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Abstract
Bivariate frequency analysis is an emerging method for the assessment of compound 
floods, especially in coastal regions. Changing climate, which usually leads to changes in 
characteristics of extreme hydrometeorological phenomena, makes the application of non-
stationary methods more critical. In this research, a methodology is developed to apply 
frequency analysis on extreme sea level using physically-based hydroclimatic variables as 
covariates based on univariate Generalized Extreme Value (GEV) as the probability dis-
tribution function and copula methods. The results show that for extreme sea level, the 
location parameter of marginal distribution is directly related to the covariate variable of 
maximum temperature. For precipitation, the scale parameter is related to the covariate 
variable of minimum temperature, and the shape parameter is time-dependent. The uni-
variate return periods of hurricanes Sandy and Irene are estimated at 85 and 12 years in 
nonstationary GEV distribution, respectively, while for stationary GEV distribution they 
are estimated at 1200 and 25 years, and in the bivariate frequency analysis of water level 
and precipitation, the normal copula function has more flexibility compared to other com-
petitors. Using time-varying copula, the bivariate return periods of Hurricanes Sandy and 
Irene are 109  years and 136  years, respectively. The results confirm the importance of 
incorporating rainfall and extreme sea level in coastal flood frequency analysis. Although 
the proposed methodology can be applied to other hydro-climatological variables, the find-
ings of this research suggest the necessity of considering nonstationarity in the analysis of 
extreme hydrologic events.

Keywords  Time-Varying Copula · Climate Extreme Event · Dynamic Return Period · 
Frequency Analysis

1  Introduction

During the past decades, several major flood events have been occurred all over the 
globe, for example in central Europe in 2002 and 2005, and on the East Coast of the 
United States in 2011, 2012 and 2017, which resulted in substantial damages (Kron 
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2005; Karamouz et al. 2016, 2017). In the United States, trends for annual flood dam-
ages since 1934 suggest that the magnitude and frequency of floods have been increased 
over the last century (Milly et  al. 2002; Svensson et al. 2005; Karamouz et al. 2017). 
Population and urban growth in floodplains as well as potential social and economic 
damages from flooding consist incentives to enhance understanding of the major drivers 
for changes and trends in hydrologic variables. Climate change, for example, has been 
shown to adversely impact the hydrologic cycle, and therefore, can be related to the 
increased frequency and magnitude of extreme hydrologic events (Goharian et al. 2016; 
Zahmatkesh et al. 2015a, b).

The frequency analysis on hydrologic variables is generally performed based on the 
extreme value analysis of a sample from historical records (Razmi et al. 2017; Mudersbach 
and Jensen 2010). For hydrologic variables such as temperature and rainfall and also sea 
level, the extreme value theory (EVT) has been widely used in the literature (e.g., Fré-
chet 1928; Gumbel 1958; Pickands 1975; Hawkes et al. 2008; Cantet and Arnaud 2014). 
Among several distributions which have been suggested to fit extreme data (Singh and 
Strupczewski 2002), according to Abida and Ellouze (2008), the most common probabil-
ity distributions for flood analysis are Gumbel, Generalized Extreme Value, Log Pearson 
Type III, and Log-Normal. The principal goal of frequency analysis is to use probability 
distributions to relate the magnitude of extreme variables to their frequency of occurrence 
(Gilroy and McCuen 2012), generally based on several assumptions, e.g., data independ-
ency, homogeneity and stationarity (Serinaldi and Kilsby 2015). However, there is a debate 
that climate change could potentially alter the spatial and temporal pattern of hydrologic 
variables and consequently flooding (Ferrer et al. 2012; Yoon et al. 2015). Changes in the 
patterns of hydrologic variables affect flood timing, magnitude, and frequency. In design-
ing water system structures for future proper operation and preparedness against flooding, 
trend analysis of hydrologic variables is necessary. Understanding trends is necessary for 
identifying the spatial and temporal changes in climatic data. For example, Chebana et al. 
(2013) performed multivariate hydrologic frequency analysis by emphasizing the impor-
tance of application of nonparametric trend tests and recommended jointly applying uni-
variate and multivariate tests to better capture the trend components and select the appro-
priate models.

Nonstationarity in hydrologic variables and extremes have been investigated in several 
research studies (Akbari and Reddy 2020; Galiatsatou et al. 2019; Machado et al. 2015; 
Faulkner et  al. 2019; Du et  al. 2015; Jiang et  al. 2014; Li et  al. 2019; Wen et  al. 2019; 
Zhang et  al. 2018; Razmi et  al. 2017; Dong et  al. 2019; Xavier et  al. 2019). Ahn and 
Palmer (2016) for instance, investigated nonstationary frequency analysis of bivariate char-
acteristics, such as occurrence and severity, for annual low flow in the Connecticut River 
Basin, USA. Yan et  al. (2017) developed an approach to derive the nonstationary distri-
bution of runoff and hydrological input including precipitation and potential evaporation. 
Zhang et al. (2018) developed univariate and bivariate models for time-varying nonstation-
ary frequency of flood peak and volume for Wangkuai Reservoir catchment, in China.

