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A B S T R A C T

Rapid prediction of beef quality remains a challenge for meat processors. This study evaluated the potential of
Raman spectroscopy followed by chemometrics for prediction of Warner-Bratzler shear force (WBSF), in-
tramuscular fat (IMF), ultimate pH, drip-loss and cook-loss. PLS regression models were developed based on
spectra recorded on frozen-thawed day 2 longissimus thoracis et lumborum muscle and validated using test sets
randomly selected 3 times. With the exception of ultimate pH, models presented notable performance in cali-
bration (R2 ranging from 0.5 to 0.9; low RMSEC) and, despite variability in the results, promising predictive
ability: WBSF (RMSEP ranging from 4.6 to 9 N), IMF (RMSEP ranging from 0.9 to 1.1%), drip-loss (RMSEP
ranging from 1 to 1.3%) and cook-loss (RMSEP ranging from 1.5 to 2.9%). Furthermore, the loading values
indicated that the physicochemical variation of the meat influenced the models. Overall, results indicated that
Raman spectroscopy is a promising technique for routine quality assessments of IMF and drip-loss, which, with
further development and improvement of its accuracy could become a reliable tool for the beef industry.

1. Introduction

Besides safety and nutritional content, beef consumers expect a sa-
tisfying eating experience. This means that beef and especially premium
beef cuts must embrace a series of characteristics in flavour, texture,
tenderness, juiciness and appearance in order to meet consumer ex-
pectations (Hocquette et al., 2014; Troy & Kerry, 2010). These char-
acteristics, which together determine the overall eating quality of beef,
are affected by several factors, typically classified as: intrinsic (e.g.
breed, sex and age) and extrinsic (e.g. season, feeding, slaughtering and
post-slaughter management) (Gagaoua, Picard, Soulat, & Monteils,
2018). Thus, variations in these factors may cause unpredictable eating
experiences that can lead to consumer disappointment, and even dis-
satisfaction (McCarthy, Henchion, White, Brandon, & Allen, 2017).

Several objective indicators have been developed to provide in-
strumental information on the eating quality of beef. Texture, especially
first bite tenderness is one of the most important factors determining
consumer acceptability in beef steak and can be instrumentally esti-
mated through shear-force measurements such as Warner-Bratzler
shear force (WBSF) (AMSA, 2015). The amount of intramuscular fat

(IMF) is also considered an indicator of beef eating quality as high le-
vels of IMF have been associated with improved tenderness, juiciness
and flavour (Corbin et al., 2015; Hocquette et al., 2014; Webb & O'Neill,
2008). The ability to retain water—referred to as water holding capa-
city (WHC)—is also a key aspect as it affects the visual acceptability,
juiciness and tenderness of beef (Barbera, 2019; Modzelewska-Kapituła,
Kwiatkowska, Jankowska, & Dąbrowska, 2015). Furthermore, water-
holding capacity has an additional value to processors in terms of its
relationship with carcass yield (Di Luca, Mullen, Elia, Davey, & Hamill,
2011; Reardon, Mullen, Sweeney, & Hamill, 2010). Ultimate pH is an
important indicator as it has a relationship to water-holding capacity
and tenderness (Honikel, 2014a). However, classic measurements of
WBSF, IMF and WHC are not amenable to routine analyses of beef
quality in each carcass as these methods are destructive, time intensive
and require complex sample preparation. Consequently, current chal-
lenges for the meat sector include the development and implementation
of non-invasive tools capable of providing timely and reliable in-
formation on beef quality on an individual basis. Furthermore, this
information could be used to inform consumers about the quality of the
product, as well as in breeding programmes for the improvement of
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beef eating quality (Cecchinato, De Marchi, Penasa, Albera, & Bittante,
2011).

Raman spectroscopy is a vibrational technique which offers speed,
non-invasive measurement and minimal sample preparation require-
ments as advantages (Ana M. Herrero, 2008; Gremlich and Yan, 2000).
Raman spectroscopy is based on the inelastic scattering of light re-
sulting from the interaction between a laser light and the molecules of a
sample (Li-Chan, Griffiths, & Chalmers, 2010). Light inelastically scat-
tered, which refers to photons that have been scattered from the sample
with a different energy level/frequency than the incident light (laser),
contains information about fundamental molecular vibrations (Berhe,
Engelsen, Hviid, & Lametsch, 2014; Vankeirsbilck et al., 2002). Thus,
Raman spectroscopy registers the vibrational signal of the scattering
species of a sample proving information about its molecular composi-
tion and structure (Schmidt, Scheier, & Hopkins, 2013).

During the last decade, Raman spectroscopy has received increasing
interest for many food applications. In the field of meat quality, few
studies have been conducted to examine the potential of the technique,
but those that have been done suggest the technology has merit for this
field. For example, Raman spectroscopy was used to predict various
meat-quality indicators such as pH, colour and IMF of pork (Andersen,
Wold, Gjerlaug-Enger, & Veiseth-Kent, 2018; Nache, Hinrichs, Scheier,
Schmidt, & Hitzmann, 2016; Scheier, Bauer, & Schmidt, 2014), beef
(Fowler, Schmidt, van de Ven, & Hopkins, 2018; Nian et al., 2017) and
lamb (Fowler, Schmidt, van de Ven, Wynn, & Hopkins, 2015). Best
results were obtained for the prediction of pHu (R2cv = 0.65) (Scheier
et al., 2014) and IMF (R2cv = 0.73) (Andersen et al., 2018) of pork. The
technique was also evaluated for the prediction of instrumental ten-
derness and sensorial attributes of beef (Bauer, Scheier, Eberle, &
Schmidt, 2016; Beattie, Bell, Farmer, Moss, & Patterson, 2004; Zhao
et al., 2018) and lamb (Fowler, Schmidt, van de Ven, Wynn, & Hopkins,
2014a; Fowler, Schmidt, Van de Ven, Wynn, & Hopkins, 2014b).

