Proteostatic modulation in brain aging without associated Alzheimer's disease-and age-related neuropathological changes

Pol Andrés-Benito^{1,2}, Ignacio Íñigo-Marco³, Marta Brullas^{2,4}, Margarita Carmona^{2,4}, José Antonio del Rio^{2,5,6}, Joaquín Fernández-Irigoyen³, Enrique Santamaría³, Mónica Povedano^{1,2}, Isidro Ferrer^{2,4,7}

¹Neurologic Diseases and Neurogenetics Group - Bellvitge Institute for Biomedical Research (IDIBE LL), L'Hospitalet de Llobregat, Barcelona 08907, Spain

²CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, L'Hospitalet de Llobregat, Barcelona 08907, Spain

³Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, Pamplona 31008, Spain

⁴Neuropathology Group, Institute of Biomedical Research, IDIBELL, L'Hospitalet de Llobregat, Barcelona 08907, Spain

⁵Molecular and Cellular Neurobiotechnology Group, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona 08028, Spain

⁶Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08007, Spain

⁷Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain

Correspondence to: Isidro Ferrer, Pol Andrés-Benito; **email:** <u>8082ifa@gmail.com</u>, <u>https://orcid.org/0000-0001-9888-8754</u>; <u>pandres@idibell.cat</u>

Keywords: brain aging, cytoskeleton, membranes, synapsis, mitochondria, kinases, (phospho)proteomics, proteomeReceived: January 20, 2023Accepted: April 17, 2023Published: May 13, 2023

Copyright: © 2023 Andrés-Benito et al. This is an open access article distributed under the terms of the <u>Creative Commons</u> <u>Attribution License</u> (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Aims: (Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without ADneuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions. Methods: (Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30–44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64–70); and group 4 (late-elderly, 75–85). Results: Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components

of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly.

Conclusions: Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.

INTRODUCTION

Brain aging is a progressive detrimental process manifested by specific structural, molecular, and functional changes with a variable individual pace. Brain aging is complex because it affects different neuronal types, connections, astroglia, microglia and oligodendroglia, blood vessels, and other intrinsic and systemic cell populations. Moreover, aging does not work according to simple cause-effect logic. Outcomes are not directly caused by a single driver but emerge from multiple, non-related, and combined events following non-cartesian, non-linear logic. Alterations of nucleotides, nucleic acids, proteins, lipids, carbohydrates, and metabolites occur at individual cellular levels. Such alterations are part of the molecular substrates which result in impaired brain function in the aged brain and human elderly. Human brain aging is also linked with numerous neurodegenerative diseases such as dementia of Alzheimer's [1, 2].

The present study is focused on protein changes in the aged human frontal cortex. Previous whole proteomics studies have identified modifications in the expression levels of proteins during human brain aging [3–18]. Relevant conclusions can be summarized along these lines: (i) there is progressive deregulation of protein expression in the elderly; (ii) there are marked individual variations; (iii) there are regional differences within the same age range; and (iv) multiple structures and metabolic pathways are targeted by altered protein expression levels.

Most studies in humans are performed using brain samples with age-dependent progressive accumulation of Alzheimer's disease-related pathology (or AD neuropathological changes: ADNC), named neurofibrillary tangles (NFTs) and senile plaques (SPs). This situation is not strange as about 85% of the human population has NFTs at least in the deep temporal cortex (corresponding to stages I, II or IIII) without cognitive impairment at 65; about 98% have more extensive NFT pathology and 30% dementia at 80. About 30% has SPs at the age of 65, whereas SPs are found in around 60% of individuals over 80 [1, 19–25]. As a result, most if not all studies of the proteome in human brain aging are carried out in samples of individuals having variable degree of ADNC. Those without cognitive impairment labelled as normal for age (but usually having NFT pathology at Braak stages I–III) were compared with individuals with mild cognitive impairment or dementia of Alzheimer's type having large numbers of NFTs and SPs.

Phosphorylation is one of the most common and essential mechanisms of protein regulation throughout activation or inhibition of protein function and interaction of recruited proteins [26-31]. Several studies have identified deregulated protein phosphorylation in sAD [10, 32-39], even at first stages (stages I-II) of NFT pathology in the frontal cortex in which no NFTs and SPs are present at these stages [38]. Differentially regulated phosphoproteins are components of cell membranes and membrane signaling, cytoskeleton, synapses including neurotransmitter receptors, serine-threonine kinases, proteins involved in energy metabolism, and RNA splicing. processing and Deregulated protein phosphorylation is more pronounced at stages III and IV; it is maintained at advanced stages of AD [38]. Altered brain protein phosphorylation also occurs in human tauopathies [40, 41]; it has also been described in transgenic mouse models of cerebral β-amyloidosis, and tauopathy [42–47]. To our knowledge, whole phosphoproteomes centered on the human brain aging without AD pathology are unavailable.

The purpose of the present study was to obtain proteomics and phosphoprotemics data of the frontal cortex (FC) at different age stages, from 30 to 85 years, in individuals without NFTs and SPs pathology in any brain region of the telencephalon. In addition, these subjects had not concomitant age-related pathologies such as TDP-43 proteinopathy (LATE), αsynucleinopathy, other tauopathies such as argyrophilic grain disease, frontotemporal lobar degeneration (FTLD), hippocampal sclerosis, and vascular diseases. Conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) were used to assess the (phospho)proteomes across age groups in the FC. A subgroup of proteins was validated using immunohistochemistry and or western blotting. The limited number of samples (n = 4) in every group is due to the extreme rarity of finding elderly persons without ADNC and any other neuropathological lesion.

RESULTS

To quantify age-dependent fluctuations in the frontal cortex (FC) on a proteome-wide scale, we performed an integrative analysis of the proteome and phosphoproteome across age stages classified by age (years) in four groups: group 1 (young): 30–44, group 2 (middle-aged: MA): 45–52, group 3 (early-elderly): 64–70, and group 4 (late-elderly): 75–85. Although the first group was composed of men only, the distribution of sexes was similar in the other groups. As shown in principal component and dendrogram analyses, the quantified

proteomes and phosphoproteomes are not biased in any group, suggesting that there is not a clear effect of the sex variable (Supplementary Figure 1).

Proteome and phosphoproteome dynamics in the FC: functional enrichment analysis

Heatmaps of proteomes and phosphoproteomes showed marked differences in the FC across age groups. A total of 2,830 proteins and 6,722 phosphopeptides were quantified. 308 differential expressed proteins and 465 differential phosphopeptides (306 proteins) were identified when comparing all age groups using the ANOVA one-way test (p < 0.05; Fold Change > 30%) (Figure 1). Two hundred eighty differentially expressed

proteins and 278 phosphopeptides were familiar to the four groups (p < 0.05). Protein levels and the direction of hyper- or hypo-phosphorylation were variable in every age group. Some phosphoproteins showed more than one phosphorylation site; the direction of phosphorylation varied in every phosphosite. Only 28 deregulated phosphoproteins also showed altered total expression levels. These numbers indicate that only a tiny percentage of deregulated phosphoproteins might correspond to abnormal expression levels of the corresponding protein.

The proteostatic modulation across age stages was assessed by merging and functionally analyzing differential proteomic and phosphoproteomic datasets according to specific biological functions. We evaluated age-related functional alterations using group 1 (young) as a control group. Protein alterations overlapped across age stages and were accompanied by a considerable overlap in enriched GO terms. Main altered terms/ functions were associated with membrane trafficking, microtubule cytoskeleton organization, axon guidance, and GTPase alterations related to vesicles and endomembrane processes (Figure 2A).

Phosphoprotein alterations also overlapped across age stages and were accompanied by a considerable overlap in enriched GO terms. Yet, the phosphoproteome showed more functional alterations associated with GO terms than the proteome. Alterations also included those linked to cytostructural functions such as cell-substrate junction organization, interaction between L1 and ankyrins, microtubule cytoskeleton regulation, cell morphogenesis, actomyosin structure organization, axon extension. dendrite development, cell iunction assembly, actin filament-based processes, protein localization to cell junction, and cell junction organization (Figure 2B).

Then, deregulated proteins and phosphoproteins were categorized into eight clusters based on their agedependent expression similarity. Interestingly, protein and phosphoprotein levels of the larger hierarchical clusters were stable until the age of 70 years. After this age, the late-elderly group showed decreased or increased expression of the two major protein clusters, 1 and 7, respectively (Figure 3A). Similarly, major phosphorylation modifications occurred in the late-elderly group in clusters 4 and 8 (Figure 4A). Proteins and phosphoproteins composing every cluster are detailed in the Supplementary Table 1.

Additionally, to learn about cell-type-specific molecular signatures, we conducted a multi-comparative analysis comparing our protein data with available cell-type databases of RNA-seq. This procedure allowed the

categorization of altered (phospho)proteins as neuronal, astroglial, oligodendroglial, microglial, and endothelial. The main proteomic alterations were related to neuronal populations in all groups. However, these changes were more pronounced with age (Figure 3B). A similar pattern was observed regarding phosphoproteomics data: the higher number of altered phosphoproteins was related to neuronal populations, and major changes were seen in groups 3 and 4 compared with group 1 (Figure 4B).

As observed in Figures 3 and 4, the increase or decrease in protein levels and protein phosphorylation depends on the age-stage in each case, exhibiting a mixture of patterns. However, a significant number of proteins show a consistent pattern that changed in the lateelderly group. These patterns encompass over 50% of the proteins and phosphoproteins. Functional analysis was performed on 174 of 308 proteins and 259 of 469 phosphoproteins that increased or decreased in the lateelderly group. No attempt was made to differentiate between increased or decreased protein expression levels, and between hypo- and hyperphosphorylation because the functional implications of hyper-and hypophosphorylation at specific sites are not known for the majority of phosphoproteins. Yet, molecular functions of GO-enrichment analysis revealed that the main altered proteins in clusters 1 and 7 in group 4 were linked to cell membranes functions, vesicle and synaptic functions, RNA binding, and structural components (Figure 5A). GO-molecular functions of deregulated phosphoproteins in clusters 4 and 8 in the group 4 were mainly connected with the cytoskeleton composition and regulation, kinase regulation and membrane stabilization (Figure 5B).

Individualized analysis of proteins with modified levels and phosphorylated proteins expressed in the FC at different aging stages

Deregulated proteins were individually categorized according to their localization and function in the CNS. Cytoskeletal (n = 47) and membrane proteins (n = 77), including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels, accounted for 124 differentially-expressed proteins. This classification was instrumental as some membrane proteins also participate in the structure of the synapses, and several synaptic proteins are plasma membrane proteins. Other deregulated proteins were related to DNA and RNA metabolism (n = 48), ubiquitin-proteasome-system (UPS) (n = 17), and kinases and phosphatases (n = 31). The remaining 83 proteins participated in other functions such as GTPases, fatty acid metabolism, and mitochondria. Their symbols, full names, and primary functions are summarized in Supplementary Tables 2-7.

The largest group of deregulated phosphoproteins were associated with the cytoskeleton and integral membrane proteins (n = 99), including in the first categorization, microfilaments, actin-binding proteins, intermediate

filaments of neurons and glial cells, and microtubules. A second group was formed by phosphoproteins of the membranes, synapses, and dense core vesicles (n = 74). Other deregulated phosphoproteins were categorized as

Figure 2. Enriched ontology clusters in the 30% FC differential proteomes (**A**) and phosphoproteomes (**B**) during aging using Metascape. After identification of all statistically enriched terms, cumulative hypergeometric *p*-values and enrichment factors were calculated and used for filtering. The remaining significant terms were then hierarchically clustered into a tree based on Kappa-statistical similarities among their gene memberships. Then, a 0.3 kappa score was applied as the threshold to cast the tree into term clusters. The term with the best *p*-value within each cluster was selected as its representative term and displayed in a dendrogram.

kinases and phosphatases (n = 36), proteins linked to DNA and RNA (n = 44), and members of the UPS (n = 16). The remaining 36 deregulated phosphoproteins

involved GTPase regulation, inflammation, and lipid metabolism. Their symbols, full names, and primary functions are shown in Supplementary Tables 8–13.

Figure 3. (A) Differentially expressed proteins across age. (Left) Heatmap representing the differential expressed proteins across the four age groups: group 1 (young): 30–44y; group 2 (middle-aged: MA): 45–52y; group 3 (early-elderly): 64–70y; and group 4 (late-elderly): 75–85y. Each line corresponds to a protein, in which the Z-score is represented as a numerical measurement that describes the relationship between averaged protein intensity values in a specific condition and the mean intensity for each protein across all experimental conditions. The Z-score (considered a measurement in terms of standard deviations from the mean) may be positive (scoring above the mean; represented in red) or negative (scoring below the mean; represented in green). (Right) Profile-plots representing protein clusters with similar expression trajectories across age. The most representative clusters show protein groups specifically down-regulated (Cluster 1) or up-regulated (Cluster 7) in the late-elderly group. (**B**) The graphical representation illustrates the cellular type assignment of proteins based on available RNA-seq databases. The major changes are observed in proteins associated with neurons.

Proteomic and phosphoproteomic data validation using Western blotting and immunohistochemistry

We validated changes in structural components of the cytoskeleton using gel electrophoresis and western

blotting with antibodies anti-ermin (ERMN), β-tubulin III, and vimentin (VIM). Protein levels were assessed by densitometry, and a one-way ANOVA was performed to compare the effect of aging between groups on protein levels. One-way ANOVA revealed

PHOSPHOPROTEOME Α

40

20

0

Young vs.

MA

Young vs.

early-ederly

Figure 4. (A) Monitoring of differentially expressed phosphoproteins across age. (Left) Heatmap representing the differential expressed phosphorylated proteins across the four age groups: group 1 (young): 30-44y; group 2 (middle-aged: MA): 45-52y; group 3 (early-elderly): 64-70y; and group 4 (late-elderly): 75-85y. As indicated in Figure 2, each line corresponds to a phosphoprotein in which the Z-score (a measurement in terms of standard deviations from the mean) is evaluated. Positive and negative Z-scoring is represented in red and green respectively. (Right) Profile-plots representing phosphoprotein clusters with similar expression trajectories across age. Cluster 4 and cluster 8 indicate protein subsets that are specifically modulated in the late-elderly group. (B) The graphical representation illustrates the cellular type assignment of phosphoproteins based on available RNA-seq databases. The major changes are observed in proteins associated with neurons.

Young vs.

late-elderly

Early-elderly vs.

Late elderly

that there was a statistically significant difference in ERMN between at least two groups ($F_{(3,9)} = 5.912$, p = 0.0164). Tukey's HSD Test for multiple comparisons found that the mean value of ERMN was significantly different between late-elderly group (group 4) when compared with groups 1 and 2 (p < 0.05). β -tubulin III did not change with age ($F_{(3,10)} = 0.3102$, p = 0.8176). Vimentin expression was increased in the three cases aged 47–85 and two cases aged 60–70. However, statistical analysis of all the samples did not show

Α

significant differences among the four groups ($F_{(3,10)} = 0.7277, p = 0.5584$ (Figure 6A).

