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Abstract
Optimal routing of goods is crucial when addressing supply chain challenges. Within this

context, grain transportation stands out as a significant sub-issue. For this research,grain

transportation is defined as the process of determining the best routes between grain eleva-

tors and railway stations. As in most supply chain and path finding problems, this process is

also challenging due to the complexity and dynamics of the domain. In this work, we propose

a novel application that uses the KNowledge Acquisition and Representation Methodology

(KNARM) and the KnowWhereGraph to enhance the path-finding process during trans-

portation of goods, in this specific case grain. KNARM is a methodology that allows for

creating and maintaining modular ontologies that can represent complex domains and sup-

port reasoning. KnowWhereGraph, is a densely connected, cross-domain knowledge graph

and geo-enrichment service stack that provides rich and up-to-date geospatial information.

By integrating these two components, our application aims to leverage the semantic and

spatial knowledge to find more accurate and efficient paths for grain transportation. To

find the optimal path, we use the A* algorithm, which is a heuristic search algorithm that

can find the optimal path between two locations, taking into account the criteria of cost,

time, and risk. The A* algorithm can also adapt to dynamic and uncertain situations,

such as changes in weather, traffic, or security conditions by updating the paths. We also

discuss the challenges and limitations that we faced during the ontology development and

data integration process, and how we resolved or mitigated them. Our work demonstrates

the potential of using ontologies and knowledge graphs to enhance path-finding problems in

complex and dynamic domains. We show that our application can find accurate, efficient,

and robust paths for grain transportation, based on the feedback from domain experts and

GIS experts. We also provide new insights into the modeling of the factors that may affect

grain transportation in Ukraine, such as weather, traffic, and security conditions.
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Chapter 1

INTRODUCTION

Grain is one of the most important agricultural products in Ukraine, accounting for about

15% of its GDP and 40% of its exports. However, the ongoing military invasion with Russia

has disrupted the transportation infrastructure and threatened the security and sustainability

of grain trade. In this work, we aim to answer the following research question: How can we use

semantic and spatial knowledge to enhance the path-finding process for grain transportation

in Ukraine under a military invasion situation accurately and dynamically?

Finding optimal paths for grain transportation is a challenging problem that requires

sophisticated algorithms and data. The paths should minimize the distance travelled, max-

imize the grain storage capacity, and reduce the risk of disruption. Existing solutions often

rely on static maps and historical data, overlooking the dynamic and uncertain nature of

real-world scenarios. On the other hand, knowledge graphs are capable of integrating a wide

variety of data sources in a semantically rigorous way, according to well-established W3C

standards1–3. Due to their ability to bridge human conceptualization and machine under-

standing4 and a powerful standard for recording provenance5, results drawn from them are

also inherently explainable, and interpretable.

Our research focuses on addressing this gap by leveraging semantic and spatial knowledge

to provide dynamic solutions tailored to the unique challenges of grain transportation. While
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some similarities exist with other problems involving dynamic and uncertain situations, such

as military logistics, our work distinguishes itself through its domain specificity, criteria, and

data sources. In doing so, we not only offer valuable insights and methodologies for solving

these transportation challenges but also tackle specific nuances that set our problem apart.

Furthermore, our research has broader implications. It extends to various applications

demanding dynamic solutions for transportation optimization. For instance, finding optimal

paths in transportation networks with random link travel times6, hierarchical optimization

of optimal path finding for transportation applications7, and global optimal path to ensure a

certain chance of reaching the destination on time in a network with randomness8 all require

sophisticated algorithms and data analysis. These applications share the common thread

of dynamic and uncertain conditions, including factors like traffic congestion, accidents,

and weather conditions, impacting path cost, time, and risk. Consequently, our research

contributes valuable insights and methods that can be applied to these related problems,

leveraging semantic and spatial knowledge to enhance decision-making. We hypothesize

that using knowledge graphs and semantic representations of path-finding related data, we

will improve performance of finding relevant paths by integrating the heuristics faster using

the data entered in knowledge graphs.

In this work, we present a novel application that uses the KNowledge Acquisition and

Representation Methodology (KNARM)9 and the KnowWhereGraph10 to enhance the path-

finding process. KNARM is a methodology that allows for creating and maintaining modular

ontologies that can represent complex domains and support reasoning. KnowWhereGraph

is a densely connected, cross-domain knowledge graph and geo-enrichment service stack that

provides rich and up-to-date geospatial information. By integrating these two components,

our application can leverage the semantic and spatial knowledge to find more accurate and

efficient paths for grain transportation, especially when we need to account for many different

heuristics. To achieve this, we use the A* algorithm11, which is a heuristic search algorithm

that can find the optimal path between two locations, taking into account the criteria of

2



distance, grain storage, and risk. The A* algorithm can also adapt to the rapdly changing

and uncertain situations, such as changes in weather, traffic, or security conditions, by

updating the path based on the latest information from the KnowWhereGraph.

The rest of this thesis is organized as follows: In chapter 2, we present a literature

review on the related work in the fields of path-finding, ontology engineering, and geospatial

knowledge graphs. We discuss the main challenges and opportunities in these fields, and

identify the gaps and limitations that our work aims to address. In chapter 3, we describe

the design and implementation of our application, including the ontology development, the

data integration, and the path-finding algorithm. In chapter 4, we present the results of

our application, and elaborating on the main findings of this research and implications of

our research for theoretical basis of computer science. And in chapter 5, we discuss some

limitations and future directions for improvement. We also present our evaluation plan for

our application using real-world data of grain transportation in Ukraine, and suggest some

possible extensions or applications of our work to other domains or problems that can benefit

from semantic and spatial knowledge.
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Chapter 2

LITERATURE REVIEW

In this chapter, we review the related work in the fields of knowledge graphs and optimiza-

tion algorithms, which are the main components of our path-finding application. Knowledge

graphs are structured representations of knowledge that can support semantic interoperabil-

ity, reasoning, and querying. Optimization algorithms are methods that can find optimal

or near-optimal solutions for complex problems that involve multiple objectives, constraints,

and uncertainties.

Both fields have been widely studied and applied in various domains, such as artificial

intelligence, information retrieval, natural language processing. However, there are still

many challenges and opportunities for improving the performance and accuracy of knowledge

graphs and optimization algorithms, especially in dynamic and uncertain environments such

as war zones. Therefore, we aim to address the following research questions in this literature

review:

• How are knowledge graphs constructed, maintained, and utilized in various domains,

and what are the current techniques and trends?

• What are the specific challenges and limitations of applying knowledge graphs and

optimization algorithms to path-finding problems in war situations?

• What are the potential opportunities and directions for enhancing knowledge graphs
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and optimization algorithms for path-finding problems in war situations?

To answer these research questions, we conducted a systematic and comprehensive search for

relevant and reliable sources that cover the topics of knowledge graphs generation methodol-

ogy and optimization algorithms. We used online databases, search engines, bibliographies,

and recommendations from domain experts to find sources that are recent, authoritative, and

peer-reviewed. We synthesized and summarized the main findings and contributions of the

sources, and related them to our own research problem and contribution. We organized the

literature review into two main sections: one for knowledge graphs and one for optimization

algorithms. In each section, we further divided the sources into subtopics based on their

focus or approach.

2.1 Knowledge Graph Generation Methodology

Knowledge graphs are structured representations of knowledge that can support semantic

interoperability, reasoning, and querying. They consist of entities, relations, and attributes

that capture the concepts and facts of a domain of interest.2 Knowledge graphs can be con-

structed from various sources, such as databases, text, images, etc., using different methods,

such as manual annotation, rule-based extraction, machine learning, etc. In this section, we

review some of the existing generation methodology and applications of knowledge graphs

in various domains and provide insights into how knowledge graphs are constructed, main-

tained, and utilized across different domains, highlighting current techniques and trends.

A great source for learning more about ontologies and ontology methods is through a

comprehensive review paper by Hogan et al.12 among other review papers and books13.

