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SUMMARY A term rewriting system which effectively pre-
serves recognizability (EPR-TRS) has good mathematical prop-
erties. In this paper, a new subclass of TRSs, layered transduc-
ing TRSs (LT-TRSs) is defined and its recognizability preserving
property is discussed. The class of LT-TRSs contains some EPR-
TRSs, e.g., {f(x) → f(g(x))} which do not belong to any of the
known decidable subclasses of EPR-TRSs. Bottom-up linear tree
transducer, which is a well-known computation model in the tree
language theory, is a special case of LT-TRS. We present a suffi-
cient condition for an LT-TRS to be an EPR-TRS. Also reacha-
bility and joinability are shown to be decidable for LT-TRSs.
key words: term rewriting system, tree automaton, recogniz-
ability, recognizability preserving property, layered transducing
TRS

1. Introduction

Tree automaton is a natural extension of finite-state
automaton on strings. A set of ground terms (tree lan-
guage) T is recognizable if there exists a tree automa-
ton which accepts T . Tree automaton inherits good
mathematical properties from finite-state automaton.
For example, the class of recognizable sets is closed un-
der boolean operations (union, intersection and com-
plementation), and decision problems such as empti-
ness and membership are decidable for a recognizable
set. Let L(A) denote the language accepted by a tree
automaton A. For a TRS R and a tree language T ,
define (→∗

R)(T ) = {t | ∃s ∈ T s.t. s →∗
R t}. A TRS

R effectively preserves recognizability (abbreviated as
EPR) if for any tree automaton A, (→∗

R)(L(A)) is
also recognizable and a tree automaton A∗ such that
L(A∗) = (→∗

R)(L(A)) can be effectively constructed.
Due to the above mentioned properties of recogniz-
able sets, some important problems, e.g., reachability,
joinability and local confluence are decidable for EPR-
TRSs [8], [9]. Furthermore, with additional conditions,
strong normalization property, neededness and unifia-
bility become decidable for EPR-TRSs [4], [11], [14].

The problem to decide whether a given TRS is
EPR is undecidable [7], and decidable subclasses of
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EPR-TRSs have been proposed in a serie of works [3],
[9]–[11], [13], [14]. These subclasses put a rather strong
constraint on the syntax of the right-hand side of a
rewrite rule. For example, the right-hand side of a
rewrite rule in a linear semi-monadic TRS (L-SM-
TRS) [3] is either a variable or f(t1, t2, . . . , tn) where
each ti (1 ≤ i ≤ n) is either a variable or a ground
term. Linear generalized semi-monadic TRS (L-GSM-
TRS) [9] and right-linear finite path-overlapping TRS
(RL-FPO-TRS) [14] weaken this constraint, but some
simple EPR-TRSs such as {f (x) → f(g(x))} still do
not belong to any of the known decidable subclasses of
EPR-TRSs. To show that a given TRS R is EPR, for
a given tree automaton A, a tree automaton A∗ such
that L(A∗) = (→∗

R)(L(A)) should be constructed. The
above mentioned restrictions on the right-hand side of
a rewrite rule are sufficient conditions for a procedure
of automata construction to halt.

In this paper, a new subclass of TRSs, layered
transducing TRSs (LT-TRSs) is defined and its recog-
nizability preserving property is discussed. Intuitively,
an LT-TRS is a TRS such that certain unary function
symbols are specified as markers and a marker moves
from leaf to root in each rewrite step. Bottom-up lin-
ear tree transducer [6], which is a well-known computa-
tion model in the tree language theory, can be consid-
ered as a special case of LT-TRS. We propose a pro-
cedure which, for a given tree automaton A and an
LT-TRS R, constructs a tree automaton A∗ such that
L(A∗) = (→∗

R)(L(A)). The procedure introduces a
state [z, q] which is the product of a state z already
belonging to A∗ and a marker q and constructs a tran-
sition rule which is the product of a transition rule al-
ready in A∗ and a rewrite rule in R.

However, an LT-TRS is not always EPR and the
above procedure does not always halt. We present a
sufficient condition for the procedure to halt. The sub-
class of LT-TRSs which satisfy the sufficient condition
is still incomparable with any of the known decidable
subclasses of EPR-TRSs. Especially, the class contains
some EPR-TRSs, such as {f (x)→ f(g(x))} mentioned
above. Finally, reachability and joinability are shown
to be decidable for LT-TRSs.

The rest of the paper is organized as follows. After
providing preliminary definitions in Sect. 2, LT-TRS is
defined in Sect. 3. A procedure for automata construc-
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tion is presented and the partial correctness of the pro-
cedure is proved in Sect. 4. Sufficient conditions for the
construction procedure to halt are presented in Sect. 5.
Also reachability and joinability are shown to be decid-
able for LT-TRS in Sect. 5.