Levels of proteins related to vesicular components were also evaluated. One-way ANOVA revealed a significant difference in clathrin levels between at least two groups ($F_{(3,10)} = 6.566$, p = 0.0099). Post-hoc Tukey's test indicated that clathrin levels were significantly increased in the late-elderly group compared with groups 1, 2, and 3 (p < 0.05 for each group)

Proteome

Phosphoproteome

Figure 5. GO terms of the molecular functions of the main deregulated clusters in the late-elderly group (group 4). (A) Molecular functions of GO-enrichment analysis reveals that the main altered proteins in clusters 1 and 7 in late-elderly are related to cell membranes functions, vesicle and synaptic functions, RNA binding, and structural components. (B) Deregulated phosphoproteins in clusters 4 and 8 in the late-elderly group are principally connected with cytoskeleton composition and regulation, kinase regulation and membrane stabilization. Although GO is referred to gene ontology, we have chosen the term number of proteins instead to avoid confusions.

(Figure 6A). One-way ANOVA test also showed a significant difference in SNAP25 and VPS26 levels between at least two groups ($F_{(3,10)} = 127.9, p < 0.0001$)

and $(F_{(3,10)} = 6.166, p = 0.0121)$, respectively). Tukey's HSD Test for multiple comparisons found that the mean value of SNAP25 levels was significantly decreased

Figure 6. (A) Gel electrophoresis and western blotting to ermin (ERMN), β -tubulin III, vimentin (VIM), clathrin (heavy chain), SNAP25, VPS26, P20S α + β , and GSK3 α/β in the FC area 8 across age; group 1 (young): 30–44y, group 2 (middle-aged: MA): 45–52y; group 3 (early-elderly): 64–70y; and group 4 (late-elderly): 75–85y. Significantly decreased expression levels of ERMN are found in group 4 compared with group 1 and group 2 (p < 0.05). Clathrin expression is significantly increased in group 4 compared with groups 1, 2, and 3 (p < 0.01). In contrast, there is a significant reduction of SNAP25 levels in groups 2, 3, and 4 compared with group 1 (p < 0.001), and VPS26 in groups 3 and 4 compared with group 1 (p < 0.05). P20S α + β levels are reduced in groups 3 and 4 compared with group 1 (p < 0.05). Similarly, reduced levels in GSK3 α/β are observed in aging, reaching significant differences between group 1 and group 4 (p < 0.05). (B) Decreased levels of ERMN, VPS26 and P20S α + β significantly correlate with age. Pearson's correlation significance level set at p < 0.05.

groups 2, 3, and 4 (p < 0.001 for each group compared young group (group 1). Similarly, Tukey's HSD Test for multiple comparisons found that VPS26 levels were significantly reduced comparing group 1 with group 3 (p < 0.05) and group 4 (p < 0.05) (Figure 6A).

Furthermore, the components of the proteasome system were also studied using western blotting. One-way ANOVA revealed no altered levels in the P19S proteasome protein ($F_{(3,10)} = 1.167$, p = 0.3703), and LMP2 ($F_{(3,10)} = 1.193$, p = 0.3614) and LMP7 ($F_{(3,10)} =$ 0.3329, p = 0.8019) inflammatory-modulated subunits (data not shown). In contrast, one-way ANOVA of the proteasome core P20S subunits $\alpha + \beta$ levels showed significantly decreased levels with aging ($F_{(3,10)} = 5.290$, p = 0.0192). Tukey's HSD Test for multiple comparisons verified P20S $\alpha + \beta$ levels significantly reduced when compared group 1 with group 3 (p <0.05) and group 4 (p < 0.05) (Figure 6A).

Total GSK3 α/β protein levels showed a tendency to decrease with age. A one-way ANOVA revealed significant differences in GSK3 α/β protein levels between at least two groups (F_(3,9) = 5.406, *p* = 0.0211). Tukey's post-hoc test validated reduction in GSK3 α/β protein levels in the group 4 when compared with group 1 (Figure 6A).

Protein levels of mitochondrial membrane VDAC and ATP synthase, and autophagy (ATG5) were also assessed by western blotting. One-way ANOVA disclosed no significant modifications in VDAC ($F_{(3,10)} = 2.054, p = 0.1703$) and ATP synthase ($F_{(3,10)} = 0.7922, p = 0.5255$). ATG5 protein levels were not modified with age ($F_{(3,10)} = 1.739, p = 0.2220$) (data not shown).

The AT8 antibody did not detect immunoreactivity in any case excepting one rare case in group 1 (data not shown). The rare case was not accompanied by AT8 immunoreactivity in histological sections, and the reason of AT8 positivity remains unknown.

ERMN, VPS26, and P20S $\alpha + \beta$ protein levels were correlated with age (p = 0.0015, p = 0.0191 and p = 0.0132, respectively) (Figure 6B). The small number of cases per group (even lower than the number used for phosphoproteomics) does not permit robust conclusions. Antibodies directed against deregulated phosphoproteins identified in the present study were not available. Therefore, no attempt was made to validate (phospho)proteomics observations.

DISCUSSION

The American Academy of Neurology estimates that MCI is present in about 8% of people aged 65 to 69, 15% of

75- to 79-year-olds, 25% of those aged 80 to 84, and about 37% of people older than 85 years of age. About 7.5% will develop dementia in the first year after diagnosis of MCI; about 15% will develop dementia in the second year; one-third will develop dementia due to sAD within five years. Between 25% and 50% of individuals over the age of 85 have dementia, most of them due to AD [48–50]. Most people at the age of 65 have ADNC at early NFT stages (I–III) without cognitive impairment; they are categorized as "normal brain aging" and accepted as "controls" in most clinical and pathological studies. However, only about 1% of individuals at the age 80/85 do not have ADNC [1, 2, 25].

Previous (phospho)proteomics studies in human brain aging have been conducted on human brain samples at different stages of NFT and SP pathology, including cases with first stages of ADNC (named "controls") and subjects with middle and advanced stages of sAD. The present study used brain samples of individuals without neurological deficits and without NFTs and SPs in any region of the telencephalon (ABC score 0/0/0); moreover, cases did not have any other neuropathological change including TDP-43 proteinopathy (LATE), a-synucleinopathy, other tauopathies such as argyrophilic grain disease, frontotemporal lobar degeneration (FTLD), hippocampal sclerosis, and vascular diseases. We chose the FC because of its role in cognition and emotion and the abundant molecular information that permits comparison with other studies.

The primary specific limitation of the present approach is the small number of cases (n = 4 for every group). This is due to the rarity to find late-elderly individuals with no ADNC and without any other neuropathological lesion [51]. Due to their size, molecular properties, and methodological restraints, the limited capacity to detect numbers of proteins is a general curtailment of (phospho)proteomics studies, as well. Yet, the present observations have shown changes in the expression levels of a large number of proteins and the phosphorylation state, either hyper- or hypophosphorylation, of numerous proteins throughout brain aging: 308 differential expressed proteins and 306 phosphoproteins were identified when comparing all age groups. Notably, 280 differentially expressed proteins and 278 phosphopeptides were familiar to the four groups. Changes were not related to sex differences.

Human FC proteome with aging

Previous proteomic studies in human brain aging were focused on the identification protein pathways associated with cognitive decline and dementia [3–18]. Most of them analyzed different brain regions including the hippocampus, temporal cortex, and cerebellum not covered in the present study; and others examined the prefrontal cortex [8, 11, 12, 14]. One interesting study revealed two different pathways involved in Alzheimer's dementia; one affecting β-amyloid deposition and another affecting resilience without a known pathological footprint [8]. Other studies stressed regional differences in the proteome profiles and linked cognitive impairment with altered expression of several cytoskeletal proteins [11, 14]. The prefrontal cortex was analyzed at early and advanced stages of NFT pathology, showing significant modifications in the level of proteins involved in catabolic processes, mRNA splicing, integrin-mediated signaling pathway. cytoskeleton, and synapse related-proteins at stages I-II [14]. In the same study, alterations in the expression of many other proteins occurred with disease progression [14]. Another study revealed mitochondrial protein alterations already present at early stages of AD that increased at advanced stages of the disease [12].

In the present study, proteins with altered expression levels in the FC during brain aging are components of the cytoskeleton, membranes, synapses, vesicles, myelin, and proteins linked to membrane transport and ion channels. Others connect with DNA and RNA metabolism. ubiquitin-proteasome-system (UPS). kinases, and phosphatases. The remaining abnormally expressed proteins participate in fatty acid metabolism, mitochondria, and GTPase functions. Therefore, our results fill the gap between brain ageing without ADNC, and cases with early and advanced stages of AD pathology. The relevant contribution of the present study deals with the identification of proteome alterations in the aged human frontal cortex in individuals with no neurological deficits, and without ADNC and other age-related neuropathological lesions.

The present study shows relative stable levels of proteins although with individual variations probably linked to the limited number of cases per group in the human FC in the two major clusters (named 1 and 7) until the age of 70. However, protein levels of functional components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered in the four individuals aged 75 or more. Furthermore, main alterations in the proteome are associated with proteins specific to neuronal populations, rather than those found in other cell types in the brain.

Comparison of these results with other published observations in AD cases identifies particular profiles in cases without ADNC. In AD, clathrin-mediated endocytosis decreases [52] whereas clathrin increases in non-ADNC cases. ERMN is an actin filament binding activity, involved in actin filament organization, mainly localized in oligodendroglia; decreased expression is in line with altered cytoskeleton with aging [53].

Damaged proteins are degraded by the ubiquitinproteasome system which is key component of the proteostasis network. Proteasomal dysfunction is associated with an increased risk of protein aggregation, chronic inflammation, and the development of agerelated diseases [54, 55]. Here, we analysed the protein levels of the 19-subunit regulatory particle, that recognizes substrates via a polyubiquitin tag [56], the immunoproteasome components LMP2 and LMP7 subunits [57], and the P20S α + β proteasome core [58]. The present findings show decreased expression of P20S α + β and preserved expression of P19S and immunoproteasome subunits LMP2 and LMP7 with aging. The relative preservation of the proteasome may act as a resilience mechanism in advanced aging protecting cells from the accumulation of altered proteins [55, 59-62].

Our preliminary observations assessing expression levels of ATG5, a crucial autophagy component, indicate no changes with age which contrast with the expected decline in aging-related neurological disorders [63]. Protein levels of some mitochondrial membranes were also altered at advanced ages in the proteomics study; however, VDAC and ATP synthase levels were preserved in western. It is contrast with mitochondrial dysfunction observed in aging and aging-related diseases [64]. The maintenance of these markers may indicate preservation of these pathways, in contrast to the observations in neurodegenerative disorders [65–72].

Finally, in addition to these results, we observed reduced levels of GSK3 α/β . GSK3 α/β is considered a key player in the pathophysiology of different agerelated brain diseases since dysregulation of this kinase influences protein phosphorylation, neuroinflammation, neurogenesis, and alteration of synaptic function and memory, among others [73]. GSK3 β is found to be hyperactive in the brains of AD patients [74], and its expression levels are known to increase with age [75]. Reduced levels of GSK3 α/β may be understood as protective [76–80], and are in line with partial preservation of the proteasome, which is able to maintain GSK3 β levels reduced [76].

However, the present study was carried out in the frontal cortex; therefore, we cannot rule out the possibility that additional or other changes may occur in different brain regions with aging.

Aged mice do not have ADNC; therefore, quantitative proteomics in the murine brain during aging provides non-biased information. Main alterations in old mice involve synaptic transmission, cytoskeleton, mito-chondria and energy metabolism, oxidative stress, ribosome, transcriptional regulation, and GTPase function [81–83]. Therefore, proteome changes identified in the aged human frontal cortex are similar to those reported in the cerebral cortex of the aged murine brain.

Human FC phosphoproteome with aging

The individual categorization of deregulated phosphoproteins in the present study identifies many structural components of the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; and phosphoproteins of the membranes, synapses, and dense core vesicles. Other deregulated phosphoproteins are kinases and phosphatases, proteins linked to DNA and RNA, and components of the UPS, phosphoproteins involved in GTPase regulation, inflammation, and lipid metabolism. Interestingly, only a few deregulated phosphoproteins also show altered expression levels, thus implying that protein expression levels and phosphorylation are modulated differently during human brain aging.

As indicated before, previous phosphoproteomics studies in human brain aging are representative of the phosphoproteome at different stages of ADNC including sAD [10, 32–37, 39]. Although with variations from one study to another, main deregulated phosphoproteins were associated with integral membrane proteins, glycoproteins, cytoskeletal proteins, synapsis, metabotropic glutamate receptor 5, calcium-signalling pathways, small heat shock proteins (HSP-27 and crystallin- α B), serine/threonine kinases, and mRNA processing and splicing [36, 37, 39].

In a previous study, the total number of identified deregulated phosphoproteins in the human FC in individuals with ADNC was 167, corresponding to 81 at NFT stages I-II, 92 at NFT stages III-IV, and 79 at NFT stages V-VI when compared with control cases without NFT and SP pathology [38]. The main group of deregulated phosphoproteins throughout sAD progression was composed of membrane proteins, proteins of the cytoskeleton, proteins of the synapses and dense core vesicles, and proteins linked to membrane transport and ion channels. Other deregulated phosphoproteins were kinases, proteins connected to DNA or protein deacetylation, proteins related to gene transcription and protein synthesis, heatshock proteins, members of the UPS, and proteins involved in energy metabolism [38].

The control group (group 1) in the present study on brain aging without ADNC was aged 30-44, whereas the control group in our previous study was aged 33-79 years. Therefore, these control groups cannot be used as shared "controls". Consequently, comparisons between the present findings and those of previous (phospho)proteomics studies are only approximate. Similarly to the observations in the proteome, changes in the phosphoproteome in the human FC show little variations until the age of 70. However, marked modifications occur in the larger phosphoprotein clusters 4 and 8 involving the cytoskeleton and neuronal stabilization, structures, membrane and kinase regulation in the late-elderly. Consistent with the observations in proteomic data, the analysis of altered phosphoproteins in cell populations revealed that the changes are mainly linked to neurons rather than to other brain cell types.

Considering phosphoproteome modifications in GO terms associated with cell functions and sub-cellular localization, the primary identified affected pathways are similar in brain aging without ADNC and progressive stages of sAD. However, main alterations in sAD and related murine models appear at the first stages of the disease and augment at the middle stages [38, 44]. Moreover, they involve particular systems linked to membrane proteins, membrane signalling, synapses, and cytoskeleton, in conjunction with activation of specific kinases involved in tau phosphorylation [38].

Similar phosphoproteomes are identified in other human and mouse tauopathies, although with disease-specific proteins [40, 41, 47]. A common unifying (phospho)protein in sAD and tauopathies is the early aberrant phosphorylation of tau with variable involvement of phosphorylation sites. The association of tau with the plasma membrane is determined by its phosphorylation pattern, and the phosphorylation state of membrane proteins, proteins linked to membrane signaling, and membrane specializations, together with the lipid composition of membranes, modulate tau phosphorylation [84-90]. Differences between present series without ADNC, and AD and tauopathies appear to be related to key modifications of membrane proteins, membrane signaling, and massive activation of specific tau kinases.