The objective of this study was to assess the potential of Raman
spectroscopy combined with chemometric techniques to provide a level
of information on the objective meat quality of beef LTL using samples
collected at day 2 post-mortem. To this end, prediction models for in-
strumental tenderness (WBSF), IMF, drip-loss and cook-loss were de-
veloped from Raman spectra.

2. Materials and methods

2.1. Samples

Crossbred bull and steer progeny (n = 110, 18 ± 4 months old)
from elite Irish beef breed artificial insemination (AI) bulls were ob-
tained and reared under the same feeding and environmental condi-
tions by the Irish Cattle Breeders Federation Tully Progeny Test Centre
(Tully, Kildare, ROI). Animals were slaughtered in 8 different batches at
a time between February 2014 and May 2017 in a commercial plant by
electrical stunning (50 Hz) followed by exsanguination. Between 40
and 60 min post exsanguination, carcasses were split in half and placed
in the chill. Four steaks with a thickness of 2.54 cm were removed se-
quentially from the right-side longissimus thoracis et lumborum (LTL)
muscle 48 h post-mortem starting at the rump end. Steaks were then
vacuum packaged and numbered so that subsequent trait analysis was
conducted on a consistent location within LTL muscle. Steaks were
frozen at −20 °C after 2 days or 14 days of ageing in a chill at 4 °C
depending on the respective trait to be determined.

2.2. Ultimate pH

Ultimate pH (pHu) was collected from 109 longissimus muscles at
48 h post-mortem using a calibrated pH meter (Hanna HI 9125 pH
meter, Woonsocket, RI 02895, USA).

2.3. Drip-loss

Drip-loss was analysed on 81 fresh steaks aged for 2 days following
the procedure of Honikel & Hamm (1994b). From each steak, a piece of
meat (2.5 cm thick, 7.5 cm long and 5 cm wide) was selected avoiding
connective tissue and large areas of fat to secure representative sam-
ples. Selected pieces of meat were lightly blotted with tissue paper,
weighed accurately to two decimal places (initial weight ~ 100 g ±
2 g) and suspended in an expanded clear plastic bag, ensuring that
there was no contact between the sample and the bag. Samples were
suspended in a 4 °C chill room for 96 h. Afterwards, samples were
lightly blotted with a tissue and re-weighed (final weight). The differ-
ence between initial and final weight was determined to two decimal
places. Drip-loss was expressed as a percentage of initial weight of the
steak.

2.4. Intramuscular fat (IMF)

IMF content was determined on 93 steaks that were aged for 2 days
and then frozen at -20C until analysis. Thawing was conducted within
the vacuum bag in a circulating water bath at 10 to 15 °C for ap-
proximately 45 min. Steaks were then trimmed of external fat, cut into
cubes of approximately 2.5 × 2.5 cm and homogenised to a fine con-
sistency using a RobotCoupe R2 blender. Two grams of homogenised
meat were selected for analysis. Intramuscular fat was measured using a
Smart System-5 microwave moisture drying oven and an NMR Smart-
Trac rapid fat analyser (CEM Corporation, USA) following the AOAC
Official Methods 985.14 & 985.26, (AOAC International, 1995). Results
were expressed as percentage of IMF (% w/w).

2.5. Cook-loss

Cook-loss was measured on 110 thawed steaks aged for 14 days.
Thawing was performed within unsealed plastic vacuum bags in a cir-
culating water bath at 10 to 15 °C. Steaks were trimmed of external fat,
blotted lightly with tissue paper to remove moisture and weighed (in-
itial weight). Steaks were then cooked in a water bath (Grant
Instruments Ltd., England) set at 72 °C until reaching an internal core
temperature of 70 °C. The internal temperature of the steaks was
monitored with a temperature probe (Eirelec Ltd., Ireland). Once
cooked, samples were cooled to room temperature, lightly blotted with
tissue paper and re-weighed (final weight). The difference between
initial and final weight was determined and expressed as a percentage
of the initial (raw) weight of the steak.

2.6. Warner-Bratzler Shear Force (WBSF)

Warner-Bratzler Shear Force (WBSF) analysis was carried out on
110 tempered (4 °C, overnight) steaks used for determining the cook-
loss (14-day post-mortem) according to AMSA guidelines (AMSA,
2015). Measurements were conducted using an Instron 4464 Universal
testing machine (Instron Ltd., Buckinghamshire, UK) set with a load cell
of 500 N and a cross head speed of −50 mm/min.

For each steak, seven cores of 1.27 cm were sheared perpendicular
to the fibre direction. The maximum peak force recorded during ana-
lysis was reported as Newton (N) shear force. Final shear force values
were computed excluding the highest and lowest measurements, con-
sisting, therefore, of the average of 5 measurements (5 cores). System
control and data analysis was performed using the software provided by
the manufacturer: Bluehill®2 (Instron Ltd., Buckinghamshire, UK).

2.7. Raman spectroscopy

Raman spectral data was collected on steaks that were aged for
2 days and then frozen at −20 °C until analysis. Thawing was con-
ducted in bag in a circulating water bath at 10 to 15 °C for
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approximately 45 min. Measurements were performed immediately
after removing vacuum package, trimming external fat and connective
tissue, and carefully blotting the surface of the samples with a tissue.

Spectral acquisition was performed using a DXR SmartRaman
spectrometer (ThermoFisher Scientific UK Ltd., Loughborough, UK)
equipped with a diode laser operating at 780 nm; a charge coupled
device (CCD) detector and a universal platform sampling (UPS) acces-
sory with a slit-aperture of 50 μm. Spectral measurements comprised
the recording of Raman intensity, expressed as counts per second (cps),
over the 250–3381 cm−1 Raman shift range with 2 cm−1 interval. The
scanning settings employed were: 120 mW laser power, 15 s exposure
time and 10 exposures. Each sample was scanned 10 times at random
locations of its surface and on both sides (5 scans per side). All samples
were scanned in random order at room temperature (~20 °C). The
Raman system was controlled with the supplied OMNIC software
v9.2.98 (ThermoFisher Scientific UK Ltd., Loughborough, UK). Cosmic
spikes were automatically removed by the software.

