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Trajectory Planning for Automated Vehicles
using Quantum Computing

Juha Lilja
VIT Technical Research Centre of Finland Ltd.
Tampere, Finland
juha.lilja@vtt.fi

Abstract—This paper presents a method for automated vehicle
trajectory planning using quantum computing. The use of quan-
tum computing for the trajectory planning problem was studied
because the current classical methods for solving the problem are
computationally expensive. Simulation tests with the presented
method were performed in more complex test cases than what
has previously been tested with this method. Simulation tests
show, that the method scales also for more complex problems.
The method presented here can theoretically outperform classical
methods in complexity in certain conditions, although it is not
guaranteed in every condition.

Index Terms—trajectory planning, quantum computing, auto-
mated vehicles

I. INTRODUCTION

Finding smooth, collision-free, and efficient trajectories
that a vehicle can follow and use to navigate through its
environment autonomously is an important task in designing
automated vehicles. While there are multiple methods that
can be used for trajectory planning, solving the problem is
a computationally expensive task. Therefore computational
resources available can be a limiting factor in finding an
optimal trajectory.

In quantum computing, quantum phenomena such as su-
perposition and entanglement are used to enable new ways
of performing computational tasks. Quantum computing can-
not provide an advantage over classical computing in every
problem, but it can bring an advantage for certain problems.
While quantum computers are still in an early development
stage, possible use cases have already been considered for a
long time.

In this paper, a method for trajectory planning using quan-
tum computing is presented. The method is based on my
previous work [1], which introduces a quantum algorithm for
trajectory planning. This paper shows by simulation that the
algorithm scales and it is possible to use the algorithm in a
more complex environment than what was used in the previous
work.

II. BACKGROUND

In this section, the basics of state lattices and quantum
computing are presented to form a basis for the method used
in this paper.
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Fig. 1. An illustration of a state lattice. The basic set of primitives is
highlighted in black. This set of primitives is copied and shifted to start also
from other configurations, as shown in grey, which creates a regular pattern.
Configurations are the nodes where individual primitives start and end.

A. Trajectory Planning using State Lattices

There are multiple methods for trajectory planning with
classical computers. These can be divided generally into two
approaches which are decoupled methods and direct methods
[2]. In decoupled methods, trajectories are created in two
steps. In the first step, a path is created. While a path is a
geometrical representation of a route, a trajectory should also
include information about timing, that is velocities at which
the vehicle should follow the trajectory. Thus, the second step
is to add information about timing to the path so that it is
transformed into a trajectory. In direct methods a single step is
used to generate the trajectory and no separate path planning
step is used. Within these two categories, multiple methods
such as using potential fields, rapidly-exploring random trees,
or state lattices can be used. The method presented in this
paper is also based on state lattices so this method is briefly
presented next.

The state lattice can be viewed as a generalization of a grid
[3]. To create a state lattice, a configuration space C' must first
be defined. The C-space consists of all different configurations
(states) the vehicle can exist in. Each configuration includes
parameters such as x- and y-coordinates, heading, curvature,
and velocity of the vehicle. Also, higher-order parameters can



be added and the specific set of parameters can be chosen
depending on the problem. Adding more parameters may lead
to more accurate and optimal trajectories as the capabilities of
the vehicle can be taken better into account. However, each
parameter within a configuration is an additional dimension in
the C-space, which increases the computational complexity of
the problem. The parameters of which configuration consists
can be chosen depending on the requirements of the vehicle,
how accurate trajectories are needed, and how much comput-
ing resources are available. If the C'-space consists only of the
spatial coordinates, the problem is essentially a path planning
problem. When a velocity is introduced as a dimension to the
C-space, the problem is transformed into a trajectory planning
problem as the resulting paths include timing information from
velocities. To account for dynamic environments with moving
obstacles, time can be added as a dimension to the C-space
to create a spatiotemporal state lattice [4].

For obstacle avoidance, two subspaces Cops and Clpee are
constructed from the C-space. The subspace C\ps consists of
all configurations that are occupied by an obstacle and Cf.ce
consists of every configuration that is not occupied by an
obstacle. Valid trajectories can only use configurations within
Cree so that collisions are avoided.