In a review of developments in nonstationary hydrological frequency analysis, several 
factors, such as changes in river basins by anthropogenic effects, climate change, and low-
frequency climate variability were the main reasons for nonstationarity and the assumption 
of stationarity has been questioned. Bayazit (2015) concluded that relationships between 
nonstationary model parameters and time should not be only estimated from the data using 
statistical methods, but need to be defined a priori based on physical mechanisms, which 
generally includes fitting a probability density function with parameters dependent upon 
either time and physical drivers of nonstationarity.
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Coastal areas are threatened by inland flooding from river overbanking and intense run-
off, as well as heavy storms and hurricanes. Compound floods which are caused by mul-
tiple drivers can cause devastating damages especially at riverine and coastal regions. To 
form a compound flood event, multiple drivers or mechanisms such as the combination 
of rainfall and storm surge as well as pluvial (direct runoff) and fluvial (increased river 
discharge) are involved (Wahl et al. 2015). Extreme sea levels are caused by combination 
of physical processes with different time and space scales including tides, sea level rise, 
weather-driven storm surges and waves, and finally, seasonal and inter-annual variability 
in ocean water levels. The exceedance probability of extreme sea level and hydrologic vari-
ables affecting inland flooding (e.g., rainfall and temperature) is therefore required to be 
calculated for these areas. The multivariate frequency analysis with copula functions is a 
good alternative (Tsakiris et  al. 2015). For this purpose, application of joint probability 
distributions such as copulas has been suggested and practiced (Song et al. 2004; Golian 
et  al. 2012; Graler et  al. 2013; Roussas 2014; Guo et  al. 2016). Copulas have also been 
used in design of structures at coastal areas. Xu et al. (2014) used copula for joint analysis 
of extreme precipitation and storm tide, and developed a design standard for preparedness 
against future flooding. Zellou and Rahali (2019) investigated the combined effect of heavy 
rainfall with high tidal levels on the occurrence and severity of floods using copulas in 
a watershed near the Bouregreg River, Morocco. Some recent studies also applied copu-
las for nonstationary frequency analysis, e.g., Kang et al. (2019) developed a time-varying 
copula model for bivariate modeling of flood peak and volume. Many studies have been 
conducted to evaluate historical compound floods around the world, for example Hurri-
cane Irene and Sandy (Saleh et al. 2017), Typhoon Maemi (Lee et al. 2019), Cyclone Sidr 
(Ikeuchi et  al. 2017), and Hurricane Isabel (Blanton et  al. 2018). Recently, many efforts 
have been made to study the impact of climate change on compound flooding (Herdman 
et al. 2018; Kirkpatrick and Olbert 2020; Pasquier et al. 2018). The time-varying copula 
modeling is applied to analyze compound extremes and flood event coincidence analysis. 
In limited studies (e.g., Sarhadi et al. 2016; Kang et al. 2019; Xu et al. 2019; Wen et al. 
2019; Feng et al. 2020), time-varying copulas were applied to compound flood frequency 
analysis.

This paper provides a framework for trend detection, univariate and multivariate fre-
quency analysis, and joint probability distribution of hydrologic variables, i.e., precipita-
tion and extreme sea level using time, maximum and minimum temperature as potential 
covariates. Historical extreme climate variables and extreme sea level for the coastal area 
of New York City, southern Manhattan, are used to implement the proposed framework. 
While Razmi et  al. (2017) proposed a uni-variate nonstationary frequency analysis on 
extreme sea level, this paper promotes the previous work by developing bivariate time vari-
ant frequency analysis for compound coastal floods based on nonstationary probability dis-
tribution of marginal variables. Also, to consider nonstationarity in the parameters of the 
bivariate joint distribution of rainfall and extreme sea level, both static and dynamic copula 
methods are applied. In this study, for the first time, we considered all possible combina-
tions for both parameters of marginal and copulas to be nonstationary/time-varying simul-
taneously. While in most previous studies, one or more parameters of marginal distribution 
(usually shape parameter in GEV distribution) have been considered to be constant (Coles 
2001; Fowler et al. 2010; Katz 2013; Lopez and Frances 2013; Cheng et al. 2014; Du et al. 
2015; Luo and Zhu 2019; Zavier et  al. 2019; Le Roux et  al. 2020; Lu et  al. 2020), we 
examine cases where the shape parameter can also vary with time and other covariates, i.e., 
maximum and minimum temperature (Brown et al. 2014; Ouarda et al. 2019; Griffin et al. 
2019; Prosdocimi and Kjeldsen 2021). In our study, we developed stationary/nonstationary 
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models using different copula families, i.e., Archimedean and elliptical copula families, 
and we applied them to coastal floods. The structure of the paper follows. In the next sec-
tion, the study area and historical observed data are presented. Then, the methodology is 
described with the proposed flowchart for the statistical analysis of variables. This section 
is followed by providing and discussing the results. Finally, a summary and conclusion is 
given.

2 � Study Area and Data

Manhattan, the most densely populated region of the five boroughs of New York City 
(NYC), with an area of 87.46 km2 and 1.63 million residents (recorded in 2018), is sur-
rounded by waterways all around and is threatened by flooding from heavy rainfall and 
storm surges. More than 30 storm events have hit the east coast of the United States, 
including NYC, since the seventeenth century. The deadliest events that affected Manhat-
tan in the past decade are hurricane Irene and super storm Sandy both with high-speed 
winds of up to 110 km/h. Hurricane Irene of August 2011 was recorded as one of the most 
destructive and costliest cyclones. Sandy of October 2012 was a late-season large storm 
(largest ever recorded in the Atlantic Basin) which flooded some parts of Sothern Manhat-
tan including tunnels and subway systems. According to data from the Battery Park station 
in the southern part of Manhattan (Fig. 1), the extreme sea level in southern Manhattan due 
to super storm Sandy was recorded as high as 5.28 m (based on Station Datum). Statisti-
cal analysis of extreme sea level at this station indicates a long-term average of 3.28 m. 
For this study, trend detection and flood frequency analysis were performed on rainfall and 
extreme sea level data for Manhattan. These data are recorded at the Central Park and the 
Battery Park stations shown in Table 1.

3 � Methodology

Figure 2 shows a flowchart of the proposed methodology for time-varying joint probabil-
ity density of rainfall with extreme sea level. The methodology includes four main steps 
namely data collection and processing, trend analysis, frequency analysis, and determina-
tion of return period of extreme events. These steps are described in detail in this section.

3.1 � Data Collection and Processing

Daily data time series for rainfall (cumulative rainfall over 24 h for each day), the maxi-
mum hourly extreme sea level in a day, and temperature (maximum and minimum values 
over the day), were used for statistical analysis. The data were investigated and then time 
series of extreme annual data were built for further analysis.