Altered phosphorylation occurs at early stages in other human neurodegenerative diseases and related mouse models [91–93]. Protein phosphorylation deregulation, involving cAMP signaling, dendrite development, and microtubule binding, precedes and extends pathology beyond the mutated polyglutamine tract in the cerebral cortex of Huntington's disease transgenic mice [93]. Phosphoproteomics has also revealed that aberrant p25/Cdk5 signaling occurs in early-stage Parkinson's disease in α -synuclein transgenic mice [92], whereas PINK1 regulates a subset of Rab GTPases [94]. The ultimate reason for the selective disease-specific altered protein phosphorylation remains unsolved. However, deregulated kinases play a principal role; the application of computational algorithms on phosphoproteomic data may permit the inference of kinase activity, facilitating the identification of deregulated kinases in various diseases [95].

Therefore, deregulated protein phosphorylation is universal in human brain aging and neurodegenerative diseases, but target proteins and molecular pathways involved are disease-dependent. The present observations identify proteostatic changes, including different changes in the phosphoproteome in the human FC in brain aging in the rare subpopulation of old-aged individuals without neurological deficits, and not having ADNC and other neuropathological change in any region of the telencephalon.

MATERIALS AND METHODS

Human tissue samples

Donors included in the present study did not have neurological and mental complains, particularly they did not suffer from cognitive impairment, and they were able to carry out daily activities. The neurological examination at the time of admission in the hospital revealed no alterations. Causes of admission were variable including cardiac and respiratory diseases, infectious diseases, and malignancies. The causes of death were also variable and were attributed to cardiac, respiratory and multi-systemic failure.

The frozen frontal cortex of post-mortem samples was obtained from the Institute of Neuropathology HUB-ICO-IDIBELL Biobank following the guidelines of Spanish legislation on this matter and the approval of the local ethics committee (CEIC) of Bellvitge University Hospital. The post-mortem interval between death and tissue processing was between 2 h 45 min and 21 h. One hemisphere was immediately cut in coronal sections, 1 cm thick, and selected areas of the encephalon were rapidly dissected, frozen on metal plates over dry ice, placed in individual air-tight plastic bags, numbered with water-resistant ink, and stored at -80°C until used for biochemical studies. The other hemisphere was fixed by immersion in 4% buffered formalin for three weeks for morphologic study. The neuropathological study was carried out on paraffin sections of twenty-five selected regions of the cerebrum, cerebellum, brain stem, and spinal cord, which were stained with hematoxylin and eosin,

Klüver-Barrera, and periodic acid Schiff, or processed anti-*β*-amyloid, immunohistochemistry with for phospho-tau (clone AT8), a-synuclein, aB-crystallin, neurofilament, internexin, TDP-43, TDP-43-P, ubiquitin, p62, glial fibrillary acidic protein, CD68, and IBA1 antibodies. Cases were selected from mediumclass Caucasian individuals living in the city with no neurological and mental disorders and dying in the hospital due to distinct disorders mainly systemic neoplasia and infectious disease not affecting the nervous system.

The neuropathological examination revealed no ADneuropathological changes (neurofibrillary tangles and senile plaques) in any region of the telencephalon (ABC score 0/0/0). Selected cases did not suffer from tauopathy, α -synucleinopathy, TDP-43 proteinopathy, frontotemporal lobar degeneration (FTLD), other neurodegenerative diseases, and vascular diseases affecting the nervous system excepting mild small blood vessel disease. In short, all cases were free from neurological and neuropathological disease. The cases were classified by age (years) in four groups (n = 4)cases/group): group 1 (young): 30–44; group 2 (middle-aged: MA): 45–52; group 3 (early-elderly): 64–70: and group 4 (late-elderly): 75–85. A summary of cases is shown in Table 1. The frontal cortex area 8 (and not the hippocampus) was chosen because of its role in cognition and emotion and the abundant molecular information that permits comparison with other studies.

Phosphoproteomic analysis

FC samples were homogenized in a lysis buffer containing 7 M urea, 2 M thiourea, and 50 mM DTT supplemented with protease and phosphatase inhibitors. The High-SelectTM TiO₂ Phosphopeptide Enrichment Kit (Thermo Scientific, Barcelona, Spain) was used to obtain the phosphorylated peptide fractions, according to the manufacturer's instructions. Protein extraction, in-solution digestion (600 µg), peptide purification, and reconstitution before mass spectrometric analysis were performed as previously described [38]. Prior to phosphopeptide enrichment, 10 µg of protein digest were separated for complete proteome analysis.

Phospho-peptide enriched and non-enriched (full proteome analysis) samples were analyzed by an LC-MS/MS Ultimate 3000 UHLPC System coupled to an Exploris480 mass spectrometer (Thermo Scientific, San Jose, CA, USA), by data-dependent analysis (DDA). Peptides were resolved using an C18 Acclaim PepMap 100 trap-column (100 μ m × 2 cm, 5 μ m, 100Å) and C18 Acclaim PepMap 100 column (75 μ m × 500 mm, 2 μ m, 100 Å; Thermo Scientific), using a 120-min gradient, at

Case	Sex	Age	Group	PMD
1	М	30		4 h 10 min
2	Μ	36	Group 1: young	2 h 45 min
3	Μ	39	Gloup 1. young	3 h 30 min
4	Μ	44		6 h 40 min
5	Μ	45		4 h 05 min
6	F	46	Crown 2, middle good	7 h 15 min
7	Μ	47	Group 2: Inidule-aged	4 h 55 min
8	Μ	52		4 h 40 min
9	Μ	64		3 h 30 min
10	F	66	Crown 2. contr. alderly	8 h 00 min
11	Μ	67	Group 5: early-elderly	5 h 00 min
12	Μ	70		13 h 00 min
13	F	75		3 h 00 min
14	Μ	79	Crown 4. lata aldariy	7 h 00 min
15	F	80	Group 4. late-elderly	21 h 00 min
16	Μ	85		5 h 45 min

Table 1. List of cases used in the analysis of the frontal cortex (phospho)proteome and Western blotting (WB) validation.

Abbreviation: PMD: post-mortem delay. Sample 1 was not available for WB.

flow rate of 300 µl/min (40°C), consisting in: 5% to 20% B in 100 min, 20% to 32% B in 20 min and 32% to 90% B in 1 min (A = Formic 0.1%; B = Acetonitrile). DDA was set using many scans per duty cycle mode (n = 20). MS1-survey spectra were measured with a resolution of 120,000 (AGC target: 300%; maximum injection time: 60 ms; mass range: from 320 to 1500 m/z). After the survey scan, tandem MS was performed on the most abundant precursors (Isolation window: 1.4 m/z; charge state: + 2–6; collision energy: 30%). The resulting fragments were detected with a resolution of 30000 (First mass: 110 m/z; AGC target for MS/MS: 100%; maximum injection time: 60 ms). Dynamic exclusion was set to 30 sec with a 10 ppm mass tolerance around the precursor and its isotopes.

Raw files were processed with MaxQuant v 2.0.1 using the integrated Andromeda Search engine [96]. All data were searched against a target/decoy version of the Human Uniprot Reference Proteome with isoforms (Proteome ID: UP000005640_9606; March 2021). The first search peptide tolerance was set to 20 ppm, and the primary search peptide tolerance was set to 4.5 ppm. Fragment mass tolerance was set to 20 ppm. Trypsin was specified as the enzyme cleaving after all lysine and arginine residues allowing up to two missed cleavages. Carbamidomethylation of cysteine was defined as fixed modification, and peptide N-terminal acetylation, oxidation of methionine, deamidation of asparagine, glutamine and pyro-glutamate formation from glutamine and glutamate, and phosphorylation of serine, threonine, and tyrosine were considered variable modifications, with a total of 2 variable modifications per peptide. "Maximum peptide mass" was set to 7,500 Da, the "modified peptide minimum score" and "unmodified peptide minimum score" were set to 25, and everything else was put to the default values, including the false discovery rate limit of 1% on both the peptide and protein levels.

The Perseus software (version 1.6.14.0) was used for statistical analysis and data visualization [97]. One-way ANOVA test was applied to compare data between groups. Only (phospho)peptides with a p-value < 0.05were considered differentially expressed. Proteomic experiments generate a large number of peptide or proteins that need to be evaluated independently using statistical tests maybe yielding type I errors [98]. However, it is important to note that due to the oftenlow power of proteomic experiments, the use of these corrections may fail to detect even true positives [99]. In this case, the use of only four samples per group, together with the low fold changes quantified in our data, were determinant for the statistical analysis; in consequence, the use of False Discovery Rate (FDR) corrections was not helpful in detecting significant phosphopeptides. MS data and search results files were deposited in the Proteome Xchange Consortium via the JPOST partner repository (https://repository. jpostdb.org) [100] with the identifier PXD035997 for ProteomeXchange and JPST001814 for jPOST (for reviewers: https://repository.jpostdb.org/preview/ 78674985762f6283a7330b; Access key: 8154).

Bioinformatics

The identification of significantly dysregulated regulatory/metabolic pathways in FC proteomic datasets

Table 2.	List of antibodi	es used for Wester	n blotting and	immunohistochemistry.
----------	------------------	--------------------	----------------	-----------------------

Antibody	Supplier	References	Species	Dil. WB
Clathrin (heavy chain)	BD Transduction	610499	Ms	1/1,000
Ermin (ERMN)	Abcam	ab243730	Rb	1/1,000
SNAP25	Chemicon	MAB331	Ms	1/2,000
β-tubulin III	Signalway Antibody	21617	Rb	1/1,000
Vimentin	Abcam	ab137321	Rb	1/3,000
VPS26	Genetex	GTX106297	Rb	1/2,000
β-actin	Sigma	A5316	Ms	1/30,000
AT8	Innogenetics	90206	Ms	1/1,000
Ρ20S α+β	Abcam	ab22673	Rb	1/1,1000
P19S	Abcam	ab3317	Rb	1/1,000
P20S LMP2	Abcam	ab3328	Rb	1/500
P20S LMP7	Abcam	ab3329	Rb	1/500
ATG5	Cell Signaling	#12994	Rb	1/1,000
GSK3α/β	Santa Cruz Biotech.	SC7291	Ms	1/1,000
VDAC	Abcam	ab15895	Rb	1/500
ATP synthase	Biosciences	612516	Ms	1/10,000

Abbreviations: Ms: mouse monoclonal; Rb: rabbit polyclonal; Dil. WB: dilution Western blotting. BD Transduction: <u>http://www.bdbiosciences.com</u>; Abcam: <u>https://www.abcam.com</u>; Chemicon: <u>https://chemicongroup.com</u>; Signalway: <u>https://www.sabbiotech.com</u>; Genetex: <u>https://www.genetex.com</u>; Sigma: <u>https://www.sigmaaldrich.com</u>.

was made using Metascape [101]. A cell-type enrichment analysis across frontal cortex differential datasets was performed using cell-type protein marker lists derived from four purified brain cell types: neuron, astrocyte, microglia, oligodendrocyte and endothelial cells [102, 103]. Functional analysis of altered clusters of proteins was performed using ShinyGO (v0.77) software [104].

Gel electrophoresis and immunoblotting

Frozen samples of frontal cortex area 8 at different patient ages (n = 14) were homogenized in RIPA lysis buffer composed of 50 mM Tris/HCl buffer, pH 7.4 containing 2 mM EDTA, 0.2% Nonidet P-40, 1 mM PMSF, protease and phosphatase inhibitor cocktail (Roche Molecular Systems, USA). The homogenates were centrifuged for 20 min at 20,000 \times g. Protein concentration was determined with the BCA method (Thermo Scientific). Equal amounts of protein (12 µg) for each sample were loaded and separated by electrophoresis on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels and then transferred onto nitrocellulose membranes (Amersham, Freiburg, GE). Non-specific bindings were blocked by incubating 3% albumin in PBS containing 0.2% Tween for one h at room temperature. After washing, the membranes were incubated overnight at 4°C with antibodies against primary antibodies summarized in Table 2. Protein loading was monitored using an antibody against β -actin. Membranes were incubated for one h with appropriate HRP-conjugated secondary antibodies (1:2,000, Dako, Barcelona, Spain); the immunoreaction was visualized with a chemiluminescence reagent (ECL, Amersham). Densitometric quantification was performed using the ImageLab v4.5.2 software (BioRad), using β -actin for normalization.

Statistical analysis

The normality of distribution was analyzed with the Kolmogorov-Smirnov test. The statistical analysis of protein levels between groups was carried out using a one-way analysis of variance (ANOVA) followed by a Tukey post-test using the GraphPad Prism software version 9.5.0 (La Jolla, CA, USA). Graphic design was performed with GraphPad Prism version 9.5.0 (La Jolla, CA, USA). Outliers were detected using the GraphPad software QuickCalcs (p < 0.05). Data were expressed as mean \pm SEM. When comparing between age groups, differences were considered statistically significant when compared one age group (for example late-elderly (group 4) with young (group 1) at *p < 0.05, **p < 0.01, ***p < 0.01; with MA (group 2) at *p < 0.05, and ##p < 0.01; and with early-elderly (group 3) at *p < 0.05,

and ${}^{\$}p < 0.01$. Pearson's correlation coefficient was used to assess associations between protein levels and age. Pearson's correlation significance levels were set at ${}^{*}p < 0.05$, ${}^{**}p < 0.01$, and ${}^{***}p < 0.001$.

Data availability statement

All data are available in the main manuscript, and supplementary Figures and Tables.

AUTHOR CONTRIBUTIONS

All authors contributed to the study conception and design. Ferrer I and Andrés-Benito P designed the study; del Rio JA, Andrés-Benito P and Ferrer I refined the conceptualization of the whole experiment; Andrés-Benito P, Brullas M, Carmona M and Povedano M participated in sample processing, data collection and analysis; Íñigo-Marco I, Fernández-Irigoyen J and Santamaría E performed proteomics and phosphoproteomics experiments and data processing; Andrés-Benito P and Ferrer I wrote the first draft of the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank Tom Yohannan for editing corrections.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest related to this study.

ETHICAL STATEMENT

Post-mortem brain samples were obtained from the Institute of Neuropathology HUB-ICO-IDIBELL Biobank following the guidelines of Spanish legislation on this matter (Real Decreto 1716/2011), and the approval of the local ethics committee (CEIC) of Bellvitge University Hospital.

FUNDING

The project leading to these results received funding from the "la Caixa" Foundation (ID 100010434) under the agreement LCF/PR/HR19/52160007, HR18-00452 to IF and JAdR. We thank CERCA Programme/Generalitat de Catalunya for institutional support. The Proteomics Platform of Navarrabiomed is a member of Proteored (PRB3-ISCIII) and is supported by grant PT17/0019/009 to JFI, of the PE I+D+I 2013–2016 funded by ISCIII and FEDER. Parts of this work were funded by a grant from the Spanish Ministry of Science Innovation and Universities (Ref. PID2019-110356RB-I00) to JFI and ES, and the Department of Economic and Business Development of the Government of Navarra (Ref. 0011-1411-2020-000028) to ES.

