
International Journal of Advances in Intelligent Informatics ISSN 2442-6571 

Vol. 9, No. 3, November 2023, pp. 524-536  524 

       https://doi.org/10.26555/ijain.v9i3.1432      http://ijain.org         ijain@uad.ac.id  

Covid-19 detection using modified xception transfer  

learning approach from computed tomography images 

Kenan Morani 

a,1,*

, Esra Kaya Ayana 

b,2

, Devrim Unay 
a,3

  

a Electrical and Electronics Engineering Department, Izmir Democracy University, Izmir, Turkey 
b Control and Automation Department, Yildiz Technical University, Istanbul, Turkey 
1 kenan.morani@gmail.com; 2 esrakaya@yildiz.edu.tr; 3 devrim.unay@idu.edu.tr 
* corresponding author 

 

1. Introduction 
Within the healthcare realm, the emergence of COVID-19 has been designated as a novel pandemic.  

The COVID-19 pandemic demands swift and accurate diagnostic methods, with Computed 

Tomography (CT) imaging emerging as a pivotal tool. CT scan images offer superior detail, providing a 

comprehensive 360-degree view of the body's structures. Consequently, CT images have also been central 

in research efforts to detect and diagnose COVID-19 [1]–[4]. CT offers rapid imaging, supports serial 

monitoring, detect complications, enables high-risk population screening, contributes to research, and 

facilitates a needed quick and accurate global response [5], [6].  

The Polymerase Chain Reaction (PCR) stands as the primary diagnostic test for COVID-19; 

however, it is marred by drawbacks, including supply, machinery, and training expenses. Additionally, 

accuracy issues with PCR results have been observed [7]. Given these limitations, the exploration of 
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 The significance of efficient and accurate diagnosis amidst the unique 

challenges posed by the COVID-19 pandemic underscores the urgency for 

innovative approaches. In response to these challenges, we propose a 

transfer learning-based approach using a recently annotated Computed 

Tomography (CT) image database. While many approaches propose an 

intensive data preprocessing and/or complex model architecture, our 

method focuses on offering an efficient solution with minimal manual 

engineering. Specifically, we investigate the suitability of a modified 

Xception model for COVID-19 detection. The method involves adapting a 

pre-trained Xception model, incorporating both the architecture and pre-

trained weights from ImageNet. The output of the model was designed to 

make the final diagnosis decisions. The training utilized 128 batch sizes and 

224x224 input image dimensions, downsized from standard 512x512. No 

further da processing was performed on the input data. Evaluation is 

conducted on the 'COV19-CT-DB' CT image dataset, containing labeled 

COVID-19 and non-COVID-19 cases. Results reveal the method's 

superiority in accuracy, precision, recall, and macro F1 score on the 

validation subset, outperforming the VGG-16 transfer model and thus 

offering enhanced precision with fewer parameters. Furthermore,  

compared to alternative methods for the COV19-CT-DB dataset, our 

approach exceeds the baseline approach and other alternatives on the same 

dataset. Finally, the adaptability of the modified Xception transfer learning-

based model to the unique features of the COV19-CT-DB dataset 

showcases its potential as a robust tool for enhanced COVID-19 diagnosis 

from CT images.  
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alternative testing methods has become imperative. Various imaging techniques are employed in 

COVID-19 diagnosis, including Computed Tomography (CT) and X-ray. Additionally, transfer learning 

model architectures play a crucial role in the field of medicine [8]. 

Transfer learning streamlines manual feature engineering, a traditionally labor-intensive process in 

model development. Instead of starting from scratch, pre-trained models, such as VGG, ResNet, or 

BERT, are employed. These models come with knowledge acquired from related tasks, allowing for the 

extraction of lower-level data characteristics like edges and textures. This strategic approach significantly 

reduces the time and effort required for feature engineering while enhancing efficiency and accuracy in 

COVID-19 detection from CT images. The choice to incorporate pre-trained weights, particularly from 

datasets like ImageNet, is rooted in the rich knowledge and robust feature representations they offer. 

ImageNet's extensive and diverse image collection enables models to comprehend a broad spectrum of 

visual patterns. By initializing a new model with these pre-trained weights, it inherits an understanding, 

expediting the learning process. This means the model quickly adapts to the nuances of CT images, 

capturing COVID-19-specific patterns with greater accuracy. This not only boosts overall performance 

but also equips the model to address the unique challenges posed by the new dataset, ultimately 

enhancing its real-world utility in COVID-19 diagnosis. 