3.2 � Trend Analysis

Mann–Kendall (MK) test is the well-known choice to detect the trend in a univariate 
time series. On the other hand, when weather conditions (e.g., rainfall) potentially influ-
ence time series of the variable of interest (i.e., extreme sea level), an appropriate choice 
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for trend analysis could be the Partial Mann–Kendall (PMK) test (Libiseller and Grimvall 
2002). Details of MK and PMK test are given in Section 1 of the Supplementary Mate-
rial (SM). The PMK test detects trend in a variable (often called response variable) while 
adjusting for trend in a covariate (Wahlin and Grimvall 2009). In the present study, time 
series of rainfall was used as the covariate in the analysis and the PMK test statistic was 
computed conditional on the rainfall. In other words, trend analysis of extreme sea level 
was investigated while incorporating rainfall as the covariate.

Fig. 1   The location of the Battery Park and Central Park Stations in Manhattan

Table 1   Datasets and characteristics of the stations to acquire data

Station Longitude Latitude Elevation (m) Record period Data

Battery Park  74◦00′48′′   40◦42′00′′  15.24 1920–2019 Extreme sea level (m)
Central Park  73◦57′55′′   40◦46′56′′  39.6 1920–2019 Rainfall (mm), maximum 

and minimum temperature 
( ◦C)
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A. Data collection and processing

Annual Extreme Water Level Annual Maximum Rainfall Annual Min and Max Temperature

B. Test the variation in marginal distributions with trend analysis: Partial Mann-Kendall test

Marginal distributions are stationary Marginal distributions are non-stationary

C. Uni-variate frequency analysis

Generalized Extreme Value Distribution

(All parameters are constant)

Non-Stationary Generalized Extreme Value 

Distribution: location, scale, and shape parameter are 

assumed time and/or covariate dependent

Model selection criteria: AIC/BIC

Deviance statistic

D. Bivariate frequency analysis

Correlation analysis: Kendall, Spearman, Pearson

Selection of the most appropriate copula (Goodness-of-fit):

AIC/BIC

Kolmogorov-Smirnov (KS) test

Cramer-Von-Mises (CM) test

Anderson-Darling (AD) test

E. Extreme events’ return period

Marginal return period

Non-stationary Uni-variate return period

Joint return period

Time-varying joint return period

Fig. 2   Flowchart of the proposed methodology to estimate the joint return period of extreme hydrologic 
variables
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3.3 � Univariate Frequency Analysis: Static and Dynamic GEV Distribution

Standard design methods are usually based on univariate frequency analysis (Chebana 
and Ouarda 2011). In this study, the univariate Generalized Extreme Value (GEV) is 
examined for extreme sea level and precipitation. We use maximum and minimum tem-
perature as covariates. GEV distribution is parameterized with location ( � ), scale ( � ), 
and shape ( � ). The density function of the static GEV distribution is expressed as:

The density function of time-varying GEV distribution could be expressed as follows:

where �t , �t , and �t are the time-varying location, scale, and shape parameters, respectively 
(Sarhadi and Soulis 2017). The relation between parameters and time is considered loga-
rithmic with the reference year 1919, i.e., ln (year − 1919) is used as time in the model. 
The linear relation is also checked but the logarithmic model was fitted better for both vari-
ables. Each parameter can be constant, linear in the log of time, linear in covariate, and lin-
ear in both log of time and covariate. However, we have not used both covariates in a single 
model, simultaneously. There are 120 such distinct models for each target variable. The 
scheme of these 120 models is given in Table 2. Finally, for range preservity of estima-
tions, when fitting the models, a log transform and a logit transform were performed on 

(1)fX(x;�, �, �) =
1

�

[
1 + �

(x − �

�

)]− 1

�
−1

exp

{
−
[
1 + �

(x − �

�

)]− 1

�

}
.

(2)fXt

(
x;�t, �t, �t

)
=

1

�t

[
1 + �t

(
x − �t

�t

)]− 1

�t
−1

exp

{
−

[
1 + �t

(
x − �t

�t

)]− 1

�t

}
,

Table 2   120 distinct models for GEV distribution for a target variable y with covariates x
1
 and x

2

Model Location ( �y) Scale ( �y) Shape ( �y)

M
1

�
0

�
0

�
0

(a)
M

2
�0 + �1 ln t (b)

M
3

�
0
+ �

1
+ �

1
x
1

(c)
M

4
�0 + �1 ln t + �2x1 (d)

M
5

�
0
+ �

1
x
2

(e)
M

6
�0 + �1 ln t + �2x2 (f)

M
7
–M

12
�0 + �1 ln t (a)-(f)

M
13

–M
16

�
0
+ �

1
x
1

(a)-(d)
M

17
–M

20
�0 + �1 ln t + �2x1 (a)-(d)

M
21

–M
24

�
0
+ �

1
x
2

(a),(b),(e),(f)
M

25
–M

28
�0 + �1 ln t + �2x2 (a),(b),(e),(f)

M
29

–M
56

�0 + �1 ln t same as models M
1
–M

28
 (28 models)

M
57

–M
72

�
0
+ �

1
x
1

all models M
1
–M

28
 except those which � or � depends on x

2
 (16 

models)
M

73
–M

88
�0 + �1 ln t + �2x1 same as models M

57
–M

72
 (16 models)

M
89

–M
104

�
0
+ �

1
x
2

all models M
1
–M

28
 except those which � or � depends on x

1
 (16 

models)
M

105
–M

120
�0 + �1 ln t + �2x2 same as models M

89
–M

104
 (16 models)
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scale and shape parameters, respectively: we model ln � and logit
(

2

3
(� + 1)

)
 instead of � 

and � , itself, where logit(x) = ln (x∕(1 − x)).