REFERENCES

- Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. Free Neuropathology. 2022; 3:17. <u>https://doi.org/10.17879/freeneuropathology-2022-3806</u>
- Ferrer I. Hypothesis review: Alzheimer's overture guidelines. Brain Pathol. 2023; 33:e13122. <u>https://doi.org/10.1111/bpa.13122</u> PMID:<u>36223647</u>
- 3. Schonberger SJ, Edgar PF, Kydd R, Faull RL, Cooper GJ. Proteomic analysis of the brain in Alzheimer's disease: molecular phenotype of a complex disease process. Proteomics. 2001; 1:1519–28. <u>https://doi.org/10.1002/1615-</u> <u>9861(200111)1:12<1519::aid-prot1519>3.0.co;2-l</u> PMID:<u>11747211</u>
- Begcevic I, Kosanam H, Martínez-Morillo E, Dimitromanolakis A, Diamandis P, Kuzmanov U, Hazrati LN, Diamandis EP. Semiquantitative proteomic analysis of human hippocampal tissues from Alzheimer's disease and age-matched control brains. Clin Proteomics. 2013; 10:5. <u>https://doi.org/10.1186/1559-0275-10-5</u> PMID:23635041
- Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, Kultima K, Shevchenko G. Quantification of the brain proteome in Alzheimer's disease using multiplexed mass spectrometry. J Proteome Res. 2014; 13:2056–68. <u>https://doi.org/10.1021/pr401202d</u> PMID:24606058
- Hondius DC, van Nierop P, Li KW, Hoozemans JJ, van der Schors RC, van Haastert ES, van der Vies SM, Rozemuller AJ, Smit AB. Profiling the human hippocampal proteome at all pathologic stages of Alzheimer's disease. Alzheimers Dement. 2016; 12:654–68. https://doi.org/10.1016/j.jalz.2015.11.002

PMID:<u>26772638</u>

 Xu B, Xiong F, Tian R, Zhan S, Gao Y, Qiu W, Wang R, Ge W, Ma C. Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank. Exp Gerontol. 2016; 73:31–41.

https://doi.org/10.1016/j.exger.2015.11.016 PMID:<u>26631761</u>

8. Yu L, Petyuk VA, Gaiteri C, Mostafavi S, Young-Pearse T, Shah RC, Buchman AS, Schneider JA, Piehowski PD,

Sontag RL, Fillmore TL, Shi T, Smith RD, et al. Targeted brain proteomics uncover multiple pathways to Alzheimer's dementia. Ann Neurol. 2018; 84:78–88. https://doi.org/10.1002/ana.25266 PMID:29908079

- 9. Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT. Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Sci Data. 2018; 5:180036. <u>https://doi.org/10.1038/sdata.2018.36</u> PMID:<u>29533394</u>
- Ping L, Kundinger SR, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT. Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer's disease. Sci Data. 2020; 7:315. <u>https://doi.org/10.1038/s41597-020-00650-8</u> PMID:<u>32985496</u>
- McKetney J, Runde RM, Hebert AS, Salamat S, Roy S, Coon JJ. Proteomic Atlas of the Human Brain in Alzheimer's Disease. J Proteome Res. 2019; 18:1380–91. <u>https://doi.org/10.1021/acs.jproteome.9b00004</u> PMID:<u>30735395</u>
- Adav SS, Park JE, Sze SK. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer's disease. Mol Brain. 2019; 12:8. <u>https://doi.org/10.1186/s13041-019-0430-y</u> PMID:<u>30691479</u>
- Wingo AP, Dammer EB, Breen MS, Logsdon BA, Duong DM, Troncosco JC, Thambisetty M, Beach TG, Serrano GE, Reiman EM, Caselli RJ, Lah JJ, Seyfried NT, et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat Commun. 2019; 10:1619. https://doi.org/10.1038/s41467-019-09613-z
 - PMID:30962425
- 14. Mendonça CF, Kuras M, Nogueira FCS, Plá I, Hortobágyi T, Csiba L, Palkovits M, Renner É, Döme P, Marko-Varga G, Domont GB, Rezeli M. Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease. Neurobiol Dis. 2019; 130:104509. <u>https://doi.org/10.1016/j.nbd.2019.104509</u> PMID:<u>31207390</u>
- Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, Dammer EB, Robins C, Beach TG, Reiman EM, Epstein MP, De Jager PL, Lah JJ, et al. Integrating human brain proteomes with genomewide association data implicates new proteins in Alzheimer's disease pathogenesis. Nat Genet. 2021; 53:143–6.

https://doi.org/10.1038/s41588-020-00773-z PMID:<u>33510477</u>

- Roberts JA, Varma VR, An Y, Varma S, Candia J, Fantoni G, Tiwari V, Anerillas C, Williamson A, Saito A, Loeffler T, Schilcher I, Moaddel R, et al. A brain proteomic signature of incipient Alzheimer's disease in young APOE ε4 carriers identifies novel drug targets. Sci Adv. 2021; 7:eabi8178. <u>https://doi.org/10.1126/sciadv.abi8178</u> PMID:34757788
- Velásquez E, Szeitz B, Gil J, Rodriguez J, Palkovits M, Renner É, Hortobágyi T, Döme P, Nogueira FC, Marko-Varga G, Domont GB, Rezeli M. Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer's Disease. Front Immunol. 2021; 12:750665. <u>https://doi.org/10.3389/fimmu.2021.750665</u>
 PMID:34712240
- Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol. 2022; 32:e13047. <u>https://doi.org/10.1111/bpa.13047</u> PMID:35016256
- Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991; 82:239–59. <u>https://doi.org/10.1007/BF00308809</u> PMID:1759558
- 20. Braak H, Braak E. Frequency of stages of Alzheimerrelated lesions in different age categories. Neurobiol Aging. 1997; 18:351–7. <u>https://doi.org/10.1016/s0197-4580(97)00056-0</u> PMID:<u>9330961</u>
- Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011; 70:960–9. <u>https://doi.org/10.1097/NEN.0b013e318232a379</u> PMID:22002422
- 22. Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol. 2012; 97:38–51. <u>https://doi.org/10.1016/j.pneurobio.2012.03.005</u> PMID:22459297
- 23. Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer's disease. Brain. 2015; 138:2814–33. <u>https://doi.org/10.1093/brain/awv236</u> PMID:26283673
- Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Alzheimer's disease. Adv Anat Embryol Cell Biol. 2015; 215:1–162. PMID:25920101

- 25. Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimers Dement. 2021; 17:115–24. <u>https://doi.org/10.1002/alz.12192</u> PMID:33075193
- 26. Cohen P. The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci. 2000; 25:596–601. <u>https://doi.org/10.1016/s0968-0004(00)01712-6</u> PMID:<u>11116185</u>
- 27. Johnson LN, Lewis RJ. Structural basis for control by phosphorylation. Chem Rev. 2001; 101:2209–42. <u>https://doi.org/10.1021/cr000225s</u> PMID:<u>11749371</u>
- 28. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002; 298:1912–34. <u>https://doi.org/10.1126/science.1075762</u> PMID:<u>12471243</u>
- 29. Yaffe MB. Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol. 2002; 3:177–86. <u>https://doi.org/10.1038/nrm759</u> PMID:<u>11994738</u>
- Kapuy O, Barik D, Sananes MR, Tyson JJ, Novák B. Bistability by multiple phosphorylation of regulatory proteins. Prog Biophys Mol Biol. 2009; 100:47–56. <u>https://doi.org/10.1016/j.pbiomolbio.2009.06.004</u> PMID:<u>19523976</u>
- Salazar C, Höfer T. Multisite protein phosphorylation-from molecular mechanisms to kinetic models. FEBS J. 2009; 276:3177–98. <u>https://doi.org/10.1111/j.1742-4658.2009.07027.x</u> PMID:<u>19438722</u>
- 32. Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J Proteomics. 2011; 74:1091–103. <u>https://doi.org/10.1016/j.jprot.2011.03.033</u> PMID:21515431
- 33. Zahid S, Oellerich M, Asif AR, Ahmed N. Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer's disease patients. J Neurochem. 2012; 121:954–63. <u>https://doi.org/10.1111/j.1471-4159.2012.07737.x</u> PMID:<u>22436009</u>
- 34. Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J. Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics. 2015; 15:500–7.

https://doi.org/10.1002/pmic.201400171 PMID:<u>25307156</u>

- 35. Triplett JC, Swomley AM, Cai J, Klein JB, Butterfield DA. Quantitative phosphoproteomic analyses of the inferior parietal lobule from three different pathological stages of Alzheimer's disease. J Alzheimers Dis. 2016; 49:45–62. <u>https://doi.org/10.3233/JAD-150417</u> PMID:26444780
- 36. Dammer EB, Lee AK, Duong DM, Gearing M, Lah JJ, Levey AI, Seyfried NT. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015; 15:508–19. <u>https://doi.org/10.1002/pmic.201400189</u> PMID:<u>25332170</u>
- 37. Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK, Yarbro JM, Han X, Lutz BM, Rao S, Jiao Y, Sifford JM, Han J, et al. Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression. Neuron. 2020; 105:975–91.e7. <u>https://doi.org/10.1016/j.neuron.2019.12.015</u> PMID:<u>31926610</u>
- Ferrer I, Andrés-Benito P, Ausín K, Pamplona R, Del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and Alzheimer's disease. Brain Pathol. 2021; 31:e12996. <u>https://doi.org/10.1111/bpa.12996</u> PMID:<u>34218486</u>
- Sathe G, Mangalaparthi KK, Jain A, Darrow J, Troncoso J, Albert M, Moghekar A, Pandey A. Multiplexed Phosphoproteomic Study of Brain in Patients with Alzheimer's Disease and Age-Matched Cognitively Healthy Controls. OMICS. 2020; 24:216–27. <u>https://doi.org/10.1089/omi.2019.0191</u> PMID:32182160
- 40. Ferrer I, García MA, González IL, Lucena DD, Villalonga AR, Tech MC, Llorens F, Garcia-Esparcia P, Martinez-Maldonado A, Mendez MF, Escribano BT, Bech-Serra JJ, Sabido E, et al. Aging-related tau astrogliopathy (ARTAG): not only tau phosphorylation in astrocytes. Brain Pathol. 2018; 28:965–85. <u>https://doi.org/10.1111/bpa.12593</u> PMID:29396893
- 41. Ferrer I, Andrés-Benito P, Zelaya MV, Aguirre MEE, Carmona M, Ausín K, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E, Del Rio JA. Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy. Acta Neuropathol. 2020; 139:735–71.

https://doi.org/10.1007/s00401-019-02122-9 PMID:<u>31907603</u>

- 42. Wang F, Blanchard AP, Elisma F, Granger M, Xu H, Bennett SA, Figeys D, Zou H. Phosphoproteome analysis of an early onset mouse model (TgCRND8) of Alzheimer's disease reveals temporal changes in neuronal and glia signaling pathways. Proteomics. 2013; 13:1292–305. <u>https://doi.org/10.1002/pmic.201200415</u> PMID:23335269
- 43. Hoos MD, Richardson BM, Foster MW, Everhart A, Thompson JW, Moseley MA, Colton CA. Longitudinal study of differential protein expression in an Alzheimer's mouse model lacking inducible nitric oxide synthase. J Proteome Res. 2013; 12:4462–77. <u>https://doi.org/10.1021/pr4005103</u> PMID:<u>24006891</u>
- 44. Tagawa K, Homma H, Saito A, Fujita K, Chen X, Imoto S, Oka T, Ito H, Motoki K, Yoshida C, Hatsuta H, Murayama S, Iwatsubo T, et al. Comprehensive phosphoproteome analysis unravels the core signaling network that initiates the earliest synapse pathology in preclinical Alzheimer's disease brain. Hum Mol Genet. 2015; 24:540–58. <u>https://doi.org/10.1093/hmg/ddu475</u> PMID:25231903
- 45. Kempf SJ, Metaxas A, Ibáñez-Vea M, Darvesh S, Finsen B, Larsen MR. An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. Oncotarget. 2016; 7:33627–48. <u>https://doi.org/10.18632/oncotarget.9092</u> PMID:27144524
- Chen Y, Xu J, Zhou X, Liu S, Zhang Y, Ma S, Fu AKY, Ip NY, Chen Y. Changes of Protein Phosphorylation Are Associated with Synaptic Functions during the Early Stage of Alzheimer's Disease. ACS Chem Neurosci. 2019; 10:3986–96. <u>https://doi.org/10.1021/acschemneuro.9b00190</u> PMID:31424205
- Ferrer I, Andrés-Benito P, Ausín K, Cartas-Cejudo P, Lachén-Montes M, Del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated Protein Phosphorylation in a Mouse Model of FTLD-Tau. J Neuropathol Exp Neurol. 2022; 81:696–706. <u>https://doi.org/10.1093/jnen/nlac062</u> PMID:35848963
- 48. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers. 2021; 7:33. <u>https://doi.org/10.1038/s41572-021-00269-y</u> PMID:<u>33986301</u>

- 49. Ward A, Tardiff S, Dye C, Arrighi HM. Rate of conversion from prodromal Alzheimer's disease to Alzheimer's dementia: a systematic review of the literature. Dement Geriatr Cogn Dis Extra. 2013; 3:320–32. <u>https://doi.org/10.1159/000354370</u> PMID:24174927
- Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, Sager M, Stevens J, Rae-Grant A. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018; 90:126–35. https://doi.org/10.1212/WNL.000000000004826

PMID:29282327

- 51. I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev. 2023; 87:101916. <u>https://doi.org/10.1016/j.arr.2023.101916</u> PMID:<u>36990284</u>
- 52. Cao Y, Xiao Y, Ravid R, Guan ZZ. Changed clathrin regulatory proteins in the brains of Alzheimer's disease patients and animal models. J Alzheimers Dis. 2010; 22:329–42. <u>https://doi.org/10.3233/JAD-2010-100162</u> PMID:20847448
- 53. Wang T, Jia L, Lv B, Liu B, Wang W, Wang F, Yang G, Bu X, Yao L, Zhang B. Human Ermin (hErmin), a new oligodendrocyte-specific cytoskeletal protein related to epileptic seizure. Brain Res. 2011; 1367:77–84. <u>https://doi.org/10.1016/j.brainres.2010.10.003</u> PMID:<u>20934411</u>
- 54. Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and agerelated diseases. Nat Commun. 2014; 5:5659. <u>https://doi.org/10.1038/ncomms6659</u> PMID:<u>25482515</u>
- 55. Saez I, Vilchez D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics. 2014; 15:38–51. <u>https://doi.org/10.2174/138920291501140306113344</u> PMID:<u>24653662</u>
- 56. Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, Finley D, Matouschek A. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun. 2020; 11:477. <u>https://doi.org/10.1038/s41467-019-13906-8</u>

PMID:31980598

57. Yewdell J, Lapham C, Bacik I, Spies T, Bennink J. MHCencoded proteasome subunits LMP2 and LMP7 are not required for efficient antigen presentation. J Immunol. 1994; 152:1163–70. <u>https://doi.org/10.4049/jimmunol.152.3.1163</u> PMID:<u>8301122</u>