2.8. Spectral pre-processing and data analysis

Spectral pre-processing and data analysis were performed in R (R
Core Team, 2018) with the use of R commands and packages, including;
baseline, signal, EMSC, pls and plsVarSel, as well as other in-house
functions.

Various Raman spectra presented spikes at around 1100 cm−1 with
decreasing intensity over a few consecutive Raman spectra (sample
replicates). This phenomenon was identified as blooming effect, which
occurs when the amount of generated electrons is larger than the charge
packet of the CCD detector (Ryabchykov et al., 2016). Blooming effect
was corrected by linear interpolation of the region from 1093.059 to
1104.63 cm−1.

Calculations were based on Raman shift ranges from 3100 to
700 cm−1 as low signal-to-noise ratio was observed outside this range.
Particularly, two ranges were evaluated: 3100–700 cm−1, and
1800–700 cm−1. Prior to spectral pre-processing and averaging the
scans/replicates recorded per sample, the raw data set was investigated
for outliers. Spectral outliers were first identified by principal compo-
nent analysis (PCA) using a 99% confidence ellipse on the score plot of
the 3rd and 4th components as the first and second component re-
present the general structure/information of all spectra (de Groot et al.,
2001). 14 spectral points were identified as possible outliers, which
were then plotted together with their 9 respective replicates. From
these 14 spectra, only those that clearly presented differences in shape
or intensity were identified as outliers. A total of 12 replicates (1%)
from 11 different samples were discarded. Similarly, reference data
points that lied outside 1.5 * IQR (interquartile range) were not in-
cluded in the models (Wilcox, 2010). A total of 1 (0.01%), 4 (0.4%), 1
(0.01%) and 7 (0.6%) data points were discarded for WBSF, IMF, cook-
loss and pHu respectively. From this point forward, identified outliers
are excluded from calculations and results, including computation of
descriptive statistics.

Fluorescence background and multiplicative effects introduced by
variations in experimental conditions such as laser intensity fluctua-
tions were removed by means of pre-processing techniques. Several
methods were trialled including baseline correction followed by unit
vector normalisation (UVN), baseline correction followed by standard
normal variate (SNV), Savitzky-Golay (SG) derivation, extended mul-
tiplicative scattering correction (EMSC) and EMSC with replicate cor-
rection. Baseline correction was performed using the baseline.modpolyfit
command of the R baseline package with a 5th order polynomial. The
algorithm is based on the method developed by Lieber & Mahadevan-
Jansen which is a modification to least-squares polynomial curve fitting
(Lieber & Mahadevan-Jansen, 2003). SG derivation was applied using
first and second derivatives. The former with a third-degree polynomial
and the latter with a second-degree polynomial. Both SG approaches
were applied using 9 smoothing points. EMSC with replicate correction

was trialled to reduce the variation between replicates. Briefly, EMSC
with replicate correction generates individual EMSC models for each set
of replicates and uses principal component analysis to estimate the
variation between replicates of the data set (Afseth & Kohler, 2012;
Liland, Kohler, & Afseth, 2016). EMSC techniques were applied using
the mean spectrum of the dataset as reference and a six-degree poly-
nomial. After pre-processing, spectral scans/replicates recorded per
sample were averaged. For most samples the average was based on 10
scans, yet, for those samples that 1 or 2 replicates (i.e. spectral outliers)
had been discarded, the average was based on the remaining 9 or 8
scans.

Partial least squares (PLS) regression was used to correlate the
spectral data to the reference values measured for each quality in-
dicator. Cross validation (CV) was carried out using 10 randomly-se-
lected data splits with 20 iterations. Variable importance in projection
(VIP) was used to discard spectral bands which were not relevant for
the prediction of each quality indicator. VIP was applied with a 0.9
threshold and using an in-house algorithm which iteratively selected
the most important Raman bands and fitted new PLS models until
reaching a global minimum of root mean square error of cross-valida-
tion (RMSECV). A similar algorithm was used in other studies (Bauer
et al., 2016; Scheier et al., 2014). Selection of the optimal number of
latent variables (LV) was based on the RMSECV since it provides in-
formation about the deviation of the model from their reference values
(Cama-Moncunill et al., 2017). For that, RMSECV values were displayed
as a function of the number of LV used in the models. From the plot (not
shown), models with the lowest RMSECV were selected and subse-
quently inspected for overfitting. If little improvement was found when
compared to models with fewer LV, models with fewer LV were se-
lected.

PLS models were first developed using the complete data set and
then using train sets comprising 90% of the samples. PLS models were
assessed through various figures of merit. In the frame of calibration,
models were evaluated through the coefficients of determination of
calibration (R2) and the root mean square error of calibration (RMSEC)
computed from the correlation of the spectral data to the variation of
meat quality. Models developed with the complete data set were further
appraised by the coefficient of determination of cross-validation (R2cv)
and the RMSECV both computed from the cross-validation step with 20
iterations, together with the coefficient of determination (r2), bias and
slope computed from the correlation between predicted and measured
values. The loading values provided for these models were used to
evaluate the principal bands contributing to the prediction of each
quality trait. In order to assess the predictive ability of the approach,
data was randomly split into train and test sets 3 times using a sample
split of 90/10. Train sets were used to build PLS models and test sets to
evaluate the predictive ability of the models. For that, the root mean
square error of prediction (RMSEP) was used along with the residual
prediction deviation (RPD) and the range error ratios (RER). RPD is
defined as the ratio between the standard deviation of the reference
values and the RMSEP, while RER as the ratio between the range in the
reference values of the validation set and the RMSEP (Williams &
Norris, 2001).