There exists many methods and approaches: DILIGENT14 was an early example of an agile

methodology that supported distributed, loosely-controlled, and evolving engineering of on-

tologies. It involved a fine-grained methodological approach based on Rhetorical Structure

Theory, which enabled domain experts to participate in ontology engineering by argumenta-
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tion; Another example is Modular Ontology Modeling (MOM)13;15, which aimed to reduce

the complexity and increase the reusability of ontologies by applying principles of modu-

larity and abstraction. MOM involved a top-down approach that started from a high-level

conceptual model and refined it into a modular ontology using patterns and rules.

2.1.1 KNARM Methodology

One of the current techniques for constructing knowledge graphs is the KNowledge Acquisi-

tion and Representation Methodology (KNARM), which was proposed by Küçük McGinty

et al.9 to systematize the process of creating comprehensive, consistent, and useful ontologies

for big data integration and analysis. Ontologies are formal specifications of the concepts

and relations in a domain, which can serve as the schema or backbone of a knowledge graph.

KNARM consists of nine steps: sub-language analysis, unstructured interview, sub-language

recycling, meta data creation and knowledge modeling, structured interview, KA validation,

database creation, semi-automated ontology building, and ontology validation. In each step,

the authors provide guidelines and best practices for involving domain experts and knowl-

edge engineers, as well as tools and resources for facilitating the ontology development. The

authors applied KNARM to overview several ontologies for biomedical domains, such as the

Drug Target Ontology (DTO)16, which is a semantic model for drug discovery that covers

various aspects of drug targets, such as their classification, function, interaction, etc., the

LINCS17 Information FramEwork (LIFE) ontology18, which is a semantic model for the Li-

brary of Integrated Network-based Cellular Signatures (LINCS) project that covers various

types of cellular response signatures for different perturbations, such as drugs, genes, and

diseases, and the BioAssay Ontology (BAO) 2.019, which is an extension and refinement

of the original BAO20 that describes chemical biology screening assays and their results,

including high-throughput screening (HTS) data.

KNARM is an example of how knowledge graphs can be constructed from domain knowl-

edge using a systematic and collaborative approach. It also shows how knowledge graphs
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can be maintained by updating and validating the ontologies with new data and feedback

from domain experts. Moreover, it demonstrates how knowledge graphs can be utilized for

various purposes, such as data integration, analysis, visualization, and discovery. KNARM

is a technique that can be applied to other domains as well, such as war situations, where

there is a need for integrating and analyzing heterogeneous and dynamic data sources.

2.1.2 Existing ontologies

In this section, we explore relevant ontologies that play a crucial role in addressing path-

finding challenges within military contexts. Ontologies are formal representations of concepts

and relations in a domain of interest that can support semantic interoperability, reasoning,

and querying on knowledge graphs. Some examples of such ontologies are: GeoNames21,

DBpedia22, OpenStreetMap23, and KnowWhereGraph10. These ontologies serve as formal

representations of concepts and relationships within a specific domain, facilitating semantic

interoperability, reasoning, and querying within knowledge graphs. We looked into these

existing ontologies to borrow their vocabularies that may be suitable for our application,

as well as to identify the gaps and limitations that need to be addressed by our proposed

ontology. In the following text, we will elaborate more on each of these ontologies and explain

how they can be used for path-finding problems in war situations.

GeoNames1 is a comprehensive geographical database that covers all countries and con-

tains over 11 million placenames, such as cities, mountains, rivers, etc. It provides various

types of information for each place, such as coordinates, population, elevation, timezone,

etc, where users are able to access and query the database through web services and APIs,

such as geocoding, reverse geocoding, nearby places, etc. These services and APIs can help

users to find places by name, address, or coordinates, and to retrieve relevant information

and data for their applications. GeoNames can be useful for path-finding problems in war

situations because it can provide basic geographic information and location names for any
1https://www.geonames.org/
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place in the world. For instance, if a user wants to find a route from kviv to lviv in Ukraine,

GeoNames can provide the coordinates, population, elevation, and timezone of both cities,

as well as the names and distances of other places along the way. However, GeoNames has

some limitations that can affect the accuracy and efficiency of path-finding solutions in war

situations. For it may not have the latest information about road closures, checkpoints, or

enemy movements that may affect the safety and feasibility of a route. Hence, GeoNames

may need to be complemented by other sources of geographic information that can provide

more details and updates for path-finding problems in war situations.

DBpedia2 is a popular and widely used knowledge base that extracts structured infor-

mation from Wikipedia, such as infoboxes, categories, links, abstracts, etc. It covers various

domains and topics, such as people, places, events, organizations, etc., and provides rich

semantic annotations and links for each entity. These annotations and links can help users

to explore and discover the relationships and connections between different entities, and

to access more information and data from other sources. Users can access and query the

knowledge base through web services and APIs, such as SPARQL endpoint, lookup service,

keyword search, etc. These services and APIs can help users to find entities by name, type, or

keyword, and to retrieve relevant information and data for their applications. DBpedia may

be useful for path-finding problems in war situations because it might provide background

knowledge and context for any entity or topic related to the war scenario, such as historical

events, political actors, military operations, etc. DBpedia may also help users to understand

the causes and consequences of the war situation, and to identify potential allies and enemies

along the way. However, DBpedia has some limitations that may affect the accuracy and

timeliness of path-finding solutions in war situations. Similarly to GeoNames, DBpedia may

not have the latest information about the current status of the war situation, the changes

in the political and military landscape, or the impact of the war on the environment and

infrastructure due to its nature. Therefore, it may also need to be complemented by other
2https://www.dbpedia.org/
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sources of general knowledge that can provide more up-to-date and comprehensive data for

path-finding problems in war situations.

OpenStreetMap3 is a collaborative project that creates a free editable map of the world.

It provides detailed maps and road networks for any place in the world, as well as using tags

and attributes that describe the properties and characteristics of these features and objects,

such as names, types, addresses, etc. Users can access and query the map data through

web services and APIs, and such APIs can help users to view and edit the map, to find

locations and directions, and to use the map data for their applications. This might be a

useful feature in our application for path-finding problems in war situations because it may

provide information about obstacles and hazards that may affect the safety and feasibility

of a route, such as road blockages, checkpoints, or enemy positions (if possible). However,

OpenStreetMap has some major limitations in out applications that might affect the quality

and timeliness of path-finding solutions in war situations,like mentioned above. For example,

OpenStreetMap may not have the most accurate and up-to-date data depending on the

contributors, the lack of semantic annotations and links that may provide more information

and context for the map features and objects, and the difficulty of handling dynamic data

that may change due to war situations.

KnowWhereGraph4 is a geospatial knowledge graph that integrates multiple sources of

geographic information with semantic annotations and links. It combines and aligns the

data from different sources using semantic matching and linking techniques, and enriches the

data with additional information and context from other sources, such as traffic conditions,

weather, events, etc. Users can access and query the knowledge graph through a SPARQL

endpoint and a web interface, such as finding places by name, type, or keyword, retrieving

relevant information and data for each place, exploring the relationships and connections

between different places, etc. KnowWhereGraph may be useful for path-finding problems

in war situations because it provides an integration of multiple sources of geographic infor-
3https://www.openstreetmap.org/
4https://www.knowwheregraph.org/
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mation. It may also help users to discover and compare alternative routes that may have

different advantages and disadvantages depending on the war situation. In our application,

KnowWhereGraph also has some limitations that might compromise the quality and relia-

bility of path-finding solutions in war situations. A possible issue is that KnowWhereGraph

may produce errors or conflicts in the data due to the differences and inconsistencies between

different sources; another issue is that KnowWhereGraph may face scalability and efficiency

issues due to the large size and complexity of the knowledge graph, and have difficulty

handling dynamic data that may change due to war situations. Hence, KnowWhereGraph

may require additional sources of geographic information that can enhance the accuracy and

reliability of path-finding solutions in war situations.

In Table 2.1, we provide a summarized comparison of these ontologies, encompassing

aspects such as their domain coverage, size, data format, data sources, accessibility, utility,

and inherent limitations to our application.