- 58. Latham MP, Sekhar A, Kay LE. Understanding the mechanism of proteasome 20S core particle gating. Proc Natl Acad Sci U S A. 2014; 111:5532–7. <u>https://doi.org/10.1073/pnas.1322079111</u> PMID:<u>24706783</u>
- 59. Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front Aging Neurosci. 2016; 8:303. <u>https://doi.org/10.3389/fnagi.2016.00303</u> PMID:<u>28018215</u>
- 60. Rao G, Croft B, Teng C, Awasthi V. Ubiquitin-Proteasome System in Neurodegenerative Disorders. J Drug Metab Toxicol. 2015; 6:187. <u>https://doi.org/10.4172/2157-7609.1000187</u> PMID:<u>30761219</u>
- 61. Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ. 2021; 28:570–90. <u>https://doi.org/10.1038/s41418-020-00706-7</u> PMID:<u>33414510</u>
- 62. Fernández-Cruz I, Reynaud E. Proteasome Subunits Involved in Neurodegenerative Diseases. Arch Med Res. 2021; 52:1–14. <u>https://doi.org/10.1016/j.arcmed.2020.09.007</u> PMID:<u>32962866</u>
- 63. Barbosa MC, Grosso RA, Fader CM. Hallmarks of Aging: An Autophagic Perspective. Front Endocrinol (Lausanne). 2019; 9:790. <u>https://doi.org/10.3389/fendo.2018.00790</u> PMID:<u>30687233</u>
- 64. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014; 2014:238463. <u>https://doi.org/10.1155/2014/238463</u>
 PMID:24818134
- 65. Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des. 2017; 23:731–52. <u>https://doi.org/10.2174/1381612822666161230144517</u> PMID:<u>28034353</u>
- Bazzani V, Equisoain Redin M, McHale J, Perrone L, Vascotto C. Mitochondrial DNA Repair in Neurodegenerative Diseases and Ageing. Int J Mol Sci. 2022; 23:11391. https://doi.org/10.3390/ijms231911391

PMID:<u>36232693</u>

- 67. Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med. 2016; 100:153–63. <u>https://doi.org/10.1016/j.freeradbiomed.2016.06.023</u> PMID:<u>27352979</u>
- Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, Smith MA. Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta. 2010; 1802:212–20. <u>https://doi.org/10.1016/j.bbadis.2009.10.007</u> PMID:<u>19853657</u>
- Bastien J, Menon S, Messa M, Nyfeler B. Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Mol Aspects Med. 2021; 82:101018. <u>https://doi.org/10.1016/j.mam.2021.101018</u> PMID:34489092
- Scrivo A, Bourdenx M, Pampliega O, Cuervo AM. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 2018; 17:802–15. <u>https://doi.org/10.1016/S1474-4422(18)30238-2</u> PMID:30129476
- 71. Nah J, Yuan J, Jung YK. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells. 2015; 38:381–9. <u>https://doi.org/10.14348/molcells.2015.0034</u> PMID:25896254
- 72. Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018; 28:3–13. <u>https://doi.org/10.1111/bpa.12545</u> PMID:<u>28703923</u>
- 73. Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer's disease. Biochim Biophys Acta Mol Cell Res. 2020; 1867:118664. <u>https://doi.org/10.1016/j.bbamcr.2020.118664</u> PMID:<u>32006534</u>
- 74. Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007; 33:43–55. <u>https://doi.org/10.1111/j.1365-2990.2006.00795.x</u> PMID:<u>17239007</u>
- 75. Lee SJ, Chung YH, Joo KM, Lim HC, Jeon GS, Kim D, Lee WB, Kim YS, Cha CI. Age-related changes in glycogen synthase kinase 3beta (GSK3beta) immunoreactivity in the central nervous system of rats. Neurosci Lett. 2006; 409:134–9. <u>https://doi.org/10.1016/j.neulet.2006.09.026</u>

PMID:<u>17046157</u>

76. Lv Y, Meng B, Dong H, Jing T, Wu N, Yang Y, Huang L, Moses RE, O'Malley BW, Mei B, Li X. Upregulation of GSK3β Contributes to Brain Disorders in Elderly REGγknockout Mice. Neuropsychopharmacology. 2016; 41:1340–9.

https://doi.org/10.1038/npp.2015.285 PMID:26370326

- 77. Tam ZY, Gruber J, Ng LF, Halliwell B, Gunawan R. Effects of lithium on age-related decline in mitochondrial turnover and function in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2014; 69:810–20. <u>https://doi.org/10.1093/gerona/glt210</u> PMID:<u>24398558</u>
- McColl G, Killilea DW, Hubbard AE, Vantipalli MC, Melov S, Lithgow GJ. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem. 2008; 283:350–7. <u>https://doi.org/10.1074/jbc.M705028200</u> PMID:<u>17959600</u>
- 79. Martin SA, DeMuth TM, Miller KN, Pugh TD, Polewski MA, Colman RJ, Eliceiri KW, Beasley TM, Johnson SC, Anderson RM. Regional metabolic heterogeneity of the hippocampus is nonuniformly impacted by age and caloric restriction. Aging Cell. 2016; 15:100–10. https://doi.org/10.1111/acel.12418

```
PMID:26521867
```

- Souder DC, Anderson RM. An expanding GSK3 network: implications for aging research. Geroscience. 2019; 41:369–82. <u>https://doi.org/10.1007/s11357-019-00085-z</u> PMID:<u>31313216</u>
- 81. Li Y, Yu H, Chen C, Li S, Zhang Z, Xu H, Zhu F, Liu J, Spencer PS, Dai Z, Yang X. Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. Oxid Med Cell Longev. 2020; 2020:5408452. <u>https://doi.org/10.1155/2020/5408452</u> PMID:<u>32587661</u>
- 82. Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells. 2021; 10:2021. <u>https://doi.org/10.3390/cells10082021</u> PMID:<u>34440790</u>
- Bostomska-Pampuch K, Drulis-Fajdasz D, Gizak A, Wiśniewski JR, Rakus D. Absolute Proteome Analysis of Hippocampus, Cortex and Cerebellum in Aged and Young Mice Reveals Changes in Energy Metabolism.

Int J Mol Sci. 2021; 22:6188. https://doi.org/10.3390/ijms22126188 PMID:<u>34201282</u>

- 84. Moraga DM, Nuñez P, Garrido J, Maccioni RB. A tau fragment containing a repetitive sequence induces bundling of actin filaments. J Neurochem. 1993; 61:979–86. https://doi.org/10.1111/j.1471-4159.1993.tb03611.x PMID:8360695
- 85. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry. 1999; 38:3549–58. <u>https://doi.org/10.1021/bi981874p</u> PMID:10090741
- 86. Maas T, Eidenmüller J, Brandt R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem. 2000; 275:15733–40. <u>https://doi.org/10.1074/jbc.M000389200</u> PMID:<u>10747907</u>
- 87. Farias GA, Muñoz JP, Garrido J, Maccioni RB. Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies. J Cell Biochem. 2002; 85:315–24. https://doi.org/10.1002/jcb.10133 PMID:11948687
- 88. Mohan R, John A. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life. 2015; 67:395–403. <u>https://doi.org/10.1002/iub.1384</u> PMID:26104829
- 89. Sallaberry CA, Voss BJ, Majewski J, Biernat J, Mandelkow E, Chi EY, Vander Zanden CM. Tau and Membranes: Interactions That Promote Folding and Condensation. Front Cell Dev Biol. 2021; 9:725241. <u>https://doi.org/10.3389/fcell.2021.725241</u> PMID:<u>34621743</u>
- 90. Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol. 2021; 9:653815. https://doi.org/10.3389/fcell.2021.653815

PMID:33996814

91. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, et al. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 2016; 5:e12813.

https://doi.org/10.7554/eLife.12813

PMID:26824392

- 92. He F, Qi G, Zhang Q, Cai H, Li T, Li M, Zhang Q, Chen J, Ming J, Tian B, Zhang P. Quantitative Phosphoproteomic Analysis in Alpha-Synuclein Transgenic Mice Reveals the Involvement of Aberrant p25/Cdk5 Signaling in Early-stage Parkinson's Disease. Cell Mol Neurobiol. 2020; 40:897–909. <u>https://doi.org/10.1007/s10571-019-00780-7</u> PMID:<u>32016637</u>
- 93. Mees I, Tran H, Roberts A, Lago L, Li S, Roberts BR, Hannan AJ, Renoir T. Quantitative Phosphoproteomics Reveals Extensive Protein Phosphorylation Dysregulation in the Cerebral Cortex of Huntington's Disease Mice Prior to Onset of Symptoms. Mol Neurobiol. 2022; 59:2456–71. https://doi.org/10.1007/s12035-021-02698-y PMID:<u>35083661</u>
- 94. Lai YC, Kondapalli C, Lehneck R, Procter JB, Dill BD, Woodroof HI, Gourlay R, Peggie M, Macartney TJ, Corti O, Corvol JC, Campbell DG, Itzen A, et al. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J. 2015; 34:2840–61.

https://doi.org/10.15252/embj.201591593 PMID:26471730

- 95. Yılmaz S, Ayati M, Schlatzer D, Çiçek AE, Chance MR, Koyutürk M. Robust inference of kinase activity using functional networks. Nat Commun. 2021; 12:1177. <u>https://doi.org/10.1038/s41467-021-21211-6</u> PMID:33608514
- 96. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011; 10:1794–805. <u>https://doi.org/10.1021/pr101065j</u> PMID:<u>21254760</u>
- 97. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016; 13:731–40. https://doi.org/10.1038/nmeth.3901 PMID:27348712
- 98. Nakayasu ES, Gritsenko M, Piehowski PD, Gao Y, Orton DJ, Schepmoes AA, Fillmore TL, Frohnert BI, Rewers M, Krischer JP, Ansong C, Suchy-Dicey AM, Evans-Molina C, et al. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc. 2021; 16:3737–60.

https://doi.org/10.1038/s41596-021-00566-6 PMID:<u>34244696</u>

- 99. Pascovici D, Handler DC, Wu JX, Haynes PA. Multiple testing corrections in quantitative proteomics: A useful but blunt tool. Proteomics. 2016; 16:2448–53. <u>https://doi.org/10.1002/pmic.201600044</u>
 PMID:27461997
- 100.Okuda S, Watanabe Y, Moriya Y, Kawano S, Yamamoto T, Matsumoto M, Takami T, Kobayashi D, Araki N, Yoshizawa AC, Tabata T, Sugiyama N, Goto S, Ishihama Y. jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res. 2017; 45:D1107–11. https://doi.org/10.1093/nar/gkw1080

PMID:27899654

- 101.Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019; 10:1523. <u>https://doi.org/10.1038/s41467-019-09234-6</u> PMID:30944313
- 102. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014; 34:11929–47. <u>https://doi.org/10.1523/JNEUROSCI.1860-14.2014</u> PMID:25186741
- 103.Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci. 2015; 18:1819–31. <u>https://doi.org/10.1038/nn.4160</u> PMID:<u>26523646</u>
- 104.Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020; 36:2628–9. <u>https://doi.org/10.1093/bioinformatics/btz931</u> PMID:<u>31882993</u>

SUPPLEMENTARY MATERIALS

Supplementary Figure

Supplementary Figure 1. Proteomic and phosphoproteomic global analysis. (A, B) Principal component (PCA) analysis representing all 16 samples at the proteome (A) and phosphoproteome (B) levels. (C, D) Heatmaps representing the total number of quantified proteins at the proteome (C) and phosphoproteome (D) across all age groups.

Supplementary Tables

Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Cluster list composition.

Protein ID	Protein name	Function
AGK	Acylglycerol Kinase	Kinase - lipid metabolism
AK3	Adenylate Kinase 3	Mitochondrial kinase
CAMK1	Calcium/Calmodulin Dependent Protein Kinase I	Calcium dependent kinase
CMPK1	Cytidine/Uridine Monophosphate Kinase 1	Kinase activity
CRKL	CRK Like Proto-Oncogene, Adaptor Protein	Kinase activity
DCLK1	Doublecortin Like Kinase 1	Cytoskeleton regulator
FCSK	Fucose Kinase	Cell-cell signaling
FN3KRP	Fructosamine 3 Kinase Related Protein	Kinase with multiple targets
GSK3B	Glycogen Synthase Kinase 3 Beta	Kinase with multiple targets
KALRN	Kalirin RhoGEF Kinase	Cytoskeletal regulator
MAP4K2	Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2	Kinase with multiple targets
NME1	NME/NM23 Nucleoside Diphosphate Kinase 1	Purine metabolism
PAK6	P21 (RAC1) Activated Kinase 6	Cytoskeleton regulator
PFKM	Phosphofructokinase, Muscle	Glycolysis kinase
PFKP	Phosphofructokinase, Platelet	Glycolysis kinase
PRKCA	Protein Kinase C Alpha	Kinase with multiple targets
PRKRA1B	Protein Kinase CAMP-Dependent Type I Regulatory Beta	Kinase with multiple targets
SKP1	S-Phase Kinase Associated Protein 1	UPS kinase
STK24	Serine/Threonine Kinase 24	Cytoskeleton regulator
STRAP	Serine/Threonine Kinase Receptor Associated Protein	RNA metabolism
TAOK1	TAO Kinase 1	Cytoskeleton regulator
TKFC	Triokinase And FMN Cyclase	Kinase with multiple targets
ACP1	Acid Phosphatase 1	Phosphatase
CPPED1	Calcineurin Like Phosphoesterase Domain Containing 1	Phosphatase
ENOPH1	Enolase-Phosphatase 1	Phosphatase/Enolase
PGP	Phosphoglycolate Phosphatase	Phosphatase
PPME1	Protein phosphatase methylesterase 1 (PME-1)	Phosphatase
PPP1CA	Protein Phosphatase 1 Catalytic Subunit Alpha	Phosphatase
PPP1R14A	Protein Phosphatase 1 Regulatory Inhibitor Subunit 14A	Phosphatase
PPP2R2D	Protein Phosphatase 2 Regulatory Subunit Bdelta	Phosphatase
PPP6C	Protein Phosphatase 6 Catalytic Subunit	Phosphatase

Supplementary Table 3. Abnormally-regulated cytoskeleton-related proteins in proteome across age groups.