3. Results and discussion

3.1. Meat quality data

Descriptive statistics for each beef quality indicator are presented in
Table 1. The sample set presented typical pHu values for beef ranging
from 5.34 to 5.8 (Honikel, 2014). WBSF ranged from 22.05 to 71.4 N;
thus, encompassing a range including tender, intermediate and tough
samples (Shackelford et al., 1991). The sample set also presented a
reasonable spread in IMF, ranging from 0.07% to 5.4%, which would be
in the typical range of variation for Irish beef (Cafferky et al., 2019).
Based on the coefficient of variation (CoV), it was considered that
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sufficient variability existed within WBSF, IMF, drip-loss and cook-loss
data to develop models with the Raman spectral set (Cafferky et al.,
2019), but not for ultimate pH.

3.2. PLSR models for predicting objective quality traits

To evaluate the potential of Raman spectroscopy to provide quan-
titative information on beef quality, PLSR models were developed for
each quality indicator using various pre-processing techniques and
Raman shift ranges. A summary of the best two models developed for
each quality trait is shown in Table 2. The rest of the models are pre-
sented in Annexe 1. In general, models exhibited notable model fit (R2

ranging from approx. 0.48 to 0.91 and low RMSEC) and different levels
of accuracy when cross-validated (R2cv ranging from approx. 0.34 to
0.64). Furthermore, models resulted in increased predictive ability
when based on the Raman shift ranges from 1800 to 700 cm−1, rather
than 3100–700 cm−1. This effect was attributed to the fact that most
relevant Raman scattering responses of meat occur within the range
from 1800 to 500 cm−1 (Fowler et al., 2014a).

Prior to model building, a preliminary investigation of the spectral
data was performed with the aim to determine the most relevant Raman
bands for beef as well as identify the variability in the Raman data
related to the variation within each meat-quality attribute. Fig. 1 shows
the average spectra of the 5 samples with the lowest (in red) and the
average spectra of the 5 samples with the highest (in black) values

determined for IMF, WBSF, drip-loss and Cook-loss. To facilitate in-
terpretation, baseline corrected followed by UVN spectra are displayed.
All spectra presented the characteristic Raman signal of proteins—b-
road and dominant bands due to vibrations from multiple peptides and
amino acids (Socrates, 2004; Tuma, 2005). Peptide backbone signals
are observed at the regions of 1685–1645 cm−1 (amide I band),
1340–1225 cm−1 (amide III band), together with various bands within
the region of 1130–800 cm−1 (C–C, C–N and CNC stretching) and at
1450 cm−1 (C–H deformations) (Benevides, Overman, & Thomas Jr.,
2003; Herrero, 2008; Schmidt et al., 2013; Socrates, 2004). The signal
at 935 cm−1 (C–C stretching of α-helical structures) along with the
amide I band centred at 1655 cm−1 and the amide III doublet at 1318
and 1270 cm−1 indicated that α-helical structures predominated (Ana
M. Herrero, 2008). Aromatic amino-acid responses included signals
from: tryptophan (Trp) at 1553, 1341, 880 and 752 cm−1 (Bauer et al.,
2016; Benevides et al., 2003; Tuma, 2005); phenylalanine (Phe) at
1003 cm−1 (Beattie et al., 2004); and tyrosine (Tyr) at 855 and
825 cm−1 (Fowler, Schmidt, Van de Ven, et al., 2014). Furthermore,
the shoulder band at approx. 1615 cm−1 was associated with Phe and
Tyr (Benevides et al., 2003); while the peak at 1402 was attributed to
C]O stretching of the COO– group in aspartic and glutamic acids (E. Li-
Chan, Chalmers, & Griffiths, 2010).

3.2.1. Prediction of WBSF
Comparison between the most tender and toughest beef samples

(Fig. 1a) revealed few obvious spectral differences. These differences
were observed mainly at the amide I, amide III and 1000–900 cm−1

(C–C stretching), where tough samples displayed slightly higher in-
tensity at bands associated with β-sheet (1668 cm−1) and random coil
(960 cm−1) conformations (Beattie et al., 2004). Small differences were
also observed at 1341 cm−1 (Trp) and 825 cm−1 (Tyr). The former may
indicate changes in the hydrophobicity of the indolyl ring environment;
while the latter may indicate changes in the OH hydrogen-bonding state
(Benevides et al., 2003). Both therefore, may suggest changes in the
tertiary structures of proteins (Ana M. Herrero, 2008).

The best model for WBSF presented modest performances in both
calibration (R2 = 0.48, RMSEC = 7.40 N) and cross-validation
(Rcv2 = 0.36, RMSECV = 8.24 N) (Table 2). The correlation between
the cross-validated predictions and the reference values are shown in
Fig. 2a. The plot revealed poor fit (r2 = 0.37) and considerable de-
viation from the true line (slope = 0.38). Similar results were obtained

Table 1
Descriptive statistics computed for each of the beef quality indicators.

N Mean SD Median Min Max CoV (%)

UpH (pH units) 102 5.53 0.09 5.53 5.34 5.8 1.6
WBSF (N) 109 43.93 10.35 43.48 22.05 71.4 23.6
IMF (%) 89 1.92 1.34 1.56 0.07 5.36 69.8
Drip-loss (%) 81 2.89 1.17 2.86 0.71 5.27 40.5
Cook-loss (%) 109 28.81 3.1 28.63 22.03 35.2 10.8

N: number of beef samples.
SD: standard deviation.
CoV: coefficient of variation.
UpH: ultimate pH.
WBSF: Warner-Bratzler shear force.
IMF: intramuscular fat.

Table 2
Summary of the best two PLSR models developed for each beef quality indicator using the complete data set.