3.4 � Multivariate Frequency Analysis

Application of univariate frequency analysis methods may result in significant underes-
timation of the risk associated with the considered extreme event. To take into account 
the mutual information of considered variables, the concept of copula is used. Details 
on the theory of copulas and its parameter estimation are provided in Supplementary 
Material. Briefly, copulas are the multivariate distribution functions with standard uni-
form marginal distributions. Sklar theorem (Sklar 1959) relates the bivariate distri-
bution function to the copula and marginal distribution functions: if X and Y  are dis-
tributed with cumulative distribution functions (CDFs) FX and FY and bivariate CDF 
H(x, y) , then the copula of X and Y  is defined as:

where F−1
X

 and F−1
Y

 stand for the quantile function of X and Y  , respectively. In practice, to 
fit a copula to the data, first, the marginal distribution functions are estimated, e.g., through 
fitting with nonstationary GEV distribution. Then, ui = FX

(
xi
)
 and vi = FY

(
yi
)
 are com-

puted and, finally, an appropriate copula is fitted to observations 
(
ui, vi

)
 , i = 1, 2,… , n . The 

density of a copula, c(u, v) is expressed as:

in which �C∕�u is the partial derivative of C with respect to u . The conditional copula of U 
given V = v is defined as:

It is well-known that the random variable W = CU|V=v(U, v) is uniformly distributed 
on (0, 1) . It can be used in the goodness-of-fit test for dynamic copulas. The Kendall � 
for given copula, C , can be computed as (Nelsen 2006):

In this paper, three well-known Archimedean copulas including Clayton, Gumbel, 
and Frank copula along with normal copula have been used. Details of these copulas are 
given in the Supplementary Material. All of these copulas are one parameter and there 
is a one-to-one relationship between their parameters and Kendall � . For more details, 
see Nelsen (2006). Note that Clayton, Frank and normal copula with � ≅ 0 and Gumbel 
copula with � ≅ 1 lead to � ≅ 0 and in these cases the copulas are almost equivalent 
to the independent copula, Π(u, v) = uv . Hence, to test the validity of using copulas, 
the hypotheses H

0
∶ � = 0 for Clayton, Frank, and normal, and H

0
∶ � = 1 for Gumbel 

copula are considered when the static copula is used.

(3)CX,Y (u, v) = H
(
F−1
X
(u),F−1

Y
(v)

)
,

(4)c(u, v) =
�2C(u, v)

�u�v
,

(5)CU|V=v(u, v) =
�C(u, v)

�v
.

(6)�C = ∫
1

0
∫

1

0

C(u, v)c(u, v)dvdu − 1.
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Dynamic copula  Patton (2006) proposed an ARMA(1.10) model for Kendall � of time-
varying one parameter Archimedean copula. More precisely, he proposed the following 
model:

where � , � , and � are unknown parameters, 
(
ut, vt

)
=
(
FX

(
xt
)
,FY

(
yt
))

 are the psudo-obser-
vations, and Λ(x) = (1 + exp (−x))−1 is a transformation function which keeps the value 
of �t in [0, 1] . In this paper, the above methodology is used with two modifications: first, 
instead of Kendall � , the copula parameter is directly modeled as an ARMA(1, 10) model. 
i.e.

The second modification is using new transformation functions, Λ(x) , which covers a 
wide range of the parameter space (acceptable values of � ) when x varies in a reasonable 
range of real numbers. New transformation functions are presented in Table 3. Due to dif-
ferent parameter spaces of different copulas, the transformation functions are also different.

These transformation functions are continuous and differentiable, and as stated above, 
they vary in a wide range of � when x varies in a reasonable range of real numbers, e.g., 
(-10, 10). Although, in theory, the results of Patton’s transformation and these new trans-
formation functions are almost the same, in practice, new transformation functions lead 
to more acceptable and robust results. In summary, the joint distribution function of two 
hydrologic variables xt and yt is modeled as:

where FX and FY are the univariate distribution functions of x and y , respectively; 
ut = FX

(
xt
)
 , vt = FY

(
yt
)
 , H is the bivariate distribution function of (xt, yt) ; �xt = (�x

t
, �x

t
, �x

t
) 

and �t
y
= (�

y

t , �
y

t , �
y

t ) are the vector of time-varying marginal distribution parameters at time 
t , and �c

t
 is the time-varying parameter of copula function at time t (Sarhadi et al. 2016; 

Feng et al. 2020). More details are given in Supplementary Material.

3.5 � Model Selection (Goodness‑of‑fit Criterion)

AIC and BIC  The well-known goodness of fit criteria when the density function is availa-
ble, are Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). Since 

(7)�t = Λ
(
� + �Λ−1

(
�t−1

)
+

�

10

∑10

j=1

|||ut−j − vt−j
|||
)

(8)�t = Λ
(
� + �Λ−1

(
�t−1

)
+

�

10

∑10

j=1

|||ut−j − vt−j
|||
)
.

(9)H
(
xt, yt|�xt , �

y

t , �
c
t

)
= C

(
FX

(
xt|�xt

)
,FY

(
yt|�

y

t

)
|�c

t

)
= C

(
ut, vt|�ct

)
,

Table 3   Transformation functions for range preservation of copula parameter

Family � = Λ(x) x = Λ−1(�)

Gaussian tanh x∕2 ln ((1 + �)∕(1 − �))

Clayton exp x I{x<0} + [ln (x + 1) + 1]I{x≥0} ln 𝜃 I{0<𝜃<1} +
[
exp (𝜃 − 1) − 1

]
I{𝜃≥1}

Frank x �

Gumbel
[
exp x + 1

]
I{x<0} + [ln (x + 1) + 2]I{x≥0} ln (𝜃 − 1)I{1<𝜃<2} +

[
exp (𝜃 − 2) − 1

]
I{𝜃≥2}
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the number of parameters are not equal in all models, the AIC may overestimate the appro-
priateness of the model, hence, using BIC is more appropriate. The models with lower 
AIC/BIC are better fitted since they have greater Likelihood value. AIC/BIC can be used 
for univariate models and copulas. Also, they can be used for both static and time-varying 
models. More details are given in the Supplementary Material.