Protein ID	Protein name	Function
ABL2	ABL Proto-Oncogene 2, Non-Receptor Tyrosine Kinase	Cytoskeleton regulator
ACTG1	Actin Gamma 1	Cytoskeletal component
AGAP1	ArfGAP With GTPase Domain, Ankyrin Repeat and PH 1	Cytoskeletal component
AGAP2	ArfGAP With GTPase Domain, Ankyrin Repeat and PH 2	Cytoskeletal component
ARR3	Arrestin 3	Cytoskeletal component
BGN	Biglycan	ECM component
CAP2	Cyclase Associated Actin Cytoskeleton Regulatory Protein 2	Cytoskeleton regulator
CKAP5	Cytoskeleton Associated Protein 5	Cytoskeletal component
CLASP2	Cytoplasmic Linker Associated Protein 2	Cytoskeletal component
CORO1C	Coronin 1C	Cytoskeletal component
CTTN	Cortactin	Cytoskeletal regulator

DNM3	Dynamin 3	Cytoskeletal component
DYNLL2	Dynein Light Chain LC8-Type 2	Cytoskeletal component
ERLIN2	ER Lipid Raft Associated 2	Cytoskeletal regulator
ERMN	Ermin	Cytoskeletal component
FMNL2	Formin Like 2	Cytoskeletal regulator
FMOD	Fibromodulin	ECM component
GAP43	Growth Associated Protein 43	Cytoskeletal component
GMFB	Glia Maturation Factor Beta	Cytoskeletal component
HIP1R	Huntingtin Interacting Protein 1 Related	Cytoskeletal component
KIF2A	Kinesin Family Member 2A	Cytoskeletal component
KIF3B	Kinesin Family Member 3B	Cytoskeletal component
KLC1	Kinesin Light Chain 1	Cytoskeletal component
KLK6	Kallikrein Related Peptidase 6	ECM regulator
LMNB2	Lamin B2	Cytoskeletal component
LUM	Lumican	ECM component
MAP1LC3A	Microtubule Associated Protein 1 Light Chain 3 Alpha	Cytoskeletal component
MAP7D1	MAP7 Domain Containing 1	Cytoskeletal component
MTPN	Myotrophin	Cytoskeletal component
MYL1	Myosin Light Chain 1	Cytoskeletal component
NCK2	NCK Adaptor Protein 2	Cytoskeletal regulator
NEBL	Nebulette	Cytoskeletal component
NUDC	Nuclear Distribution C, Dynein Complex Regulator	Cytoskeletal regulator
NUDCD2	NudC Domain Containing 2	Cytoskeletal regulator
PADI2	Peptidyl Arginine Deiminase 2	Cytoskeletal regulator
PKP2	Plakophilin 2	Cytoskeleton component
PRELP	Proline And Arginine Rich End Leucine Rich Repeat Protein	ECM component
RIC8A	RIC8 Guanine Nucleotide Exchange Factor A	Cytoskeletal regulator
ROCK2	Rho Associated Coiled-Coil Containing Protein Kinase 2	Cytoskeletal regulator
SHTN1	Shootin 1	Cytoskeletal regulator
STMN1	Stathmin 1	Cytoskeletal regulator
TNS3	Tensin 3	Cytoskeletal component
TPPP	Tubulin Polymerization Promoting Protein	Cytoskeletal component
TRIM3	Tripartite Motif Containing 3	Cytoskeletal component
TUBB2A	Tubulin Beta 2A Class Iia	Cytoskeletal component
TUBB3	Tubulin Beta 3 Class III	Cytoskeletal component
VIM	Vimentin	Cytoskeletal component

Supplementary Table 4. Abnormally-regulated membrane-related proteins in proteome across age groups.

Protein ID	Protein name	Function
ABCA2	ATP Binding Cassette Subfamily A Member 2	Membrane transporter protein
ABCC4	ATP Binding Cassette Subfamily C Member 4	Membrane transporter protein
ADAM11	ADAM Metallopeptidase Domain 11	Membrane protein/Cell adhesion
AGFG1	ArfGAP With FG Repeats 1	Vesicles membrane
ANKHD1	Ankyrin Repeat and KH Domain Containing 1	Integral membrane protein
ANXA2	Annexin A2	Membrane component
ANXA4	Annexin A4	Membrane component
APBA2	Amyloid Beta Precursor Protein Binding Family A 2	Vesicular trafficking protein
ATP1A3	ATPase Na+/K+ Transporting Subunit Alpha 3	Membrane transporter
ATP5F1E	ATP Synthase F1 Subunit Epsilon	Membrane transporter
ATP6V1A	ATPase H+ Transporting V1 Subunit A	Membrane transporter
ATP6V1B2	ATPase H+ Transporting V1 Subunit B2	Membrane transporter
BASP1	Brain acid soluble protein 1	Membrane component
BCAS1	Brain Enriched Myelin Associated Protein 1	Membrane protein
BSG	Basigin	Membrane protein
CACNB4	Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4	Membrane ion channel

CD9	CD9 Molecule	Men
CHCHD3	Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 3	Integ
CHCHD6	Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 6	Integ
CLDN11	Claudin 11	Integ
CLTB	Clathrin Light Chain B	Vesi
CLTC	Clathrin Heavy Chain	Vesi
CNTNAP2	Contactin Associated Protein 2	Men
CODS3	COPO Signalosomo Subunit 3	Junct
COPS4	COPO Signalosomo Subunit 4	Vosi
COPS	COPO Signalosome Subunit 4	Vesi
COPZ1	COPI Cost Complex Subunit 7 sts 1	Vesi
		Mem
	Catenin Delta I	junct
DNM1L	Dynamin 1 Like	Orga
EPB41L1	Erythrocyte Membrane Protein Band 4.1 Like 1	Syna
EPDR1	Ependymin Related 1	Mem
EXOC3	Exocyst Complex Component 3	Vesi
EXOC7	Exocyst Complex Component 7	Vesi
EXOC8	Exocyst Complex Component 8	Vesi
GATD1	Glutamine Amidotransferase Class 1 Domain 1	Vesi
GBR2	Growth Factor Receptor Bound Protein 2	Mem
GLIPR2	GLI pathogenesis-related 2	Orga
GOPC	Golgi Associated PDZ And Coiled-Coil Motif Containing	Orga
GOT2	Glutamic-Oxaloacetic Transaminase 2	Mito
GPD1	Glycerol-3-Phosphate Dehydrogenase 1	Mito
GPD2	Glycerol-3-Phosphate Dehydrogenase 2	Mito
IMMT	Inner Membrane Mitochondrial Protein	Mito
JAM2	Junctional Adhesion Molecule 2	Mem
LMAN2	Lectin, Mannose Binding 2	Mem
MEAK7	MTOR Associated Protein, Eak-7 Homolog	Vesi
MOG	Myelin Oligodendrocyte Glycoprotein	Mem
NECAP1	NECAP Endocytosis Associated 1	Vesi
NIPSNAP1	Nipsnap Homolog 1	Vesi
NIPSNAP2	Nipsnap Homolog 2	Vesi
NIPSNAP3B	Nipsnap Homolog 3B	Vesi
OMG	Oligodendrocyte Myelin Glycoprotein	Mem
PGRMC2	Progesterone Receptor Membrane Component 2	Mem
PHB2	Prohibitin 2	Mem
PICALM	Phosphatidylinositol Binding Clathrin Assembly Protein	Vesi
PMP2	Peripheral Myelin Protein 2	Mem
PPIF	Peptidylprolyl Isomerase F	Mito
RAB12	RAB12 Member RAS Oncogene Family	Vesi
RAB1B	RAB1B, Member RAS Oncogene Family	Vesi
RAB21	RAB21, Member RAS Oncogene Family	Vesi
RABGEF1	RAB Guanine Nucleotide Exchange Factor 1	Vesi
SLC14A1	Solute Carrier Family 14 Member 1	Mem
SLC16A7	Solute Carrier Family 16 Member 7	Mem
SLC24A2	Solute Carrier Family 24 Member 2	Mem
SLC25AI	Solute Carrier Family 25 Member 1	Mem
SLC32A1	Solute Carrier Family 32 Member 1	Mem
SNAP25	Synaptosome Associated Protein 25	Vesi
SPIANI	Spectrin Alpha, Non-Erythrocytic I	Mem
STIBNI STYDD1	Spectrin Beta, Non-Erythrocytic 1	Men
STXBP1	Syntaxin Binding Protein 1	Vesi
STYRADT	Syntaxin Binding Protein 5L	Vesi

nbrane component/cell tion gral membrane protein gral membrane protein gral membrane protein cle membrane protein cle membrane protein nbrane component/cell tion cle membrane protein cle membrane protein cle membrane protein cle membrane protein nbrane component/cell tion anelle membrane apse membrane component nbrane protein/Cell adhesion cles membrane cles membrane cles membrane cles membrane ibrane component anelle membrane anelle membrane chondrial membrane protein chondrial membrane protein chondrial membrane protein chondrial membrane protein nbrane and cell adhesion nbrane/vesicle protein cles membrane nbrane protein cles membrane cles membrane transport cles membrane transport cles membrane transport nbrane protein nbrane protein nbrane protein cles membrane ibrane protein chondrial membrane protein cles membrane cles membrane cles membrane cles membrane nbrane transporter nbrane transporter nbrane transporter nbrane transporter brane transporter cles membrane nbrane protein/Cytoskeleton hbrane protein/Cytoskeleton cles membranes cles membranes

THY1	Thy-1 Cell Surface Antigen	Membrane component/Cell junction
TOMM5	Translocase f Outer Mitochondrial Membrane 5	Membrane protein
UNC13A	Unc-13 Homolog A	Vesicles membrane
VPS13C	Vacuolar Protein Sorting 13 Homolog C	Vesicles membrane
VPS16	VPS16 Core Subunit of CORVET And HOPS Complexes	Vesicles membrane
VPS26A	VPS26, Retromer Complex Component A	Vesicles membrane
YTK6	YTK6 V-SNARE Homolog	Vesicles membrane

Supplementary Table 5. Abnormally-regulated DNA/RNA-related proteins in proteome across age groups.

Protein ID	Protein name	Function
ACIN1	Apoptotic Chromatin Condensation Inducer 1	RNA metabolism
ACO2	Aconitase 2	Glucose metabolism
C11orf68	chromosome 11 open reading frame 68	RNA metabolism
CARHSP1	Calcium Regulated Heat Stable Protein 1	RNA metabolism
DAZAP1	DAZ Associated Protein 1	RNA metabolism
DHX9	DExH-Box Helicase 9	DNA/RNA metabolism
DPY30	Dpy-30 Histone Methyltransferase Complex Regulatory Subunit	DNA regulation
DUT	Deoxyuridine Triphosphatase	DNA metabolism
EDF1	Endothelial Differentiation Related Factor 1	DNA binding
EEF1A2	Eukaryotic Translation Elongation Factor 1 Alpha 2	GTPase/RNA metabolism
EIF2B3	Eukaryotic Translation Initiation Factor 2B Subunit Gamma	GTPase/RNA metabolism
EIF2S3	Eukaryotic Translation Initiation Factor 2 Subunit Gamma	GTPase/RNA metabolism
EIF4A2	Eukaryotic Translation Initiation Factor 4A2	RNA metabolism
EIF4G1	Eukaryotic Translation Initiation Factor 4 Gamma 1	RNA metabolism
ELAVL2	ELAV Like RNA Binding Protein 2	RNA metabolism
EXOG	Exo/Endonuclease G	DNA metabolism
HARS1	Histidyl-TRNA Synthetase 1	RNA metabolism
HNRNPA3	Heterogeneous Nuclear Ribonucleoprotein A3	RNA metabolism
HNRNPH2	Heterogeneous Nuclear Ribonucleoprotein H2	RNA metabolism
HNRNPH3	Heterogeneous Nuclear Ribonucleoprotein H3	RNA metabolism
HNRNPUL2	Heterogeneous Nuclear Ribonucleoprotein U Like 2	RNA metabolism
IFIT1	Interferon Induced Protein with Tetratricopeptide Repeats 1	RNA metabolism
KDM5B	Lysine Demethylase 5B	DNA/Histone
KPNA3	Karyopherin Subunit Alpha 3	DNA/RNA metabolism
KPNA6	Karyopherin Subunit Alpha 6	DNA/RNA metabolism
LSM3	LSM3 Homolog, U6 Small Nuclear RNA Associated	RNA metabolism
LSM8	LSM8 Homolog, U6 Small Nuclear RNA Associated	RNA metabolism
MCTS1	MCTS1 Re-Initiation and Release Factor	RNA metabolism
NONO	Non-POU Domain Containing Octamer Binding	RNA metabolism
PAIP1	Poly(A) Binding Protein Interacting Protein 1	RNA metabolism
PBXIP1	PBX Homeobox Interacting Protein 1	Repressor factor
PRMT1	Protein Arginine Methyltransferase 1	RNA metabolism
PRMT5	Protein Arginine Methyltransferase 5	RNA/DNA metabolism
PROX1	Prospero Homeobox 1	RNA/DNA metabolism
PSPC1	Paraspeckle Component 1	RNA metabolism
PURA	Purine Rich Element Binding Protein A	DNA metabolism
RAD23B	RAD23 Homolog B, Nucleotide Excision Repair Protein	DNA metabolism
RBM14	RNA Binding Motif Protein 14	RNA metabolism

RPL30	Ribosomal Protein L30	RNA metabolism
RPS13	Ribosomal Protein S13	RNA metabolism
RPS16	Ribosomal Protein S16	RNA metabolism
RPS19	Ribosomal Protein S19	RNA metabolism
RTRAF	RNA Transcription, Translation and Transport Factor	RNA metabolism
SSBP1	Single Stranded DNA Binding Protein 1	DNA metabolism
SUGT1	SGT1 Homolog, MIS12 Kinetochore Complex Cochaperone	DNA/RNA metabolism
THAP4	THAP Domain Containing 4	RNA/DNA metabolism
U2AF2	U2 Small Nuclear RNA Auxiliary Factor 2	RNA metabolism
WDR82	WD Repeat Domain 82	DNA metabolism

Supplementary Table 6. Abnormally-regulated UPS proteins in proteome across age groups.

Protein ID	Protein name	Function
CAND1	Cullin-associated NEDD8-dissociated protein 1	UPS
CACYBP	Calcyclin Binding Protein	UPS
DCUN1D1	Defective In Cullin Neddylation 1 Domain Containing 1	UPS
PSMA4	Proteasome 20S Subunit Alpha 4	UPS
PSMC5	Proteasome 26S Subunit, ATPase 5	UPS
PSMD1	Proteasome 26S Subunit, Non-ATPase 1	UPS
PSME3	Proteasome Activator Subunit 3	UPS
TRIM36	Tripartite Motif Containing 36	UPS
UBA52	Ubiquitin A-52 Residue Ribosomal Protein Fusion Product 1	UPS
UBA6	Ubiquitin Like Modifier Activating Enzyme 6	UPS
UBE2I	Ubiquitin Conjugating Enzyme E2 I	UPS
UBE2K	Ubiquitin Conjugating Enzyme E2 K	UPS
UBQLN1	Ubiquilin 1	UPS
UBXN1	UBX Domain Protein 1	UPS
UCHL3	Ubiquitin C-Terminal Hydrolase L3	UPS
UFM1	Ubiquitin Fold Modifier 1	UPS
UFL1	UFM1 Specific Ligase 1	UPS

Supplementary Table 7. Miscellaneous abnormally-regulated proteins in proteome across age groups.

