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Abstract 

Soil moisture plays a vital role in the water and energy balance of rainfed agricultural and 

hydrological systems in the U.S. Great Plains. With the rise of mesoscale environmental 

monitoring networks that include soil moisture as part of the standard suite of measurements, this 

dissertation addresses a central question: Can we upscale point-level soil moisture observations 

from sparse monitoring networks by integrating spatial model estimates and in situ observations 

through data assimilation? The first chapter investigates a data-fusion method to leverage 

existing mesoscale rootzone soil moisture to create new, high-spatial resolution soil moisture 

maps for the state of Kansas. These maps are extensively validated using cross-validation and 

regional surveys conducted with a roving cosmic-ray neutron detector. The second chapter 

presents CRNPy, a Python library that compiles common correction methods for converting raw 

neutron counts into volumetric soil water content. The CRNPy library is then used to validate 

soil moisture estimates at watershed and state levels. The third chapter explores the use of a 

machine learning observation operator to translate soil moisture observations from stations of the 

Kansas Mesonet typically located in areas with perennial grassland vegetation to represent soil 

moisture conditions in nearby cropland fields. Collectively, these chapters offer new insights for 

leveraging in situ and proximal soil moisture data to advance our understanding of regional and 

mesoscale soil moisture, with a focus on harnessing the expanding infrastructure of mesoscale 

monitoring networks. 
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Chapter 1 - General Introduction 

Soil moisture is a fundamental component of the soil water balance and the surface 

energy balance, representing a key variable in meteorological, ecological, hydrological, and 

agricultural decision-making process, as well as in modeling and forecasting (Ochsner et al., 

2013). For instance, soil moisture plays an important role in flash flooding predictions by 

partitioning rainfall into infiltration and runoff (Crow et al., 2018; Hino et al., 1988; Jacobs et al., 

2003; Ruggenthaler et al., 2016), in agricultural drought monitoring by modulating the amount of 

available water for plant growth and yield production (Denmead & Shaw, 1960; Ford et al., 

2015; Lollato et al., 2017), in wildfire preparedness by controlling the amount of fuel biomass 

(Cooke et al., 2012; Krueger et al., 2017, 2022; Rigden et al., 2020), and in mesoscale weather 

dynamics by regulating land-atmosphere feedback (Koster et al., 2003).  

The relevance and need for accurate in situ soil moisture information over large spatial 

scales has been recognized since the 1950s, when sparse observations were collected using the 

gravimetric method and neutron probes as part of the RUSWET-GRASS and RUSWET-AGRO 

networks across the former Soviet Union (Dorigo et al., 2011; Robock et al., 2000). With the 

advent of electronic dataloggers and new soil moisture sensors based on heat pulse probes 

(Bristow et al., 1993; Campbell et al., 1991) and time domain reflectometry sensors (Dalton & 

Genuchten, 1986; Topp & Reynolds, 1998) that enabled automated soil moisture measurements 

(Baker & Allmaras, 1990), existing environmental monitoring networks and agricultural weather 

networks started to adopt soil moisture as a standard measurement variable. One of the first 

mesoscale networks to integrate automated soil moisture observations was the Oklahoma 

Mesonet (Brock et al., 1995; McPherson et al., 2007), which started in 1996 and currently has 

more than 110 soil temperature and moisture monitoring sites (McPherson et al., 2007), 
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constituting one of the most comprehensive datasets of in situ soil moisture globally. Following 

the Oklahoma Mesonet, other statewide mesoscale networks, including the West Texas Mesonet 

(Schroeder et al., 2005), the Nebraska Mesonet (Shulski et al., 2018), the Kentucky Mesonet 

(Mahmood et al., 2019), the New York Mesonet (Brotzge et al., 2020), the Kansas Mesonet 

(Patrignani et al., 2020), and the North Carolina ECONet (Saia et al., 2023) started to adopt 

rootzone soil moisture measurements. Similarly, nationwide mesoscale monitoring such as the 

U.S. Climate Reference Network (USCRN) (Palecki et al., 2013) and the Soil Climate Analysis 

Network (SCAN) (Schaefer et al., 2007) adopted soil moisture observations to provide accurate 

soil moisture observations at high-temporal (i.e., minute, hourly, daily) resolution for advancing 

climate research. Yet, the sparse distribution of these networks and the small sensing footprint 

(<1,000 cm3) of conventional point-level soil moisture sensors (Patrignani et al., 2022; Vaz et al., 

2013) hinder a continuous representation of soil moisture conditions across the spatial domain of 

the in situ networks.  

To upscale in situ observations and effectively bridge the gap between point-level data 

from individual monitoring stations and the coarser (i.e., several kilometers) spatial scope of 

land-surface model predictions and remote sensing products, researchers have employed data 

assimilation frameworks (Ni-Meister, 2008). These frameworks enable the consolidation of both 

magnitude and uncertainty data from multiple sources of soil moisture information (De Lannoy 

et al., 2019). For instance, some studies used a Kalman filter to combine sparse in situ 

measurements of soil moisture with a parsimonious model to generate a spatially continuous 

representation of soil moisture conditions (Gruber et al., 2015). In this context, in situ soil 

moisture observations from mesoscale networks represent an accurate, but discrete, source of soil 

moisture information, which may be useful to remove model uncertainties. Thus, in this study we 



3 

propose to use a model-data assimilation approach to develop 250-m spatial resolution daily 

maps of rootzone (0-50 cm depth) soil moisture across Kansas by leveraging the existing 

infrastructure of the Kansas Mesonet, which currently have 54 stations across Kansas equipped 

with research-grade soil moisture sensors. However, a critical aspect of newly developed soil 

moisture maps is the validation of the soil moisture estimates across large spatial extents and 

multiple land covers. The validation process is particularly challenging because mesoscale 

networks are often deployed for long-term monitoring in undisturbed land and tend to have a 

bias towards grassland soil moisture conditions (Brown et al., 2023; Patrignani & Ochsner, 

2018), which make common validation methods, such as the leave-one-out cross-validation 

method, ineffective. To circumvent this limitation, we propose to use of a roving cosmic-ray 

neutron detector capable of monitoring soil moisture conditions on-the-go across landscapes with 

intermixed land covers to strengthen the validation of the resulting soil moisture maps. 

The cosmic-ray neutron sensing technique is an emerging method that bridges the 

measurement gap between point-level soil moisture sensors and remote sensing observations of 

soil moisture, which have coarse spatial resolutions and mostly represent the soil’s skin layer 

(i.e., 0-5 cm). Cosmic-ray neutron probes (CRNPs) operate on the principle of measuring the 

intensity of epithermal neutrons generated when cosmic rays interact with Earth's atmosphere 

(Zreda et al., 2008). These epithermal neutrons have energies ranging from 0.5 (electronvolts, 

eV) to 100 keV and exhibit high sensitivity to energy loss (i.e., thermalization) due to elastic 

collisions with hydrogen atoms because of their relatively low mass (Köhli et al., 2015). Thus, 

when an epithermal neutron collides with a hydrogen atom, it transfers a significant portion of its 

kinetic energy to the hydrogen atom. As a result, the intensity of epithermal neutrons close to the 

Earth's surface is inversely correlated with the hydrogen content within the upper decimeters of 
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the soil. This hydrogen pool is typically dominated by the soil water content, making the 

technique suitable for non-invasive measurements of soil moisture at the field scale (i.e., 10-30 

hectares) (Desilets et al., 2010). However, converting raw neutron counts into volumetric soil 

water content requires several steps and corrections that are spread across multiple peer-reviewed 

studies. Thus, there is need for developing a comprehensive code library that encompass the 

most common correction routines required to convert raw neutron counts into soil moisture 

estimates. The second chapter of this thesis introduces CRNPy, a new Python library specifically 

designed to simplify and standardize the processing of CRNP data by compiling common 

methods documented across multiple peer-reviewed manuscripts spanning the past 15 years, 

which approximately represents the period since the inception of this technique (Zreda et al., 

2008) to the present time. 

Another challenge when upscaling in situ soil moisture information across landscapes 

with intermixed land covers is the variability in soil moisture conditions driven by vegetation 

cover (Patrignani & Ochsner, 2018). In the final chapter of this thesis, we investigate the 

correlation between rootzone soil moisture measurements at stations of the Kansas Mesonet, 

which are often recorded under warm-season grassland vegetation, and rootzone soil moisture 

conditions in adjacent cropland fields. The goal was to explore the possible use of a machine 

learning observation operator to translate and leverage readily available soil moisture 

observations collected by the Kansas Mesonet into cropland soil moisture conditions.  
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 Abstract 

Mesoscale environmental monitoring networks provide accurate in situ soil moisture 

data, but the sparse distribution of stations and the small sensing footprint of conventional point-

level soil moisture sensors limit the spatial representation of soil moisture conditions over large 

areas. The objective of this study was to develop a 250-m spatial resolution map of rootzone (0-

50 cm depth) soil moisture across Kansas by merging sparse in situ soil moisture observations 

from the Kansas Mesonet with spatially continuous estimates from a simple drydown model 

using a data-fusion approach. The drydown model employs a lumped loss coefficient (λ) that 

accounts for all soil water losses and is modeled as a function of the daily vapor pressure deficit 

(VPD) obtained from the Kansas Mesonet. Upper and lower bounds in rootzone soil water 

storage were empirically determined using available soil texture and soil moisture information 

for the Kansas Mesonet. Soil moisture and VPD observations were obtained from 54 Kansas 

Mesonet stations from 1 January 2018 to 31 October 2022. Daily precipitation data was obtained 

from the National Weather Service multi-sensor gridded product at 4-km spatial resolution. 

Model predictions and in situ observations were assimilated using a conditional merging 

approach. The resulting maps were validated using a leave-one-out cross-validation approach 

and a series of regional surveys conducted with a roving cosmic-ray neutron probe (CRNP). The 
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relationship between daily VPD and λ resulted in a statistically significant negative linear 

correlation (r = -0.64). The leave-one-out cross-validation resulted in a median absolute error 

(MedAE) of 14.2 mm for the model alone, 16.2 mm for the data alone, while the data-fusion 

approach presented an MedAE to 11.2 mm. The spatial validation using the CRNP rover resulted 

in an MedAE of 16.1 mm. Combining in situ soil moisture observations with a parsimonious 

model using a data-fusion approach improved soil moisture estimates and seems to be a viable 

alternative for upscaling soil moisture observations from mesoscale in situ soil moisture 

networks. 
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 Introduction 

Soil moisture is an ecosystem variable that synthesizes the complex interactions between 

weather, soil, and vegetation processes (Grayson & Western, 1998; Rodriguez-Iturbe et al., 

2001; Western et al., 1998). Soil moisture can be measured using a wide range of methods with 

different spatio-temporal scales and accuracy levels. Perhaps, the most common method for 

automated measurements of in situ soil moisture is the use of electromagnetic sensors (Evett et 

al., 2008; Evett & Parkin, 2005; Topp et al., 1980), which can easily interface with electronic 

dataloggers and data telemetry systems. Electromagnetic soil moisture sensors have been 

recently adopted by multiple statewide and nationwide mesoscale environmental monitoring 

networks including the West Texas Mesonet (Schroeder et al., 2005), the Nebraska Mesonet 

(Shulski et al., 2018), the New York Mesonet (Brotzge et al., 2020), the Kansas Mesonet 

(Patrignani et al., 2020), the U.S. Climate Reference Network (USCRN) (Palecki et al., 2013), 

and the Soil Climate Analysis Network (SCAN) (Schaefer et al., 2007). However, as a result of 

the small sensing footprint of point-level sensors and the sparse nature of weather and 

environmental monitoring networks, there is a need to estimate soil moisture conditions in the 

large spatial extents between unmonitored locations. 