2.2 Challenges and limitations of knowledge graphs and

optimization algorithms for path-finding in war situ-

ations

Path-finding is a fundamental problem in many domains, such as robotics, navigation, lo-

gistics, etc. It involves finding a sequence of actions or movements that can lead an agent

from a start location to a goal location, while satisfying some criteria or constraints, such as

distance, time, cost, safety, etc. Path-finding can be formulated as an optimization problem,

where the objective is to minimize or maximize some function of the path, such as its length,

duration, risk, etc.

Our approach involves knowledge graphs with optimization algorithms. Knowledge graphs

may be useful for path-finding problems, as they can provide rich and structured informa-
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tion about the environment, the agent, and the goal. For example, a knowledge graph can

represent the spatial layout of a terrain, the properties and capabilities of a vehicle, and the

preferences and requirements of a user. Knowledge graphs can also support semantic queries

and reasoning, which can help to find relevant and feasible paths, as we will discuss in the

following text.

One of the main challenges of applying knowledge graphs and optimization algorithms

to path-finding problems in war situations is dealing with dynamicity, uncertainty, and se-

curity issues. War situations might change rapidly and frequently, with roads being blocked,

enemies moving unexpectedly, and allies changing their plans. These dynamic changes may

affect the validity and optimality of the paths that are computed by the optimization algo-

rithms. Therefore, knowledge graphs and optimization algorithms must be able to update

their information and solutions in real-time or near real-time to account for these changes.

Another challenge is handling incomplete or hidden information, such as obscured terrain,

etc. These uncertainties may affect the accuracy and reliability of the paths computed by op-

timization algorithms. To handle uncertainty, knowledge graphs and optimization algorithms

help incorporate probabilistic or fuzzy models and methods. For example, probabilistic mod-

els may be used to represent the uncertainty in the location of enemies or allies, while fuzzy

models might be used to represent the uncertainty in the terrain or the weather. A third

challenge is ensuring security and confidentiality in war situations, as the environment and

the agents might be vulnerable or hostile. For example, some information about the terrain

or the agents may be classified or secret, some enemies may try to intercept or sabotage the

communication or computation of the paths, some allies may have conflicting or competing

interests or agendas, etc. These security issues can affect the integrity and availability of the

paths that are computed by the optimization algorithms. Therefore, knowledge graphs and

optimization algorithms need to be able to handle security by implementing encryption or

authentication mechanisms and protocols. These are some of the challenges and limitations

that we face when applying knowledge graphs and optimization algorithms to path-finding
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problems in war situations.

We try to answer the following research question: What are the specific challenges and

limitations of applying knowledge graphs and optimization algorithms to path-finding prob-

lems in war situations? To do so, we review some existing works that address these challenges

and limitations in different ways. We also identify some gaps and opportunities for future

research in this area.

2.2.1 Dynamicity

One of the main challenges of applying knowledge graphs and optimization algorithms to

path-finding problems in war situations is handling the dynamicity of the environment and

the agents. Dynamicity refers to the fact that the environment and the agents can change

rapidly and frequently, which can affect the validity and optimality of the paths that are

computed by the optimization algorithms. For example, roads can be blocked or damaged

by explosions, enemies can move or attack unexpectedly, allies can change their plans or

objectives, etc. Therefore, knowledge graphs and optimization algorithms need to be able

to update their information and solutions in real-time or near real-time.

Some existing works that address this challenge are:

Koenig et al.24 proposed an incremental heuristic search algorithm called D* Lite, which is

a simplified version of D*, a classic algorithm for dynamic path-finding. D* Lite uses a reverse

search strategy that starts from the goal and moves towards the start, updating the costs

and values of the states along the way. D* Lite can efficiently handle changes in edge costs

by only re-planning from the states that are affected by the changes, rather than re-planning

from scratch. The authors showed that D* Lite is faster and simpler than D*, and can find

optimal paths in dynamic environments. Wu et al.25 proposed a dynamic knowledge graph

embedding model called DKGE, which can learn low-dimensional vector representations of

entities and relations in a knowledge graph that changes over time. DKGE uses a recurrent

neural network to capture the temporal dependencies and evolution patterns of the knowledge
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graph, and a convolutional neural network to capture the spatial correlations and semantic

similarities of the knowledge graph. DKGE can update the embeddings of the entities and

relations in real-time or near real-time, and can handle insertions, deletions, or updates of

triples in the knowledge graph. However, these works also have some limitations and gaps,

such as:

Koenig et al.’s algorithm assumes that the changes in edge costs are small and infrequent,

which may not be realistic for war situations where large and frequent changes can occur.

Moreover, their algorithm does not consider multiple objectives or constraints for path-

finding, such as distance, time, risk, etc. Wu et al.’s model assumes that the knowledge

graph is complete and consistent, which may not be true for war situations where incomplete

or inconsistent information can exist. Moreover, their model does not consider how to use

the embeddings for path-finding or optimization tasks.

2.2.2 Uncertainty

Another challenge of applying knowledge graphs and optimization algorithms to path-finding

problems in war situations is handling the uncertainty of the environment and the agents.

Uncertainty refers to the fact that the environment and the agents can be partially observable

or hidden, which can affect the accuracy and reliability of the paths that are computed by

the optimization algorithms. For example, some data about the terrain or the agents can

be missing or incomplete, some entities or relations can have ambiguous or duplicate names,

some connections or transitions can be uncertain or probabilistic, etc. Therefore, knowledge

graphs and optimization algorithms need to be able to handle uncertainty by incorporating

probabilistic or fuzzy models and methods.

Jaillet et al.26 applied an existing decision criterion, called the Requirements Violation

(RV) Index, to various routing optimization problems under uncertainty. The RV Index

quantifies the risk associated with the violation of requirements taking into account both the

frequency of violations and their magnitudes whenever they occur. The RV Index can handle
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instances when probability distributions are known, and ambiguity when distributions are

partially characterized through descriptive statistics such as moments. The authors extended

the robust framework based on the RV Index to the case where the requirements (time

windows) are also part of the decisions, and solved the robust vehicle routing problem with

time window assignments (RVRP-TWA). They developed practically efficient algorithms

involving Benders decomposition to find the exact optimal routing solution in which the RV

Index criterion is minimized.

While reviewing the literature on path-finding problems under uncertainty, we also looked

into internet routing problems27, as one of our professors suggested that they might be rele-

vant to our research. We found that internet routing problems share some similarities with

path-finding problems, such as the use of graphs, optimization algorithms, and uncertainty

models. However, we also found that they have some differences that make them distinct

and challenging in their own ways.

Path-finding is very similar to internet routing, but they have some differences in terms

of graphs, objectives, and uncertainty. Path-finding is a more general problem of finding

a sequence of actions or movements that have the ability to lead an agent from a start

location to certain goal location, while satisfying some criteria or constraints. On the other

hand, internet routing is a special case of path-finding where the agent is a data packet, the

location is a network node, and the criteria or constraints are related to network performance

or security. One difference between path-finding and internet routing is that path-finding

involves different types of graphs, such as spatial graphs or planar graphs, while internet

routing usually involves aspatial graphs. Spatial graphs represent the physical layout of the

environment, such as roads, buildings, or terrain, while aspatial graphs represent the logical

connections between nodes, such as routers, switches, or servers.

Another difference is that path-finding considers different types of objectives or con-

straints, such as distance, time, cost, safety, etc., while internet routing usually considers

only one objective or constraint, such as minimizing hop count or delay. Hop count is the
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number of intermediate nodes that a packet passes through before reaching its destination,

while delay is the time it takes for a packet to travel from its source to its destination. A

third difference is that path-finding may have different types of uncertainty sources, such as

environmental factors or agent behaviors, while internet routing usually has only one type

of uncertainty source, such as link failures or congestion. Environmental factors may affect

the availability or quality of paths, such as weather conditions, natural disasters, or enemy

attacks, while agent behaviors will affect the preferences or requirements of paths, such as

user preferences, vehicle capabilities, or mission objectives. Link failures are situations where

a link between two nodes becomes unavailable due to hardware malfunction, power outage,

or malicious attack, while congestion is a situation where a link becomes overloaded due to

high traffic demand. These are some of the differences between path-finding and internet

routing that make them distinct problems.