Calibration Cross-Validation

Attribute N Pre-processing var lv R2c RMSEC R2cv RMSECV RPDcv RERcv

WBSF 109 EMSC - rep 97 1 0.48 7.40 0.36 8.24 1.3 6.0
SG1d3p9w 132 2 0.55 6.93 0.34 8.34 1.2 5.9

IMF 89 BSL + UVN 480 4 0.89 0.45 0.64 0.80 1.6 6.6
BSL + SNV 487 4 0.91 0.40 0.64 0.80 1.6 6.6

Drip-loss 81 SG1d3p9w 224 3 0.88 0.41 0.59 0.74 1.6 6.2
SG2d2p9w 111 2 0.73 0.60 0.56 0.78 1.5 5.9

Cook-loss 109 SG1d3p9w 427 2 0.67 1.78 0.49 2.21 1.4 6.0
BSL + UVN 198 3 0.69 1.73 0.47 2.24 1.4 5.9

N: number of beef samples.
var: number of spectral variables retained by VIP.
lv: number of latent variables/PLS factors included in the model.
RPDcv: residual prediction deviation calculated as SD/RMSECV.
RERcv: range error ratio calculated as range/RMSECV.
WBSF: Warner-Bratzler shear force.
IMF: intramuscular fat.
EMSC – rep: extended multiplicative scattering correction with replicate correction.
BSL + SNV: baseline correction followed by standard normal variate.
BSL + UVN: baseline correction followed by unit vector normalisation.
SG1d3p9w: Savitzky-Golay transformation with first derivative, third-degree polynomial and 9 smoothing points.
SG2d2p9w: Savitzky-Golay transformation with second derivative, second-degree polynomial and 9 smoothing points.
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Fig. 1. Baseline corrected and unit vector normalised average spectra of the 5 samples with lowest and highest values of (a) IMF, (b) WBSF, (c) Drip-loss and (d)
Cook-loss.
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in cross-validation when data was split into train and test sets, with
R2cv ranging from 0.27 to 0.32 and RMSECV from 8,69 to 8,98 N
(Table 3). The RMSEP values varied from 4.55 to 9.07 N, indicating an
important variability between the results provided by each of the 3 test
data sets. Two further figures of merit were used to assess the predictive
ability of a models: RPD and RER. As a general rule, RPD and RER
values higher than three and twelve, respectively, are considered to be
fair and appropriate for screening purposes, while RPD values in the
range from 2.4 to 3 and RER values between 7 and 12 are recommended
for rough screening purposes (Williams & Norris, 2001). WBSF models
presented RDP and RER values ranging from 1.1 to 2.3 and 5.4 to 10.9,
respectively. Focussing on the former, an RPD of 1.1 indicates that the
RMSECV is nearly as large as the SD of the data set which means that
the model has very poor predictive ability (Williams, 2014; Williams &
Norris, 2001); while an RPD of 2.3, which is close to the 2.4 threshold,
may indicate that the model is appropriate for rough screening pur-
poses. Due to this variability in the results, it is difficult to evaluate the
true predictive ability of the approach. These results agreed with pre-
vious studies on predicting instrumental tenderness which reported

models for shear force with an R2 of 0.49 and an R2cv 0.33 (Bauer et al.,
2016); and for WBSF with an R2 of 0.75 and an RMSECV of 19.8% of
the mean (18.8% for our model).

A distinctive aspect of the WBSF model was that only 1 PLS factor
was included. This effect was attributed to the pre-processing tech-
nique. EMSC with replicate correction reduces the variation between
replicates and consequently fewer PLS factors are required to explain
the variation within the data set (Afseth & Kohler, 2012). The PLS factor
explained 10% of the spectral variance and 48% of the WBSF variance.
This indicated that the model accounted for the variation of WBSF, yet
the low value of explained spectral variance suggested that most of the
spectral variation seen in the data set was not related to the changes in
WBSF.

Further model evaluation was conducted through the loading values
obtained for the first PLS factor (Fig. 3a) as the plot provides in-
formation on the retained Raman bands that contributed to each PLS
factor (Cama-Moncunill et al., 2017). The plot disclosed a series of
contributing bands which could be attributed to changes in the sec-
ondary and tertiary structures of proteins. For example, most bands

Fig. 2. Measured versus predicted values for (a) WBSF, (b) IMF, (c) drip-loss and (d) cook-loss using the selected models for each quality indicator.
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from 1680 to 1665 cm−1 (β-sheet) were positively correlated to WBSF
which agreed with Beattie et al. (2004) who suggested that tough meat
presents a larger amount of β-sheet structures compared to tender meat.
Furthermore, the band at 960 cm−1 (C–C stretching vibrations of
random coil structures) also presented a positive correlation to WBSF
(Beattie et al., 2004; Ana M. Herrero, 2008). Yet, the contribution of α-
helical structures—typically assigned at approx. 1655, 1320–1305,
1273 and 935 cm−1—was unclear as a mixture of bands with positive
and negative relationships were observed. This effect could be due to
changes in the signals of α-helical structures as its response dependents
on sample orientation (Pézolet, Pigeon, Ménard, & Caillé, 1988). The
region at 800–900 cm−1, which is associated with the symmetrical CNC
stretching vibration of proteins (Socrates, 2004), was also positively
correlated to WBSF. Interestingly, other studies related the signal at
855 cm−1 to connective tissue (Bauer et al., 2016). However, this as-
sociation could not be confirmed due to unclear contribution from other
connective tissue bands such as 1270 and 1248 cm−1 (Bauer et al.,
2016).

Regarding changes in the tertiary structure of proteins, the bands at
1552 and 1339 cm−1 could arise from tryptophan signals (Schmidt
et al., 2013). Particularly, the band at 1339 cm−1 is sensitive to the
hydrophobicity of the local environment and can be used to provide
information on how buried the tryptophan residue is within the protein
network (Benevides et al., 2003; Ana M. Herrero, 2008; Xu, Han, Fei, &
Zhou, 2011). However, other tryptophan signals (e.g. 880 and
760 cm−1) had no contribution to the loading values. Therefore, the

relationship between WBSF and tryptophan residues/hydrophobic
characteristics could not be confirmed. In addition, the band at
1405 cm−1, negatively correlated to WBSF, could be due to the C]O
stretching of aspartic and glutamic acids.