Deviance statistic  Deviance is a goodness-of-fit statistic for a statistical model which is 
usually used for statistical hypothesis testing. When two models are nested and the method 
of estimation is Maximum Likelihood (ML), then using deviance statistic is more efficient. 
Deviance statistic for comparing models M

0
 and M

1
 with parameters �

0
 and �

1
 , respectively, 

are defined as follows:

where �̂
0
 and �̂

1
 are the ML estimators of �

0
 and �

1
 , respectively, and � is the log-likeli-

hood function. Note that the two models need not to have the same log-likelihood function. 
The approximate distribution of D is �2 with degrees of freedom equal to the difference of 
number of parameters of �

1
 and �

0
 . H

0
 means that two models have the same goodness-of-

fit, and H
1
 means that M

1
 is better fitted to the data than M

0
 . Finally, H

0
 is rejected if D is 

significantly large: 

where � shows the degrees of freedom explained above, � is the significance level, and 
�2

v
(�) is the �-th upper quantile of a chi-square distribution with v degrees of freedom.

Goodness‑of‑fit test  For univariate cases, the most common non-parametric goodness-
of-fit tests are Kolmogorov–Smirnov, Anderson–Darling, and Cramer-Von-Mises. To test 
H

0
∶ C = C

0
 when data come from a static copula, a modified test can be used that com-

putes zi = C
0

(
ui|vi

)
 . Then, under H

0
 , zi ’s would be a sample of the standard uniform distri-

bution, and this can be tested using the above mentioned three methods. When the copula 
is time-varying, zi ’s is not from a single population (Hafner and Manner 2008). Manner 
and Candelon (2010) proposed a bootstrap-based method to compute the p-value for test-
ing whether H

0
∶ C = C0

t
 . More details are given in Supplementary Material.

3.6 � Return Periods and Return Levels

For univariate frequency analysis, the relation between return level, L , and its related 
return period, P , is:

If the fitted distribution is time varying, then the above relations hold for each time 
epoch, t  , separately. Hence, for given return period (level) there is a time-series of 
return levels (periods) each associated with separate time epoch. In bivariate frequency 
analysis, the return level is bivariate (i.e., L =

(
L
1
,L

2

)
 ) while the return period is still 

univariate. There are three well-known types of definition for return level: “AND”, 

D
(
M

0
,M

1

)
= 2

(
�
(
�̂
1

)
− �

(
�̂
0

))
,

H
0
is rejected if D

(
M

0
,M

1

)
> 𝜒2

𝜈
(𝛼)

L = F−1(1 − 1∕P), and P = (Pr[X ≥ L])−1 = (1 − F(L))−1.
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“OR”, and “Kendall”. In this paper, the “AND” return period is used. “AND” return 
period (level) for given return level (period) is defined as:

and in terms of copula:

where FX and FY are the univariate CDFs of X and Y  , respectively, H and C are their joint 
CDF and copula, respectively, u = FX

(
L
1

)
 and v = GY

(
L
2

)
 . Note that return level of a 

given return period is a curve in ℝ2 and it is related to the contours of bivariate distribution 
function or copula. Clearly, when using time-varying copula, for each time epoch, t , the 
above relations are valid for each time epoch, separately. More details are given in the Sup-
plementary Material.

4 � Results and Discussion

4.1 � Trend Analysis

Results for trend analysis of water level and precipitation using MK test are presented in 
the two first rows of Table 4. Trend analysis of water level as dependent variable was per-
formed using partial MK test considering precipitation in time period 1920–2019. The 
results for multivariate trend analysis are provided in the last row of Table 4. Based on the 
p-values in Table 4., the hypothesis of existence of trend is accepted for both variables. 
Therefore, application of the MK test confirms the existence of trend in the hydrologic 
data. Also, based on the results of PMK test, it is concluded that there is a trend in water 
level data based on precipitation.

4.2 � Stationary and Time‑varying Univariate Frequency Analysis

Model selection  Figure 3 shows AIC and BIC for all 120 possible models for each target 
variable. The most appropriate models were selected based on the BIC criterion (lowest 
value as indicated in Fig. 3). According to Fig. 3, for target variable water level, best fitted 
model is M

106
 which is:

This shows that the location parameter is a linear combination of log of time and maxi-
mum temperature (TMAX), the scale parameter is constant and the shape parameter is a 
linear function of log of time. Also, it is clear from the chart that models with time-depend-
ent location parameter have lower AIC/BIC. No general rules were detected for the scale 
or shape parameters. Note that TMAX is a better covariate for water level than minimum 
temperature (TMIN). Regarding precipitation, the best model is M

42
 , which is:

L(P) = {(x, y) ∶ H(x, y) = 1 − 1∕P} and P(L) =
(
Pr

[
X ≥ L

1
, Y ≥ L

2

])−1
,

L(P) =
{
(x, y) ∶ C

(
FX(x),FY (y)

)
= 1 − 1∕P

}
and P(L) = (1 − u − v + C(u, v))−1.

(10)�WL = �0 + �1 ln t + �2TMAX; �WL = �0; �WL = �0 + �1 ln t.

(11)�PR = �0 + �1 ln t; �PR = �0 + �1TMIN; �PR = �0 + �1 ln t.
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TMIN is shown to be a better covariate for precipitation. Table 5 contains parameter 
estimates of the best fitted models as well as the results of the static models. The last col-
umn of this table contains deviance statistic for comparing best fitted model to the static 
model. Time t in this table is t = year − 1919 which varies from 1 to 100 for years 1920–
2019. The standard errors (numbers in parentheses) were estimated using Monte Carlo 
method and the significance levels ( p-values) were computed through standard t-test. All 
estimated parameters are statistically significant at level 0.05 and the result of deviance 
analysis shows that time-varying models fit better than the static model. The plots of time-
varying parameters for two target variables are shown in Fig. 4.

Return periods and return levels  Return levels of various return periods for static and 
time-varying univariate distributions in year 2019 are reported in Table 6. Figure 5 shows 
the return levels associated with return periods 25, 50, 100, and 200 years as well as static 
model return levels. Also, time-varying return levels are computed and plotted with aver-
age covariate value; i.e., by substituting covariates with their 100-year averages in (10) and 
(11). This smooths the return levels and can be used as the “average time-varying return 
levels” which does not depend on yearly covariate values. According to these charts, return 
levels are almost increasing during years 1920–2019.