A different research endeavor utilized the publicly available dataset known as the "COVID-19 

Radiology Dataset." This study aimed to assess the capabilities of various pre-trained deep-learning 

networks in effectively capturing the diverse manifestations of COVID-19 [9]. The comparative analysis 

revealed that VGG16, MobileNet, DenseNet169, and InceptionV3 outperformed other methods in 

accurately identifying COVID-19-related manifestations in chest X-ray (CXR) images, showcasing both 

high sensitivity and accuracy. Nevertheless, VGG16 stood out with better precision. In [10], a baseline 

model was introduced for the identification of COVID-19 within an expanded set of CT images called 

the "COV19-CT-DB" database. This baseline approach utilizes a deep learning technique, specifically a 

combination of Convolutional Neural Network and Recurrent Neural Network (CNN-RNN network). 

The model's effectiveness was primarily assessed in terms of the macro F1 score, using both a validation 

set and a test set from their dataset, which they referred to as the COV-19CT-DB dataset [11]–[15]. 

Leveraging the updated version of the COV19-CT-DB dataset, Robert Turnbull carried out another 

study, as documented in [16]. In this research, a three-dimensional convolutional neural network, 

referred to as "Cov3d" in the paper, was introduced to detect the presence of COVID-19. This model 

was constructed upon the 3D ResNet-18 architecture available in the Torchvision library.  What’s more, 

during training, a customized loss function was employed. The outcomes demonstrate best performance 

on the given dataset. However, this performance necessitates complex model architecture and data 

processing. 

In a similar study in [17] on the same dataset, a different strategy was applied, involving a two-stage 

COVID-19 classification process utilizing BERT features. In the initial stage of BERT feature extraction, 

a 3D-CNN was deployed to extract internal feature maps from the CNN. Subsequently, a later BERT 

temporal pooling technique was employed to consolidate the temporal information present within these 

feature maps, ultimately followed by a classification layer. It's worth noting that the performance of this 

approach surpassed the performance of the baseline method, yet it possess complexity in model 

architecture and in data processing.  

Regarding methods involving transfer learning, a prior study conducted on the initial release of the 

COV19-CT-DB dataset in [18]. This study explored and contrasted various transfer learning techniques 

for COVID-19 classification. The application of "AutoML" techniques, which demand fewer resources, 

proved to be effective in achieving accurate diagnoses of COVID-19 from 3D volumetric images. Notably, 

among various methods evaluated, the utilization of the ResNest14 architecture yielded the highest 

performance in terms of both accuracy and F1-score. The method , although utilizes a pretrain 

architecture with little processing, still maintains relatively high number of training parameters due to 

the chosen model architecture.  
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Numerous approaches outlined in the literature have offered solutions for COVID-19 diagnosis and 

detection, with transfer learning being a central component in many of these solutions. However, these 

methods will usually be complex, utilizing image processing techniques or heavy models with a lot of 

trainable parameters. This paper introduces a transfer learning approach based on Xception to harness 

the capabilities of this neural network architecture while maintaining simplicity and speed in the 

methodology. Minimal image processing was utilized, and fewer number of parameters were used. With 

that we put forward a method that gives an efficient performance, while also offering an easily 

understandable algorithm. Outlined below are the primary contributions of this paper: 

• Introduction of an adapted transfer learning model for COVID-19 detection with Xception model 

as a baseline.  

• Conduction of a performance assessment, comparing our model against other transfer learning 

approaches on a both validation and a test set of unseen images.  

• Demonstration of the efficacy of our proposed solution in enabling data-driven decisions, achieving 

comparative performance, which exceeds the baseline and other approaches on challenging and big 

CT image database. 

2. Method 
In our methodology, the adopted/modified architecture to the transfer learning model involves a 

global average pooling, a dense layer incorporating 128 filters with Rectified Linear Units (ReLU) 

activation, followed by batch normalization, a 0.2 dropout, and culminating in a dense layer using a 

sigmoid activation function. Fig. 1 Shows the model architecture output. 