Overall, the loading plot displayed a series of contributing bands
which are likely to arise from changes in WBSF. However, the plot also
illustrated the contribution from bands not readily interpreted. This
result together with the small differences observed between the spectra
of tough and tender meat (Fig. 1a) suggested that signals not related to
physico-chemical changes were included in the model, which in fact
could explain the relatively low values of R2 and R2cv of the model.

3.2.2. Prediction of IMF
Several spectral differences were observed between samples with

the lowest and highest levels of IMF (Fig. 1b). Samples with higher IMF
content presented greater intensity values at 1655, 1450, 1316 and
1126 cm−1. Higher intensity at the amide I band (1685–1645 cm−1)
may be due to contribution from lipids such as the C]C stretching
mode occurring around 1680–1640 cm−1 (Herrero, 2008; Li-Chan
et al., 2010); while the increase at 1450 cm−1 may be due to CH3, CH2

and CH bending modes of lipids (Berhe et al., 2014; Herrero, 2008;
Tuma, 2005). Similarly, the intensity increase at 1316 cm−1 could be
related to CH2 twisting modes of lipids (Fowler et al., 2018; Nian et al.,
2017; Zhao et al., 2018); while the increase at 1126 cm−1 could be
associated to C–C stretching modes (Fowler, Ponnampalam, Schmidt,
Wynn, & Hopkins, 2015). Contrarily, the spectrum for the lowest IMF

Table 3
Summary of the best two PLSR models developed for each beef quality indicator- using train and test sets resulting from a 90/10 data split.

Train set Test set

Attribute Pre-processing Split nc var lv R2c RMSEC R2cv RMSECV nt RMSEP RPD RER

WBSF EMSC - rep 1 98 130 1 0.44 7.75 0.30 8.69 11 9.07 1.1 5.4
2 98 137 1 0.39 8.16 0.27 8.98 11 8.35 1.2 5.9
3 98 129 1 0.47 7.74 0.32 8.77 11 4.55 2.3 10.9

SG1d3p9w 1 98 86 2 0.56 6.85 0.37 8.25 11 11.94 0.9 4.1
2 98 89 2 0.52 7.24 0.35 8.45 11 11.13 0.9 4.4
3 98 93 2 0.55 7.11 0.35 8.59 11 8.09 1.3 6.1

IMF BSL + SNV 1 80 380 3 0.83 0.56 0.62 0.86 9 0.88 1.5 6.0
2 80 395 4 0.89 0.45 0.65 0.81 9 0.94 1.4 5.7
3 80 378 3 0.82 0.58 0.57 0.87 9 1.14 1.1 4.7

BSL + UNV 1 80 360 3 0.83 0.57 0.60 0.88 9 0.91 1.4 5.8
2 80 402 4 0.89 0.46 0.63 0.83 9 0.89 1.5 5.9
3 80 367 3 0.83 0.55 0.62 0.82 9 1.09 1.2 4.9

Drip-loss SG1d3p9w 1 72 164 2 0.82 0.50 0.69 0.66 9 1.00 1.2 4.6
2 72 136 3 0.82 0.48 0.51 0.80 9 1.29 0.9 3.6
3 72 126 2 0.65 0.67 0.40 0.88 9 1.27 0.9 3.6

SG2d2p9w 1 72 129 3 0.81 0.53 0.46 0.88 9 0.99 1.2 4.6
2 72 131 2 0.74 0.58 0.50 0.80 9 1.30 0.9 3.5
3 72 130 3 0.87 0.42 0.55 0.77 9 1.00 1.2 4.6

Cook-loss SG1d3p9w 1 98 349 2 0.69 1.66 0.52 2.08 11 2.90 1.1 4.6
2 98 333 2 0.68 1.77 0.50 2.21 11 1.50 2.1 8.8
3 98 331 2 0.68 1.78 0.52 2.17 11 2.30 1.4 5.8

BSL + UVN 1 98 135 2 0.50 2.13 0.36 2.41 11 3.19 1.0 4.1
2 98 128 3 0.62 1.92 0.40 2.42 11 2.35 1.3 5.6
3 98 118 3 0.60 1.98 0.43 2.38 11 2.04 1.5 6.5

Split: each of the 3 random splits generated.
nc: number of beef samples in train data set.
nt: number of beef samples in test data set.
var: number of spectral variables retained by VIP.
lv: number of latent variables/PLS factors included in the model.
RPD: residual prediction deviation calculated as SD/RMSEP.
RER: range error ratio calculated as range/RMSEP.
WBSF: Warner-Bratzler shear force.
IMF: intramuscular fat.
EMSC – rep: extended multiplicative scattering correction with replicate correction.
BSL + SNV: baseline correction followed by standard normal variate.
BSL + UVN: baseline correction followed by unit vector normalisation.
SG1d3p9w: Savitzky-Golay transformation with first derivative, third-degree polynomial and 9 smoothing points.
SG2d2p9w: Savitzky-Golay transformation with second derivative, second-degree polynomial and 9 smoothing points.
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Fig. 3. Loading values of first/first two PLS factors employed by the selected models for: (a) WBSF, (b) IMF, (c) drip-loss and (d) cook-loss.
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samples presented greater intensity at 975, 900 and 876 cm−1. These
bands were tentatively assigned to protein signals arising from C–C and
CNC stretching modes (Beattie et al., 2004; Socrates, 2004).