4.3 � Bivariate Frequency Analysis

The dependence structure between extreme sea level and precipitation was investigated 
using copulas. For this purpose, first, correlation analysis and mutual information was per-
formed using three different methods. Table  7. shows the results of the correlation tests 
(significance levels are presented in parentheses) and mutual information. Kendall and 
Spearman correlation coefficients confirm that precipitation has a significant correlation 
with extreme sea level, but Pearson correlation coefficient is not significant. The mutual 
information of extreme sea level and precipitation is about 0.31. Note that these results are 
meaningful only when the static copula models are used.

Parameter estimation and copula selection  The marginal distribution functions of vari-
ables were estimated using the selected GEV distributions and utilized as inputs for copula 
estimation. Table 8. shows the estimated parameters for both static and dynamic copulas 
of extreme sea level and precipitation. In the time-varying analysis, since the objective 
likelihood functions are not concave, several initial values were used in numerical opti-
mization. The standard errors (numbers in parentheses) were estimated using the Monte-
Carlo method. Statistical significance of parameters was examined with the t-test based 
on asymptotic standard errors. In almost all cases, the static copulas do not fit the data 
since the estimated parameters are not statistically significant at level 0.05. According to 
Table 8., parameters of all static copulas are significant at level 0.01. Time-varying Clayton 

Table 4   Mann–Kendall test 
results for univariate trend 
analysis and partial Mann–
Kendall test for conditional trend 
analysis

Test Variable Kendall tau Z statistic P-value

MK(Univariate) WL (m) 0.305 4.37 < 0.001

PREC (mm) 0.190 2.74 0.006
PMK (Bivariate) WL and PREC — 3.71 < 0.001
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and Frank copula has only one significant parameter and the parameters of time-varying 
Gumbel copula are not significant. It can be deduced that these three time-varying copu-
las do not fit the data well. On the other hand, all three parameters of time-varying nor-
mal copula are significant at level 0.01. However, since the standard errors are not exact, 
these results are not fully reliable and goodness-of-fit criteria should be examined further. 
The results of goodness-of-fit tests are presented in Table 9. According to Table 9., time-
varying normal copula has the minimum BIC value (AIC results are also minimum where 
the BIC has its lowest values). Also, based on the non-parametric goodness-of-fit tests, 
the normal copula has larger p-values, and hence, the null-hypothesis is accepted with 
more certainty. The other three copulas have at least one test with p-value lower than 0.1. 
Figure 6 shows the estimated static and time-varying parameters of the four copulas, and 
Kendall correlation coefficients ( �t ) based on static and time-varying copulas are shown in 
Fig. 7. The non-parametric dynamic estimation of �t based on 10 nearest data is estimated 
and plotted as gray solid line. As expected, the estimated �t by time-varying normal copula 
is very close to the non-parametric one in all cases and the other three copulas have Kend-
all �t near their static Kendall�.

Fig. 3   The AIC and BIC of the 120 distinct GEV models for extreme sea level (top) and precipitation (bot-
tom) (see Table 2). Circle corresponds to the best-fitted model
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4.4 � Joint Return Levels

Return levels were estimated for return periods of 25, 50, 100, and 200 years. For time-
varying models, the copulas of the years 1930, 1960, 1990, and 2019 were used. The nor-
mal time-varying copula was selected to estimate the joint return period of extreme sea 
level and precipitation which is shown in Fig. 8. The univariate return period of Hurricane 
Sandy is about 85 years based on its extreme sea level and using parameters of year 2019. 

Fig. 4   Plot of estimated time-varying parameters of GEV distribution for extreme sea level (top) and pre-
cipitation (bottom). Covariate “Time” represents ln (year − 1919)
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Univariate return periods of Hurricane Irene are about 12 and 10 years based on its extreme 
sea level and precipitation levels, respectively, when parameters of year 2019 are used. In 
fact, Sandy is a “univariate” extreme event in extreme sea level but Irene is essentially a 
“bivariate” or compound extreme event of (extreme sea level and precipitation), and hence, 
for Irene, application of the univariate return levels does not seem reasonable. Univari-
ate extreme sea level values higher than that observed for Irene (occurred in 1953, 1960, 
and 1992) and univariate precipitation values higher than that observed for Irene (occurred 
in 1966, 1972, 1977 and 2007) and do not show patterns similar to Irene. According to 
Fig. 8, return period for hurricane Sandy is more than 1000 year based on the parameters 
of year 1930, while it decreases to 109 years based on parameters of year 2019. In previ-
ous studies, the return period for hurricane Sandy was also reported to vary from less than 
100 years (Garner et al. 2017) to around 1000 years (e.g., Lin et al. 2012; Karamouz and 
Farzaneh 2020), and to more than 10,000  years (Shrestha et  al. 2014). This shows how 
different factors, e.g., selection of marginal distribution function, uni/multi-variate meth-
ods of frequency analysis, static/time-varying parameters of marginal distributions/copula 
can affect the results of frequency analysis significantly. This also reveals the importance 
of considering a flexible method for frequency analysis which can consider different pos-
sible combinations of cases in terms of static/time-varying parameters for both marginal 
distributions and also the copula function itself. Table 10. shows return periods for some 
extreme events based on the copula of different years, 1930, 1960, 1990, and 2019, as well 
as with the static copula. It can be easily seen that during time, the predicted return period 
for such extreme events is in an increasing order. Among these cases, the event of year 
2012 is a univariate extreme event of extreme sea level, the events of years 1960 and 2011 
are two bivariate extreme events and the events of years 1966, 1972, 1977, and 2007 are 
univariate extreme events of precipitation. Another important result based on Fig. 8d is that 
extreme events such as Sandy and Irene could be expected to occur more frequently as a 
result of factors such as climate variability. It has been recommended by some researchers 
that risk assessment methods should consider natural hazards, e.g., flood at coastal regions 
as compound events to take different drivers and/or hazards into account (e.g., Zscheischler 
et al. 2018) and/or nonstationarity in data should be reflected in frequency analysis meth-
ods (e.g., Pirani and Najafi 2020).