To fill this gap, scientists have used a wide range of tools including spatial interpolation 

techniques, the use of physically-based models, remote sensing soil moisture products, and 

model-data assimilation techniques that can consolidate multiple sources of soil moisture 

information into a single product. The simplest and most straight forward approach is to spatially 

interpolate point-level soil moisture observations across the entire spatial domain of the network 

(Xie et al., 2020; Yuan & Quiring, 2017). This approach can be an effective solution for 

spatially-dense mesoscale networks over small spatial domains (e.g., New York Mesonet) and 
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somewhat homogeneous landscapes, but interpolation methods alone, like the inverse distance 

weight and ordinary kriging, have been shown to inadequately represent soil moisture spatial 

patterns in areas with different land covers, sharp changes in soil type (Ochsner et al., 2019), and 

complex terrain that exhibits poor soil moisture spatial autocorrelation (Yao et al., 2013). 

Mechanistic models can circumvent some of the limitations of interpolation methods by 

computing the soil water balance at small grid cells and can incorporate available gridded soil 

and precipitation products (Abatzoglou et al., 2018). However, mechanistic models often require 

a large number of parameters and the need for calibration and in situ validation, particularly 

when applied across large spatial domains (e.g., large watershed, state level). Remote sensing of 

soil moisture like the Soil Moisture Active-Passive (SMAP) satellite mission that consists of 

advanced microwave radiometers and synthetic aperture radars have been designed to provide 

soil moisture on a global scale and represent a viable alternative to estimate soil moisture 

conditions between monitoring stations. The main limitation of current L-band microwave 

radiometers onboard orbiting satellites is the coarse (i.e., several kilometers) spatial scale and the 

shallow sensing depth, which is typically confined to the top few centimeters (i.e., 0-5 cm) of the 

soil profile (Ochsner et al., 2013; Reichle & Liu, 2020). One alternative that has demonstrated 

potential to leverage accurate, but sparse, observations from in situ networks with spatially-

continuous soil moisture data are model-data fusion methods, that enable researchers to 

consolidate different sources of information into a single product. 

Previous studies have shown that the integration of sparse observations with simple 

models can be effective to represent soil moisture conditions. For instance, a study in the US 

utilized a Kalman filter to merge sparse in situ measurements from USCRN and SCAN 

nationwide mesoscale networks with a parsimonious antecedent precipitation index model, 
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revealing that approximately one station every 7,000 km2 is necessary for a significant increase 

in the accuracy using model-data assimilation of soil moisture data (Gruber et al., 2015). The 

conditional merging is a simpler algorithm than the Kalman filter, that was initially developed to 

improve radar precipitation estimates by assimilating in situ rain gauge observations (Hambali et 

al., 2019; Sinclair & Pegram, 2005). A recent study in South Korea used the conditional merging 

method to integrate in situ soil moisture observations with remote sensing products, finding that 

the conditional merging method improved accuracy in locations with a high spatial density of in 

situ observations compared to interpolation techniques like ordinary kriging, outperforming 

conditional merging in terms of accuracy (Kim et al., 2016). Another study in the same region, 

found an accuracy increase of about 20-30% when employing conditional merging to assimilate 

in situ soil moisture observations with a simple model based on the normalized vegetation 

difference index (NDVI) and precipitation data (Jung et al., 2017). These advancements 

underscore the potential of combining in situ measurements from mesoscale with parsimonious 

models for precise estimations of root zone soil water storage.  

Our hypothesis is that a model-data assimilation approach that combines in situ soil 

moisture observations from a mesoscale environmental monitoring network and a parsimonious 

model that simulates first-order soil moisture dynamics will provide more accurate estimations of 

rootzone soil water storage than either using model estimates or interpolated observations alone. 

The objectives of this study were to: 1) develop high-spatial resolution maps of rootzone soil 

moisture for the state of Kansas by integrating in situ observations from the Kansas Mesonet and 

a parsimonious drydown model using a model-data fusion approach; and 2) validate the resulting 

maps of rootzone soil water storage.  
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 Methodology 

In situ soil moisture observations 

In situ soil moisture information was obtained from the Kansas Mesonet, which is a 

mesoscale environmental monitoring network with 73 stations across the state of Kansas, 54 of 

which are equipped with research-grade soil moisture sensors (model CS655, Campbell 

Scientific, Inc.) at 5, 10, 20 and 50 cm depths (Patrignani et al., 2020) (Figure 2-1). Daily 

observations of volumetric water content (VWC) at each sensing depth were used to calculate 

rootzone soil water storage in the top 50 cm of the soil profile using a trapezoidal integration rule 

(Eq. 3) (Gao et al., 2019; Nachabe et al., 2004; Parker & Patrignani, 2021): 

𝑆𝑡 = 𝜃1,𝑡 𝑍1,𝑡 + ∑
𝜃𝑖−1,𝑡 + 𝜃1,𝑡

2
(𝑍𝑖,𝑡 − 𝑍𝑖−1,𝑡)

𝑛

𝑖=2

(1) 

where 𝑆𝑡 is the soil water storage, t is time in days, Zi (mm) is the depth of the ith sensor, 𝜃𝑖 is 

the volumetric water content of the ith sensor, and n is the total number of sensors in the soil 

profile. The soil moisture from the CS655 water reflectometers was computed using the 

following equation proposed by Kargas & Soulis (2019): 

θ = 𝑎 + 𝑏√𝐾𝑎 + 𝑐𝐸𝐶 (2) 

where θ represents the volumetric water content, Ka denotes the bulk relative permittivity, EC 

stands for the bulk electrical conductivity, a, b, and c are fitting parameters with respective 

values of a = -0.115, b = 0.0989, and c = -0.0572 found in a previous laboratory calibration study 

(Patrignani et al. 2022).  
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 Soil water storage model 

Soil moisture dynamics in the top 50 cm of the soil profile were simulated using a 

modified antecedent precipitation index model that represents soil moisture as a sequence of 

exponentially decaying drydown events following the occurrence of precipitation (Kurc & Small, 

2004; Raoult et al., 2021; Shellito et al., 2016). Additionally, the soil water storage oscillates 

between a constrained interval determined by an upper limit and a lower limit. Different soil-

plant-atmosphere attributes define those limits (Reynolds et al., 2000; Ritchie, 1981). Rootzone 

soil water storage was simulated using a modified antecedent precipitation index model (e.g., 

Kurc & Small, 2004): 

𝑆𝑡 = {
(𝑆𝑡−1 − 𝑆𝐿𝐿) 𝜆𝑡 + 𝑆𝐿𝐿 + 𝑃𝑡 , 𝑆𝑡 ≤  𝑆𝑈𝐿

𝑆𝑈𝐿 , 𝑆𝑡 > 𝑆𝑈𝐿
(3) 

where St (mm) is the soil water storage in the rootzone (0 to 50 cm depth) on day t, 𝑆𝑡−1 (mm) is 

the soil water storage on the previous day, 𝜆𝑡 (unitless) is a lumped loss coefficient representing 

all losses in the soil water balance, Pt (mm) is daily precipitation, SLL (mm) is the lower limit of 

soil water storge, and SUL (mm) is the maximum limit of soil water storage.  

The SLL and SUL were estimated based on the sand content in the top 50 cm of the soil 

profile (Van Den Berg et al., 1997). Data for the area of study were obtained from the SoilGrids 

gridded soil product at 250 m spatial resolution (Hengl et al., 2017) for the entire region. The 

SoilGrids dataset was generated using a database of 1,284 in situ soil samples collected in the 

state of Kansas by the USDA Natural Resources Conservation Service and state-of-the-art 

machine learning techniques. The soil texture for the top 50 cm was calculated using a weighted 

average and a linear model was adjusted using soil texture information for 54 Kansas Mesonet 

locations, in conjunction with SLL and SUL calculated for each station by the extraction of the five 

per cent of the lowest and uppermost soil water storage observations. Daily precipitation 
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estimates were downloaded from the National Weather Service (NWS, 2021) at 4-km spatial 

resolution and then linearly downscaled to match with the 250-m spatial grid.  

Drydown events are periods without measurable precipitation that are characterized by an 

exponential decrease in soil moisture. This decrease in soil moisture is mostly attributed to 

evapotranspiration and drainage when the soil moisture is at or near saturation conditions. 

Drydown events were extracted from rootzone soil moisture data obtained from 54 Kansas 

Mesonet stations equipped with soil moisture sensors from January 2017 to December 2021. The 

dataset of resulting drydown periods was filtered to only retain drydowns that had >7 days of 

duration without precipitations to ensure that drydown periods were well defined and exhibited 

the typical exponential decay shape (Figure 2-2). Each drydown was fitted to individual 

exponential decays using the ordinary least squares method. For prediction of the water decay 

magnitude , the atmospheric vapor pressure deficit (VPD) observed during each drydown, was 

tested as an easy-to-obtain indicator of the atmospheric water demand. Parameter λ was 

estimated for each drydown, and VPD was averaged for the temporal window covered by each of 

the fitted drydown events. A linear model was fitted between parameter λ and VPD using a 

robust linear fitting routine with outlier weighting implemented in the statsmodels (Seabold & 

Perktold, 2010) Python library, allowing to determine the water storage loss in a daily basis as 

represented in Eq. 3. Additionally, reference evapotranspiration (ETo) for a short grass was 

computed using the Penman-Monteith method as described in the FAO Irrigation and drainage 

paper 56 (Allen et al., 1998), and tested as an alternative predictor instead of VPD. Vegetation 

data was also tested as additional input to predict the magnitude of soil water depletion using 

MODIS Enhanced Vegetation Index (EVI) pixel values for each station, linearly interpolated to a 

daily time scale (Didan, 2021). 
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Data Assimilation 

A conditional merging algorithm was implemented (Sinclair & Pegram, 2005) to 

assimilate daily observations of rootzone soil moisture obtained from the Kansas Mesonet and 

daily soil water storage predicted with the drydown model. The data-assimilation approach 

consisted of the following steps: 1) we first simulated soil moisture for each 250-m pixel of the 

grid applying the drydown model using gridded versions of fixed and daily parameters, 2) then, 

we calculated the soil moisture residuals between the drydown model and in situ observations at 

the stations of the Kansas Mesonet, 3) then, we interpolated the residuals across the entire grid 

using universal kriging, and 4) we corrected model predictions by adding the interpolated 

residuals to the initial map. These four steps resulted in the final map representing spatially 

continuous soil moisture across Kansas. 

A grid with a spatial resolution of 250 m was defined to address the main goal of 

obtaining a daily map of soil water storage, representing the conditions across the state in a 

spatially continuous approach. This resulted in a gridded representation of 1,284 rows by 3,210 

columns to cover the entire state of Kansas. The soil water storage model, the daily in situ soil 

moisture data request from the Kansas Mesonet, and the data-fusion procedure were 

implemented in the Python programming language version 3.8, so that the approach could be 

deployed in a server to automatically generate daily maps of soil moisture operationally. 

 

Validation of soil moisture maps 

The performance of the model-data fusion approach was validated by calculating the 

MedAE (Median Absolute Error) for the entire year 2022 observations in a leave-one-out cross-
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validation routine, comparing the impact of model-data fusion for different stations. Each cross-

validation iteration differed from the final model in two aspects to make this evaluation more 

robust, 1) the evaluated station was not included in the conditional merging computation, and 2) 

the saved output did not include the model-data fusion correction, allowing the accumulation of 

biases in the recursive chain of daily computations. The data fusion performance was measured 

as the difference between MedAE of the model with conditional merging using neighbor 

stations, and the MedAE using only the model output in 54 Kansas Mesonet locations with 

rootzone soil moisture data during year 2022. Additionally, the error of estimating the soil water 

storage by interpolating the values at neighbor stations was measured during cross-validation. 