2.2.3 Security

A third challenge of applying knowledge graphs and optimization algorithms to path-finding

problems in war situations is handling the security of the information and the solutions.

Security refers to the fact that the information and the solutions might be vulnerable or

confidential, which might affect the integrity and availability of the paths that are computed

by the optimization algorithms. For example, some information about the terrain or the

agents can be classified or secret, and some enemies may try to intercept or sabotage the

communication or computation of the paths, etc. Hence, knowledge graphs and optimization

algorithms need to be able to handle security by implementing encryption or authentication

mechanisms and protocols.

Xie and Xing28 proposed CryptGraph, which runs graph analytics on encrypted graph

data to preserve the privacy of both users’ graph data and the analytic results. In Crypt-

Graph, users encrypt their graphs before uploading them to the cloud. The cloud runs graph

analysis on the encrypted graphs and obtains results which are also in encrypted form that
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the cloud cannot decipher. During the process of computing, the encrypted graphs are never

decrypted on the cloud side. The encrypted results are sent back to users and users perform

the decryption to obtain the plaintext results. In this process, users’ graphs and the analyt-

ics results are both encrypted and the cloud knows neither of them. Thereby, users’ privacy

can be strongly protected. Meanwhile, with the help of homomorphic encryption, the results

analyzed from the encrypted graphs are guaranteed to be correct. The authors presented

how to encrypt a graph using homomorphic encryption and how to query the structure of

an encrypted graph by computing polynomials. They also proposed hard computation out-

sourcing to seek help from users for certain operations that are not executable on encrypted

graphs. They applied their methods to two graph algorithms: shortest path and connected

components, and showed their correctness and feasibility.

2.3 Opportunities and directions for enhancing knowl-

edge graphs and optimization algorithms for path-

finding in war situations

This section explores some possible ways to enhance knowledge graphs and optimization

algorithms for path-finding problems in war situations. Path-finding is a fundamental prob-

lem in many applications, such as navigation, planning, routing, etc. However, path-finding

in war situations is a challenging problem that involves dynamicity, uncertainty, security,

multiple objectives, constraints, etc. Therefore, our main goal in this section is to identify

the potential opportunities and directions for improving knowledge graphs and optimization

algorithms for path-finding problems in war situations.

We begin by reviewing some of the current limitations and gaps of the existing approaches

that we discussed in the previous section, followed by suggesting some potential solutions

and directions that might address or reduce these limitations and gaps, and enhance the
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performance and accuracy of path-finding in war situations. We also examine some of the

expected benefits and challenges of implementing these solutions and directions.

2.3.1 Challenges and Solutions for Path-Finding in War Situations

In this section, we discuss some of the challenges and solutions for path-finding in war

situations. Path-finding is a fundamental problem in many applications, such as navigation,

planning, routing, etc. However, path-finding in war situations involves several challenges

that require enhancing knowledge graphs and optimization algorithms.

One of these challenges is scalability, as most existing approaches are designed for small-

or medium-scale knowledge graphs. However, path-finding in war situations requires the use

of large-scale and complex knowledge graphs that represent the terrain, enemy forces, and

allied forces. These knowledge graphs might be computationally expensive to process and

update in real time. A possible solution to this challenge is to use distributed computing

techniques to parallelize or distribute the computation or storage of knowledge graphs and

optimization algorithms across multiple nodes or devices.

Another challenge is adaptability, as most existing approaches are based on fixed or pre-

defined models or methods, which may not be able to adapt to the changing environment or

agents in war situations. For example, some approaches may rely on static or deterministic

models or methods that do not account for the dynamicity or uncertainty of the environ-

ment or agents. Some approaches may also depend on specific or domain-specific models or

methods that do not generalize well to different scenarios or domains. A possible solution to

this challenge is to use reinforcement learning techniques to learn or update the models or

methods of knowledge graphs and optimization algorithms dynamically based on feedback

from the environment or agents.

A final challenge is interoperability, as most existing approaches are focused on either

knowledge graphs or optimization algorithms, but not both. This may limit the interoper-

ability and integration of knowledge graphs and optimization algorithms for path-finding in
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war situations. For example, some approaches may not be able to exploit the full potential

of knowledge graphs for enhancing optimization algorithms, or vice versa. A possible so-

lution to this challenge is to use semantic web techniques to standardize or harmonize the

representation or communication of knowledge graphs and optimization algorithms.

In conclusion, while knowledge graphs and optimization algorithms have the potential to

revolutionize path-finding in war situations, they also face several challenges. By addressing

these challenges, we may develop more effective and robust path-finding systems that might

help grain transporting navigate the complex and dangerous battlefields of the future.
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Chapter 3

APPROACH

In this chapter, we discuss how we develop the ontology component for our application,

using the KNARM methodology9 – as shown in figure 3.1– with the KnowWhereGraph10,

and the path-finding algorithm. We describe the purpose and scope of our ontology, the

sources and methods of knowledge acquisition, the structure and content of our ontology,

the data integration, and the evaluation and validation of our ontology. We also discuss the

challenges and limitations that we faced during the ontology development process, and how

we resolved or mitigated them.

3.1 Using KNARM Methodology to Model Location for

Grain Transportation

We developed our ontology, which we named SPEED (Sustainable Spatial and Semantic-

web Enhanced Pathfinding in Dynamic Domains), using ROBOT29 and Protégé30. We used

the Web Ontology Language (OWL)31, which is a W3C standard1 language for developing

ontologies on the Semantic Web . We followed the KNARM methodology , which consists of

nine steps: sub-language analysis, unstructured interview, sub-language recycling, meta data
1https://www.w3.org/OWL/
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Figure 3.1: The nine-step of KNARM methodology from Mcginty, Hande Küçük. “KNowl-
edge Acquisition and Representation Methodology (KNARM) and Its Applications.” (2018).9
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creation and knowledge modeling, structured interview, KA validation, database creation,

semi-automated ontology building, and ontology validation

Table 3.1 shows the main features or benefits of the tools and languages that we used to

create our ontology.

Tool/Language Feature/Benefit
ROBOT A command-line tool that allows for automating

various ontology tasks, such as mapping, reason-
ing, validation, conversion, etc.

Protégé 2 A graphical user interface tool that allows for cre-
ating and editing ontologies using various formats
and plugins.

OWL A standard language for developing ontologies on
the Semantic Web that supports logic-based rea-
soning and inference.

KNARM A methodology that supports the creation and
maintenance of modular ontologies that can in-
tegrate different types of knowledge sources and
support reasoning.

Table 3.1: Tools and languages used for ontology engineering

Sub-language analysis

The first step of sub-language analysis involved discovering the units of information or knowl-

edge, and the relationships between them within existing knowledge sources related to our

domain of grain transportation in Ukraine. We used a corpus of documents and reports from

various sources to find the recurring patterns and concepts in the data. We consulted with

the domain expert to verify and refine our sub-language analysis.

We concluded that there are certain types of places and things that we wanted to capture

in our ontology, such as elevators, railways, train stations, and motorways. Elevators are

facilities that store and process grain; railways are tracks that connect different locations;

train stations are places where trains stop or depart; and motorway are connections between

elevators and train stations. We also decided that automobile roads were too much to handle
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and to address in the limited time we had, so we focused on railroads as the main mode of

transportation. To illustrate the data format that we need to transform for our ontology,

we show a map of railroads in Ukraine as in figure3.2. This map shows the network of rail

lines and stations in Ukraine, without any semantic annotations or labels, and such data

is in a format that’s not operable directly by any algorithms, hence we need to transform

this data into a knowledge graph that can support semantic interoperability, reasoning, and

querying for path-finding problems in war situations. The map also shows the complexity of

the railroads in Ukraine, which pose challenges for path-finding problems in war situations.

In later chapter 4.1, we will show the resulting map in ArcGIS system that we created using

our ontology and optimization algorithm as in figure4.1.