Table 6   Return levels of extreme 
sea level and precipitation at 
given return periods based on (a) 
static GEV distribution and (b) 
time-varying GEV distribution 
with parameters of year 2019

Return period 
(year)

WL (m) PREC (mm)

Static TV Static TV

2 3.22 3.34 73.2 81.2
5 3.46 3.61 98.4 113.5
10 3.63 3.88 116.0 138.2
25 3.87 4.33 139.4 173.7
50 4.07 4.81 157.7 203.6
100 4.27 5.45 176.5 236.6
200 4.48 6.28 196.1 273.3
500 4.79 7.81 223.2 327.9
700 4.91 8.52 233.5 350.0
1000 5.04 9.40 244.6 374.7
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Fig. 5   Univariate return levels of extreme sea level (top) and precipitation (bottom) associated with return 
periods of 25, 50, 100, and 200  years. Solid black line: data, solid colored: time-varying return level, 
dashed: static return period, dotted: average time-varying return period, solid horizontal blue line: maxi-
mum value of the data

Table 7   Correlation coefficients of extreme sea level and precipitation (* and **: significant at levels 0.05 
and 0.01, respectively)

Method Kendall Spearman Pearson Mutual information

Value 0.186** 0.278** 0.130 0.31
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Table 8   Estimated parameters for static and dynamic copulas of extreme sea level and other climate vari-
ables. Estimated standard errors are in parentheses. (* and **: significant at levels 0.05 and 0.01, respec-
tively)

Copula Static copula Time-varying copula

� � � �

Clayton 0.342** (0.141) 0.851 (2.118) 0.837** (0.245) -1.126 (1.753)
Frank 1.229** (0.4163) -0.471 (1.892) 0.958** (0.077) 0.276 (0.699)
Gumbel 1.138** (0.0453) -1.045 (1.001) -0.141 (0.904) -2.968 (3.943)
Normal 0.25** (0.0884) 0.040** (0.019) -2.837** (1.296) 1.645** (0.514)

Table 9   Goodness-of-fit criteria 
of time-varying copulas: AIC, 
BIC, and bootstrap-based 
p-values of modified non-
parametric tests for V time-
varying copula model

Copula Criteria

AIC BIC KS-test AD-test CM-test

Clayton -2.53 5.29 0.034 0.071 0.126
Frank 1.60 9.41 0.035 0.070 0.043
Gumbel -0.76 7.06 0.130 0.082 0.160
Normal -8.34 -0.53 0.258 0.252 0.410

Fig. 6   Estimated time-varying 
parameters of four copulas. Top 
to bottom: Clayton, Frank, Gum-
bel, and normal copula

8   Page 18 of 27



1 3

4.5 � Discussion

Compound flooding can arise from three main sources: 1) extreme sea levels (comprised of 
storm surge, high astronomical tides, and/or waves (coastal flood) and heavy precipitation); 
2) river discharge (fluvial flood) and extreme sea levels; and 3) direct surface run-off from 
rainfall (pluvial flood) and extreme sea levels (Lai et al. 2021; Hendry et al. 2019). Com-
pound flooding is usually induced by the concurrence of extreme sea levels and heavy pre-
cipitation, with the former involving oceanic processes and the latter involving hydrologi-
cal processes (Wahl et al. 2015; Zhang et al. 2020). One of the objectives of this paper was 
to study combined extreme events that lead to compound floods and the need to review the 
risk management studies of water infrastructure in the region. As the precipitation of Hur-
ricane Sandy was not heavy enough, it cannot be categorized as a compound flood and the 
nonstationary univariate frequency analysis can be a good choice for such events. For Hur-
ricane Sandy (exceptional value) the return period under stationary univariate frequency 
analysis is more than 1000 years while under nonstationary univariate frequency analysis, 
the return period would reduce to less than 85  years. Using nonstationary bivariate fre-
quency analysis for Hurricane Sandy and using normal copula as the most optimal copula 
function with parameters for the year 2019, a return period of 109 years was calculated. It 
should be noted that the amount of rainfall on the day of Hurricane Sandy was less than the 
average rainfall (78 mm). In a similar study, Lin et al. (2016) found that due to the effect of 
sea-level rise, the return period of flood caused by Hurricane Sandy decreased by approxi-
mately 3 times from year 1800 to 2000, and it is estimated to further decrease by approxi-
mately 5 times from 2000 to 2100 under a moderate-emissions pathway. This means that 

Fig. 7   Estimated time-varying Kendall �t for time-varying and static copulas. Blue: Clayton, red: Frank, 
green: Gumbel, orange: normal. Solid: time-varying, dashed: static. Dynamic non-parametric estimation of 
Kendalls � with bandwidth = 10 years is plotted with gray solid line
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Fig. 8   Joint return levels of extreme sea level and precipitation estimated based on static and time-varying 
normal copula. Red solid: time-varying copula with time-varying marginal, blue solid: time-varying copula 
with static marginal, dashed blue line: static copula. Some extreme events (including Irene and Sandy hur-
ricanes) are marked with plus sign and their time-varying return periods are written next to their point. For 
more details, see Table 10. Base year of time-varying copula: (a) 1930, (b) 1960, (c) 1990, and (d) 2019

Table 10   Return periods of some extreme events based on static and time-varying copula of years 1930, 
1960, 1990, and 2019

Year Precipitation Water level Static copula Copula 1930 Copula 1960 Copula 1990 Copula 2019