Soil moisture maps generated using the model-data fusion approach assimilating soil 

moisture information from the Kansas Mesonet were validated using a cosmic-ray neutron probe 

rover. Raw neutron counts were corrected for the effect of atmospheric pressure (Zreda et al., 

2012), humidity (Rosolem et al., 2013), and incoming neutron flux using the CRNPy Python 

library. Corrected neutron counts were converted into volumetric water content (θ) using the 

following equation described in Desilets et al. (2010):  

θ = (
𝑎0

𝑁𝑐𝑜𝑟𝑟
𝑁0

− 𝑎1

− 𝑎2 − 𝑤𝐿) ρ𝑏 (4) 

where 𝑁0 is an instrument specific parameter that represents the corrected neutron counts on dry 

soil and is often obtained by conducting a field calibration, 𝑁𝑐𝑜𝑟𝑟 are the corrected neutron 

counts, 𝑤𝐿 is the soil lattice water, ρ𝑏 is the soil bulk density, and parameters 𝑎0, 𝑎1 and 𝑎2 are 

fitting parameters that usually have the following values: 𝑎0=0.0808,  𝑎1=0.372 , 𝑎2 =0.115 

(Desilets et al., 2010). 
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The 29 CRNP rover transects collected across a 9 squared kilometers area located within 

Gypsum, KS (38.706, -97.428, 370 m a.s.l.) between 31 July 2017 and 07 May 2018 covered a 

wide range of land covers including cropland and grassland. Each transect was processed using 

the Python CRNPy library, obtaining the surface volumetric water content and top 50 cm soil 

water storage using the library built-in exponential filter. 

The accuracy of soil water storage estimations was evaluated using the Median Absolute 

Error (MedAE). In Eq. 5, 𝑆𝑛 represents the observed soil water storage for the ith data point, and 

�̂�𝑛 is the map estimated soil water storage for the same point, over n total observations: 

MedAE = median(|S1 − �̂�1|, |S2 − �̂�2|, … , |S𝑛 − �̂�𝑛|) (5) 
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 Results and discussion 

 Model-Data fusion cross-validation 

The implemented model-data fusion algorithm using the conditional merging technique, 

successfully estimated the soil water storage in the top 50 cm. The MedAE obtained in the leave-

one-out cross-validation was 11.2 mm. This study revealed that using a model data fusion 

approach combining accurate in situ observations can decrease the error, improving the 

estimations produced by either the model alone (MedAE = 14.2 mm) or the in situ data 

interpolated (MedAE = 16.2 mm). 

In the cross-validation routine, the model results without data assimilation presented a 

Median Absolute Error (MedAE) of 14.2 mm for the entire state, this represents approximately 

6% of the soil porosity and 21% of the average difference between the observed soil water 

storage upper and lower limits. Only four stations out of the 54 cross validated, presented 

MedAE higher than 25 mm when comparing the model output to the in situ observations (Figure 

2-4A). These results are comparable to an evaluation of different spatial models conducted in 

Oklahoma, where land surface models Noah, Mosaic, SAC and VIC where compared to the 

Oklahoma Mesonet stations, yielding a relative MAE of 15.9%, 20.6% ,38.4% and 11.9% 

respectively when considering the top 40 cm of the soil profile (Xia et al., 2014).  

When validating the use of interpolated in situ observations of soil water storage from the 

Kansas Mesonet, the leave-one-out resulted in a MedAE of 16.2 mm. Different error spatial 

distributions were observed within the state, where 11 locations of the Kansas Mesonet showed a 

MedAE higher than 25 mm and 13 locations a MedAE of less than 10 mm (Figure 2-4B). A 

study in Oklahoma reported similar results when testing three interpolation techniques (reduced 

optimal interpolation, inverse distance weighting, and Cokriging) to estimate soil moisture 
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values in the top meter using in situ observations using 65 stations from the Oklahoma Mesonet 

for interpolation, and 39 stations for validation, finding MAE values between 10 and 15 mm 

(Yuan & Quiring, 2017). Recently, using the same Oklahoma Mesonet network, Ochsner et al. 

(2019) performed a cross-validation routine comparing Barnes Objective Analysis (BOA), 

Ordinary kriging (OK), and regression kriging (RK) interpolation methods in soil moisture at 

different depths. The leave-one-out cross-validation routine was tested in 120 stations over a 

period of 2 years, reporting an MAE for the top 60 cm between 0.0576 and 0.0715 m3 m-3, 

roughly representing between 34 and 43 mm of soil water storage. 

When analyzing the performance of the model-data fusion approach at a station-level, all 

the sites presented an improvement, measured as a 27% and 47% decrease of MedAE, compared 

to model output and in situ data interpolation respectively (Figure 2-4C). The model-data fusion 

estimates were better than the neighbor stations interpolation in 89% of the evaluated sites 

(Figure 2-5). The proposed conditional merging technique has been widely used to assimilate 

rain gauge observations with radar precipitation estimates (Hambali et al., 2019; Sinclair & 

Pegram, 2005), but research using soil moisture is limited. Two studies in South Korea tested the 

use of the conditional merging technique with in situ soil moisture sensor observations at 10 cm 

depth from the Rural Development Administration network and remote sensing products of soil 

moisture. Kim et al. (2016) analyzed the improvement with a leave-one-out cross-validation 

comparing in situ observations with the soil moisture estimated by the Advanced Microwave 

Scanning Radiometer 2 sensor. The results revealed that the conditional merging method 

increased the accuracy of the estimations in most of the cases, however in locations with high 

spatial density of in situ observations interpolation methods as ordinary Kriging alone 

outperforms the conditional merging accuracy. Jung et al. (2017) reported that the conditional 



24 

merging technique increased the accuracy by about 20-30% when correcting soil moisture 

estimates from a linear model based on MODIS LST, NDVI, and precipitation data, with in situ 

observations. Similarly, a study in the United States tested the use of a Kalman filter for 

correcting soil moisture estimations from an antecedent precipitation index (API) model with in 

situ observations from USCRN and SCAN networks, showing that current nationwide networks 

density is not suitable to increase the spatial accuracy of API model estimates to overcome the 

accuracy of remote sensing products like Advanced SCATterometer (ASCAT) soil moisture 

estimates. The authors suggested that a density of one station every 7000 km2 is required to 

produce a substantial increase in the soil moisture estimation accuracy when assimilating in situ 

observations (Gruber et al., 2018), Aligned with this, the Kansas Mesonet features a station 

density approximately double that recommendation. 

 

 Spatial validation using a CRNP rover 

The map successfully estimated soil water storage for the validation area in Gypsum, KS 

over the whole measured period. The agreement between the model-data fusion product and the 

average soil water storage reported by each CRNP transect resulted in a MedAE of 16.1 mm, this 

represents 12% of the soil water storage capacity for this location. The error in this validation is 

comparable to findings of a study in Oklahoma that reported approximately 15% of relative error 

when comparing cropland SMAP estimates vs in situ observations (Wyatt et al., 2021).  

The transects contained between 148 to 192 one-minute observations, with an average 

corrected neutron count of 351 counts per minute (cpm) ranging between 330 to 370 cpm. The 

model captured the increase in soil water storage after precipitation events, and the posterior 

drydown events, however, due to the distance to the Gypsum station of the Kansas Mesonet, the 
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conditional merging is highly influenced by in situ observations. During late 2017 there was a 

disagreement between the map and the CRNP rover transects (Figure 2-6). The bias could be due 

to the different land covers between the Kansas Mesonet station located in a grassland area, and 

the high amount of cropland areas, of mostly winter wheat (Triticum aestivum L.), scouted by the 

CRNP rover. Previous studies have reported similar differences between permanent soil moisture 

sensors located in grass-covered buffer areas and adjacent agricultural fields (Han et al., 2012; 

Heathman et al., 2012).  

 

 Daily soil water loss 

There was a significant negative linear relationship (r = -0.55, P<0.001) between λ and 

VPD when analyzing a total of 485 soil moisture drydowns obtained from 54 stations of the 

Kansas Mesonet. (Figure 2-7). The linear model between the VPD and the daily soil moisture 

presented a negative Pearson's correlation coefficient (r = -0.55). In our pursuit to refine the 

model, grassland reference evapotranspiration (ETo) was assessed as a potential alternative to 

using VPD. Interestingly, evapotranspiration exhibited a similar correlation pattern with an r 

value of -0.53. These findings underscore that both VPD and evapotranspiration offer analogous 

insights to estimate the soil moisture drydown dynamics. Yet, when incorporating vegetation 

data through EVI into a multiple linear model, its influence on estimating λ was found to be 

insignificant. This is substantiated by the 95% confidence interval of the EVI coefficient, which 

lies between -0.0034 and 0.00028, indicating a negligible impact. However, it is essential to note 

that the scope of this study was limited to the predominant warm-season grasses at the Mesonet 

sites, which could present similar growing dynamics, potentially introducing high 

autocorrelations between sites masking the effect of vegetation. Future research should 
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encompass a broader range of land covers to offer a comprehensive understanding. For instance, 

past studies found vegetation differences to be significative and bridged the gap between crop 

field measurements and data from permanent sensors in native grasses through a Cumulative 

Distribution Function (CDF) matching technique (Han et al., 2012; Heathman et al., 2012). 

Furthermore, in Oklahoma an artificial neural network has been used to upscale mesoscale soil 

moisture observations from a mesoscale network situated predominantly in warm-season grasses 

to estimate winter wheat soil moisture (Patrignani & Ochsner, 2018). 

 

Soil properties 

With the extracted soil texture information from SoilGrids for each station of the Kansas 

Mesonet and the respective historic soil water storage observations, a linear model was adjusted. 

The obtained inverse linear relationships (Figure 2-8) agree with similar studies in the same 

region comparing soil texture with field capacity and permanent wilting point presenting a 

similar range of coefficients when comparing the values in terms of volumetric water content 

(Parker et al., 2022). Soil water storage limits for the complete area of study were obtained by 

applying the linear models to the SoilGrids weighted average spatial layer for the top 50 cm at a 

250 m resolution (Figure 2-9). In locations where data was available, texture information from 

SoilGrids was substituted with in situ data from Parker et al. (2022). 

 

 Limitations of this study 

One of the limitations of this study is that the proposed approach only accounts for the 

top 50 cm of the soil profile, which may impose a limitation to accurately represent rootzone soil 

moisture conditions in some deep rooted crops and pastures. For instance, in the U.S. Great 
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Plains, the root system of winter wheat can reach a depth of 90 cm by the middle of the growing 

season (Weaver et al., 1924), summer crops like grain sorghum and suflowers can reach root 

depths between two to three meters depth (Stone et al., 2002), and perennial pastures commonly 

have root system reaching more than one meter depth (DuPont et al., 2014). Another limitation 

of the proposed soil water storage model is the uncertainty in the computation of the lumped loss 

coefficient, particularly at greater VPD values, which could be attributed by errors in the gridded 

soil products, uncertainties in the computation of the daily VPD, and uncertainties in the 

estimation of the loss coefficient caused by drydown events that do not follow the typical 

exponential decay pattern.  
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 Conclusions 

• The implemented simple model successfully estimated the soil water storage for the top 

50 cm, having a MedAE of 14.2 mm in the leave one out cross validation using the in situ 

Kansas Mesonet observations. 

• The data assimilation between the model and the in situ observations using a conditional 

merging algorithm improved the soil water storage estimations by 2 mm, being better 

than the simple model or the interpolated in situ observations alone. 