To create a state lattice, the C-space is discretized along
each dimension. The discrete configurations near each other
are connected with short trajectories, primitives. Each prim-
itive is designed so that it can be accurately followed by
the vehicle and each primitive is leading the vehicle from
one configuration to another configuration in the discrete C-
space. The same set of primitives can be shifted to start from
different configurations, which creates a regular pattern, a
state lattice. Longer trajectories are then created by applying
multiple primitives after each other. In the Fig. 1, a simple
illustration of a 3-dimensional state lattice can be seen, where
the dimensions are spatial coordinates x and y as well as
heading. The heading dimension in the figure is projected
into the x-y plane. State lattices can also be represented as
a graph where configurations within the C-space are nodes
and those are connected by primitives which represent edges
in the graph. From a starting configuration c,, any graph search
algorithm can then be applied to find a valid trajectory to a
target configuration c¢; within the state lattice [3]. This paper
presents a method of finding a valid trajectory using quantum
computing.

B. Quantum Computing

In quantum computing, instead of bits, quantum bits or
qubits are used. A state of a qubit v can be written using
bra-ket notation as |v) [5]. Qubits can exist in so called
computational basis states |0) and |1), which are corresponding
to 0 and 1 states of classical bits. Qubits are different from
classical bits in that they can also exist in a superposition of
these basis states. The state of a qubit can be presented in a
general form of

lv) =co|0) +c1[1), )]

where [co, ¢1] € C and |¢o|® + |¢1]* = 1. The qubit may exist
in a superposition state only when its state is not observed.
Measuring the state of a qubit affects the state of the qubit
so that it collapses into one of the basis states [i) with a
probability of |¢;]? [6].

A quantum register consists of multiple qubits. The basis
states of an n-qubit quantum register are

{]00...00),]00...01),...,[11...10),]11...11)}. (2)

A quantum register can exist in any superposition between
these basis states, the state being then

€0 |00...00) +¢1[00...01) + -+ + can_q |11...11), (3)

where [CQ,. .. ;02"—1] € C and ‘Co|2 + -+ ‘an_l‘Q = 1.
The measurement of a quantum register affects the register the
same way as with a single qubit so that the register collapses
into one of the basis states |i) with the probability of |¢;|°.
Quantum computation is performed by feeding qubits
through a quantum circuit consisting of quantum gates. A
quantum gate is an operation in quantum computing that
operates on one or multiple qubits and changes the state of
those qubits according to the definition of the gate. Quantum
gates are always reversible, meaning that for every quantum
gate U, there exists a quantum gate UT, which reverts the
effect of U [6]. So applying U and U' immediately after
each other leaves the state of the qubits they are operating on
unchanged. Quantum circuits are created by applying multiple
quantum gates to create the desired computation. A quantum
circuit usually ends in a measurement of the qubits to read out
the result of the computation. The measurement operation is
not reversible, i.e. the state of the system before measurement
cannot be restored after the measurement is performed [6].

C. Grover’s Algorithm

The method in this paper uses a well known quantum
algorithm called Grover’s algorithm. Grover’s algorithm can
be used for unstructured search and it was introduced by
Lov Grover in 1996 [7]. Two main operations, oracle O and
diffuser D, are used to implement Grover’s algorithm.

The oracle O takes in a quantum register x and one
additional qubit s. The items in the list in which the search
is performed, are indexed and z represents the index of an
item. The items that one is trying to find are referred to here
as solutions. The O operation is designed uniquely for each
problem so that, when x is set to a basis state corresponding
to an item in a list and s is initialized as |0), the qubit s is
flipped to |1) if x is a solution state, i.e. item that one is trying
to find, or s is left as |0) otherwise. The O is used in Grover’s
algorithm by initializing = into an equal superposition of all
the basis states and initializing s as |—) = % |0) — % [1).
With these initial states, the O affects the superposition state
of x so that for each solution state the coefficient ¢; as in
(3) becomes —c¢;, which is sometimes called phase kickback
effect [8]. So as a result, = is now in a similar superposition
as before O operation but with coefficients ¢; of each solution
state being negative.
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Fig. 2. Circuit of an oracle O.