1960 90.4 4.05 97  > 1000 56 51 38
1966 140.7 3.48 72  > 1000 141 68 35
1972 142.2 3.35 53  > 1000 125 48 24
1977 188.0 3.36 260  > 1000  > 1000 244 75
2007 192.3 3.34 288  > 1000  > 1000 265 77
2011 147.6 3.90 329  > 1000 567 283 136
2012 62.2 5.28  > 1000  > 1000 560 156 109
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the return period of a storm with the same magnitude as Hurricane Sandy can be decreased 
from 300 to 20 years in 2100. Hurricane Irene, the first major Atlantic hurricane in 2011, 
made its landfall along the US East Coast at Outer Bank, North Carolina (NC), on Aug 
27, 2011. The different flood origins (ocean and inland) made this event an ideal test for 
compound-flood modeling (Ye et al. 2019). Regarding Hurricane Irene (maximum water 
level rise 3.89 m), the increase in water level was higher than the average maximum water 
level rise, i.e., 3.28 m, but its value is far less than Hurricane Sandy. So, Hurricane Irene 
is not classified as an exceptional storm. However, its occurrence with a heavy rainfall of 
147 mm was much higher than the average rainfall of 78 mm, which leads this hurricane to 
be classified as a compound flood. For Hurricane Irene, the stationary univariate frequency 
analysis shows a return period of 25 years exactly equal to the return period of water level, 
but the nonstationary univariate frequency analysis shows a return period of 12 years. The 
point to be noted here is that the composite flood resulting from Hurricane Irene cannot 
be traditionally estimated by the univariate frequency analysis method because it is classi-
fied as a coincidence (compound) event (Fig. 8). Finally, using nonstationary bivariate fre-
quency analysis for hurricane Irene using normal copula with time-dependent theta param-
eter equal to its value in year 2019 resulted in a return period of 136 years with category of 
joint events with extreme sea level and rainfall (compound flood). Based on Fig. 5 (Return 
levels for WL | Time, TMAX), we can conclude that as we approach the year 2019, water 
level increases for an identical return period. One reason for this can be related to the effect 
of sea-level rise on storm tide in the New York area. In Fig. 5, precipitation as main vari-
able has a significant relationship with the minimum temperature in nonstationary condi-
tions, which corresponds to the results of Singh et al. (2021).

The findings presented here are consistent with previous studies conducted in the USA 
(Wahl et al. 2015) and other regions, such as China (Fang et al. 2020), Europe (Ganguli 
and Merz 2019), and Canada (Wang 2020), which showed that significant dependence 
exists between various flood hazard drivers and necessitates the importance of considering 
all dependent flood drivers in design of drainage systems and other flood mitigation infra-
structure. This is of particular importance for New York; our results are in compliance with 
other studies (Moftakhari et al. 2017; Bevacqua et al. 2019) and indicate that the frequency 
of compound events is increasing in the coastal regions of New York under climate change, 
in particular sea-level rise. In this study, we considered two drivers of flooding, i.e., pre-
cipitation and extreme sea level with minimum and maximum temperature as covariates. 
The role of other flooding drivers needs to be further explored, as well as compound effects 
under nonstationary conditions, including multivariate frequency analysis, assessing the 
relationship to climate indices, and the implications for flood risk management. The latter 
is particularly important, given the low capacity of drainage systems in many New York 
urban areas.

5 � Conclusions

Frequency analysis for several hydroclimatic variables including extreme sea level and pre-
cipitation as the main variables and maximum and minimum temperature as covariate vari-
ables was conducted based on static and time-varying parameter distributions. The coastal 
region of Manhattan in New York City was selected as the case study. Required data for the 
analysis were obtained from the Central Park and Battery Park stations.
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For univariate and multivariate trend analysis, the Mann–Kendall and Partial 
Mann–Kendall tests were used, respectively. The joint probability occurrence of marginal 
extreme sea level and rainfall with minimum and maximum temperature covariate vari-
ables was then assessed using several copula functions. Considering the parameters of mar-
ginal distribution and copulas to be constant or varying in time, different model combi-
nations were tested in terms of variables and parameter type (constant vs time-varying) 
and joint probability occurrence of marginal extreme sea level and rainfall were calculated 
using time, minimum and maximum temperature as potential covariates for different return 
periods. Results of trend analysis indicated an increase in long term average of precipita-
tion and extreme sea level. This could be attributed to global warming and the impacts of 
climate change.

The results also showed that the Generalized Extreme Value (GEV) is the most appro-
priate distribution to fit to the hydrologic variables of the study region. In general, incor-
porating climate variables in the joint frequency analysis of extreme sea level resulted in 
decrease in extreme sea level compared to values from the univariate analysis for the same 
return periods. Considering bivariate frequency analysis when designing hydraulic struc-
tures reduces the risk of compound flooding. The results of joint probability distribution 
analysis showed mutual influence of rainfall variable and extreme sea level. This highlights 
the necessity of considering climate variables such as rainfall and temperature in coastal 
flood frequency studies when analyzing extreme sea level data. As time-series used in this 
analysis includes 100 years of data, it is robust enough to compare and validate the results 
of this study with empirical frequency analysis.

For assessing the goodness-of-fit of the developed models, log-likelihood statistics 
such as AIC and BIC were used. Also, in addition to Anderson–Darling (AD), Kolmogo-
rov–Smirnov (KS), and Cramer-Von Mises (CM) tests on transformed data, by Rosenblatt 
probability integral transform, a parametric bootstrap method was proposed for approxi-
mating p-values to take into account the uncertainty of the dependence process. In hydro-
logical risk analysis, there are different design models based on the return periods, so esti-
mating the bivariate return period before building hydraulic or offshore structures could 
reduce the cost of flood damage, constructing coastal flood defense structures based on 
bivariate frequency analysis would bring more advantages in favor of possible alternatives.

Based on the results of this study, it is  suggested that multivariate frequency analysis 
models need to be flexible to consider joint variables of all possible types in terms of non-
stationarity, e.g., for bivariate analysis: stationary-stationary, nonstationary-stationary, and 
nonstationary-nonstationary data pairs should be examined. For nonstationary variables, 
using static copulas could lead to false results. Furthermore, taking into account a range of 
copula families and selecting the right copula family with a flexible copula parameter (time 
resilient) very important.
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