• The validation using CRNP had a MedAE of 16.1 mm, however it allowed to capture the 

model’s limitations when estimating soil water storage in cropland areas, since the model 

calibration, and data assimilation routines, are based on the Kansas Mesonet in situ 

observations, which are located in grassland areas. There is potential to explore solutions, 

such as the use of observation operators, to upscale the model-data fusion estimates to 

cropland soil moisture.  
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Figure 2-1. Map showing the 54 out of 74 stations of the Kansas Mesonet that are equipped with 

research-grade soil moisture sensors at 5, 10, 20 and 50 cm depth as of September 2023, 
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Figure 2-2. Example of soil water storage dynamics observed at the Gypsum station of the 

Kansas Mesonet (black line) and the corresponding soil moisture drydowns fitted using the 

simple model used in this study. The upper and lower limits represent the maximum and 

minimum soil water storage of the model. 
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Figure 2-3. Temporal progression of plant available water (PAW) for an 8-day period. The rapid 

decrease in soil moisture during short periods shows the importance of high-temporal resolution 

monitoring to develop flash drought warning systems. 

 

 

  



40 

 

Figure 2-4. Median absolute error (MAE) of the soil water storage model (A), interpolated in situ 

observations (B), and the proposed model-data fusion approach (B) based on a leave-one-out 

cross-validation approach. 
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Figure 2-5. Results of the leave-one-out cross-validation exercise using 5% randomly selected 

points. Arrows depict that for large errors (i.e., relative error >30%), the model-data fusion 

reduced the uncertainty of model estimations and performed better than interpolating 

neighboring in situ observations. 
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Figure 2-6. Time series of daily soil water storage in the top 50 cm obtained from the Gypsum 

station of the Kansas Mesonet, estimated from rover surveys, and with the data-assimilation 

method. Shaded area of the soil moisture time series from the data-assimilation method 

represents one standard deviation. Daily precipitation was obtained from the Gypsum station of 

the Kansas Mesonet. 
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Figure 2-7. Vapor pressure deficit (VPD) negative linear relationship with the soil water storage 

loss coefficient () for the 485 drydown events analyzed. Different soil textural classes 

represented with different markers were not related with the  parameter value. 
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Figure 2-8. Fitted linear models between sand content extracted from SoilGrids and the observed 

upper and lower limits of soil water storage at each location of the Kansas Mesonet. 
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Figure 2-9. Maps of soil water storage upper (top) and lower limit (bottom) for the state of 

Kansas created using the adjusted linear regression between sand content and soil water storage 

limits. 
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 Abstract 

Accurate soil moisture estimates are vital for efficient water resources management and 

critical for agriculture, hydrology, and climate studies. Traditional methods for measuring soil 

moisture, such as gravimetric sampling and time-domain reflectometry, provide accurate 

estimations but over a small sensing volume. Cosmic-ray neutron probes (CRNPs) measure the 

number of neutrons produced by cosmic rays interacting with hydrogen atoms in the 

environment, including soil water content. Correcting cosmic-ray neutron count measurements 

with atmospheric conditions and other undesired interactions allows estimating soil moisture at a 

field scale (10 - 30 ha). This methodology has been increasingly used due to its large-scale 

footprint and non-invasive nature, providing continuous field-scale soil moisture monitoring. 

However, the workflow of converting CRNP data into soil moisture, including atmospheric 

corrections and other noise-removing filters, can be complex. This research introduces CRNPy, a 

Python library specifically designed to streamline and standardize the processing of CRNP data. 

Drawing upon empirical functions from multiple studies, CRNPy offers a flexible workflow to 

estimate various correction parameters, simplifying a traditionally complex process. With a focus 

on usability and accessibility, CRNPy lowers the barriers for researchers and students working in 
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the field of cosmic-ray soil moisture monitoring. Alternative correction routines were evaluated 

with CRNPy finding a trade-off between operational simplicity and accuracy.  In scenarios 

exploring smoothing techniques, the library maintained consistent MAE of 0.029 m3 m-3, 

affirming the flexibility in choosing the smoothing step in stationary CRNP. However, when 

processing CRNP rover transects, a Root Mean Square Deviation (RMSD) of 0.019 m3 m-3 was 

observed compared with in situ soil moisture stations, and a larger RMSD of 0.023 m3 m-3 when 

applying spatial averaging directly to volumetric water content estimates. CRNPy, thus, presents 

a significant leap forward in the efficient and accurate interpretation of CRNP data, contributing 

valuable insights into developing and validating models and remote sensing tools in the soil 

physics and hydrology domain. 
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 Introduction 

The cosmic-ray neutron sensing technology is an innovative and non-invasive method for 

field-scale monitoring of soil moisture (Zreda et al., 2008). The sensing principle is based on the 

detection of fast neutrons that are generated when cosmic rays interact with atoms in the Earth's 

atmosphere. These secondary fast neutrons interact with hydrogen pools in the land surface, and 

thus, the intensity of neutrons detected near the ground surface is inversely related to the amount 

of water in land biomass and the top layers of the soil (Desilets et al., 2010). Typically, cosmic-

ray neutron probes have a large sensing footprint, covering an area of approximately 12 hectares 

(about 30 acres) and can measure soil moisture up to a depth of 70 cm, although under most field 

conditions the effective sensing depth spans a depth ranging between 5 and 40 cm (Franz et al., 

2012; Köhli et al., 2015). This makes cosmic-ray neutron probes (CRNP) a technology 

particularly useful for capturing spatially-averaged soil moisture over large areas, filling the gap 

between point-level sensors and remote sensors onboard orbiting satellites.  

In hydrology, CRNP are often used to quantify surface soil water storage to improve 

hydrological models (Fatima et al., 2023) and better understand the soil water balance at the 

watershed and ecosystem scales. For example, stationary CRNP have been used to quantify soil 

water storage in a forest dominated by deciduous and coniferous trees in north-eastern Germany 

(Heidbüchel et al., 2016). Another study in two semiarid ecosystems in the southwestern United 

States validated the use of CRNP against a comprehensive soil moisture monitoring network, 

capturing soil moisture variations and enabling a deeper understanding of hydrological processes 

at the watershed level, including the relation between evapotranspiration and soil moisture across 

the region (Schreiner-McGraw et al., 2016). In agriculture, CRNP are often used to guide 

irrigation scheduling (Avery et al., 2018; Brogi et al., 2023; X. Han et al., 2016; Li et al., 2019), 
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determine water use efficiency (Chen et al., 2022), and quantify aboveground crop biomass 

(Franz et al., 2013; Jakobi et al., 2022; Tian et al., 2016). Because of the large sensing volume, 

stationary CRNP have recently been added as an integral component of mesoscale environmental 

monitoring networks (Bogena et al., 2022; Zreda et al., 2012). Roving versions of CRNP devices 

that can be mounted on moving vehicles for on-the-go soil moisture monitoring have also play 

an important role for characterizing mesoscale soil moisture spatial variability (Chrisman & 

Zreda, 2013) and to calibrate and validate remote sensing soil moisture products by conducting 

transects over large spatial domains with different soil types (Dong et al., 2014; Hornbuckle et 

al., 2012; Montzka et al., 2017). However, the process of cleaning, processing, and analyzing 

CRNP data involves multiple corrections and filtering steps spread across multiple peer-

reviewed articles, which hinders reproducibility and represents a barrier to new investigators 

wanting to use this technology for soil moisture monitoring.  

The objective of this work was to compile the progress made in the processing workflow 

for converting raw neutron counts into soil moisture since the inception of this technique into a 

user-friendly, versatile, and instrument agnostic library coded in the Python programming 

language. This new library, named “CRNPy”, was designed to be accessible to both researchers 

and instrument manufacturers seeking to integrate the processing workflow into their data 

analysis and hardware. Unlike other similar libraries (Power et al., 2021), CRNPy does not 

require any specific naming convention of column headers in the input data or the download of 

additional external data sources or reanalysis data. 
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 Library computation routines 

Using fast neutron counts collected with stationary and roving CRNP for soil moisture 

monitoring requires multiple correction steps (Figure 3-1 and Figure 3-2). The first step in the 

correction of observed raw neutron counts (𝑁𝑟𝑎𝑤) requires a correction including incoming 

neutron flux (𝑓𝑖), atmospheric pressure (𝑓𝑝) as recorded by collocated barometer, and air absolute 

humidity (𝑓𝑤). The application of these three corrections factors lead to a new set of corrected 

neutron counts (𝑁𝑐𝑜𝑟𝑟): 

𝑁𝑐𝑜𝑟𝑟 =
𝑁𝑟𝑎𝑤  ∙  𝑓𝑤

𝑓𝑝  ∙  𝑓𝑖

(1) 

 

 Incoming neutron flux correction 

The correction factor for the natural variation of incoming neutron intensity is calculated 

as the ratio of the measured neutron counts at a reference neutron monitor and a reference 

intensity during the study period (Andreasen et al., 2017): 

𝑓𝑖 = 𝐼𝑚/𝐼0 (2) 

where 𝑓𝑖, is the correction factor for the incoming neutron flux, 𝐼𝑚 is the timeseries of neutron 

counts obtained from a reference neutron monitor selected for a site with similar earth 

geomagnetic cutoff rigidity, and 𝐼0 is a reference neutron count typically defined as the counts on 

the first day of the study. The geomagnetic cutoff rigidity, which is the shielding provided by the 

earth's magnetic field against charged cosmic ray particles, depends on the geographic latitude 

and altitude (Shea & Smart, 2019). This shielding is greatest at low elevations near the equator 

and is lowest at the poles. The functions find_neutron_monitors and get_incoming_neutron_flux 
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can be used to find and retrieve data from active reference neutron monitors listed in the Real-

time Neutron Monitor Database (NMDB). 

 

 Atmospheric pressure correction 

Raw neutron counts are also affected by variations in atmospheric pressure and air 

absolute humidity. For instance, the greater the atmospheric pressure and the greater absolute 

humidity, the greater is the attenuation in raw neutron counts. This fact also suggests that devices 

in locations at high altitudes tend to have greater raw neutron counts compared with CRNP 

devices located at low altitudes. Neutron counts variations caused by pressure changes in the 

atmosphere were corrected using the following equation (Zreda et al., 2012): 

 𝑓𝑝  =  exp[(𝑃0  −  𝑃)/𝐿] (3) 

 

where  𝑓𝑝, represents the correction factor for atmospheric pressure, 𝑃0 is the reference 

atmospheric pressure typically assumed to be the long-term value for the location or the 

atmospheric pressure at the time of the calibration of the CRNP, 𝑃 is the observed atmospheric 

pressure in hectopascals using a collocated barometer, and 𝐿 is the atmospheric attenuation 

coefficient (Andreasen et al., 2017; Zreda et al., 2012). The value of 𝐿 is typically between 128 g 

cm-2 at high latitudes and 142 g cm-2 near the equator (Desilets & Zreda, 2003). For the state of 

Kansas a value of 130 g cm-2 is a good choice being also consistent with other studies in 

Oklahoma (Brown et al., 2023; Dong & Ochsner, 2018). 

 



52 

 Atmospheric humidity correction 

 The impact of atmospheric humidity on 𝑁𝑟𝑎𝑤 was accounted for by using the 

following correction formula (Andreasen et al., 2017; Rosolem et al., 2013):  

𝑓𝑤 = 1 + 0.0054 ∗ (𝐴 − 𝐴𝑟𝑒𝑓) (4) 

where 𝑓𝑤 represents the correction factor for water vapor content, 𝐴 is the observed absolute 

humidity measured at a similar height of the neutron detector, and 𝐴𝑟𝑒𝑓  is the reference absolute 

humidity. (Rosolem et al., 2013). 

 

 Biomass correction 

In addition to atmospheric water vapor, water stored in plant biomass can also exert a 

moderating effect on raw neutron counts. Thus, to accurately estimate soil moisture conditions it 

is also necessary to account for this additional pool of water, particularly when devices are 

surrounded by high-biomass vegetation like forests or corn (Zea mays L.). The bwe_correction 

function was included for correcting neutron counts for the effects of aboveground biomass 

(Baatz et al., 2015). 