The best PLSR model developed for IMF presented excellent model
fit (R2 = 0.89, RMSEC =0.45%) and notable predictive ability
(R2cv = 0.64, RMSECV= 0.8%) (Table 2). The correlation between the
cross-validated predictions and the references values (Fig. 2b) revealed
considerable fit (r2 = 0.64) and modest deviation from the true line
(slope = 0.6). PLS models developed using train sets (Table 3) also
exhibited notable performances in calibration (R2 range = 0.71–0.82,
RMSEC range = 0.62–0.77%) and in cross-validation (R2cv
range = 0.46–0.52, RMSECV range = 0.97–1.05%). RMSEP values
presented notable variability (0.89–1.35%), giving rise to RPD values
between 1.1 and 1.5 and RER between 4.7 and 6 (Table 3). While still
regarded as poor predictive ability according to the general classifica-
tion of RPD by Williams and Norris (2001), other authors—including
Williams—indicated that for models of complex samples an RPD > 2
(Williams, 2014) and even>1.5 (D'Acqui, Pucci, & Janik, 2010;
Kyprianidis & Skvaril, 2017) may still be usefull for preliminary ap-
plications. However, the variability observed in RMSEP, RPD and RER
between the 3 different splits makes it difficult to accurately evaluate
the predictive ability of the approach. In general, results are in agree-
ment with a previous study on porcine meat which reported a R2cv of
0.73 and RPDcv—computed using RMSECV rather than RMSEP—of 1.9
(Andersen et al., 2018).

The IMF model was based on 4 PLS factors which combined ex-
plained 57% of the spectral variance and 91% of the IMF variance in-
dicating that the model accounted for most of the IMF variation within
the data set. Further model evaluation was conducted through the
loading values obtained for the first two PLS factors (Fig. 3b). The
loading values of the first factor exhibited similar features to those
observed in the spectral plot comparing the samples with highest and
lowest IMF levels (Fig. 1b). This included contribution from the amide I
(1685–1645 cm−1) and III (1320–1225 cm−1) bands, various C–H vi-
bration modes (1450 cm−1) and C–C stretching modes
(1126–1030 cm−1). As indicated in Fig. 1b, the involvement of the
amide I and III regions may be due contribution from lipids such as
C]C stretching (1660–1640 cm−1), CH2 twisting (1300 cm−1) and
C–H deformations (1270 cm −1) (Fowler, Schmidt, et al., 2015; Nian
et al., 2017; Socrates, 2004).

As for the loading values of the second factor, the plot indicated that
a great part of the Raman bands contributing to the first factor also
contributed to the second factor with inverse relationship. However,
the second factor also revealed a positive correlation with a series of
bands such as at 1435, 1080 and 1061 cm−1 which could be related to
vibration modes of lipids. For instance, the region around 1438 cm−1

has been associated with CH2 scissoring modes and the bands at 1080
and 1068 cm−1 with C–C stretching modes, both of the aliphatic chains
of lipids (Chen et al., 2018; Fowler, Ponnampalam, et al., 2015; Zhao
et al., 2018). Overall, the plot indicated that most of the lipid-related
bands (e.g. 1435 and 1126–1030 cm-1) contribute to the IMF model
with a positive correlation. However, the plot also indicated contribu-
tion from non-readily identified bands which may not be related to the
variation of IMF. This effect may explain the modest spectral variance
explained (57%) by the model.

3.2.3. Prediction of drip-loss and cook-loss
Comparison among samples with the lowest and highest drip-loss

(Fig. 1c) disclosed several spectral differences. Samples with the lowest
drip-loss presented greater intensity values at the amide I and amide III
bands as well as at various bands assigned to tyrosine and phenylala-
nine such as 1618, 1605 and 1003 cm−1 (Benevides et al., 2003; Li-
Chan, Chalmers, & Griffiths, 2010). Samples with the highest drip-loss
exhibited greater intensity at 1553 and 876 cm−1 which could be as-
signed to tryptophan (Bauer et al., 2016; Schmidt et al., 2013); yet, the
band at 876 cm−1 together with the band at 900 cm−1 could be

attributed to C–C and CNC stretching modes of proteins (Socrates,
2004). Comparison between the spectra recorded for samples with the
lowest and highest cook-loss (Fig. 1d) displayed little differences, which
for the most part were observed at the region between 1000 and
870 cm−1 where samples with lowest cook-loss presented slightly
higher intensity values.

Drip-loss and cook-loss models presented notable fit with R2 values
of 0.88 and 0.67, and RMSEC values of 0.41% and 1.78%, respectively
(Table 2). The R2cv and RMSECV obtained for the drip-loss model were
0.59 and 0.74%, while for the cook-loss models the R2cv was 0.49 and
the RMSECV was 2.21%. The correlations between cross-validated
predictions and references values for drip-loss and cook-loss are dis-
played in Fig. 2.c and d, respectively. Both correlation plots revealed
considerable fit (r2 = 0.59 for drip-loss, r2 = 0.47 for cook-loss) and
deviation from the true line (slope = 0.55 for drip-loss, slope = 0.46
for cook-loss). For drip-loss, the test with independent samples
(Table 3) provided similar and promising results in cross-validation
(R2cv = 0.40–0.69, RMSECV = 0.66–0.88%); however, it also in-
dicated limited predictive ability with RMSEP values ranging from 0.99
to 1.30%, RPD from 0.9 to 1.2 and RER from 3.5 to 4.6. Similarly, cook-
loss models exhibited notable performances in cross-validation
(R2cv = 0.50–0.52, RMSECV = 2.08–2.21%), yet, more variability was
observed in validation: RMSEP ranging from 1.50–2.90%, RPD from 1.1
to 2.1 and RER from 4.6 to 8.8. Compared to a previous study on
porcine meat (Scheier et al., 2014), the drip-loss model exhibited less
predictive ability (R2cv pork = 0.73). This difference, however, was
associated to a greater drip-loss variation across the sample set. The
study by Scheier et al. (2014) evaluated a sample set ranging from 0.7
to 9.2% of drip-loss, while in this study the range was 0.7–5.3%. As for
the cook-loss model, results indicated better performances than those
reported in previous studies such as the work by Fowler, Schmidt, et al.
(2015) and Schmidt et al. (2013). Nevertheless, their work was per-
formed in situ using a portable Raman system.