Protein ID	Protein name	Function
ABHD16A	Abhydrolase Domain Containing 16A, Phospholipase	Hydrolase
ACAA1	Acetyl-CoA Acyltransferase 1	Fatty acid metabolism
ACADSB	Acyl-CoA Dehydrogenase Short/Branched Chain	Fatty acid metabolism
ACSF3	Acyl-CoA Synthetase Family Member 3	Fatty acid metabolism
ADO	2-Aminoethanethiol Dioxygenase	Dioxygenase
ADSS2	Adenylosuccinate Synthase 2	Adenylsynthase
AHSA1	Activator Of HSP90 ATPase Activity 1	Co-chaperone
ALDH5A1	Aldehyde Dehydrogenase 5 Family Member A1	GABA metabolism
APOD	Apolipoprotein D	Lipoprotein
APOL2	Apolipoprotein L2	Lipoprotein
APOOL	Apolipoprotein O Like	Lipoprotein
APRT	Adenine Phosphoribosyltransferase	Phophotransferase
ARFIP1	ADP Ribosylation Factor Interacting Protein 1	GTPase regulator
ARL15	ADP Ribosylation Factor Like GTPase 15	GTPase regulator
ARL8A	ADP Ribosylation Factor Like GTPase 8A	GTPase regulator

ASS1	Argininosuccinate Synthase 1
ATG5	Autophagy Related 5
ATL1	Atlastin GTPase 1
B4GAT1	Reta-1 4-Glucuronyltransferase 1
CAB39	Calcium-binding protein 39
CALM3	Calmodulin 3
CARNS1	Carnosine Synthese 1
CHDH	Choline Dehydrogenese
COA3	Cytochrome C Oxidase Assembly Factor 3
CDAD1	Collular Datinoia Acid Binding Protain 1
CKABF1 CSE1I	Chromosome Sagragation 1 Like
CVP5P1	Cutochrome P5 Deductore 1
CIBSKI	Cytochiome B3 Reductase 1
DCVR	Disorboryl And L. Xylulosa Deductore
DCAR	Dicarbonyl And L-Aylulose Reductase
DDI DNA ICZ	D-Dopachrome Tautomerase
DNAJC/	Dhaj Heat Shock Protein Family (Hsp40) Member C/
FIJAI	Coagulation Factor XIII A Chain
FABP5	Fatty Acid Binding Protein 5
FABP5	Fatty Acid Binding Protein 5
FAM117A	Family With Sequence Similarity 117 Member A
FAM81A	Family With Sequence Similarity 81 Member A
GLRX	Glutaredoxin
GMDS	GDP-Mannose 4,6-Dehydratase
GNA13	G Protein Subunit Alpha 13
GNAO1	G Protein Subunit Alpha O1
GNB1	G Protein Subunit Beta 1
GNB2	G Protein Subunit Beta 2
GSTM1	Glutathione S-Transferase Mu 1
GSTO1	Glutathione S-Transferase Omega 1
HBA1	Hemoglobin Subunit Alpha 1
IDH2	Isocitrate Dehydrogenase (NADP(+)) 2
LIPE	Lipase E, Hormone Sensitive Type
LRP1	LDL Receptor Related Protein 1
LRPAP1	LDL Receptor Related Protein Associated Protein 1
LRRC59	Leucine Rich Repeat Containing 59
MAT2B	Methionine Adenosyltransferase 2B
MT-CO1	MT-Encoded Cytochrome C Oxidase I
MT-ND5	MT-Encoded NADH: Ubiquinone Oxidoreductase Core S. 5
MTURN	Maturin
MTX2	Metaxin 2
NDUFAF3	NADH:Ubig. Oxidoreductase Complex Assembly Factor 3
NHLRC2	NHL Repeat Containing 2
NIT2	Nitrilase Family Member 2
NLN	Neurolysin
NMT1	N-Myristoyltransferase 1
OGN	Osteoglycin
OLA1	Obg like ATPase 1
PAFAH1B2	Platelet Activating Factor Acetylhydrolase 1b Catalytic 2
PDCD5	Programmed Cell Death 5
PEF1	Penta-EF-Hand Domain Containing 1
PFDN5	Prefoldin Subunit 5
PPT1	Palmitovl-Protein Thioesterase 1
PRXL2B	Peroxiredoxin Like 2B
PLIDP	Pseudouridine 5'-Phosphatase
RAPIGDS1	Ran1 GTPase-GDP Discociation Stimulator 1
RRAS	RAS related

Arginine metabolism Autophagy GTPase Transferase activity Kinase activator Ezymatic cofactor Synthase Dehydrogenase Mitochondria resp. chain Carotenoid metabolism Nuclear transport Fatty acid metabolism Mitochondria resp. chain Oxidoreductase activity Decarboxylase activity Chaperone regulation Coagulation Fatty acid metabolism Fatty acid metabolism Unknown function Unknown function Redox system Metabolic enzyme GTPase modulator GTPase modulator **GTPase** activity GTPase activity Redox system Redox system Oxygen transport Mitochondrial protein Lipid metabolism Lipid signaling Lipid signaling Nuclear transport Adenosyltransferase Mitochondrial protein Mitochondrial protein Intracellular signaling Mitochondrial protein Mitochondrial protein Unknown function Histidine metabolism Peptidase Fatty acid metabolism Growth factor GTPase Hydrolase activity Apoptosis Complex scaffold protein Chaperone Fatty acid metabolism Reductase Unknown function GTPases GTPases

S100B	S100 Calcium Binding Protein B	Cellular signaling
SAR1A	Secretion Associated Ras Related GTPase 1A	GTPase
SDHA	Succinate Dehydrogenase Complex Flavoprotein Subunit A	Mitochondria resp. chain
SDHD	Succinate Dehydrogenase Complex Subunit D	Mitochondria resp. chain
SH3BGRL3	SH3 Domain Binding Glutamate Rich Protein Like 3	GTPase activator
SPR	Sepiapterin Reductase	Reductase
SUB1	SUB1 Regulator of Transcription	Transcription factor
SUCLG2	Succinate-CoA Ligase GDP-Forming Subunit Beta	Glucose metabolism
TXNDC17	Thioredoxin Domain Containing 17	Redox system
YWHAB	Tryptophan 5-Monooxygenase Activation Protein Beta	Monooxygenase activity
YWHAG	Tryptophan 5-Monooxygenase Activation Protein Gamma	Monooxygenase activity
YWHAZ	Tryptophan 5-Monooxygenase Activation Protein Zeta	Monooxygenase activity

Supplementary Table 8. Abnormally-regulated phosphorylated kinases in phosphoproteome across age groups.

Protein ID	Protein name	Function
AATK	Apoptosis Associated Tyrosine Kinase	Kinase
AHNAK	AHNAK Nucleoprotein	Kinase component
Akap12	A-kinase anchor protein 12 (AKAP-12)	Kinase component
BAZ1B	Bromodomain Adjacent to Zinc Finger Domain 1B	Kinase TF
BRSK2	Serine/threonine-protein kinase BRSK2	Cytoskeleton regulator
CAMK1D	Calcium/Calmodulin Dependent Protein Kinase 1D	Calcium dependent kinase
CAMK2A	Calcium/calmodulin-dependent protein kinase type II subunit α	Calcium dependent kinase
CAMK2B	Calcium/calmodulin-dependent protein kinase	Calcium dependent kinase
CAMK2G	Calcium/calmodulin-dependent protein kinase type II subunit γ	Calcium dependent kinase
CAMKV	CaM Kinase Like Vesicle Associated	Vesicle associated kinase
СКВ	Creatine Kinase B	Kinase activity
DCLK1	Doublecortin Like Kinase 1	Cytoskeleton regulator
DYRK1A	Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A	Kinase with multiple targets
KNDC1	Kinase Non-Catalytic C-Lobe Domain Containing 1	Regulation dendrite growth
MINK1	Misshapen Like Kinase 1	Synapse regulation
NUAK1	NUAK Family Kinase 1	Cell adhesion control
PACSIN1	Protein Kinase C And Casein Kinase Substrate in Neurons 1	Cytoskeleton regulator
PAK1	P21 (RAC1) Activated Kinase 1	Cytoskeleton regulator
PI4KA	Phosphatidylinositol 4-Kinase α	Kinase with multiple targets
PIK3C2A	Phosphatidylinositol-4-P-3-Kinase Catalytic Subunit Type 2 α	Kinase with multiple targets
PIP5K1C	Phosphatidylinositol-4-P-5-Kinase Type 1 Gamma	Kinase with multiple targets
PRKCA	Protein Kinase C Alpha	Kinase with multiple targets
PRKCD	Protein Kinase C Delta	Kinase with multiple targets
PRKCG	Protein Kinase C Gamma	Kinase with multiple targets
PRKRA2A	Protein Kinase CAMP-Dependent Type II Regulatory Subunit α	Kinase with multiple targets
SRC	SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase	Kinase with multiple targets
STK39	Serine/Threonine Kinase 39	Kinase with multiple targets
TAB3	TGF-Beta Activated Kinase 1 (MAP3K7) Binding Protein 3	Inflammatory kinase
PIP4P2	Phosphatidylinositol-4,5-Bisphosphate 4-Phosphatase 2	Phosphatase
PPFIBP1	PPFIA Binding Protein 1	Phosphatase interactor
PPME1	Protein phosphatase methylesterase 1 (PME-1)	Phosphatase
PPP1R14A	Protein Phosphatase 1 Regulatory Inhibitor Subunit 14A	Phosphatase
PPP1R2	Protein Phosphatase 1 Regulatory Subunit 2	Phosphatase regulation
PPP1R7	Protein Phosphatase 1 Regulatory Subunit 7	Phosphatase regulation

PPP3CB	Protein Phosphatase 3 Catalytic Subunit Beta	Phosphatase
PPP6R1	Protein Phosphatase 6 Regulatory Subunit 1	Phosphatase regulation

Protein ID	Protein name	Function
ABLIM1	Actin Binding LIM Protein 1	Cytoskeletal component
ADD1	Adducin 1	Cytoskeletal component
ADD2	Adducin 2	Cytoskeletal component
ADGRB1	Adhesion G Protein-Coupled Receptor B1	Synapse component
AHNAK	AHNAK Nucleoprotein	Structural component
ARHGAP32	Rho GTPase Activating Protein 32	Cytoskeletal component
BCAS3	BCAS3 Microtubule Associated Cell Migration Factor	Cytoskeletal component
CAMSAP2	Calmodulin-regulated spectrin-associated protein 2	Cytoskeleton regulator
CCDC6	Coiled-Coil Domain Containing	Cytoskeletal component
CCP110	Centriolar Coiled-Coil Protein 110	Cytoskeleton regulator
CEP170	Centrosomal protein of 170 kDa	Cytoskeletal component
CEP170B	Centrosomal protein 170B	Cytoskeletal component
CFL2	Cofilin 2	Cytoskeleton regulator
CLIP1	CAP-Gly Domain Containing Linker Protein 1	Cytoskeletal component
CLTA	Clathrin Light Chain A	Cytoskeletal component
CRYAB	Crystallin Alpha B	Cytoskeletal component
CTTN	Cortactin	Cytoskeletal regulator
DBN1	Drebrin 1	Cytoskeletal component
DPYSL2	Dihydropyrimidinase Like 2	Cytoskeletal regulator
DPYSL4	Dihydropyrimidinase Like 4	Cytoskeletal regulator
DPYSL5	Dihydropyrimidinase Like 5	Cytoskeletal component
DSP	Desmoplakin	Cytoskeletal component
DVL1	Dishevelled Segment Polarity Protein 1	Cytoskeletal regulator
ERMN	Ermin	Cytoskeletal component
FKBP15	FKBP Prolyl Isomerase Family Member 15	Cytoskeletal regulator
FMNL2	Formin Like 2	Cytoskeletal regulator
FRMD4A	FERM domain-containing protein 4A	Cytoskeletal regulator
FSD1	Fibronectin Type III and SPRY Domain Containing 1	Cytoskeletal regulator
GIT1	GIT ArfGAP 1	Cytoskeletal regulator
HTT	Huntingtin	Cytoskeletal component
ITSN2	Intersectin 2	Cytoskeletal component
JAKMIP3	Janus Kinase and Microtubule Interacting Protein 3	Cytoskeletal component
KANK2	KN Motif and Ankyrin Repeat Domains 2	Cytoskeletal regulator
KIF3A	Kinesin Family Member 3A	Cytoskeletal component
MAP1A	Microtubule-associated protein 1A (MAP-1A)	Cytoskeletal component
MAP1B	Microtubule-associated protein 1B (MAP-1B)	Cytoskeletal component
MAP2	Microtubule-associated protein 2 (MAP-2)	Cytoskeletal component
MAP7D1	MAP7 Domain Containing 1	Cytoskeletal component
MAPRE2	Microtubule Associated Protein RP/EB Family Member 2	Cytoskeletal component
MATR3	Matrin 3	Nuclear matrix protein
MYO18A	Myosin XVIIIA	Cytoskeletal component

Supplementary Table 9. Abnormally-regulated phosphorylated proteins of the cytoskeleton in phosphoproteome across age groups.

NAV1	Neuron Navigator 1	Cytoskeletal component
NDEL1	NudE Neurodevelopment Protein 1 Like 1	Cytoskeletal regulator
NDRG1	N-Myc Downstream Regulated 1	Cytoskeletal component
NEFH	Neurofilament heavy polypeptide (NF-H)	Cytoskeletal component
NEFM	Neurofilament medium polypeptide (NF-M)	Cytoskeletal component
PCLO	Piccolo Presynaptic Cytomatrix Protein	Cytoskeletal component
PCM1	Pericentriolar Material 1	Cytoskeletal component
PHLDB1	Pleckstrin Homology Like Domain Family B Member 1	Cytoskeletal component
PKP2	Plakophilin 2	Cytoskeleton component
PKP4	Plakophilin 4	Cytoskeleton component
PLXNA1	Plexin A1	Cytoskeletal regulator
PPFIA3	PTPRF Interacting Protein Alpha 3	Cytoskeletal component
PPFIBP1	PPFIA Binding Protein 1	Cytoskeletal component
RAB11FIP5	RAB11 Family Interacting Protein 5	Cytoskeletal trafficking
RTKN	Rhotekin	Cytoskeletal regulator
SEPTIN4	Septin 4	Cytoskeletal component
SH2D5	SH2 Domain Containing 5	Membrane protein
SH3KBP1	SH3 Domain Containing Kinase Binding Protein 1	Cytoskeletal regulator
SHANK1	SH3 And Multiple Ankyrin Repeat Domains 1	Cytoskeletal component
SHISA6	Protein shisa-6	Cytoskeletal component
SORBS1	Sorbin And SH3 Domaing Containing 1	Cytoskeletal component
SORBS2	Sorbin And SH3 Domain Containing 2	Cytoskeletal component
SPP1	Osteopontin	ECM component
SRCIN1	SRC kinase-signaling inhibitor 1	Cytoskeletal regulator
SRGAP2	SLIT-ROBO Rho GTPase Activating Protein 2	Cytoskeletal regulator
WIPF2	WAS/WASL-interacting protein family member 2	Cytoskeletal regulator
TIAM1	TIAM Rac1 Associated GEF 1	Cytoskeletal component
TNIK	TRAF2 And NCK Interacting Kinase	Cytoskeletal regulator
TUBA3D	Tubulin Alpha 3D	Cytoskeletal component
TUBB	Tubulin Beta Class I	Cytoskeletal component
TUBB4A	Tubulin Beta 4A Class IVa	Cytoskeletal component
VIM	Vimentin	Cytoskeletal component
WDR47	WD Repeat Domain 47	Cytoskeletal component

Supplementary Table 10. Abnormally-regulated phosphorylation of membrane-associated proteins in phosphoproteome across age groups.