The final layer's output represents the class probability of being a non-COVID-case slice. This class 

probability is then compared against a predefined threshold, determining the slice's classification as 

COVID or non-COVID. These individual slice-level determinations collectively lead to patient-level 

diagnoses, as explained in the latter sections of the paper. Different class probability thresholds were 

tried and compared for the best performance. The results of using different class probability thresholds 

were compared both on the validation set and on the test set in the results section. Several class 

probability thresholds were explored to optimize performance, and their effects were evaluated on both 

validation and test sets. The model's architectural composition results in a total of 21,124,393 parameters, 

with 262,657 being trainable. 

In our training process, the transfer-learning models were employed with a 3-channeled input, 

harnessing pre-trained weights from the ImageNet model. Notably, we rendered the model's weights 

non-trainable during our work's training phase. To enhance the training dynamics, callback mechanisms 

were implemented. Specifically, the "ReduceLROnPlateau" callback was utilized [19]–[22]. The 

"ReduceLROnPlateau" mechanism is a dynamic learning rate adjustment strategy commonly used 

during the training of deep learning models. Its purpose is to enhance the convergence process by 

adapting the learning rate in response to the observed performance of the model during training. In our 

case, the "ReduceLROnPlateau" callback was particularly useful due to its relevance in optimizing the 

performance of our COVID-19 detection model. This mechanism operates by continuously monitoring 

a specified metric, which in our implementation was the validation loss. If the validation loss does not 

demonstrate improvement over a predefined number of training epochs (in this case, a patient of 2 

epochs), the learning rate is adjusted downward by a certain factor (often referred to as the "factor" 

parameter). This mechanism aligns well with our objective of training a COVID-19 detection model. 

The complex and multifaceted nature of COVID-19-related patterns in CT images could potentially 

lead to slower convergence or plateaus in the validation loss. By using the "ReduceLROnPlateau" 

callback, we adaptively addressed this challenge. When the validation loss stagnates, the learning rate 

reduction acts as a corrective step, allowing the model to navigate through regions of loss landscapes 

where progress may be hindered. 
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Fig. 1.  Adapted Xception model architecture 

For model compilation, we employed the Keras platform, utilizing the "Adam" optimizer initialized 

with a learning rate of 0.001. The loss function was set as "binary cross entropy." "Adam" stands out as 

an adaptive learning rate optimization algorithm that dynamically adjusts learning rates for each 

parameter during training. This adaptability allows the model to converge more efficiently and effectively 

navigate complex loss landscapes, potentially accelerating training and improving convergence speed. 

Furthermore, the selection of "binary cross entropy" as the loss function aligns well with the nature of 

our COVID-19 detection task. Binary cross entropy is a suitable choice for binary classification tasks like 

ours, where we distinguish between COVID-19 and non-COVID-19 cases. It quantifies the dissimilarity 

between predicted and actual class labels, facilitating the model's efforts to accurately distinguish between 

the two classes. 

Our model was trained across 13 epochs, a determination that emerged from rigorous 

experimentation. During these trials, it was observed that further increasing the epoch count resulted in 

only marginal improvements in validation loss over a prolonged timeframe. Training the CNN model, 

with a batch size of 128, across the 13 epochs necessitated approximately 7 days of computation. This 

was facilitated on a workstation operating a GNU/Linux system, equipped with 64GiB of system memory 

and powered by an Intel(R) Xeon(R) W-2223 CPU @ 3.60GHz processor. These specifications offer 

insights into the computational resources and time investment involved in achieving our model's refined 

performance for COVID-19 detection. The input images, resized to 224x224 dimensions, are converted 

from the original 512x512 grayscale images, with no further manipulation applied to the initial slices. 

2.1. Xception Based Transfer Leanirng Model 
The proposed transfer learning approach is rooted in a modified Xception model, renowned for its 

36 convolutional layers that establish the foundation for feature extraction within the network. The core 

of this model is comprised of the Xception architecture, followed by an adapted output structure.  

The selection of the Xception architecture stemmed from its compelling attributes, including its 

adaptability to complex image datasets and efficient computation. The model's depth-wise separable 

convolutions and shortcuts between convolution blocks contribute to its lightweight yet powerful 
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nature, making it particularly suitable for our COVID-19 detection task. Furthermore, the decision to 

borrow pre-trained weights from the ImageNet dataset is underpinned by the principle of transfer 

learning, which leverages knowledge learned from one task to improve performance on another. 

ImageNet, with its extensive and diverse collection of images spanning various categories, furnishes the 

Xception model with foundational features that generalize well across different visual recognition tasks. 