After applying the oracle O, diffuser D is applied. While
O is uniquely designed for each problem, D operation is
implemented the same way regardless of the problem. The
D operation takes the x register from O and one additional
qubit in state |—). The effect of a diffuser is that it amplifies
the coefficients ¢; which are negative after O. So as a result, x
is in some superposition state which is the form of (3), and the
coefficients c¢; of solution states after applying D are greater
than coefficients of other basis states. This means, that for
each solution state, the probability of it to become a result of
a measurement is greater than the corresponding probability
of a non-solution state.

The oracle and diffuser can be applied multiple times
to further increase the probability of a solution state being
measured by amplifying the coefficients of the solution states.
The optimal number for iterations is

w2

~War
where M is the number of solutions and n is the number of
qubits in the x register [6], [9]. If O and D are applied more
than 7" times, the probability of a solution state to be measured
starts to decrease. The complexity is O(\/]V ) for Grover’s
algorithm when considering the number of evaluations of
the oracle [7]. Because of this, Grover’s algorithm could
outperform classical algorithms in certain problems.

“4)

III. METHOD

The method for trajectory planning in this paper uses state
lattices and for finding a valid trajectory, Grover’s algorithm is
used. A trajectory is considered here as valid when it reaches
a target configuration c; from the starting configuration c,
without colliding with obstacles or going outside of the finite
C-space. Target configuration ¢; is a configuration within the
C-space which is a desired configuration for the vehicle to

end up. There can be multiple target configurations set at the
same time to any of which the vehicle should end up.

The method presented here is based on my previous work
on trajectory planning with quantum computing [1], which in
turn is building on [10], which presents a way to solve a path
planning problem using quantum computing.

A. Circuit

The oracle O can be designed using an approach presented
in [11] for production systems. Here, the oracle consists of
three different operations, named P, V, and C' operations.
The P operation is used to compute a resulting configuration
based on a previous configuration and a primitive. The V
operation checks if following the latest primitive can be done,
i.e. vehicle does not collide with any obstacle and does not
leave the finite C'-space while following the primitive. In [1],
P and V operations are one operation, but here these two are
separated into their own operations to keep the implementation
more clear even with more complex C-space. The C' operation
checks whether a target configuration was achieved with a
valid trajectory. Each operation is explained in more detail in
the next paragraphs.

The P operation is the main operation in constructing
the trajectory from multiple primitives. As every quantum
operation needs to be reversible, they need to have an equal
number of qubits going in and coming out of the operation.
However, in many cases, qubits can be divided into logical
inputs and outputs based on their purpose, and from this point
on, when referring to input or output registers, logical input
and output are meant. The P-operation takes as an input an
n-qubit register c¢;, which is an input configuration, and an m-
qubit register p, which represents a primitive. As an output, P
operation gives a configuration c,, which is an n-qubit register.
The ¢, is computed based on the input configuration c; and the
primitive p, so that p leads the vehicle to c,, when starting from



¢;. Multiple P operations can be applied one after another by
feeding ¢, from the previous P-operation as c; to the next P
operation as shown in Fig. 2 with two P operations. Naturally,
more P operations can be applied the same way to create
longer trajectories, as one primitive is added to the trajectory
with each P operation.

After every P operation, a V' operation is applied. The V'
operation takes the same inputs as the P-operation, which
are ¢; and p, and gives as an output one qubit v. The V
operation checks if primitive p can be followed from ¢; and
sets v as the result of the evaluation. If following p from ¢;
would cause a collision with an obstacle or lead the vehicle
outside of the finite C-space, v would be set to |1). Otherwise
v is set to |0). While designing primitives, it is analyzed to
which configurations in relation to the starting configuration,
the vehicle collides with. The V' operation then uses this
information about primitives to check whether the vehicle
collides or not.

After applying all primitives, a C' operation is then applied
to check if the trajectory leads to a target configuration. The
C operation takes as an input ¢, configuration from the last P
operation and all v qubits from V' operations as is shown in
Fig. 2. The C operation then outputs one qubit ¢ which is set
to |1) if ¢; is reached with no collisions or invalid primitives.
Otherwise, if ¢; is not reached, or the trajectory is invalid
otherwise, ¢ is set to |0).