𝑓𝑏 = 1 − 𝐵𝑊𝐸 ∗ 𝑟2/𝑁(0,𝐵𝑊𝐸=0) (5) 

𝐵𝑊𝐸 = 𝑆𝑊𝐵 − 𝑆𝐷𝐵 + 𝑆𝐷𝐵 ∙ 𝑓𝑊𝐸 (6) 

where 𝑓𝑏, represents the correction factor for water in surrounding biomass, 𝐵𝑊𝐸 is the biomass 

water equivalent (kg m-2) based on the stoichiometric amount of hydrogen and oxygen contained 

in cellulose, and 𝑟2/𝑁(0,𝐵𝑊𝐸=0) is the ratio of neutron counts with biomass to neutron counts 

without biomass. BWE can be estimated with in situ destructive sampling of biomass, by 

measuring the standing wet biomass (𝑆𝑊𝐵), the standing dry biomass (𝑆𝐷𝐵) and including the 

stoichiometric ratio of water to organic carbon molecules in the plant (𝑓𝑊𝐸) that is approximately 
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0.494 (Wahbi et al., 2018). A weakness of this correction is that it only accounts for 

aboveground biomass ignoring the effect of water pools in root tissue. Recent studies have 

shown that CRNP are sensitive to root biomass, which would require improvements in the 

calibration. Similarly, if all other pools of hydrogen are accounted for, this methodology could 

be used to track field-scale root biomass (Jakobi et al., 2018). The CRNPy library implements 

this approach through the biomass_to_bwe and correction_bwe functions. 

 

 Road correction 

Because sensing footprint of CRNP is greater in the immediate surroundings of the 

device, rover surveys also require a correction to account for differences between the field and 

underlying road soil water content. The CRNPy library includes a road_correction routine (Eq. 

7) that accounts for: the geometry of the road (F1, Eq. 8), the difference in soil moisture between 

the road and the field (F2, Eq. 9), and the horizontal distance from the road center to the sensor 

(F3, Eq. 10) (Schrön et al., 2018): 

𝑓𝑟 = 1 + 𝐹1 ⋅ 𝐹2 ⋅ 𝐹3 (7) 

𝐹1 = 𝑝0(1 − 𝑒−𝑝1∙ 𝑅𝑊) (8) 

𝐹2 = −𝑝2 − 𝑝3 ⋅ 𝜃𝑟𝑜𝑎𝑑 − (
𝑝4 +  𝜃𝑟𝑜𝑎𝑑

𝜃𝑁
 ) (9) 

𝐹3 = 𝑝6 ∙ 𝑒−𝑝7⋅𝑅𝑊−𝑝8⋅𝑅𝐷4
+ (1 −  𝑝6)𝑒−𝑝9⋅𝑅𝐷 (10) 

where 𝑅𝑊 is the road width in meters, 𝜃𝑟𝑜𝑎𝑑 is the volumetric water content of the road, 𝜃𝑁 is 

the mean volumetric water content of the surrounding landscape, RD is the distance in meters 

from the road to the sensor, and parameters 𝑝0 𝑡𝑜 𝑝8 have constant values defined in Table 1 in 

Schrön et al. (2018). The function road_correction calculates the correction factor in the CRNPy 

library. 
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 Converting corrected counts into volumetric water content 

Converting the corrected neutron counts (𝑁𝑐𝑜𝑟𝑟) into volumetric soil water content (𝜃) 

typically represents the last step of the workflow and is defined in the function named 

counts_to_vwc (Desilets et al., 2010): 

θ = (
𝑎0

𝑁𝑐𝑜𝑟𝑟
𝑁0

− 𝑎1

− 𝑎2 − 𝑤𝐿) ρ𝑏 (11) 

where 𝑁0 is an instrument specific parameter that represents the corrected neutron counts on dry 

soil and is often obtained by conducting a field calibration, 𝑤𝐿 is the soil lattice water, ρ𝑏 is the 

soil bulk density, and parameters 𝑎0, 𝑎1 and 𝑎2 are fitting parameters that usually have the 

following values: 𝑎0 = 0.0808  ,  𝑎1 = 0.372 , 𝑎2 = 0.115 (Desilets et al., 2010). 

 

1) Uncertainty estimation 

As with any instrument, it is also important to characterize the uncertainty of the 

measurements. The uncertainty in the corrected neutron counts is defined by the standard 

deviation (𝜎𝑁) of the Poissonian probability distribution (Schrön, 2016; Zreda et al., 2012):  

𝜎𝑁 = 𝑠√𝑁 (12) 

where s is the correction factor applied for all the involved corrections and N is the raw neutron 

count. In order to propagate the uncertainty error from the corrected neutron counts into the soil 

moisture estimates, the standard deviation is expressed in the form of a third order Taylor 

expansion (Jakobi et al., 2020): 



55 

𝜎𝜃𝑔
(𝑁) = 𝜎𝑁

𝑎0𝑁0

(𝑁− 𝑎1𝑁0)4 

√[(𝑁 −  𝑎1𝑁0)4 +  8 𝜎𝑁
2(𝑁 −  𝑎1𝑁0)2 +  15 𝜎𝑁

4] (13) 

  

where 𝜎𝜃𝑔
(𝑁), is the standard deviation of the gravimetric soil moisture, N are the corrected 

neutron counts, 𝑁0 is an instrument-specific parameter, and parameters 𝑎0 and 𝑎1 were defined 

in equation 10. In the CRNPy library this routine is implemented through the methods 

uncertainty_counts and uncertainty_vwc. 

 

 Sensing depth 

The sensing depth can be obtained by computing two e-folding sample volume, which 

can be defined as the volume within which 86% (𝐷86) of the detected neutrons above the surface 

originate using the following equation (Franz et al., 2012; Köhli et al., 2015; Schrön et al., 2017): 

 

𝐷86 =
1

𝜌b

(8.32 + 0.14 (0.97 + 𝑒−
𝑟

100)
26.42 + 𝜃

0.057 + 𝜃
) (14) 

where ρb, is the field bulk density, 𝜃 is the estimated volumetric soil moisture estimated from the 

neutron counts, and 𝑟 is the distance in meters between the site and the CRNP scaled by the 

pressure correction. The sensing_depth method allows the sensing depth estimation using the 

CRNPy library. 

 

 Outlier detection 

The CRNPy library offers several methods for outliers detection using the is_outlier 

method, which includes a simple range detection based on user-provided lower and upper 
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boundaries, interquartile range, z-scores, and a scaled mean absolute difference (Iglewicz & 

Hoaglin, 1993). Outliers can be caused by hardware malfunction, vibrations, or external neutron 

sources (e.g., use of nearby neutron probe soil moisture meters like the 503 Hydroprobe by 

Instrotek, Inc.). 

 

 Exponential filter 

Because observations with CRNP devices typically represent the soil moisture conditions 

in the top 10-20 cm, an exponential filter operator (Albergel et al., 2008) was added to the 

CRNPy library to extrapolate surface soil moisture conditions to the rootzone using the function 

exp_filter (Franz et al., 2020). For instance, the exponential filter has been successfully used to 

estimate rootzone soil water storage from in situ surface soil moisture measurements in on-farm 

cropland experiments in Kansas (Rossini & Patrignani, 2021). 

 

  



57 

 Library Features 

- The CRNPy library was implemented using the Python programming language, with the 

libraries Numpy (Harris et al., 2020), Pandas (The pandas development team, 2020), 

SciPy (Virtanen et al., 2020), and Matplotlib (Hunter, 2007), which are included in 

common Python data science bundles like the Anaconda open source ecosystem. 

- Utility functions for determining site-specific information required before processing raw 

neutron counts include the determination of 1) lattice water (i.e., bounded water to clay 

particles), 2) geomagnetic cutoff rigidity (Smart & Shea, 2001), and 3) a reference 

neutron monitor (Klein et al., 2009). 

- The library requires input data in the form of delimited text files, but does not require 

specific naming conventions column headers, thus allowing which increases 

reproducibility and minimizes human error. Each function of the CRNPy library accepts 

either a Numpy array or a Pandas series, enabling a more versatile, modular, and 

customizable workflow that adapts to instrument outputs from different manufacturers. 

- For roving devices, CRNPy includes a few utility functions for spatial filtering and basic 

interpolation routines with cubic, linear, nearest neighbor, and inverse distance weighting 

interpolation methods.  
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 Description of Use-case Scenarios 

After developing the Cosmic-Ray Neutron Python library, we used it to test a series of 

alternatives and unexplored corrections, and post processing methods in two stationary CRNP 

use case scenarios and one roving CRNP use case scenario. 

 

 Use-case scenario 1 – Comparison of stationary CRNP corrections 

Usually, CRNP also need to be equipped with additional research-grade atmospheric 

pressure and humidity sensors to implement the required correction routines (Rosolem et al., 

2013; Zreda et al., 2012), which can further increase the complexity and cost of the required 

hardware (Patrignani et al., 2021). To find a way to circumvent some of these requirements, the 

first case scenario was aimed at evaluating alternative correction routines that require less inputs 

from auxiliary sensors onboard of stationary CRNP. The two alternative approaches that were 

tested are: i) applying only the pressure correction using collocated barometer observations, and 

ii) applying the pressure correction in addition to a fixed absolute humidity correction factor 

estimated using the long-term average value of absolute humidity for the study site. The 

evaluation was conducted using a dataset collected with a stationary CRNP (Radiation Detection 

Technologies, Inc., Manhattan, KS) deployed at the KONA site of the National Ecological 

Observatory Network (NEON) within the Konza Prairie Biological Station near Manhattan, KS 

(39.110 N, 96.613 W altitude 325 m a.s.l.) from 10 April 2020 to 18 June 2020. To benchmark 

the volumetric water content resulting from the different combination of correction routines we 

used the average volumetric water content from an existing array of five in situ soil moisture 

sensors at 5 and 15 cm depth from the NEON network. Mean atmospheric pressure 978 mbar 

and mean absolute humidity 7.7 g m-3 for this location were obtained from Ashland Bottoms 
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station of the Kansas Mesonet (Patrignani et al., 2020), which is located at ~2.5 km from the 

study site.  

The accuracy of the resulting volumetric water content from stationary CRNP case-study 

scenarios was tested using the mean absolute error (MAE):  

MAE =
1

𝑁
∑|𝜃𝑁 − 𝜃𝑖𝑛−𝑠𝑖𝑡𝑢|

𝑁

𝑖=1

(15) 

where 𝜃𝑁 is the volumetric water content estimated with the CRNP, and 𝜃𝑖𝑛−𝑠𝑖𝑡𝑢 is the in situ 

volumetric water content from the KONA site of the NEON network. 

 

 Use-case scenario 2 – Temporal filter of neutron counts vs. soil moisture 

A common practice to remove some of the noise in the signal of corrected neutron counts 

is to smooth the signal by applying a third-degree Savitzky-Golay temporal filter with an 11-hour 

window (Franz et al., 2020). However, because there is a non-linear relationship between raw 

neutron counts and volumetric water content, it remains unclear whether there is an advantage of 

conducting the temporal smoothing in the resulting volumetric water content compared with the 

typical smoothing of the raw neutron counts. The objective of this scenario was to test whether 

smoothing the signal of volumetric water content results in more accurate estimates of soil 

moisture compared with smoothing the signal of raw neutron counts. Using the same dataset and 

similar methodology from use case scenario 1, the accuracy of applying the smoothing filter to 

either corrected counts or final soil moisture estimations, was compared to the in situ 

observations from the KONA site of the NEON network. 
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 Use-case scenario 3 – Spatial filtering of neutron counts vs. soil moisture 

With roving CRNP platforms, spatial smoothing methods such as the nearest neighbor 

averaging, often yield more accurate results compared to temporal techniques like the Savitzky-

Golay filter. This particularly occurs in areas with abundant local data points (i.e. transects with 

intersecting roads), where the spatial techniques can capture localized variations more effectively 

(Schrön et al., 2018). The aim of this use case scenario was to test the effect of smoothing the 

neutron counts before converting to volumetric water content versus directly smoothing the 

estimated volumetric water content.  