The drip-loss model was built using 3 PLS factors, which combined
explained 88% of the variation in drip-loss and 40% of the spectral
variance; while the cook-loss model utilized 2 PLS factors explaining
64% of the variation in cook-loss and 39% of the spectral variance. The
loading values for the first two PLS factors of the drip-loss model are
displayed in Fig. 3c. In general, the loading values for the first factor
agreed with the spectral differences observed in Fig. 1c. The first factor
indicated that β-sheet and random coil structures in the amide I region
had a positive correlation to drip-loss; while the α-helix region ex-
hibited a negative correlation. Raman scattering due to vibrations of
other molecular species may occur near the α-helix bands of the amide I
region. For example, O–H bending from water molecules occurs at
1640 cm−1 (Socrates, 2004). Although water has a relatively weak
Raman response, contribution from water around 1640 cm−1 could be
considered as the loading plot displayed a clear inverse relationship
between drip-loss and the bands near 1642 cm−1. In addition, signals of
tyrosine and phenylalanine are assigned near the α-helix region. Fo-
cusing on the former, the tyrosine doublet (848 and 820 cm−1) also
presented a negative correlation to drip-loss.

Loading values of the cook-loss model (Fig. 3d) exhibited a similar
profile of contributing bands to those observed for the drip-loss model
with some variations. One of the main differences was observed on the
contribution of some Raman bands related to secondary structures. For
example, the β-sheet band at 1680 cm−1 appeared to be negatively
correlated with cook-loss, however positively correlated with drip-loss.
Similarly, α-helical bands such as 1645 and 928 cm−1 were positively
correlated with cook-loss; while the bands were negatively correlated
with drip-loss. As for drip-loss, bands near 1640 cm−1 in which water
may have had involvement, had contribution to the loading values, yet
with a positive correlation to cook-loss. On the contrary, the tyrosine
doublet was not as relevant as it was for the drip-loss model; whilst
phenylalanine bands, especially the signal at 1003 appeared to rela-
tively contribute to both factors. Nevertheless, both drip-loss and cook-
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loss loading values displayed that the band at 1414 cm−1 had con-
tribution. This band could arise from CO2

– stretching modes of aspartic
and glutamic and acids, which play an important role in binding water
(Li-Chan, Griffiths, & Chalmers, 2010; Warner, 2017; Xu et al., 2011).
Finally, Scheier et al. (2014), who used a portable Raman system to
predict drip-loss of pork measured between 60 and 120 min post-
mortem, thus during pre-rigor mortis, found that components involved on
the energy metabolism of muscles (e.g. lactate, glycogen, adenosine
diphosphate (ADP), adenine and creatine) had contribution to their
drip-loss model. However, overall these components had little con-
tribution to the drip-loss models probably because Raman measure-
ments were performed on beef aged for 2 days, at the end of rigor mortis.
After rigor mortis, these components are metabolized to inosine mono-
phosphate (IMP) (Honikel, 2014b). Thus, the bands at 1553 and
720 cm−1 could be related to signals of IMP (Scheier et al., 2014).

Overall, the loading plot demonstrated that both models were based
on changes in the secondary and tertiary structures of proteins. It also
suggested that the contribution of these bands may be slightly different
for predicting drip-loss or cook-loss. However, these differences may
arise from the experimental design as drip-loss was measured on fresh
muscle, while Raman acquisition and cook-loss were performed on
thawed muscle. Furthermore, drip-loss and Raman spectra were mea-
sured on steaks aged for 2 days; while cook-loss were measured on
steaks aged for 14 days. As observed for WBSF and IMF, the loading
values for drip-loss and cook-loss indicated that Raman bands not
readily identified had contribution to the model. Thus, models may be
influenced by bands that may not be related to the physico-chemical
variation of the samples, affecting the accuracy of the predictions.

In all, promising prediction models were developed for WBSF, IMF,
drip-loss and cook-loss. However, validation with independent sample
sets revealed noticeable variability in the results making it difficult to
assess the true predictive ability of the models. This variability could be
caused by the limited sample size, thereby making results highly de-
pendent on the train-test split. For this reason, future studies should
allow for a larger independent test data set to accurately assess the
predictive ability of the calibration models.

4. Conclusion

Raman spectroscopy followed by chemometrics constitutes a pro-
mising methodology for fast assessment of objective beef quality traits.
Notable spectral quality was obtained between the Raman shift range
from 1800 to 700 cm−1, which covers the main spectral features related
to changes in meat quality indicators such as WBSF, IMF, drip-loss and
cook-loss. Overall, PLS models exhibited notable performances in cali-
bration, especially for IMF, drip-loss and cook-loss, and despite the
limited sample size, models showed reasonable predictive ability.
Furthermore, evaluation of the loading values demonstrated that
models were considerably based on the variation of meat quality.
Tentative interpretation of the loading plots suggested that changes in
IMF would be associated with Raman signals arising from C–C and C]C
stretching, CH2 twisting and various vibrations modes of CH; while
changes in Warner-Bratzler shear force, drip-loss and cook-loss would
be related to changes in the secondary protein structures (α-helix, β-
sheet and random coils), hydrophobicity of the myofibrillar environ-
ment (tryptophan signals), hydrogen-bonding state (tyrosine doublet)
and signals from aspartic and glutamic acids. The loading plots also
disclosed that Raman bands a priori not related to the variation of meat
quality had contribution to the predictive models. This effect together
with overall results denoted that further improvement is required in
order to enhance the accuracy of the method.

Nonetheless, promising calibration models were developed and
hence further development of the technique is encouraged, especially
since Raman spectroscopy is rapid, non-invasive and offers the possi-
bility to use probes and portable systems, making the technology sui-
table for in situ measurements of beef eating quality at early stages

post-mortem. In addition, Raman spectroscopy provides information on
an individual basis (e.g. each measured steak). This aspect not only is
relevant to meat processors, who could use the information for quality
control and hence guarantee consistent quality and consumer satisfac-
tion; but also to consumers as this information could be included in the
product label providing information about its expected eating quality.
Furthermore, this information has potential to be used in breeding
programmes for the improvement of beef eating quality.
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