Protein ID	Protein name	Function
AAGAB	Alpha And Gamma Adaptin Binding Protein	Vesicles membranes
ABCA2	ATP Binding Cassette Subfamily A Member 2	Membrane transporter
ABCC8	ATP Binding Cassette Subfamily C Member 8	Membrane transporter
ADRA2A	Adrenoceptor Alpha 2A	Membrane protein
ANK2	Ankyrin-2	Integral membrane protein
ANK3	Ankyrin-3 (Fragment)	Integral membrane protein
ANKRD13D	Ankyrin Repeat Domain 13D	Integral membrane protein
ANKS1B	Ankyrin Repeat and Sterile α Motif Domain Containing 1B	Integral membrane protein
APBA2	Amyloid Beta Precursor Protein Binding Family A Member 2	Vesicular trafficking protein
APLP2	Amyloid Beta Precursor Like Protein 2	Integral membrane protein

ARFGEF2	ADP Ribosylation Factor Guanine Nucleotide Exchange F2
ARGAP1	ADP Ribosylation Factor GTPase Activating Protein 1
ASIC2	Acid Sensing Ion Channel Subunit 2
ATP1A1	ATPase Na+/K+ Transporting Subunit Alpha 1
ATP2B1	ATPase Plasma Membrane Ca2+ Transporting 1
ATP2B2	ATPase Plasma Membrane Ca2+ Transporting 2
BASP1	Brain acid soluble protein 1
BCAS1	Brain Enriched Myelin Associated Protein 1
BYSL	Bystin Like
CADPS	Calcium Dependent Secretion Activator
CASKIN1	Caskin-1 (CASK-interacting protein 1)
CDH22	Cadherin 22
CLDN11	Claudin 11
CLINT1	Clathrin Interactor 1
CNP	2',3'-Cyclic-Nucleotide 3'-Phosphodiesterase
CTNND1	Catenin Delta 1
CTNND2	Catenin Delta 2
DOCK4	Dedicator Of Cytokinesis 4
EHD3	EH domain-containing protein 3
EPB41L1	Erythrocyte Membrane Protein Band 4.1 Like 1
EPB41L3	Erythrocyte membrane protein band 4.1-like 3
EPN1	Epsin-1 (EPS-15-interacting protein 1)
EXOC2	Exocyst Complex Component 2
FAM234B	Family With Sequence Similarity 234 Member B
FGF12	Fibroblast Growth Factor 12
FN1	Fibronectin 1
GPR34	G Protein-Coupled Receptor 34
GPRIN3	GPRIN Family Member 3
GRIP1	Glutamate Receptor Interacting Protein 1
ITSN1	Intersectin-1 (EH and SH3 domains protein 1)
ITSN2	Intersectin-2 (EH and SH3 domains protein 2)
KCNB1	Potassium voltage-gated channel subfamily B member 1
KCNQ2	Potassium Voltage-Gated Channel Subfamily Q Member 2
KCNQ5	Potassium Voltage-Gated Channel Subfamily Q Member 5
KCTD16	Potassium Channel Tetramerization Domain Containing 16
KIAA1107	AP2-Interacting Clathrin-Endocytosis Protein
KIAA1109	Transmembrane protein KIAA1109
MARCKS	Myristoylated Alanine Rich Protein Kinase C Substrate
MBP	Myelin Basic Protein
MFF	Mitochondrial Fission Factor
MTCH1	Mitochondrial Carrier 1
NFASC	Neurofascin
NRCAM	Neuronal Cell Adhesion Molecule
NUMBL	NUMB Like Endocytic Adaptor Protein
OSBP	Oxysterol Binding Protein
PEX5L	Peroxisomal Biogenesis Factor 5 Like
PHF24	PHD Finger Protein 24
PLP1	Proteolipid Protein 1

Vesicular trafficking protein Vesicles membranes Membrane transporter Membrane transporter Membrane transporter Membrane transporter Membrane component Membrane protein Membrane cell adhesion Membrane vesicle protein Membrane component Membrane cell junction Membrane cell junction Vesicle membrane protein Membrane component Membrane cell junction Membrane cell junction Membrane cell junction Vesicle membrane protein Synapse membrane protein Synapse membrane protein Vesicles membrane Vesicles membrane Transmembrane protein Membrane protein Membrane cell adhesion Integral membrane protein Membrane component Membrane component Membrane/vesicle protein Membrane/vesicle protein Membrane ion channel Membrane ion channel Membrane ion channel Membrane ion channel Vesicles membrane Membrane/vesicle protein Membrane protein Membrane protein Vesicles membrane Membrane transporter Membrane protein Membrane protein Vesicles membrane Vesicles transport Vesicles membrane Synapse membrane Membrane protein

PPFIA3	PTPRF Interacting Protein Alpha 3	Membrane protein
RAB11A	Member RAS Oncogene Family	Membrane protein
RAB3IP	RAB3A Interacting Protein	Vesicles membrane
RALBP1	RalA Binding Protein 1	Vesicles membrane
RETREG2	Reticulophagy Regulator Family Member 2	Transmembrane protein
RETREG3	Reticulophagy Regulator Family Member 3	Transmembrane protein
RIC8A	RIC8 Guanine Nucleotide Exchange Factor A	Transmembrane protein
RIMS1	Regulating Synaptic Membrane Exocytosis 1	Vesicles membrane
RTN1	Reticulon 1	Membrane trafficking
SCN1A	Sodium Voltage-Gated Channel Alpha Subunit 1	Membrane transporter
SGIP1	SH3-containing GRB2-like protein 3-interacting protein 1	Vesicles membrane
SH3PXD2A	SH3 And PX Domains 2A	Membrane protein
SLC12A5	Solute carrier family 12 member 5	Membrane transporter
SLC2A11	Solute Carrier Family 2 Member 11	Membrane transporter
SLC4A4	Solute Carrier Family 4 Member 4	Membrane transporter
SLC9A6	Solute Carrier Family 9 Member A6	Membrane transporter
SMIM13	Small Integral Membrane Protein 13	Membrane transporter
SNAP91	Synaptosome Associated Protein 91	Vesicles membrane
SNX17	Sorting Nexin 17	Vesicles membrane
SORT1	Sortilin 1	Vesicles membrane
SPTBN1	Spectrin Beta, Non-Erythrocytic 1	Membrane protein
SPTBN2	Spectrin Beta, Non-Erythrocytic 2	Membrane protein
STARD10	StAR Related Lipid Transfer Domain Containing 10	Vesicles membranes
STX1A	Syntaxin 1A	Vesicles membranes
STX1B	Syntaxin 1B	Vesicles membranes
STX7	Syntaxin 7	Vesicles membranes
STXBP1	Syntaxin Binding Protein 1	Vesicles membranes
SV2A	Synaptic Vesicle Glycoprotein 2A	Vesicles membranes
SYN1	Synapsin-1 (Synapsin I)	Membrane component
SYNGR3	Synaptogyrin 3	Vesicles membranes
SYNJ1	Phosphoinositide 5-phosphatase (EC 3.1.3.36)	Vesicles membranes
SYNRG	Synergin Gamma	Vesicles membranes
TBC1D1	TBC1 Domain Family Member 1	Vesicles membranes
TBC1D5	TBC1 Domain Family Member 5	Vesicles membranes
TJP2	Tight junction protein ZO-2	Membrane component
TMCC1	Transmembrane And Coiled-Coil Domain Family 1	Membrane protein
TMEM94	Transmembrane Protein 94	Membrane protein
TNKS1BP1	Tankyrase 1 Binding Protein 1	Membrane protein
TPRG1L	Tumor protein p63-regulated gene 1-like protein	Membrane component
VAPB	VAMP Associated Protein B And C	Vesicles membrane
WASHC2A	WASH Complex Subunit 2A	Vesicles membrane

Supplementary Table 11. Abnormally-regulated phosphorylation of DNA- and RNA-regulating proteins in phosphoproteome across age groups.

Protein ID	Protein name	Function
BCLAF1	BCL2 Associated Transcription Factor 1	Transcription factor
BRD3	Bromodomain Containing 3	DNA/Histone remodeling

DCAF6	DDB1 And CUL4 Associated Factor 6	DNA/nuclear receptors binding
DDX20	DEAD-Box Helicase 20	RNA metabolism
DEK	DEK Proto-Oncogene	DNA metabolism
DGCR8	DGCR8 Microprocessor Complex Subunit	RNA metabolism
EIF3CL	Eukaryotic Translation Initiation Factor 3 Subunit C Like	RNA/protein synthesis
EIF3D	Eukaryotic Translation Initiation Factor 3 Subunit D	RNA/protein synthesis
ESF1	ESF1 Nucleolar Pre-RRNA Processing Protein	RNA metabolism
GPATCH2	G-Patch Domain Containing 2	RNA metabolism
HDAC4	Histone Deacetylase 4	DNA/Histone remodeling
HDAC5	Histone Deacetylase 5	DNA/Histone remodeling
HDLBP	High Density Lipoprotein Binding Protein	DNA/RNA metabolism
HNRNPUL2	Heterogeneous Nuclear Ribonucleoprotein U Like 2	RNA metabolism
LEO1	LEO1 Homolog, Paf1/RNA Polymerase II Complex	RNA metabolism
MLIP	Muscular LMNA Interacting Protein	DNA/RNA metabolism
MRE11	MRE11 Homolog, 2x Strand Break Repair Nuclease	DNA metabolism
NAP1L4	Nucleosome Assembly Protein 1 Like 4	DNA metabolism
NCL	Nucleolin (Protein C23)	RNA/protein synthesis
PCNP	PEST Proteolytic Signal Containing Nuclear Protein	DNA metabolism
PHRF1	PHD And Ring Finger Domains 1	RNA metabolism
PML	PML Nuclear Body Scaffold	Transcription factor
POLR2F	RNA Polymerase II, I And III Subunit F	RNA metabolism
PPIL3	Peptidylprolyl Isomerase Like 3	RNA metabolism
PRPF4B	Pre-MRNA Processing Factor 4B	RNA metabolism
PRR12	Proline-rich protein 12	DNA metabolism
PURA	Purine Rich Element Binding Protein A	DNA metabolism
PWP1	PWP1 Homolog, Endonuclein	DNA/RNA metabolism
R3HDM2	R3H Domain Containing 2	DNA metabolism
RPAP3	RNA Polymerase II Associated Protein 3	RNA metabolism
SCAF1	SR-Related CTD Associated Factor 1	RNA metabolism
SIRT2	Sirtuin 2	DNA metabolism
SLTM	SAFB-like transcription modulator	DNA metabolism
Smarcc2	SWI/SNF complex subunit SMARCC2	DNA metabolism
SPINDOC	Spindlin Interactor and Repressor of Chromatin	DNA metabolism
SRRM1	Serine And Arginine Repetitive Matrix 1	RNA metabolism
SRRM2	Serine/Arginine Repetitive Matrix 2	RNA metabolism
TCEAL3	Transcription elongation factor A protein-like 3	RNA/Protein synthesis
TP53BP1	Tumor Protein P53 Binding Protein 1	DNA metabolism
VIRMA	Vir Like M6A Methyltransferase Associated	RNA metabolism
WDR13	WD Repeat Domain 13	Chromatin structure
XPC	XPC Complex Subunit	DNA metabolism
ZNF704	Zinc finger protein 704	Transcription factor
ZRANB2	Zinc Finger RANBP2-Type Containing 2	RNA metabolism

Supplementary Table 12. Abnormally-regulated phosphorylation of UPS proteins in phosphoproteome across age groups.

Protein ID	Protein name	Function
CAND1	Cullin-associated NEDD8-dissociated protein 1	UPS
FBXO2	F-Box Protein 2	UPS
FBXW9	F-Box and WD Repeat Domain Containing 9	UPS
HECW1	HECT, C2 And WW Domain Containing E3 Ubiquitin Protein Ligase 1	UPS
KBTBD11	Kelch Repeat and BTB Domain Containing 11	UPS

MYCBP2	MYC Binding Protein 2	UPS
Nedd41	HECT-type E3 ubiquitin transferase (EC 2.3.2.26)	UPS
NEMF	Nuclear Export Mediator Factor	UPS
STT3B	STT3 Oligosaccharyltransferase Complex Catalytic Subunit B	UPS
TRIM33	Tripartite Motif Containing 33	UPS
UBE4B	Ubiquitination Factor E4B	UPS
UBR4	Ubiquitin Protein Ligase E3 Component N-Recognin 4	UPS
USP20	Ubiquitin Specific Peptidase 20	UPS
VCPIP1	Valosin Containing Protein Interacting Protein 1	UPS
ZFAND5	Zinc Finger AN1-Type Containing 5	UPS

Supplementary Table 13. Abnormally-regulated phosphorylation of miscellaneous proteins in phosphoproteome across age groups.

Protein ID	Protein name	Function
ACACA	Acetyl-CoA carboxylase 1 (ACC1)	Fatty acid biosynthesis
ATG2B	Autophagy-related protein 2 homolog B	Autophagy
ARGLU1	Arginine And Glutamate Rich 1	Nuclear receptor regulator
CBR1	Carbonyl Reductase 1	Multitarget reductase
CBR3	Carbonyl Reductase 3	Multitarget reductase
CCDC177	Coiled-Coil Domain Containing 177	Chromosome structure
CCDC92	Coiled-Coil Domain Containing 92	Antiviral protein
FAM131B	Family With Sequence Similarity 131 Member B	MAPK signaling
FDX1	Ferredoxin 1	Electron transfer activity
HMGCS1	3-Hydroxy-3-Methylglutaryl-CoA Synthase 1	Lipid metabolism
IGFBP5	Insulin Like Growth Factor Binding Protein 5	Growth factor
LIPE	Lipase E, Hormone Sensitive Type	Lipid metabolism
LRRFIP2	LRR Binding FLII Interacting Protein 2	Inflammation
LUZP1	Leucine Zipper Protein 1	Nuclear unknown function
MCF2L	MCF.2 Cell Line Derived Transforming Sequence Like	GTPase modulator
MCRIP1	MAPK Regulated Corepressor Interacting Protein 1	MAP kinase signaling
NGEF	Neuronal Guanine Nucleotide Exchange Factor	GTPase activator
PDCD5	Programmed Cell Death 5	Apoptosis
PDE4B	Phosphodiesterase 4B	cAMP signaling pathway
PLCB1	Phospholipase C Beta 1	PI Metabolism
PLEKHA6	Pleckstrin Homology Domain Containing A6	PI Metabolism
PTGES3	Prostaglandin E Synthase 3	Chaperone
RABL6	RAB, Member RAS Oncogene Family Like 6	GTPases
RALGAPA1	Ral GTPase Activating Protein Catalytic Subunit Alpha 1	GTPase regulator
RANBP1	RAN Binding Protein 1	Nuclear transport
RAP1GAP2	RAP1 GTPase Activating Protein 2	GTPase regulator
RASGRF1	Ras Protein Specific Guanine Nucleotide Releasing Factor 1	GTPase regulator
SGSM1	Small G Protein Signaling Modulator 1	GTPase regulator
SGTA	Small Glutamine Rich Tetratricopeptide Repeat Co-Chaperone α	Unknown function
SHC3	SHC Adaptor Protein 3	Trk signaling
SRGAP3	SLIT-ROBO Rho GTPase Activating Protein 3	GTPase activator
ST13	ST13 Hsp70 Interacting Protein	Heat shock protein modulator
SUDS3	SDS3 Homolog, SIN3A Corepressor Complex Component	Nuclear component regulator
TTC7B	Tetratricopeptide Repeat Domain 7B	Signaling pathway
YWHAB	Tryptophan 5-Monooxygenase Activation Protein Beta	Monooxygenase activity
YWHAG	Tryptophan 5-Monooxygenase Activation Protein Gamma	Monooxygenase activity
YWHAZ	Tryptophan 5-Monooxygenase Activation Protein Zeta	Monooxygenase activity