Using 13 CRNP transects collected with a roving device (Hydroinnova LLC, 

Albuquerque, NM, USA) from 17 August 2021 to 16 November 2021 in the in the Kings Creek 

watershed of approximately 16 square kilometers located within the Konza Prairie Biological 

station, Kansas, USA (39.0964 N, 96.5848 W, altitude 340 m a.s.l.). The accuracy of applying a 

spatial average with a buffer of 800 m was compared to either corrected counts or final 

volumetric water content estimations. In situ soil moisture observations from a hydrological 

network consisting of 16 monitoring stations across the Kings Creek watershed, KS, was used 

for validation. Each station is equipped with soil moisture sensors (model TEROS 12, Meter, 

Inc., Pullman, WA, USA) at 5, 20, and 40 cm depth, the average of 5 and 20 cm depth sensors 

were used for validation. The CRNP soil moisture estimations were also compared to 

observations made by the Soil Moisture Active-Passive (Entekhabi et al., 2010) remote sensing 

product. For better consistency with previous studies, roving CRNP accuracy was evaluated 

using the Root Mean Square Deviation (RMSD) between the CRNP estimated volumetric water 

content (𝜃𝑁)  and the in situ observations (𝜃𝑖𝑛−𝑠𝑖𝑡𝑢) of the the Kings Creek hydrological network. 
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𝑅𝑀𝑆𝐷 = √
1

𝑁
∑(θ𝑁 − θ𝑖𝑛−𝑠𝑖𝑡𝑢)2

𝑁

𝑖=1

(16) 
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 Results and discussion 

 Use-case scenario 1 – Comparison of stationary CRNP corrections 

The CRNPy library implemented correction and conversion workflow successfully 

allowed the estimation of volumetric water content from stationary CRNP observations using 

different combinations of correction factors (Figure 3-3). The stationary CRNP yielded a MAE 

of 0.029 m3 m-3 compared to in situ observations when applying atmospheric pressure and 

absolute humidity corrections using collocated sensors, and incoming neutron flux corrections. 

The obtained MAE is consistent with results from previous studies in the same location 

(Patrignani et al., 2021). During the experiment, the mean hourly raw neutron count was 2170, 

after applying the correction factors, the mean hourly corrected count was 2280 (Figure 3-4). The 

MAE for the volumetric water content using only the pressure correction from the collocated 

barometer was 0.063 m3 m-3 increasing the error by approximately 117 %. However, using the 

atmospheric pressure from the collocated barometer, and estimating a fixed humidity correction 

factor from long-term (10 years) observations of absolute humidity from the Ashland Bottoms, 

Kansas Mesonet station, led to a MAE of 0.037 m3 m-3 being 28% higher than the MAE of using 

the correction factors computed from collocated sensors (Table 3-2). In the absence of a 

collocated pressure sensor, nearby pressure observations from environmental monitoring 

networks could be used for computing the pressure correction factor, as presented in 

Supplementary Material 1. This opens a new opportunity to reduce hardware complexity and 

costs by assessing the relevance of each correction when implementing CRNP systems. 

During the study period, atmospheric pressure ranged from 95.7 to 99.2 kPa, which 

represents 66% of the mean range for this site. As a result, the pressure correction factor ranged 

from 0.89 to 1.16. Absolute humidity ranged from 2 to 24 g m-3, leading to a correction factor 
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ranging from 1.01 to 1.13. The incoming neutron flux showed correction factors from 0.99 to 

1.02 (Figure 3-5). The values for atmospheric and pressure corrections aligned with those 

reported in prior studies (Hawdon et al., 2014; Patrignani et al., 2021). This study presented 

smaller variations in incoming neutron flux compared to the range of approximately 0.86 to 1.22 

reported by Hawdon et al. (2014).  

 

 Use case scenario 2 – Temporal filter of neutron counts vs. soil moisture 

Applying the Savitzky-Golay filter to the volumetric water content resulted in a MAE of 

0.029 m3 m-3 when smoothing the corrected neutron counts, as proposed in previous studies (e.g., 

Davies et al., 2022; Franz et al., 2020; Patrignani et al., 2021). The alternative approach of 

smoothing the resulting volumetric water content observations led to the same MAE of 0.029 m3 

m-3 with negligible differences during the period of study (Figure 3-6). 

 

 Use-case scenario 3 – Spatial filtering of neutron counts vs. soil moisture 

The CRNP rover transects were successfully processed using the CRNPy library.  The 

mean volumetric water between the 13 rover surveys and the 16 in situ soil moisture stations 

within the Kings Creek watershed resulted in a RMSD of 0.019 m3 m-3. This value is similar to 

the accuracy of 0.03 m3 m-3 reported by a previous study in cropland and rangeland areas that 

used CRNP rover surveys for calibrating and validating CRNP soil moisture estimations (Dong 

et al., 2014). A similar study evaluated the impact of roads on the accuracy of CRNP rover soil 

moisture estimations and reported errors between 0.020 and 0.061 m3 m-3 (Schrön et al., 2018). 

In 10 out of the 13 rover transects, CRNP observations had a better agreement with in situ 

observations than the SMAP remote sensing product (Figure 3-7 and   
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Table 3-3), this highlights the potential of the cosmic-ray sensing technology and watershed in 

situ soil moisture networks to validate remote sensing products (Ochsner et al., 2013). 

Applying the spatial average directly to the volumetric water content estimates decreased 

the accuracy, which was reflected in a larger RMSD = 0.023 m3 m-3. The non-linearity between 

corrected neutron counts and the resulting volumetric water content produced changes in the 

obtained estimations smoothing the corrected counts compared to smoothing the CRNP 

volumetric water content observations on the same date. These differences were consistently 

observed across all transects. Using a spatial filter that relies on the median value instead of the 

arithmetic average, prevented the occurrence of these changes, which resulted in the same values 

as when applying the filtering to corrected neutron counts or volumetric water content 

estimations. 
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 Conclusions 

- Atmospheric pressure and absolute humidity obtained from collocated sensors onboard of 

stationary CRNP agreed well with observations from nearby stations of the Kansas 

Mesonet. Our findings suggest that hourly data from nearby weather stations equipped 

with research-grade sensors could be used to fill in missing data or completely replace the 

need for installing additional instrumentation with the stationary CRNP. 

- The alternative approach of applying only the pressure correction duplicates the Mean 

Absolute Error compared to using the complete set of corrections, suggesting a trade-off 

between operational simplicity and accuracy. While applying the pressure correction and 

fixed correction factor for absolute humidity using long-term average of absolute 

humidity for the site increased the error of MAE of the soil moisture estimations by 28%.  

- In the case of stationary CRNP, smoothing either the corrected neutron counts or the 

volumetric water content had negligible impact in the final volumetric water content, 

offering CRNP users the flexibility to choose when to apply the temporal smoothing step. 

- The spatial average filter applied to either corrected neutron counts or volumetric water 

content across multiple surveys conducted with a roving CRNP resulted in a 21% loss in 

accuracy when comparing to the watershed network estimates. Selecting an appropriate 

smoothing technique is necessary given the non-linearity of the data. 
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Table 3-1. Average raw neutron counts per minute, atmospheric pressure, absolute humidity and 

reference incoming neutron flux obtained from the Dourbes (3.18 GV, 225 m a.s.l) neutron 

monitor in Belgium part of the NMDB (Klein et al., 2009) network, for each CRNP rover 

transect collected in the Kings Creek watershed. 

Date Mean raw 

neutron counts 

(cpm) 

Mean 

Atmospheric 

Pressure (kPa) 

Mean Atmospheric 

Absolute Humidity 

(g m-3) 

Incoming 

neutron 

flux (cps) 

18 Aug 2021 318 971.8 16.8 114 

23 Aug 2021 329 967.1 15.9 113 

02 Sep 2021 321 966.0 19.1 113 

05 Sep 2021 286 974.6 14.3 115 

08 Sep 2021 300 974.5 10.1 113 

13 Sep 2021 320 968.5 14.2 114 

20 Sep 2021 335 964.7 15.4 112 

28 Sep 2021 338 965.9 12.2 112 

04 Oct 2021 332 974.0 7.7 115 

11 Oct 2021 330 960.7 8.1 113 

23 Oct 2021 331 963.9 9.6 112 

01 Nov 2021 274 983.6 5.0 111 

17 Nov 2021 302 974.4 2.4 112 
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Table 3-2. Correction factors range and Mean Absolute Error (MAE) of three different 

approaches, using only the atmospheric pressure correction sourced from the collocated 

barometer, using the atmospheric pressure correction factor from the collocated barometer and a 

correction factor for absolute humidity computed from long term site average observed in the 

Ashland Bottoms Kansas Mesonet station, and using the atmospheric pressure, absolute 

humidity,  correction factor from collocated sensors and the incoming neutron flux corrections. 

Applied corrections Factor Range MAE 

Obs. Pressure 0.89 – 1.16 0.063 m3 m-3 

Obs .Pressure + LT - Abs Humidity 0.90 – 1.17 0.037 m3 m-3 

Obs. Pressure + Obs. Abs. 

Humidity + Incoming flux 

0.90 – 1.15 0.029 m3 m-3 
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Table 3-3. Average corrected neutron count and estimated volumetric water content for each 

rover transect of the Kings Creek watershed. In situ observations of sensors at 5 and 15 cm depth 

that are part of the NEON KONA site, and value of surface volumetric water content (0 – 5 cm) 

of a SMAP pixel that covers the watershed. 

Date Corrected 

neutron counts 

(cpm) 

CRNP Avg. 

VWC  

(m3 m-3) 

In situ 

Avg. VWC 

(m3 m-3) 

SMAP 

Avg. VWC 

(m3 m-3) 

18 Aug 2021 330 0.202 0.192 0.181 

23 Aug 2021 330 0.225 0.233 0.235 

02 Sep 2021 323 0.205 0.182 0.240 

05 Sep 2021 298 0.342 0.345 0.282 

08 Sep 2021 309 0.286 0.306 0.247 

13 Sep 2021 320 0.237 0.257 0.195 

20 Sep 2021 330 0.204 0.217 0.196 

28 Sep 2021 331 0.197 0.192 0.162 

04 Oct 2021 334 0.200 0.188 0.217 

11 Oct 2021 302 0.286 0.240 0.276 

23 Oct 2021 314 0.242 0.242 0.245 

01 Nov 2021 297 0.322 0.314 0.293 

17 Nov 2021 301 0.298 0.331 0.309 
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Figure 3-1. Example workflow for stationary CRNP, dashed lines represent optional steps. 
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Figure 3-2. Example workflow for roving CRNP, dashed lines represent optional steps. 
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Figure 3-3. Volumetric water content estimated from 1) neutron counts corrected by hourly 

pressure, humidity, and incoming neutron flux (black line) and 2) neutron counts corrected by 

hourly pressure and mean humidity for the site (red line). The benchmark for this test was the 

mean volumetric water content obtained from five in situ sensors at 5 and 15 cm depth that are 

part of the NEON KONA site (teal line) with the standard deviation band. Daily precipitation 

observations were obtained from the NEON KONA site. 
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Figure 3-4. Raw and corrected neutron counts recorded with a stationary CRNP at the Konza 

Prairie Biological Station near Manhattan, Kansas. 
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Figure 3-5. A) Barometric pressure and air absolute humidity, B) incoming neutron flux recorded 

by the Irkutst Neutron Monitor part of the Neutron Monitor Database (NMDB), which has 

similar elevation and cutoff rigidity as the experimental site, and C) correction factors for the 

stationary CRNP within the Konza Prairie Biological Station near Manhattan, Kansas. 
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Figure 3-6. Volumetric water content obtained by smoothing using an 11-hour third-order 