This approach significantly accelerates the learning process during fine-tuning of our COVID-19 CT 

image dataset. By initializing our model with these pre-trained weights, we harness a rich set of learned 

features, saving substantial time and resources that would otherwise be expended on training from 

scratch. The transfer of these features to our dataset, coupled with the model's intrinsic architecture, 

enhances its capability to discern intricate patterns in COVID-19-related lung scans. This, in turn, 

augments the model's diagnostic performance and positions it favorably for accurate and efficient 

COVID-19 detection  [23]–[25]. 

     The Xception classification accuracy using ImageNet data surpasses that of alternative transfer 

learning options. Comparative data, as shown in Table 1, further corroborates the efficacy of the 

Xception model in terms of parameter count and accuracy, solidified by its unique convolutional 

architecture and depth-wise separable convolutions. 

Table 1.  Xception vs. other popular pre-trained models 

Model No. of parameters Top-1/Top-5 accuracy 
Xception               22.85 million 0.790 / 0.945 

Inception 23.62 million 0.782 / 0.941 

VGG  128 million 0.715 / 0.901 

ResNet                        23 million 0.770 / 0.933 

 

By going through the comparisons as presented in the table above, it can be said that the Xception 

model outperforms its peers not only in terms of having fewer parameters to train but also in terms of 

classification accuracy. This justifies our choice of modified Xception transfer learning for COVID-19 

detection in this paper. 

To further evaluate our Xception based transfer learning model results, we compare it to a VGG16 

based model with the same settings. With that in mind, VGG-16 pre-trained architecture and weights 

were borrowed. To make the final medical diagnosis, an output architecture similar to the one used for 

the modified Xception approach was implemented. 

To evaluate and benchmark our selected transfer learning model against a good alternative ImageNet-

pretrained model on the COV19-CT-DB dataset, we incorporated the VGG16 model architecture. 

Notably, the VGG16 model's ImageNet-trained weights carry a substantial size, totaling 528 MB. This 

considerable size is often indicative of the model's complexity, which, in turn, tends to correspond with 

robust performance. 

The distinctive character of the VGG16 model architecture predominantly emanates from a deliberate 

design choice. Instead of proliferating hyperparameters, the emphasis was placed on the utilization of 

convolutional layers featuring 3x3 filters, each operating with a stride of 1 and consistently employing 

the ‘same’ padding. Additionally, a recurring architectural element was the utilization of max-pooling 

layers equipped with 2x2 filters and a stride of 2. These architectural decisions contribute to the unique 

characteristics of the VGG16 model and underlie its efficacy in various computer vision tasks [26], [27]. 

2.2. The Dataset 
The dataset employed in this study is an expansion of the COV19-CT-DB. This dataset plays a 

pivotal role in our study, offering a comprehensive collection of CT scans that are instrumental for 

COVID-19 detection. This dataset comprises a substantial number of CT scans, consisting of 1,650 cases 

of COVID-19 and 6,100 non-COVID-19 instances. This balanced distribution allows for a robust 

evaluation of your proposed method's performance across different classes. 
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What sets the 'COV19-CT-DB' dataset apart is not just its size, but also its diversity in terms of both 

the number of cases and the variability within COVID-19 manifestations. The dataset's annotated CT 

scans have been meticulously labeled by a panel of experts, each with over 20 years of experience. This 

ensures the accuracy and reliability of the labels, which is crucial for building and evaluating machine 

learning models. The dataset's diversity, which spans a range of COVID-19 and non-COVID-19 cases, 

presents unique challenges and opportunities. COVID-19 is known to exhibit a spectrum of 

manifestations, from mild to severe, and capturing this variability is vital for the development of an 

effective detection model. The 'COV19-CT-DB' dataset's inclusion of cases with varying levels of lung 

involvement and diverse clinical presentations mirrors the real-world complexity of COVID-19 cases. 

Given its richly labeled nature, extensive size, and diversity, the 'COV19-CT-DB' dataset provides an 

ideal foundation for evaluating the efficacy of your proposed method. Its suitability stems from its ability 

to rigorously assess your model's performance on different types of cases, ensuring that the method is 

not only accurate but also robust in identifying COVID-19 instances within varying clinical contexts. 