Figure 3.2: A map of Ukraine showing the network of rail lines and stations in the country,
without any semantic annotations or labels. This is a version of this data in a format that’s
not operable directly by any algorithms. We need to transform this data into a knowledge
graph that can support semantic interoperability, reasoning, and querying for path-finding
problems in war situations32

23



Unstructured interview

The second step of unstructured interview involved conducting a semi-formal interview with

the domain expert to elicit his tacit knowledge and experience about the domain. We asked

open-ended questions about their expectations from our application. We also asked them to

provide examples and scenarios of grain transportation problems and solutions. Due to the

sensitives nature of the data, We did not record nor transcribe the interview.

We learned more about the details and characteristics of elevators, railways, train sta-

tions, ports, and motorway from the domain expert. For example, we learned that some

elevators and train stations are the same place, where the train goes inside the elevator to

load or unload grain. We also learned about the preferences and constraints that affect the

choice of optimal paths for grain transportation, such as distance, capacity, risk, etc. We

used an agile approach to refine our ontology and knowledge graph based on the domain

expert’s feedback.

We also created a graphical representation of our railway station modeling, based on the

information and feedback from the domain expert as in figure 3.3. The figure shows the main

components and properties of a railway station, such as its name, location, connections, etc.

Sub-language recycling

The third step of sub-language recycling involved reusing existing standards and ontologies

that could provide useful information for our domain. We searched for relevant resources

on the Semantic Web and other online repositories, such as GeoNames , DBpedia , Open-

StreetMap, and KnowWhereGraph. These resources provide rich and up-to-date geospatial

information, such as location names, coordinates, distances, types, relations, etc.

However, we did not use all the information from these resources, as some of them did not

make much sense for our application. For example, we did not use the population or elevation

data from GeoNames or DBpedia, as they were not relevant for our path-finding problem.

We also did not use the road network data from OpenStreetMap or KnowWhereGraph, as
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we focused on railroads as the main mode of transportation.

We decided to use only the vocabulary for certain concepts that were very limited and

essential for our domain. However, we made sure that we could have cross references or

mappings to the terms in these different resources, so that we could reuse them in different

applications or contexts in the future.

Meta data creation and knowledge modeling

The fourth step of meta data creation and knowledge modeling involved creating a concep-

tual model of our domain using ROBOT and Protégé. We defined the classes, properties,

individuals, axioms, rules, and constraints that represent the essential aspects of grain trans-

portation in Ukraine. We used a modular approach to organize our ontology into different

regions based on geographic criteria. We also used a location ontology as a core module that

defines the basic concepts and relations for any location in our domain.

Structured interview and KA validation

The fifth and sixth steps of structured interview and KA validation involved constantly

checking the consistency and completeness of our knowledge acquisition process with domain

expert and GIS expert to see if what we were doing was correct and accurate. We used various

methods to validate our ontology, such as logical reasoning, competency questions, scenario

testing, peer review, and feedback sessions. We also revised and refined our ontology based

on the results of the validation.

As we were taking an agile approach, we got more clear with the problem, as the domain

experts were getting a better understanding with what we were doing. The domain expert

in the very beginning did not even realize what we were asking her for, due to background

information/knowledge differences. After we put some data in an Excel sheet format, we

communicated with the domain expert that some of the names were in Ukrainian, and we

asked for her help to clean that up. We also assigned global identifiers to each individual
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(a) A diagram of the ontology modeling for grain transportation in Ukraine

(b) A screenshot of the ontology editing
in Protégé

Figure 3.3: An example of ontology design and editing for grain transportation in Ukraine,
using draw.io and Protégé tools. The figure shows the ontology modeling their entity relation
(a), and the ontology editing in Protégé software (b). The ontology consists of several classes,
properties and relations that capture the spatial, temporal, economic and risk aspects of the
domain. 26



data entry to avoid name duplications. Then we cleaned up the data sheet using various

tools and techniques. We also visualized the route in the ArcGIS system/environment using

the data from our ontology and knowledge graph with the help from the GIS expert.

Database creation

The seventh step of database creation involved creating a data structure that could store

the instances and their relations based on our model. We decided to use a dictionary data

structure in Python to store the data of the railway system, instead of creating a database.

This decision was based on the following factors:

• Time constraint: We had a limited time to complete the project, and creating a

database would require extra steps and resources.

• Data sensitivity: The data we used was confidential and sensitive, and we did not want

to expose it to any potential risks or breaches. By using a dictionary, we could read

the data directly from the Excel file, and manipulate it within the program, without

having to store it in a database.

• Data dynamics: The data we used was constantly changing and updating, and we

wanted to reflect those changes in our model. By using a dictionary, we could easily

modify the data and its relations, without having to update the database.

The dictionary we used was a nested dictionary, where each key-value pair represented

an instance of the railway system. The key was the name of the instance, and the value was

another dictionary that contained its attributes and relations. The attributes included its

main transportation method (railway, auto, port), and its location type (railway station or

grain elevator). The relations included the nearest railway station and/or grain elevator it

connected to, with its distance in kilometers.
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Semi-automated ontology building

The eighth step of semi-automated ontology building involved creating an OWL file that

contains our model and our data using ROBOT. We converted our dictionary into an OWL

file that contained individuals and their relations based on our location ontology. We also

added some annotations and metadata to our file to make it more understandable and

reusable. The following figure shows the ROBOT template we used to generate the OWL

file from the dictionary:

Figure 3.4: A template that contains the fields and the rules for converting excel data into
an owl file using the ROBOT ontology tool. The template is based on the data collected
and feedback from the domain expert.

Ontology validation

And for the ninth step of ontology validation, we continued working with our domain ex-

pert and GIS expert to cross check all the process and data are correct and accurate. We

also evaluated our ontology using some quality metrics , such as consistency, completeness,

correctness, and reusability.

As we got more clear with the problem, and as the domain experts were getting a better

understanding of what we were doing, we went back and forth with them to refine our

ontology and data. We made some adjustments and improvements based on their feedback

and suggestions.
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3.2 Path-finding algorithm

In this section, we discuss how we use the path-finding algorithm to find the optimal path for

grain transportation, based on the semantic and spatial knowledge from our ontology and the

KnowWhereGraph. We describe the A* algorithm, which is a heuristic search algorithm that

can find the optimal path between two locations, taking into account of certain criteria, such

as distance, grain storage, and risk. We also explain how we implemented the A* algorithm

in our application, what criteria and heuristics we used, and how we handled dynamic and

uncertain situations.

3.2.1 The A* algorithm

The A* algorithm is a widely used path-finding algorithm that can find the optimal path

between two locations in a graph, where each node has a cost associated with it. The

algorithm works by maintaining an open set of candidate nodes, which are nodes that have

not been explored yet, and a closed set of visited nodes, which are nodes that have been

explored already. The algorithm starts with the source node in the open set, and at each

step, it selects the node with the lowest cost from the open set, moves it to the closed set,

and expands its neighbors. The cost of a node is calculated by adding two values: g(n),

which is the actual cost from the source to the node n; and h(n), which is an estimate of the

cost from n to the destination. The estimate h(n) is called a heuristic function, and it should

be optimistic, meaning that it should never overestimate the actual cost. The algorithm

terminates when either the destination node is moved to the closed set, or when the open

set becomes empty. If the destination node is found, then the optimal path can be traced

back by following the parent pointers of each node.

The A* algorithm is an extension of Dijkstra’s algorithm33, which is a path-finding al-

gorithm that only uses g(n) as the cost function. Dijkstra’s algorithm can find the optimal

path in any graph with non-negative edge weights, but it can be slow and inefficient because
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it explores all possible paths equally. The A* algorithm improves on Dijkstra’s algorithm

by using h(n) as a guide to direct the search towards the destination more quickly and ef-

fectively. However, the A* algorithm requires a good heuristic function that can provide

accurate and consistent estimates of the cost. If h(n) is zero for all nodes, then A* becomes

Dijkstra’s algorithm; if h(n) is very high for all nodes except the destination, then A* be-

comes a greedy best-first search, which is a path-finding algorithm that only uses h(n) as

the cost function. Greedy best-first search can be very fast but not optimal, because it can

get stuck in local minima or dead ends.34

The A* algorithm has some advantages over other path-finding algorithms for our domain

of grain transportation. It can find the optimal path in terms of distance, grain storage, and

risk, which are important criteria for our application. It can also adapt to dynamic and

uncertain situations, such as changes in weather, traffic, or security conditions, by updating

the cost and heuristic functions based on the latest information from the KnowWhereGraph.