Savitzky-Golay filter in the corrected neutron counts signal (red line) and smoothing the 

resulting volumetric water content (black line). The benchmark for this test was the mean 

volumetric water content obtained from five in situ sensors at 5 and 15 cm depth that are part of 

the NEON KONA site (teal line) with the standard deviation band. Daily precipitation 

observations were obtained from the NEON KONA site and plotted in bars. 
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Figure 3-7. Volumetric water content from the Kings Creek in situ soil moisture monitoring 

network, averaging 5 and 20 cm depth sensors (teal line) with the standard error band, daily 

SMAP L4 surface soil moisture values for the pixel covering the watershed (red line), and the 

average of each CRNP roving transects with the standard deviation of the corrected counts (black 

markers) or volumetric water content estimations (white markers) after applying a 2D moving 

average in each variable. Daily precipitation observations were obtained from the Kings Creek 

network, the average value is represented in bars. 
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Figure 3-8. Comparison of pressure observations from the CRNP onboard barometer, and 

different stations of the Kansas Mesonet. The Ashland Bottoms station (teal square markers) 

located 2.5 km from the CRNP device was located at the same altitude (39.126 N, −96.637 W, 

altitude 325 m a.s.l.), while the Gypsum, KS station (38.725 N, −97.444 W, altitude 373 m a.s.l.) 

located 90 km away presented a negative bias (shadow markers) removed after correcting for the 

altitude difference using Eq. 41 from Bellamy (1945). 
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 Abstract 

Soil moisture influences the development of crops during the entire growing cycle, 

however, obtaining soil moisture conditions in cropland areas is challenging. Most large-scale in 

situ soil moisture monitoring networks predominantly target grassland vegetation, presenting 

differences in soil water dynamics due to growth and development differences. This research 

explores the root-zone soil water storage dynamics between grassland and different cropland 

rotations within Kansas. The objectives were (i) to draw a comparison of root-zone soil water 

storage dynamics between grassland cropland rotations (ii) to build an observation operator for 

translating grassland soil water storage in the top 50 cm of the soil profile to cropland soil water 

storage using a Random Forest (RF) as an observation operator. We found that using a 60-days 

window of grassland soil water storage observations extracted from the adjacent permanent 

sensors and EVI differences between grassland and cropland vegetation it is possible to estimate 

the cropland soil water storage in the top 50 cm of the soil profile with a RMSE of 27 mm. The 

study recognized a lag of 15 days between high vegetation development and soil moisture 

depletion in the cropland rotations, and a lag of 7 days on average between the vegetation 

differences increase and the soil water storage operator increase, concluding that the impact of 

diverse land covers on soil moisture is not instantaneous and varies considerably throughout the 

annual cycle.  
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 Introduction 

Soil moisture is a fundamental variable influencing agricultural and hydrological 

processes such as rainfall partitioning into infiltration and runoff (Crow et al., 2018) and 

grassland and cropland productivity. For example, soil moisture influences the grain yield and 

development of summer crops including corn at different phenological stages (Denmead & 

Shaw, 1960). Similarly, a study in Canada observed that soil moisture was the most significant 

weather variable when predicting grain yield of winter wheat during the entire crop cycle, 

highlighting a higher impact of soil moisture on yield than precipitation (Baier & Robertson, 

1968). However, monitoring soil moisture dynamics in cropland can be difficult because soil 

moisture sensors and associated hardware can conflict with farming operations.  

Environmental monitoring networks that provide scientists and end users with soil 

moisture information have the potential to be used as a proxy for soil moisture conditions in 

nearby cropland. sensors differ between neighboring fields in landscapes with diverse land 

covers. For instance, grasslands might retain moisture due to their dense canopy, and adjacent 

croplands might exhibit different moisture patterns influenced by the crop's growth stage and 

management practices (Rodriguez-Iturbe et al., 2001; Wells et al., 2014). Understanding these is 

crucial, as soil moisture directly impacts crop yield, irrigation strategies, and long-term land use 

planning.  

Remote sensing soil moisture from satellite missions (Entekhabi et al., 2010) has 

provided valuable insights into soil moisture dynamics, but the spatial resolution of these remote 

sensors is often not suitable for landscapes with intermixed land covers (Ochsner et al., 2013). 

An alternative is to use soil moisture sensors installed at the edge of the field. Similarly, a study 

in the Upper Cedar Creek watershed in Indiana investigated soil moisture dynamics using soil 
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moisture sensors installed at the edge of the field and found that all the point-based estimates of 

permanent sensors were underestimating the field soil moisture conditions of corn and soybeans 

rotations, observed negative biases of -0.276 and -0.135  m3 m-3 between field average and 

permanent adjacent sensors (Heathman et al., 2012). More sophisticated methods use sensors at 

the edge-of-the-field or existing environmental monitoring networks equipped with soil moisture 

sensors in combination with an observation operator. A study Oklahoma showed that ANN can 

be successfully used as an observation operator to relate in situ soil moisture observations under 

grassland (warm-season grasses) to represent soil moisture conditions in nearby winter wheat 

fields (cool season crop) (Patrignani & Ochsner, 2018). Since both land covers were exposed to 

similar environmental conditions, differences in soil moisture dynamics were mostly driven by 

differences in canopy development, and thus hindering the direct use of in situ soil moisture 

information from mesoscale environmental monitoring networks for inferring cropland soil 

moisture conditions.  

A similar study in the same watershed determined that it is possible to identify time-

stable locations to install soil moisture sensors and successfully implemented observation 

operators to upscale the point-level observations to estimate field conditions using the 

cumulative distribution function (CDF) matching method (Han et al., 2012). The challenge 

remains in harmonizing large-scale observations with local in situ measurements, especially in 

heterogeneous landscapes.   

The development of observation operators enable the removal of most of the systematical 

errors from soil moisture observations including instrument or methodology biases (Drusch, 

2005; Han et al., 2012; Patrignani & Ochsner, 2018) or the extrapolation of surface soil moisture 

measurements to different points of the soil profile (Gao et al., 2019). Several studies have been 
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using CDF matching techniques (De Lannoy et al., 2007; Drusch, 2005; Gao et al., 2019; Han et 

al., 2012), but recently implementations using machine-learning techniques had arisen to obtain 

observation operators for complex scenarios with non-linear interactions (Patrignani & Ochsner, 

2018).  The application of these observation operators can help bridge the gap between field-

scale soil moisture and in situ soil moisture networks (Han et al., 2012; Patrignani & Ochsner, 

2018). These operators can be particularly useful in translating soil moisture measurements from 

permanent sensors to cropland environments, where soil moisture dynamics can be significantly 

different due to factors like crop type, growth stage, and management practices. The sustained 

deployment of soil moisture sensors in cropland fields poses operational challenges, primarily 

due to the frequent farming activities that necessitate sensor removal and reinstallation. 

Recognizing this gap, the objective of our study was to use an observation operator to 

estimate cropland soil water storage in the top 50 cm using the observed differences in 

vegetation development between grassland and cropland. 
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 Materials and Methods 

 Soil moisture data 

In situ Soil moisture observations from October 2020 to July 2023 were obtained from 

three different sources (Figure 4-1): i) the Ashland Bottoms (ASB) station of the Kansas 

Mesonet (Patrignani et al., 2020) that records daily soil moisture observations at 5, 10, 20, and 

50 cm depth using soil water reflectometers (model CS655, Campbell Scientific), ii) an adjacent 

replicated plot experiment with five different crop rotations where weekly soil moisture 

measurements in the top meter of the soil profile were collected using a capacitance probe 

(model Diviner 2000, Sentek) at 10-cm intervals, and iii) a nearby cropland field located within 

the Konza Prairie Biological Station at about 2.5 km from the Mesonet station that is part of the 

National Ecological Observatory Network (NEON KONA site) with five multi-depth sensors 

(EnviroSCAN, Sentek) spanning the top 2 meters of the soil profile. Across all three sites, the 

soil water storage in the top 50 cm of the soil profile was computed using the trapezoidal rule of 

integration. This depth of 50 cm was selected because is the maximum depth common across all 

three sites and it represents the standard rooting depth across all stations of the Kansas Mesonet 

(Patrignani et al., 2020). 

 

 Vegetation data 

Vegetation dynamics at the ASB station of the Kansas Mesonet were represented by the 

enhanced vegetation index (EVI, 10-m spatial resolution) retrieved from Sentinel-2 Level-2A 

using a polygon delineating the support area (2,300 m2) of the station. For each crop rotation, 

vegetation conditions were represented using periodic observations of green canopy cover 

determined using downward-facing images. To match the vegetation dynamics of the other sites, 
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these ground-based measurements of green canopy cover were scaled to equivalent EVI values 

using a linear model. The linear model to scale GCC values was created using an additional 

dataset of 380 collocated observations of GCC and EVI for multiple cropland fields (Figure 4-2). 

EVI from Sentinel-2 Level-2A was also retrieved for a supporting area of 2000 m2 around the 

NEON KONA cropland soil moisture monitoring site used for validation. 

The diversity and intensification level of the different crop rotations (CR) in the 

replicated plot experiment provided a wide range of vegetation and soil moisture dynamics that 

allowed us to capture the typical variability crop growth and development of crops in this region. 

Specifically, crop rotations consisted of the following crop sequences: one through four 

presented varied scenarios showcasing winter wheat cultivated under different intensities and 

management practices. Meanwhile, rotation five stands out due to its continuous cover of Alfalfa 

(Medicago sativa L.). In years 2022 and 2022 Triticale (x Triticosecale Wittmack) was 

intermixed within rotation five, adding an extra layer of variation. This arrangement ensures that 

the study sites reflect a broad representation of vegetation and crop rotations, providing 

comprehensive insights into their growth patterns and interactions (Figure 4-3). NEON KONA 

site provides a different crop rotation that includes winter wheat, corn (Zea mays L.), and longer 

fallow periods in a nearby location, allowing a more accurate validation of the methodology. 

 

Observation operator 

In this study we used a Random Forest (RF) machine-learning model as the observation 

operator to estimate cropland soil moisture conditions based on grassland soil moisture at the 

ASB station of the Kansas Mesonet. The RF model was selected primarily for its robustness in 

handling complex datasets with potential non-linear relationships and interactions. The RF 
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operator consisted of estimating the residual soil water storage between land covers (𝑆𝑟𝑒𝑠) based 

on the residual of the EVI between land covers (EVIres), and the day of the year (DOY): 

𝑅𝐹 = Ŝ𝑟𝑒𝑠 = 𝑓(𝐸𝑉𝐼𝑟𝑒𝑠 , 𝐷𝑂𝑌) (1) 

 

Both residual terms can be expressed as: 

Sres = Sgrass − Scrop (2) 

EVIres = EVIgrass − EVIcrop (3)

where Sgrass is the soil water storage in the top 50 cm under grassland vegetation for a particular 

day of the year, Scrop is the soil water storage in the top 50 cm under cropland, EVIgrass is the 

EVI value of grassland, and EVIcrop is the EVI value for cropland. 

The trained RF regression model consisted of 200 decision trees and a minimum of three 

samples required to split an internal node. It was trained on the calibration data using the 

previous 60 days of vegetation residuals and the day of the year (DOY) for the purpose of 

estimating soil water storage residuals. RF ensemble approach, which aggregates the predictions 

of multiple decision trees, offers a natural resistance to over-fitting, especially when dealing with 

intricate soil moisture dynamics.  