Each CT scan comprises a variable number of slices, ranging from 50 to 700. Access to this dataset is 

made possible via the "ECCV 2022: 2nd COV19D Competition". The distribution of COVID-19 and 

non-COVID-19 cases for our study is shown in Table 2. 

Table 2.  Distribution of cases in the COV19-CT Database 

Annotation Training Data Validation Data Test Data 
COVID-19 CT cases 882 215 5281 (Labels are not provided 

by the organizers) 
Non-COVID CT cases 1110 

269 used out of the original 

289 

2.3.  Patient Level Performance 
At the patient level, we systematically experimented with and compared various class probability 

thresholds, leveraging class prediction probabilities to optimize diagnostic accuracy. These thresholds 

were established based on the probability of class 1 (Non-COVID) prediction. In essence, if the model's 

output probability for class 1 surpassed the designated threshold, the slice was classified as Non-COVID; 

otherwise, it was categorized as COVID.  In the scenario where the count of COVID-labeled slices 

equaled the count of non-COVID slices within any CT volume, the ultimate patient-level determination 

was that the patient was non-COVID. This slice-level decision-making process can be succinctly 

expressed as follows:         

Following the acquisition of slice-level predictions, a patient's diagnosis hinges on the presence or 

absence of COVID-19-labeled slices within their CT data. Specifically, if the patient's CT dataset 

comprises a greater number of predicted non-COVID slices compared to predicted COVID slices, the 

patient is diagnosed as non-COVID, applying a majority voting method. Conversely, if the count of 

predicted COVID slices surpasses that of non-COVID slices, the patient is diagnosed with COVID. 

The clinical significance of the patient-level diagnostic approach we've outlined can be elucidated as 

follows: Imagine a scenario where a patient exhibits lung damage attributable to COVID-19 in 

approximately 40% of their CT slices. Consequently, our neural network classifies approximately 40% 

of these slices as COVID and the remainder as non-COVID. As a result, the ultimate diagnosis aligns 

with the majority voting principle, and the patient is classified as non-COVID. This approach reflects 

the real-world clinical interpretation when considering the overall health status of the patient. 

Although even a minor anomaly detected in a single slice may be associated with a disease, our 

speculation within the context of COVID is that a substantial degree of involvement is typically required 

to inform a diagnostic decision. It's worth noting that our deep learning model exhibits a remarkable 

level of sensitivity, capable of discerning even the slightest abnormalities in the slices. 

Expanding on our earlier observations, it's important to highlight that we explored an alternative 

approach, which we referred to as the "all-or-nothing approach." In this scenario, a COVID diagnosis is 

triggered if even a single slice is predicted as COVID-19. However, this approach yielded less accurate 

results, as detailed in the results section, corroborating the insights we discussed previously. 
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2.4. Performance Evaluation 
The proposed model was evaluated via the COV19-CT-DB database using accuracy, macro F1 score, 

and confidence interval. 

The accuracy is calculated as in (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃+ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃+ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃

 (1) 

Where positive and negative cases refer to COVID and non-COVID cases. The macro F1 score was 

calculated after averaging precision and recall matrices as in (2) 

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐹𝐹1 =  2 × 𝑁𝑁𝑃𝑃𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 × 𝑁𝑁𝑃𝑃𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇 𝑇𝑇𝑇𝑇𝑝𝑝𝑁𝑁𝐹𝐹𝐹𝐹
𝑁𝑁𝑃𝑃𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇 𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 + 𝑁𝑁𝑃𝑃𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇 𝑇𝑇𝑇𝑇𝑝𝑝𝑁𝑁𝐹𝐹𝐹𝐹

   (2) 

Furthermore, to report the confidence intervals of the results obtained, the Binomial proportion 

confidence intervals for the macro 𝐹𝐹1 score are used. The confidence intervals were used to check the 

range variance of the reported results. The residuals of the interval can be calculated as in (3) [28], [29]. 

𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅 𝑀𝑀𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼 = 𝑧𝑧 ×  �𝑚𝑚𝑁𝑁𝑝𝑝𝑇𝑇𝑃𝑃 𝐹𝐹1 ×(1−𝑚𝑚𝑁𝑁𝑝𝑝𝑇𝑇𝑃𝑃 𝐹𝐹1)
𝑝𝑝

   (3) 

where 𝑧𝑧 is the number of standard deviations from the Gaussian distribution and n is the number of 

samples. 

3. Results and Discussion 
The results of our methodology are discussed on the validation set and unseen set of images, test set. 