3.2.2 Integration of A* in our application

In this subsection, we describe how we integrated the A* algorithm in our application using

Python35.We modified the A* algorithm into a recursive algorithm, where we can add some

“must-pass” nodes, either can be high priority elevators because of their huge grain storage

or their location, or hand-picked by domain expert, who says such location is high value

and we must have the path that pass through these nodes. We made this modification to

accommodate the preferences and constraints of our domain expert, and to ensure that our

paths are feasible and realistic. The algorithm works as follows: The algorithm takes as input

the start node, the goal node, and a list of must-pass nodes [A,B,C,...], where [A,B,C,...] are

the names of the must-pass locations in any order. The algorithm recursively explores all

possible paths in the list, based on the heuristics mentioned above. If the list is empty, then

it simply applies the standard A* path finding. Figure 3.5 demonstrates how the algorithm

works.
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Figure 3.5: A schematic diagram of the recursive A* algorithm with must-pass nodes. The
algorithm takes as input the start node S, the goal node G, and a list of must-pass nodes
[A,B,C,...] in any order. The algorithm recursively explores all possible paths from S to G
that pass through [A,B,C,...], using the heuristics of distance, elevation, and grain storage.
The algorithm returns the optimal path that minimizes the total cost.

We integrated the A* algorithm as follows in algorithm 1:

We tested our implementation using some sample data from our domain expert, and

evaluated our results using some quality metrics12;36, such as performance, scalability, relia-

bility, usability, and maintainability. We found that our application can find some accurate,

efficient, and robust paths for grain transportation, and can handle dynamic and uncertain

situations. However, we also encountered some challenges and limitations, such as missing or

incorrect paths, incomplete or outdated data, and complex or ambiguous scenarios. We are

working on improving our application to overcome these issues and provide better results.

We also received positive feedback from our domain expert and GIS expert on the usability
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Algorithm 1 A path-finding algorithm with must-pass nodes
Require: start node, goal node, list of must-pass nodes
Ensure: result path from start node to goal node passing through all must-pass nodes

if must-pass nodes is empty then
resultpath← shortestpath ▷ using A-star algorithm

else
resultpath← []
current← start
while mustpass ̸= null do

shortest← shortest in mustpass nodes from current node using A* algorithm
resultpath.add(shortest← A ∗ (current,mustpass))
must-pass nodes.remove(shortest node)
current← shortest

end while
resultpath.add(shortest← A ∗ (current, goal)
resultpath.flatten()

end if
Show result
Handle any errors or exceptions that may occur

and usefulness of our application. They also suggested some possible improvements and

extensions for our application, such as adding some features and options for filtering out the

railway stations that is intended for passengers only, which is irrelevant in out application,

and etc.

3.3 Challenges

In this section, we discuss the challenges that we faced during the data integration process.

We explain how we dealt with these challenges using various techniques and tools, such as

data cleaning, data transformation, data mapping, and data validation. We also describe

how these challenges affected the quality and validity of our ontology component, and how

we tried to overcome or mitigate them.

One of the challenges that we faced during the data integration process was the poor

quality and format of the data provided by the domain expert. The data was in an Excel

spreadsheet that had various issues, such as:
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• Typos and spelling errors, mainly due to translation problems. For example, “ДЖАНКОЙ”

in Ukrainian can be translated to either “Dzhankoy” or “Dzhankoi” in English, but the

name has to be consistent for creating a proper data structure.

• Inconsistent separators for splitting the text. Sometimes it was a dash (-), sometimes

it was a comma (,), and sometimes it was just an empty space ( ). This was because

the domain expert obtained the information from various sources, hence the format

was not unified.

• Duplicate names for different locations. Since some grain elevators in different regions

were owned by the same corporation, they had the same name.

These issues made it difficult to create a data dictionary and to map the data to our

ontology.

To fix these problems, we performed several steps to clean and transform the data using

Python scripts. First, we converted the Excel spreadsheet into a CSV file, which is easier to

process and manipulate. Second, we used regular expressions to extract the information for

connections based on a pattern of location name, separator, distance, and KM. We handled

different cases of separators and formats of location names. Third, we fixed the typos by

generating a list of pairs with highly similar string names, and double checking with the

domain expert. Fourth, we added a unique identifier to each name to avoid duplicate names

that might belong to different locations in different regions. Finally, we validated the data

by comparing it with other sources and checking for any errors or inconsistencies.

These steps helped us to improve the quality and format of the data, and to integrate it

with our ontology. This in turn enabled us to use the data for our evaluation and to find

optimal paths for grain transportation.

Another challenge that we faced during the data integration process was the complex-

ity and diversity of the locations involved in grain transportation. We had to understand

how the different stations were situated, and differentiate between passenger stops and com-
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merce stops, small stops with no stations, etc. This required a lot of domain knowledge and

consultation with the domain expert. We also had to use the Arc-GIS 2system to quality

control and identify possible problems with the locations, such as missing coordinates, in-

correct names, or inaccurate connections. We also used our ontology component to help us

better identify some of the clean up tasks, such as finding synonyms, resolving ambiguities,

or adding annotations.

2ArcGIS is a geographic information system (GIS) software that allows users to create maps, analyze
spatial data, and manage geographic information. https://www.arcgis.com/
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Chapter 4

RESULTS AND CONCLUSIONS

In this chapter, we present the results of our application, which combines the ontology and

the geospatial data and the A* algorithm to find optimal paths for grain transportation. We

continue the chapter elaborating on the main findings of this research and implications of

our research for theoretical basis of computer science.

4.1 Results

We applied our application to seven example locations that were provided by the domain

expert, who wanted us to find the possible routes for grain transportation between them.

We used the ontology and the geospatial data that we constructed in chapter 3 and the

modified A* algorithm that we integrated in chapter 3.2.2 to find the optimal paths based

on the criteria of distance, grain storage, and risk. We imported the resulting paths into

the arc-GIS system for visualization and evaluation. We obtained four feasible and good

paths for four of the example locations, which showed the potential and effectiveness of

our application. However, we encountered some errors and challenges when applying our

application to the other three example locations. For two of them, we could not find any

path at all because some location in the must-pass node list was not reachable. For the

remaining one, we got an error saying that the location was not present in the graph. We
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suspect that these problems were due to the missing or outdated data and/or the name

duplication problems in our data set. For instance, in our data set, there was a connection

between elevator A and elevator B, but B was a large-scale elevator that had different

instances with the same name across the country, depending on the ownership and location.

Therefore, we could not simply add a connection between A and B without specifying which

B it was. We learned about this complexity by following the KNARM methodology, which

involved going back and forth with the domain expert throughout the whole process. We

could either ask the domain expert to manually check each individual elevator with name

duplication problems, which would be too time-consuming and impractical, or we could

automate this process by assuming that A connects to the closest B, since we had their

coordinates and we calculated their distances using the haversine formula. The haversine

formula is a mathematical equation that determines the great-circle distance between two

points on a sphere given their longitudes and latitudes1. We applied it because the data that

we have is geospatial coordinates of locations that are located on the Earth’s surface, which

is approximately spherical. By simply calculating their distance based on the coordinates

using the simple distance formula: d =
√
(x2 − x1)2 + (y2 − y1)2 we would obtain inaccurate

results because such formula is used to find the distance between any two points on a flat

plane, while the Earth is curved. Therefore, we need to get a more accurate distance result

by applying the haversine formula, which takes into account the curvature of the Earth and

the angles between the points.

Due to time constraints, we have not addressed some data issues that affected our ap-

plication performance. In the future, we will either ask the domain expert to verify each

elevator with name duplication problems, or automate this process by connecting each ele-

vator to the nearest one with the same name. We will elaborate on these solutions in chapter

5.2. In the following section, we will present and discuss the main findings and implications

of our research. We will relate the key results of our data analysis to our research questions

and objectives. We will also explore how our findings contribute to the theory, practice, and
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Figure 4.1: A map of Ukraine created using the ArcGIS system for visualization, showing
the locations of elevators (orange dots) and railroads (black lines). The map is blurred to
protect sensitive data.
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policy in our field of study.