The RF model was validated using the CR2-VAL rotation that consisted of winter wheat 

followed by double-crop soybean (Glycine max L. Merr.), and the observations from the NEON 

KONA site. Crop soil moisture θ̂𝑐𝑟𝑜𝑝 was estimated by using the observation operator 

Ŝ𝑟𝑒𝑠 predicted using the trained RF model shown in Equation 3 and the observed Kansas 

Mesonet station soil water storage observation 𝜃𝑔𝑟𝑎𝑠𝑠: 

Ŝ𝑐𝑟𝑜𝑝  = S𝑔𝑟𝑎𝑠𝑠 − Ŝ𝑟𝑒𝑠 (4) 
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The accuracy of the predicted soil water storage using the RF observation operator was 

evaluated using the Root mean squared error (RMSE, mm): 

RMSE = √
1

𝑁
∑(�̂�𝑐𝑟𝑜𝑝,𝑖 − 𝜃𝑐𝑟𝑜𝑝,𝑖)

2
𝑁

𝑖=1

(5) 

 

where N is the number of observations, 𝜃𝑐𝑟𝑜𝑝,𝑖 is the estimated cropland soil water 

storage for the ith date and 𝜃𝑐𝑟𝑜𝑝,𝑖 is the observed cropland soil water storage for the ith date.  

Additionally, the Mean Bias Error (MBE) was also calculated as: 

MBE =
1

𝑁
∑(�̂�𝑐𝑟𝑜𝑝,𝑖 − 𝜃𝑐𝑟𝑜𝑝,𝑖)

𝑁

𝑖=1

(6) 
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 Results and discussion 

The proposed Random Forest (RF) observation operator successfully assimilated the soil 

water storage observation from the adjacent ASB station and vegetation residuals to estimate 

cropland soil water storage. For the CR2 validation site the root mean squared error RMSE (%) 

was 27.1 mm and the MBE error was of -7.1 mm (Figure 4-4). The validation at the cropland 

field NEON KONA resulted in a RMSE (%) of 26.7 mm and MBE of 6.2 mm (Figure 4-5). 

These results align well with a previous study that obtained RMSE (%) between 24.3 mm and 

34.4 mm with MBE ranging from -6.6 mm to 5.7 mm, although they were obtained when 

analyzing plant available water (Patrignani & Ochsner, 2018).  

As reported similar studies, the predicted cropland soil water storage after applying the 

RF observation operator were more representative of the cropland soil water storage than the raw 

measurements from the adjacent Ashland Bottoms Kansas Mesonet station in both validation 

sites (Han et al., 2012; Patrignani & Ochsner, 2018). During periods of rapid crop growth in the 

cropland rotation, the vegetation was denser than the surrounding grass at the Kansas Mesonet 

station. In these situations, the operator reduced the estimated cropland soil water storage. 

Conversely, during fallow periods when the natural grass of the Kansas Mesonet station was 

more developed, the operator positively adjusted the estimated cropland soil water storage. 

The NEON KONA site exposed the RF operator to new scenarios, including a distinct 

rotation scheme (Figure 4-3), this site exhibited more pronounced vegetation development during 

the 2022 summer season compared to the other training and validation sites (Figure 4-6).  

On average, the vegetation in the CR showed a lag of 15 days between high vegetation 

development and soil moisture depletion. Rotations with winter wheat or summer crops 

presented higher EVI values than the observed at the ASB station, this was also associated with 
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posterior higher soil moisture depletions. Long fallow periods observed during winter at rotation 

CR1 to CR3 and winter fallows as seen in rotation NEON KONA, showed similar values of soil 

water storage compared to the ASB observations (Figure 4-6). 

The RF ensemble model parameters provides a clear understanding of the importance of 

each feature in the predictions. As shown in Table 4-1, different periods of the 60 days window 

play a significant role in predicting the soil water storage operator. Day of Year (DOY) stands 

out as the second most important feature, highlighting the differences in the operator's response 

to vegetation residuals throughout the year. On average, there is a lag of 7 days (Figure 4-6) 

between the vegetation differences and the soil water storage operator, suggesting that the impact 

of different land covers is not immediate. 

The results from this study have significant implications for agricultural practices. 

Accurate soil moisture estimates can guide irrigation decisions, optimize water use, and improve 

crop yield predictions. The ability of the observation operator to translate grassland soil moisture 

into cropland soil moisture can be particularly beneficial for farmers, who typically do not have 

soil moisture sensors in their fields (Mpanga & Idowu, 2021). By leveraging data from nearby 

environmental monitoring stations and vegetation differences between intermixed land covers, it 

was possible to estimate the soil water storage for adjacent croplands. 
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 Conclusion 

This study evaluated the potential of developing an observation operator using machine 

learning (Random Forest model) to bridge the gap between grassland and cropland soil moisture 

dynamics. While the model demonstrated promising results in our specific context, it is crucial to 

acknowledge the inherent challenges associated with predicting soil moisture dynamics. Factors 

such as unexpected rainfall events, irrigation practices, and soil heterogeneity can introduce 

variability that the model may not fully capture when estimating adjacent soil water storage 

conditions. 

Furthermore, the random forest model performance should be validated across different 

geographical regions, soil types, and land uses, emphasizing the need of in situ soil moisture 

observations for different crop rotations. As the availability of environmental networks continues 

to expand, leveraging advanced techniques and methodologies to extract useful insights from the 

collected data becomes essential. Future research could focus on integrating additional data 

sources, such as soil texture information, to enhance prediction accuracy further. There is also 

potential to explore other machine learning algorithms or hybrid models that combine the 

strengths of multiple approaches. 
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Table 4-1. Random Forest (RF) Feature importance. Daily values of vegetation residuals from 

the 60 days window passed to the model were grouped by week for clarity purposes. DOY 

feature represents the day of the year (0-365). 

Feature Importance (%) 

Week 4 19.75 

DOY 16.70 

Week 7 13.08 

Week 9 12.00 

Week 6 8.96 

Week 8 6.60 

Week 0 6.29 

Week 5 5.99 

Week 1 5.59 

Week 2 5.01 
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Figure 4-1. Orthoimage illustrating the location of the Ashland Bottoms station (ASB) of the 

Kansas Mesonet, the adjacent plot experiment that was used for both calibration and validation 

of the observation operator, and the KONA cropland site of the National Ecological Observatory 

Network (NEON KONA) that was also used for validation of the observation operator. 
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Figure 4-2. Exponential model used to estimate EVI from canopy cover observations. The 

dataset consisted of 380 georeferenced images in 6 different cropland field across Kansas. 
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Figure 4-3. Timeline showing the different land covers for each crop rotation of the replicated 

plot experiment (CR1 – CR5), the KONA site of the National Ecological Observatory Network 

(NEON), and the Ashland Bottoms station of the Kansas Mesonet. 

. 
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Figure 4-4. A) Daily precipitation, observed soil water storage for the ASBK1 station of the 

Kansas Mesonet, observed cropland soil moisture for the CR2 validation rotation of the 

replicated plot experiment, and predicted soil water storage for the rotation site using the random 

forest observation operator. Depicted soil water storage considers the top 50 cm of the soil 

profile from October 2020 to August 2023. B) enhanced vegetation index (EVI) time series of 

observed values in the ASB station and CR2 validation rotation.  
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Figure 4-5 A) Daily precipitation, observed soil water storage for the ASB station of the Kansas 

Mesonet, observed cropland soil moisture for the KONA station of the National Ecological 

Observatory Network (NEON), and predicted soil water storage for the NEON KONA site using 

the random forest observation operator. Soil water storage is for the top 50 cm of the soil profile 

from September 2020 to August 2023.  B) enhanced vegetation index (EVI) time series of 

observed values in the ASB station and NEON KONA validation rotation.  
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Figure 4-6. Timeline of the observed values of soil water storage (A) and Enhanced Vegetation 

Index (B) dynamics for each crop rotation of the replicated plot experiment (CR1 - CR5), the 

KONA site of the National Ecological Observatory Network (NEON), and the Ashland Bottoms 

station of the Kansas Mesonet from October 2020 to August 2023. 
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Chapter 5 - General conclusion 

There is a growing number of mesoscale environmental monitoring networks (also 

known as mesonets) that include in situ soil moisture observations that can be used for a wide 

range of meteorological, ecological, hydrological, and agricultural applications. Mesoscale 

networks provide accurate and high-temporal resolution point-level soil moisture information, 

but mesoscale networks are sparse and leave large gaps of unmonitored area between stations. 

This dissertation is centered on leveraging the existing infrastructure of the Kansas Mesonet by 

upscaling point-level observations to represent statewide soil moisture conditions. The specific 

question that we tried to answer in this thesis is: can we upscale point-level soil moisture 

observations from sparse monitoring networks by integrating spatial model estimates and in situ 

observations through data assimilation? 

The first chapter of this thesis was aimed at developing a 250-m spatial resolution map of 

rootzone soil moisture across the state of Kansas by integrating sparse in situ observations from 

54 stations of the Kansas Mesonet with spatial soil moisture estimates generated with a simple 

drydown model using the conditional merging assimilation method. The model-data assimilation 

approach reduced the error in rootzone soil moisture estimates by approximately 27% compared 

to the model alone and by 40% compared to interpolating the in situ observations alone using 

ordinary kriging. The resulting high-spatial resolution soil moisture maps were validated using 

surveys made with a roving cosmic-ray neutron probe, which resulted in a median absolute error 

of 16.1 mm. The validation step also revealed some discrepancies between the rover surveys and 

the data-assimilation method, suggesting that in areas with intermixed land covers in situ soil 

moisture observations from mesoscale networks may not accurately reflect that of nearby 

cropland fields. 
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As part of the validation process of the soil moisture maps in the previous chapter, we 

also developed a new Python library called Cosmic-Ray Neutron Python (CRNPy) that compiles 

correction and filtering routines published in >12 peer-reviewed articles since the inception of 

this technology in the late 2000s. To illustrate the application of the newly developed library, we 

tested different correction routines and filtering steps that remained unanswered in the scientific 

literature. The first case-study scenario consisted of computing correction factors using readily 

available information from the nearest station of the Kansas Mesonet instead of using collocated 

observations, which resulted in a mean absolute error of 0.037 m3 m-3, suggesting that acceptable 

soil moisture estimates could be obtained using meteorological variables from the Kansas 

Mesonet, but that collocated observation are required for greatest accuracy. The second case-

study scenario consisted of applying a filtering step to the resulting time series of volumetric 

water content rather than the corrected neutron counts, which resulted in the same mean absolute 

error of 0.029 m3 m-3. Similarly, the third case-study scenario consisted of applying a spatial 

average filtering step to the volumetric water content measured with a roving device rather than 

the corrected neutron counts, which in this case resulted in a slightly greater root mean squared 

error of 0.023 m3 m-3 compared to a value of 0.019 m3 m-3 when applying the correction to the 

corrected counts. 

The last study was motivated by the challenges in capturing soil moisture conditions in 

cropland areas using soil moisture from nearby stations of the Kansas Mesonet observed in the 

second chapter. To translate soil moisture conditions from grassland to nearby cropland we 

tested an observation operator based on a Random Forest machine learning model. Our findings 

concluded that by leveraging differences between grassland and cropland vegetation conditions 

using a remote sensing vegetation index, such as the enhanced vegetation index, soil moisture in 
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adjacent cropland fields can be estimated with an error of 27 mm, underscoring the potential of 

using machine learning models for upscaling soil moisture information in landscapes with 

intermixed land cover.
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Appendix A - Reference ET vs.  

 
Appendix A Figure A.1. Reference ET negative linear relationship with the soil water storage 

loss coefficient () for the 485 drydown events analyzed. Different soil textural classes 

represented with different markers were not related with the  parameter value. 
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Appendix B - CRNP devices 

 
Appendix A Figure A.2. A) Stationary detector manufactured by Radiation Detection 

Technologies, Inc. (Manhattan, KS). B) Stationary detector manufactured by Hydroinnova, Inc. 

(Albuquerque, NM). C) Roving detector manufactured by Hydroinnova, Inc. (Albuquerque, 

NM). 
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