3.1. Results on the Validation set 
In all three approaches, we tackled a binary classification task focused on the detection of COVID-19 

from CT images. Our findings indicate that the modified Xception model achieved an average validation 

accuracy of 0.747. Fig. 2 illustrates the progression of training and validation accuracy, while Fig. 3 

visualizes the development of training and test precision and recall metrics for this model. Table 3 further 

shows the training performance for different metrics. 

 

Fig. 2.  Evolution of training and validation accuracy 

 

Fig. 3.  Evolution of validation recall and precision 

Table 3.  Performance results of the training 

Performance metric Score 
Average training accuracy 0.973 

Average recall 0.788 

Average precision 0.776 

Macro F1 score 0.782 
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To calculate the confidence interval for the resulting macro 𝐹𝐹1 score, equation 3 was used. In the 

equation, 𝑧𝑧 is taken as 𝑧𝑧 = 1.96 for a significance level of 95%. By that we can obtain the confidence 

interval for the macro 𝐹𝐹1 score, keeping in mind that The number of samples (slices) in the validation 

set is 106,378, to be approximately 0.78. With that, the macro 𝐹𝐹1 score can be said to be 0.78232 ± 

0.00024. 

     Using the above-mentioned method, predictions were made through different class probability 

thresholds at the patient level using the majority voting method for each CT scan. Fig. 4 shows 

performance results on the validation set for four different thresholds. The comparison was made in 

terms of the validation accuracy and the macro 𝐹𝐹1 score. 

 

Fig. 4.  Model performance against different class probability thresholds on the validation set 

The findings indicate that, among the three suggested class probability thresholds, the 0.5 threshold 

level gives the best performance. This holds when considering both validation accuracy and validation 

macro F1 score. Consequently, our proposed approach outperforms the baseline model approach, as 

reported in [10], in terms of macro 𝐹𝐹1 score, achieving a score of 0.777 on the validation set. 

Further evaluate the Xception model by comparing it to other transfer learning methods, the VGG16 

based method was used as described in the ‘Material and Method’ section. The results of the comparison 

on the validation set can be seen in Table 4. The comparison is in terms of macro 𝐹𝐹1 score for different 

class probability thresholds. 

Table 4.  Macro 𝐹𝐹1 score performance comparison (Xception vs. VGG16) on the validation set 

Proposed class probability threshold VGG16 macro 𝑭𝑭𝑭𝑭 score Xception macro 𝑭𝑭𝑭𝑭 score 
0.5 0.756 0.806 

0.9 0.406 0.671 

0.15 0.505 0.722 

 

The results establish the better performance utilized by using the modified Xception model over 

VGG16, notably evident in terms of the macro F1 score. This distinction is further emphasized when 

considering class probability thresholds of both 0.5 and 0.15. All in all, the results on the validation set 

of macro F1 score validate our choice of the transfer learning model as well as it is efficiency in COVID-

19 Detection on the given dataset. 

The proposed Xception model misclassifies, especially for the topmost and bottommost slices within 

the CT volume. It's worth noting that these extreme slices correspond to anatomical regions where 

COVID-19 involvement is typically absent. Consequently, these slices are considered less representative 

of the disease diagnosis process. For a visual understanding, Fig. 5 showcases exemplary slices accurately 

classified by our proposed model.  
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Fig. 5.  Examples of correctly classified slices from COVID (right) and Non-COVID (left) cases 

Fig. 6 illustrates exemplary slices that were incorrectly classified, prominently featuring the 

aforementioned extreme slices. It's important to note that these slices were sampled from the validation 

partition. 

 

Fig. 6.  Examples of misclassified slices from COVID (right) and Non-COVID (left) cases 

To delve deeper into the comparative analysis, we extended our evaluation to the test partition, which 

comprised previously unseen images. In the forthcoming sections, we present a comprehensive 

examination of these models, offering detailed insights into their performance. 

3.2. Results of the Test Partition 
To further validate our findings, we subjected the methodology to evaluation on the test partition of 

the COV19-CT-DB database. Within this assessment, we employed various class probability thresholds 

as part of the methodology. Our proposed approach demonstrated high macro F1 scores when utilizing 

class probability thresholds of 0.15 and 0.5, respectively.  In addition, we conducted a comparative 

analysis by pitting our methodology against the VGG16 model on the test partition. The results, 

summarized in Table 5, consistently show a better performance using the pre-trained Xception model 
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architecture used in our paper, as evidenced by macro F1 scores. These findings reaffirm the robust 

performance of our proposed approach on previously unseen data. 