After C operation, the ¢t and s qubits are connected with
a CNOT gate. The CNOT gate operates so that when
the control qubit marked with e is |1), the gate flips the
target qubit marked with @. When the target qubit, in this
case s, is in state |—), the CNOT gate causes the phase
kickback which is the desired effect of the oracle. After
this, everything is uncomputed by applying reverse operation
of every applied operation in the reverse order. The inverse
operations are needed to propagate the kickback effect of the
CNOT operation to each of the primitive registers. The full
circuit of O can be seen in the Fig. 2 in a case with two
primitives. More P and V operations can, and should, be
added to create longer trajectories. The O can now be used
in Grover’s algorithm as explained in the section II-C. All
primitive registers are set into an equal superposition between
all basis states, denoted as |+>®m in Fig 2, and s is initialized
as |—). The oracle O now affects primitive registers so that
for each solution state, the coefficient c¢; is flipped to —c;.

The exact construction of P, V and C operations depend
on the C-space and primitives chosen for each case. These
operations can be designed using CNOT' gates as described
in [12].

After the oracle, a standard diffuser D is applied to complete
the amplitude amplification. The D takes as input all primitive
registers, as well as the s qubit. Applying O and D can then
be repeated to further amplify the coefficients of the solution
states as discussed about iterations in section II-C. Finally, the
primitive registers can be measured. Because of the effects of
O and D, a set of primitives that form a valid trajectory is
coming as a result with high probability. If the result is still

an invalid trajectory, the full process of iterating O and D is
repeated until a valid one is found.

B. Details

For finding a trajectory from a state lattice, this method
could outperform classical graph search algorithms in compu-
tation performance if by > v/ bpnar, Where by, 4 is the average
branching factor of the classical graph search algorithm and
bmayz 18 the maximum branching factor, i.e. the number of
primitives starting from each configuration in the C-space
[10]. This follows from the complexity of O(\/N ) of Grover’s
algorithm [7]. The bg,y may be smaller than b,,,, in the
implementation of a graph search algorithm because the graph
search algorithm does not necessarily need to check every
possible primitive starting from a configuration.

This method does not guarantee any optimality of the
resulting trajectory so far. The resulting trajectory is merely a
random one from all the possible valid trajectories from c; to
¢¢. In [13], a method for optimizing the solution is presented.
Optimality is increased by first running the search as usual
and when a valid trajectory is found, a cost is calculated for
it. In this case, the C operation is then modified so that it
computes a cost for trajectories and only marks trajectories
as valid if they have a smaller cost than the previously found
best solution. This way, a more optimal trajectory can be found
with the cost of running the search multiple times.

The number d of P operations used in the circuit determines
how many primitives each resulting trajectory is consisting of.
However, a target configuration may be reached also with a
trajectory consisting of fewer number of primitives than d.
This is why a null primitive should always be included in the
set of primitives used. Applying a null primitive keeps the
vehicle’s configuration unaltered and it can just be discarded
from the trajectory if the resulting trajectory includes any
null primitives. This way, by including null primitives, the
number of non-null primitives in the trajectory can be less
than d and the method can find shorter than d valid trajectories.
This actually has a side effect of shorter trajectories having a
greater probability of becoming as a result of a measurement.
This is, because if a trajectory contains for example 1 null
primitive, the null primitive may exist in d different places
along the trajectory. Now, each of the trajectories that differ
from each other only by the position of the null primitive along
the trajectory, are considered unique by Grover’s algorithm
and they have the same high probability of becoming as
a result. However, after discarding null primitives from the
result, these trajectories are exactly equal to each other and
so many solutions lead to the same result trajectory when null
primitives are discarded. This means that it is more probable
for a trajectory consisting of few non-null primitives to become
a result than a trajectory with many non-null primitives. This
may usually be also a desired property, because many times a
trajectory with fewer non-null primitives may be more optimal
in the sense of distance or elapsed time. However, it is not
universally true that a trajectory with fewer primitives is more
optimal.
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Fig. 3. Primitives used in tests. Each box represents a configuration and
black lines between these configurations are the primitives. Below each set is
written a velocity at the start of the corresponding primitives and a velocity
the primitive leads to. Also null primitive is included in the set of primitives.