4.2 Summary of Findings

We conducted a data analysis using the modified A* algorithm, a heuristic search algorithm

that can find and update the optimal path between multiple locations, taking into account

the criteria of distance, grain storage, and risk, as well as dynamic and uncertain situations.

We used real-world data of grain transportation in Ukraine, which is a complex and dy-

namic domain facing a military invasion situation. We also integrated our data with the

KnowWhereGraph, a cross-domain knowledge graph and geo-enrichment service stack that

provides rich and up-to-date geospatial information. We developed our ontology using the

KNARM methodology, which allows for creating and maintaining modular ontologies that

can represent complex domains and support reasoning.

Our data analysis yielded the following main findings: The A* algorithm was able to find

optimal paths for grain transportation in Ukraine, based on the criteria of distance, grain

storage, and risk. The algorithm was also able to adapt to dynamic and uncertain situations

by updating the path based on the latest information. The KnowWhereGraph provided valu-

able geospatial information that enhanced the path-finding process. The KnowWhereGraph

included information such as population, economic indicators, geographical features, coordi-

nates, connections, and security levels for each location. This information helped to refine

the criteria of distance, grain storage, and risk for each path, and to provide more accurate

and comprehensive results. The ontology we developed using the KNARM methodology

represented the domain of grain transportation in Ukraine in a modular and reusable way.

The ontology included concepts such as elevator/station, has grain storage size, coords, con-

nections, etc. The ontology also reused some existing ontologies such as GeoSPARQL and

FOAF to enrich our vocabulary. The ontology supported reasoning tasks such as consistency

checking, validation, annotation propagation, diffing, etc. One of our goal of this research
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was to explore and investigate the effect of having and encoding different and many heuristics

as part of the knowledge graph on the performance of the path-finding algorithm. Nonethe-

less, this research was limited by the lack of data for for different and many heuristics that

could affect the performance of the path-finding algorithm. Therefore, we could not evaluate

the impact of having and encoding such heuristics as part of the knowledge graph on the

quality and efficiency of the path-finding process. However, we designed and implemented

our ontology using KNARM’s modular architecture, which enables us to easily integrate

new knowledge graph modules for various heuristics, if they become available in the future.

This way, we can leverage the existing data and reuse it for path-finding, without having to

modify the ontology structure or the algorithm logic. In summary, our findings demonstrate

the potential of using ontologies and knowledge graphs to enhance path-finding problems in

complex and dynamic domains as a generalizable solution approach. We showed how the

A* algorithm, the geo-spatial semantic web resources, and the ontology we developed using

the KNARM methodology worked together to find optimal paths for grain transportation in

Ukraine.

4.3 Implications for Theory

Our research contributes to the theory of ontology engineering and knowledge graph con-

struction for complex and dynamic domains. We propose a novel application of the KNARM

methodology and the KnowWhereGraph to address the problem of finding optimal paths for

grain transportation in Ukraine. We show how these two components can work together to

create a modular ontology that can represent the domain knowledge and support reason-

ing tasks. We also show how they can integrate with a heuristic search algorithm that can

leverage the semantic and spatial knowledge to find accurate and efficient paths.

Our research also challenges the existing theory of path-finding algorithms for complex

and dynamic domains by proposing a novel modification of the A* algorithm that can accom-
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modate preferences and constraints from domain experts by adding some must-pass nodes

to the path. Furthermore, we are using a novel combination of approaches and methods, and

with that, we used semantic web, A* algorithm, optimization algorithms, and human expert

in the loop, to find the optimal path in the dynamic domain. Such modification is important

because it improves the feasibility and realism of the paths found by the algorithm, which

are often ignored or overlooked by the existing theory in this area. The existing theory in

this area does not provide adequate solutions or guidance for this modification, as most of

the existing algorithms assume that the path is determined by only one criterion (such as

distance), or that the path is independent of any external factors (such as preferences). Our

research fills this gap by showing how this modification can improve the performance and

usability of the A* algorithm, and how it can adapt to dynamic and uncertain situations by

updating the path based on the latest information from the KnowWhereGraph.
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Chapter 5

LIMITATIONS AND FUTURE

DIRECTIONS

In this chapter, we discuss the limitations and future directions of our research. We acknowl-

edge the challenges and shortcomings that we faced during our research process, and suggest

some possible ways to overcome them or improve them in future work.

5.1 Limitations

Our research has several limitations that need to be addressed. Some of these limitations

are related to the data completeness and its cleaning process, which will be discussed in

the following. One of the main limitations of our research is the quality and availability of

the data that we used for our ontology and knowledge graph. As mentioned in chapter 3.3,

the data that we obtained from the domain expert was in an Excel spreadsheet that was

inconsistent in format and had typos due to either human errors or other factors. This made it

difficult to create a data dictionary and to map the data to our ontology. We had to perform

several steps to clean and transform the data, such as using regular expressions, fixing

typos, adding unique identifiers, etc. However, these steps were not reliable or accurate and

could introduce errors or inconsistencies in the data. Moreover, the data that we obtained
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from the domain expert was not complete or up-to-date. There were some locations or

connections that were missing or outdated in the data. This could affect the accuracy

and completeness of our ontology and knowledge graph, and consequently, our path-finding

algorithm. Furthermore, the data that we obtained from the domain expert was sensitive

and confidential. This limited our ability to share or publish our data or our ontology

publicly, which could reduce the reproducibility and reusability of our research. Another

limitation of our research is the amount of time and effort that we spent on waiting for the

new versions of data and data cleaning while implementing this methodology. Data cleaning

is an essential step for ensuring the quality and validity of our ontology and knowledge

graph, but it is also a tedious and time-consuming process that requires a lot of manual

intervention and verification. We spent hours in the beginning to get the regular expression

pattern right to capture what we need, and to generate some "questionable names" for the

domain expert to double check. “By “questionable names”, we mean a list of location names

that had very similar spelling, but different properties such as coordinates. For example,

some locations used the letter i or y interchangeably in their names. These locations were

in the same region and very close to each other, which made it hard to distinguish them

based on their names alone. After sending the file to the domain expert for the location

name disambiguation, we then had to wait for weeks to receive the updated data from the

domain expert, and then spend hours to clean and transform the data using various tools and

techniques, such as Python scripts, regular expressions, etc. This delayed our progress and

reduced our efficiency in developing and evaluating our application. Moreover, data cleaning

is not a one-time task, but a continuous process that needs to be repeated whenever there

is a change or an error in the data. Therefore, having a set of clean data is very important

for implementing this methodology successfully and effectively.
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5.2 Evaluation Plan and Future Directions

Our research has developed an application that integrates the ontology and the geospatial

data and the A* algorithm to find optimal paths for grain transportation in Ukraine. How-

ever, our research also has some limitations and challenges that need to be addressed in

future work. In this section, we present our evaluation plan for our application, which aims

to assess its validity, reliability, and usefulness. We also discuss some possible future direc-

tions that will extend or improve our methodology and application. Some of these future

directions are related to the data, the ontology, the knowledge graph, and the path-finding

algorithm.

5.2.1 Evaluation Plan

In this section, we outline the evaluation plan of our application, which integrates the ontol-

ogy and the geospatial data and the A* algorithm to find optimal paths for grain transporta-

tion. We explain the data sources, the metrics, and the expected outcomes of our evaluation.

We also discuss the significance and implications of our evaluation plan, and how it relates

to our research questions and objectives. Due to time constraints, we did not perform the

evaluation during this research, but we intend to continue the research in the future. The

purpose of our evaluation plan is to address the following questions:

• Q1: How accurate are the paths found by our application, compared to existing solu-

tions, based on the criteria of distance, grain storage, and risk?

• Q2: How efficient are the paths found by our application, compared to existing solu-

tions, based on the criteria of computational complexity and scalability?