Table 5.  Macro F1 score performance comparison (Xception vs. VGG16) on the test set 

Proposed class probability threshold VGG16 macro F1 score Xception macro F1 score 
0.5 0.789  0.809  

0.15 0.613  0.818  

 

Further, the F1 score for COVID and the F1 score for non-COVID for our proposed Xception 

methodology came 0.666 and 0.952 at 0.5 threshold and 0.968 and 0.667 at 0.15 threshold, respectively. 

Table 6 show the average macro F1 score results from the comparison of validation and test partitions. 

Table 6.  Average macro F1 score results from the comparison of validation and test partitions 

The Method Validation set Test set 
Cov3d [16] 0.947 0.878 

BERT method [17] 0.916 0.808 

Base Line [10] 0.77 0.67 

Proposed method (best performance) 0.806 0.818 

 

The results on the test set of unseen images, further validate our Xception transfer-learning based 

model architecture and proof it efficiency for the task of COVID-19 detection. The achievement of 

higher accuracy and macro F1 score with the modified Xception model is an important advancement in 

COVID-19 detection. This outcome shows the effectiveness of our approach in accurately identifying 

COVID-19 cases from CT images. Enhancing accuracy is particularly crucial in minimizing false positives 

and negatives, which are critical concerns in a clinical setting. The higher F1 score demonstrates a 

balanced performance between precision and recall, essential for reliable diagnoses. 

The practical implications of this achievement are profound. In the clinical context, accurate and 

reliable COVID-19 detection is vital for guiding patient management, isolation, and treatment decisions. 

Healthcare professionals can use these results to expedite patient triage, allocate resources efficiently, 

and provide timely care to those in need. As our results were established on a big, diverse and unbalanced 

data, our results are suited for healthcare settings where data is mostly unbalanced. This dataset can 

further the scientific community's understanding of COVID-19, leading to improved strategies for 

disease management. 

It is important to recognize limitations in our methodology, including the adaptability of the 

modified Xception model to diverse datasets and clinical scenarios. To address these, future research 

directions include exploring the model's versatility across different image modalities, such as X-ray 

modalities, and investigating alternative output modification strategies, such as employing Random 

Forest as an output classifier. 

4. Conclusion 
In conclusion, we have proposed a transfer learning-based approach for COVID-19 detection via CT 

images. The proposed method briefly processes the images in terms of size. We use the Xception model 

architecture and weights pre-trained on the popular ImageNet. Modification of the network’s output 

was made to take the final diagnosis decisions. The model implemented along with a decreasing learning 

rate and hyperparameter turning proves effective on a big and challenging dataset of CT images. We, 

therefore, provide a presentation of our tailored model method, demonstrating our model's superiority 

over other transfer learning models on both validation and test datasets and the effective enablement of 

data-driven decisions, resulting in efficient diagnostic performance on a challenging and big CT image 

dataset for COVID-19 detection. This positions our solution as suitable for clinical applications, 

particularly where less hand-engineered systems are preferred. 
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The primary findings and contributions of this study underscore the vital role of transfer learning in 

COVID-19 detection, particularly when applied to the domain of CT images. This approach not only 

bolsters diagnostic precision but also holds substantial potential for real-world applications, promising 

to expedite early detection efforts and mitigate the virus's spread. It is important to clarify the rationale 

behind our methodology, aligning it with the principles of the scientific method. Our approach was 

meticulously crafted to ensure the validity and reliability of our findings. We leveraged transfer learning 

with the Xception model because it has demonstrated exceptional performance in diverse image 

recognition tasks, aligning with the scientific method's emphasis on leveraging established knowledge. 

Pre-training on ImageNet, a vast and varied dataset, serves as a form of hypothesis testing, allowing us 

to start with a well-informed starting point, analogous to formulating an educated hypothesis in the 

scientific method. 

In summary, our study emphasizes the significance of transfer learning approaches as a potent tool in 

the fight against COVID-19, especially in the realm of CT image-based diagnosis. Its broader 

implications underscore its potential to revolutionize diagnostic processes and contribute significantly to 

public health efforts, even as we continue to refine our approach. 
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