It may not be straightforward to determine a reasonable
number d of P-operations to apply. By choosing d to be too
low, there might not exist a solution from cg to c¢; because
of too few primitives. However, choosing a large d may lead
to unnecessarily high computational cost for the problem. It
may be possible to estimate a reasonable d based on the
distance between ¢, and ¢; within the C'-space and information
about obstacles within C-space. As this depends heavily on the
chosen C'-space and the chosen set of primitives, considering
solutions to this problem is left out of this paper and the
problem is merely addressed here.

Usually, the exact number M of valid trajectories from c;
to ¢; is not known. This raises a question of how should the
number of iterations be decided as it is not possible to calculate
it directly with (4) when the M is not known. An algorithm
presented in [14] can be used to solve this. First, a small
number of iterations is used. If no valid solution is found, the
number of iterations is chosen at random from a larger range
of numbers and the search is repeated. This is repeated until a
valid solution is found. The complexity of the algorithm still

stays as O(v/N) [14].
IV. TESTS

For testing, a circuit for a simple C-space was implemented
using Qiskit [15]. The circuit was then simulated on classical
hardware using a matrix product state simulator. The C-space
used in tests was a 3-dimensional space with spatial coordi-
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Fig. 4. Simulation test results.

nates x and y as well as velocity as dimensions. As simulating
quantum circuits on classical hardware is a computationally
expensive task, the C'-space had to be small. Therefore, the C-
space included z-coordinates in range [0 ... 3], y-coordinates
in range [0...7] and two different velocities, low and high.

The number of primitives starting from each configuration
was 7, including the null primitive. For representing primitives,
3 qubits were used. Depending on if the starting configuration
was a low velocity configuration or high velocity configura-
tion, primitives used were different. The set of primitives is
shown in Fig. 3.

In the test scenario, starting configuration x = 0,y = 0 and
low velocity was used. For target configurations, x = 1,y = 5
with any velocity were chosen. Depth was chosen to be 3,
that is, each resulting trajectory consists of 3 primitives. To
keep the simulation simple enough for the used hardware to
compute, no obstacles were used. With this test arrangement,
there were 16 valid trajectories from c; to ¢;, when counting
trajectories with null primitives in different places along the
trajectory as unique trajectories. Using (4), it can be calculated
that the optimal number of iterations in this case was 4, as
3 qubits were used for each of the 3 primitives. Tests were
run with the number ¢ of iterations in the range [1...7].
The test case with each iteration value was run 1000 times
without repeating the computation if the resulting trajectory
was invalid.

Counts, when a valid trajectory became as a result of the
measurement are shown in Fig. 4 for each iteration value t.
From the results, it can be seen that with an optimal number
of iterations 4, the result was always a valid trajectory. While
t # 4, it can be clearly seen that the number of valid results
decreased when ¢ was farther from 4.

For this test case, there were 2 solution trajectories with only
2 non-null primitives. As d = 3, these trajectories all included
one null primitive. This meant that 3 different primitive
sequences corresponded to each of these trajectories because



the null primitive could exist in 3 different places along the
trajectory. This led to a situation, where when discarding null
primitives from the result trajectories in the case when ¢ = 4,
the other trajectory with 2 primitives came as a result 197
times and the other 190 times. Trajectories with 3 non-null
primitives came as a result on average 61.3 times. This result
supports the effect of null primitives discussed in the section
III-B, that trajectories with fewer non-null primitives are more
likely to become as a result than trajectories with more non-
null primitives.

These results with the method scaled to a 3-dimensional C-
space including velocity dimension, are aligned with results in
[1], where simulation tests were performed in a 2-dimensional
C-space with obstacles. This method has also been tested on
quantum hardware, but it did not perform any better than
random selection of a resulting trajectory would, probably
because the used quantum hardware was not able to sustain
the state of the qubits for the duration of the computation [1].

V. CONCLUSION

This paper presented a method for trajectory planning using
quantum computing. By simulation, it was shown that the
method scales as designed, and can be applied in a more
complex environment than what was previously tested. This
method can theoretically outperform current classical methods,
but it is not guaranteed in every condition. While current
implementations of quantum computers are not yet capable
enough for a task this complex, it is a topic of future research
to test and evaluate the performance of the method using a
quantum computer.
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