated inference about the
notion of ‘best teams’ based on different strategic pri-
orities, such as fastest delivery, highest customer satis-
faction score, and best alignment to sustainability stan-
dards. We plan to utilise more of the Semantic Web,
especially the SPARQL language, which enables access to
large, open, reusable knowledge graphs like dbpedia.org.
In addition, it can derive Product and process compo-
sition alternatives, exploring the relationships between
parts and products and the suitability of prospective sup-
pliers for fulfilling specific tasks the best way. The data
propertiesmight be used to calculate the processing time,

CO2 emissions and other metrics valuable for process
managers in the production environment. Finally, agile
process management, which implies multiple iterations
between the actors (in contrast to linear delivery), is
another exciting opportunity for ontology-guided pro-
cess formation and coordination, specifically relevant to
distributed large-scale crowdsourcing projects.

Notes

1. https://cordis.europa.eu/project/id/723336 (accessed 27
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(accessed 27 April 2023)

4. W3COWL2.0 Specificationhttps://www.w3.org/TR/owl2-
overview/ (accessed 22.12.2022)

5. The implementation of the proposed ontology-guided
approach in JAVA is available on GitHub for reproducibil-
ity, reuse, and further research https://github.com/Qudama
hAMBS/coordinationtheory.engine (accessed 03/04/2023)

6. https://ontocommons.eu (accessed 27 April 2023)
7. https://industrialontologies.org (accessed 27 April 2023)
8. https://industrialontologies.org/supply-chain-wg/ (acces-

sed 27 April 2023)
9. EU-funded projectDIGICORhttps://cordis.europa.eu/pro

ject/id/723336, accessed 01.07.2022
10. EU-funded project EFPF https://cordis.europa.eu/project/

id/825075, accessed 27.04.2023
11. https://balsamiq.cloud/stg4ncg/p6vz06b (accessed 23.12.

2022)
12. https://digitaltwinhub.co.uk/top-level-ontologies/bunge-

wand-webber-ontology-r39/ (accessed 24.12.2022)
13. https://ideas.repec.org/a/igg/jswis0/v10y2014i2p7-34.html

(accessed 24.12.2022)
14. https://oops.linkeddata.es/ (accessed 24.12.2022)
15. https://webprotege.stanford.edu/#projects/0ef007e9-4229-

433d-b6ef-9bb63f9e1a79/edit/Classes (accessed 30.03.
2023, registration in Protégé is required)

16. https://cawemo.com/share/8ee81e38-ddc2-4a9c-a824-838
19a4ac6a3 (accessed 24.12.2022)

17. ‘?var’ is a convention to indicate variables or missing parts
of data, that needs to be found from a tender specification
(e.g. bill of materials, bill of processes)

18. This JAVA implementation is available on GitHub for
reproducibility, reuse, and further research https://github.
com/QudamahAMBS/coordinationtheory.engine (acces-
sed 03/04/2023)
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