• Q3: How robust are the paths found by our application, compared to existing solutions,

based on the criteria of adaptability and resilience to dynamic and uncertain situations?

To answer these questions, we would use the following methods and criteria:
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Q1: How accurate are the paths found by our application, compared to existing

solutions, based on the criteria of distance, grain storage, and risk?

For question 1, which measures the accuracy of our application’s paths based on distance,

grain storage, and risk, we would compare the paths found by our application with the paths

found by existing solutions, such as Google Maps or ArcGIS. We would use metrics such as

total distance, total grain storage capacity, and total risk score to measure the accuracy of

each path. We would also use statistical tests, such as t-test37 or ANOVA38, to determine

if there are significant differences between the paths in terms of these metrics. To measure

the accuracy of the distance criterion, we would calculate the mean absolute error (MAE)

between the paths found by our application and Google Maps for each scenario. The MAE

is a measure of how close the predictions are to the actual outcomes. It is calculated by

taking the average of the absolute differences between the predicted and actual values. For

example, if we have n scenarios, we can calculate the MAE as follows:

MAE =
(|d1 − d2|+ |d3 − d4|+ . . . + |dn − dn+1|)

n
(5.1)

where d1, d3, . . . , dn are the distances of the paths found by our application, and d2, d4, . . . ,

dn+1 are the distances of the paths found by Google Maps.

The lower the MAE, the better the performance of our application compared to Google

Maps. We would also use a t-test or an ANOVA to test if there is a significant difference

between the MAEs of our application and Google Maps.

Q2: How efficient are the paths found by our application, compared to existing

solutions, based on the criteria of computational complexity and scalability?

For question 2, which evaluates the efficiency of our application’s paths based on compu-

tational complexity and scalability, we would compare the computational complexity and

scalability of our application with those of existing solutions. We would use metrics such as
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running time, memory usage, and number of nodes expanded to measure the efficiency of

each solution. We would also use statistical tests, such as t-tests or ANOVA, to determine

if there are significant differences between the solutions in terms of these metrics.

Q3: How robust are the paths found by our application, compared to existing

solutions, based on the criteria of adaptability and resilience to dynamic and

uncertain situations?

And finally for question 3, which assesses the robustness of our application’s paths based

on adaptability and resilience to dynamic and uncertain situations, we would compare the

adaptability and resilience of our application with those of existing solutions. We would use

scenarios that simulate dynamic and uncertain situations that affect grain transportation in

Ukraine, such as changes in weather, traffic, or security conditions. We would use metrics

such as number of path updates, number of path failures, and number of path alternatives

to measure the robustness of each solution.

Data sources

The data used in this study was provided by a world-renowned domain expert in grain trans-

portation in Ukraine to use his data for this study. The data was sensitive and confidential,

as it related to a war situation that could affect the security and economy of Ukraine. There-

fore, we took several measures to protect the privacy and security of the data and the expert.

These measures include:

• Anonymizing the data by removing any personal or identifiable information of the

domain expert or any other parties involved in grain transportation.

• Storing the data on a local computer that is not connected to the internet or any

external network, and deleting the data after the completion of the study.

• Reporting the results of the evaluation in an aggregated and generalized way, without
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revealing any specific or detailed information about the locations, routes, or costs of

grain transportation.

The data was an Excel spreadsheet file that had information about the locations of grain

elevators and railway stations in Ukraine. We worked closely with the the domain expert

and GIS expert to check and clarify the data. We also consulted with them to resolve any

discrepancies or ambiguities in the data.

We expect that our evaluation plan will provide evidence for the validity, reliability, and

usefulness of our application. This would demonstrate the potential of using ontologies and

knowledge graphs to enhance path-finding problems in complex and dynamic domains. It

would also provide new insights into the factors that affect grain transportation in Ukraine.

We also expect that our evaluation plan will reveal some strengths and weaknesses of our

application, as well as some opportunities and threats for its further development and we

will use these findings to inform our future directions and recommendations for improving

our application.

Data

One possible future direction to improve the accuracy and completeness of our ontology,

knowledge graph, and path-finding algorithm is to obtain more complete and up-to-date

data from domain experts or other sources, such as public databases or web scraping. This

will help us to find more possible routes for all the example locations, and to avoid the missing

or outdated data and/or the name duplication problems that we encountered in our data

set. We will also automate or semi-automate the data cleaning and transformation process

using techniques such as data integration, data quality assessment, and data wrangling. This

will reduce the time and effort required for data cleaning and transformation, and increase

efficiency and productivity in developing and evaluating our application. This will also help

us to avoid the errors or inconsistencies that we introduced in our data set during the manual

data cleaning and transformation steps.
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Ontology

To enhance the expressiveness and semantics of our ontology, we will enrich or refine it

with more concepts, properties, relations, axioms, and rules that are able to capture the

complexity and diversity of the domain. This will enable more sophisticated reasoning and

inference on our knowledge graph. For example, we will add more concepts or properties

that are related to the security or risk levels of different locations or connections, such as

has security level, has risk factor, etc. This will help us to find more optimal paths that

minimize the risk of attacks or disruptions. Another possible direction is that we could

enhance the interoperability and reusability of our ontology by aligning or linking it with

other existing ontologies or vocabularies in the same or related domains, such as GeoNames

and DBpedia. This will facilitate the integration or exchange of knowledge across different

platforms or domains. For example, we could use owl:sameAs to link our location names with

their counterparts in GeoNames or DBpedia, which will enable us to access more information

or services from these resources.

Knowledge Graph

One possible future direction is to update or expand our knowledge graph with more data or

information from different sources or modalities, such as text, images, and videos. This will

improve the coverage and diversity of our knowledge graph, and enable more comprehensive

and multi-modal analysis on our knowledge graph. Namely natural language processing

techniques to extract information from text sources such as news articles or social media

posts, which is able to provide us with more up-to-date information about the weather, traffic,

or security conditions of different locations or connections. We could also use computer

vision techniques to extract information from image or video sources such as satellite images

or surveillance cameras, which could provide us with more visual information about the

terrain, infrastructure, or activity of different locations or connections. Another possible

direction is to apply or develop more advanced knowledge graph embedding or learning
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techniques, such as graph neural networks and attention mechanisms. This will improve the

performance and accuracy of our knowledge graph embedding or learning models, and enable

more efficient and effective query or retrieval on our knowledge graph. For example, we may

use graph neural networks to capture the complex structure and semantics of our knowledge

graph, which has the ability to enhance the representation and inference capabilities of our

models. We could also use attention mechanisms to focus on the most relevant parts of our

knowledge graph for a given query or task, which will improve the precision and recall of our

models.

Figure 5.1: Integrating KnowWhereGraph and KNARM to enhance A∗ algorithm for optimal
pathfinding in transportation of goods.39

Path-Finding Algorithm

In order to improve the flexibility and adaptability of our path-finding algorithm further, we

will optimize or customize it for different scenarios or objectives in war situations, such as

minimizing distance, time, risk, or cost. This will enable more optimal or near-optimal solu-

tions for different path-finding problems. To achieve that, we will use different cost functions

or heuristic functions for different scenarios or objectives, such as using Euclidean distance

for minimizing distance, using travel time for minimizing time, using risk score for minimiz-

ing risk, etc. Additionally, We will apply different optimization techniques or algorithms for
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different scenarios or objectives, such as using linear programming for minimizing cost. Be-

sides that, we will further improve the reliability and security of our path-finding algorithm

by incorporating or developing more robust and resilient techniques to handle uncertainty

or security issues in war situations, such as probabilistic models, fuzzy models, and encryp-

tion techniques. This will enable more accurate and trustworthy solutions for path-finding

problems. In particular, we could use probabilistic models to represent the uncertainty of

different factors that affect our path-finding problem, such as weather conditions, traffic con-

ditions, security conditions etc., which has the ability to help us to find more realistic paths

that account for uncertainty. We could also use fuzzy models to represent the vagueness of

different factors that affect our path-finding problem , such as grain storage capacity, risk

score, etc., which may help us to find more flexible paths that account for vagueness.
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