2. Preliminaries

2.1 Term Rewriting Systems

We use the usual notions for terms, substitutions, etc
(see [1] for details). Let Σ be a signature and V be an
enumerable set of variables. An element in Σ is called
a function symbol and the arity of f ∈ Σ is denoted
by a(f). A function symbol c with a(c) = 0 is called a
constant. The set of terms, defined in the usual way, is
denoted by T (Σ,V). The set of variables occurring in t
is denoted by Var(t). A term t is ground if Var(t) = ∅.
The set of ground terms is denoted by T (Σ). A ground
term in T (Σ) is also called a Σ-term. A term is linear
if no variable occurs more than once in the term. A
substitution σ is a mapping from V to T (Σ,V), and
written as σ = {x1 �→ t1, . . . , xn �→ tn} where ti with
1 ≤ i ≤ n is a term which substitutes for the variable
xi. The term obtained by applying a substitution σ to a
term t is written as tσ. A position in a term t is defined
as a sequence of positive integers as usual, and the set of
all positions in a term t is denoted by Pos(t). An empty
sequence λ is called the root position. A subterm of t at
a position o is denoted by t/o. If t/o is a variable then o
is called a variable position. If a term t is obtained from
a term t′ by replacing the subterms of t′ at positions
o1, . . . , om (oi ∈ Pos(t′), oi and oj are disjoint if i �= j)
with terms t1, . . . , tm, respectively, then we write t =
t′[oi ← ti | 1 ≤ i ≤ m].

A rewrite rule over a signature Σ is an ordered
pair of terms in T (Σ,V), written as l → r. The vari-
able restriction (Var(r) ⊆ Var(l) and l /∈ V) is not
assumed unless stated otherwise. A term rewriting sys-
tem (TRS ) over Σ is a finite set of rewrite rules over
Σ. For terms t, t′ and a TRS R, we write t →R t′

if there exists a position o ∈ Pos(t), a substitution σ
and a rewrite rule l → r ∈ R such that t/o = lσ and
t′ = t[o← rσ]. Define→∗

R to be the reflexive and tran-
sitive closure of→R. Also the transitive closure of→R
is denoted by →+

R. The subscript R of →R is omitted
if R is clear from the context. A redex (in R) is an
instance of l for some l → r ∈ R. A normal form (in
R) is a term which has no redex as its subterm. Let
NFR denote the set of all ground normal forms in R.
A rewrite rule l → r is left-linear (resp. right-linear) if
l is linear (resp. r is linear). A rewrite rule is linear if
it is left-linear and right-linear. A TRS R is left-linear
(resp. right-linear, linear) if every rule inR is left-linear
(resp. right-linear, linear).

Notions such as reachability, joinability, confluence
and local confluence are defined in the usual way.

2.2 Tree Automata

A tree automaton (abbreviated as TA) [6] is defined by
a 4-tuple A = (Σ,P ,∆,Pfinal) where Σ is a signature,
P is a finite set of states, Pfinal ⊆ P is a set of final
states, and ∆ is a finite set of transition rules of the
form f(p1, . . . , pn) → p where f ∈ Σ, a(f) = n, and
p1, . . . , pn, p ∈ P or of the form p′ → p where p′, p ∈ P .
A rule with the former form is called a non-ε-rule and
a rule with the latter form is called an ε-rule. In this
paper, we use p, p′, p1, p2, . . . to denote a state. Con-
sider the set of ground terms T (Σ∪P) where we define
a(p) = 0 for p ∈ P . A transition of a TA can be re-
garded as a rewrite relation on T (Σ ∪P) by regarding
transition rules in ∆ as rewrite rules on T (Σ ∪P). For
terms t and t′ in T (Σ ∪P), we write t �A t′ if and only
if t→∆ t′. If t �A t′ is caused by an ε-rule then t �A t′

is called an ε-transition. The reflexive and transitive
closure and the transitive closure of �A is denoted by
�∗A and �+

A respectively. For a TA A and t ∈ T (Σ), if
t �∗A pf for a final state pf ∈ Pfinal , then we say t is
accepted by A. The set of ground terms accepted by A
is denoted by L(A). Also let Lp(A) = {t | t �∗A p} for a
state p. A set T of ground terms is recognizable if there
is a TA A such that T = L(A). A state p ∈ P is reach-
able in A if there exists a Σ-term t such that t �∗A p.
A state p ∈ P is useful in A if there exists a Σ-term t,
a position o ∈ Pos(t) and a final state pf ∈ Pfinal such
that t �∗A t[o ← p] �∗A pf . It is not difficult to show
that for a given TA A, we can construct a TA A′ which
satisfies L(A′) = L(A) and has only useful states. Rec-
ognizable sets inherit some useful properties of regular
(string) languages.
Lemma 1 [6]: The class of recognizable sets is effec-
tively closed under union, intersection and complemen-
tation. For a recognizable set T , the following problems
are decidable. (1) Does a given ground term t belong
to T ? (2) Is T empty? ✷

2.3 TRS which Preserves Recognizability

For a TRS R and a set T of ground terms, define
(→∗

R)(T ) = {t | ∃s ∈ T s.t. s →∗
R t}. A TRS R

is said to effectively preserve recognizability if, for any
tree automaton A, the set (→∗

R)(L(A)) is also recogniz-
able and we can effectively construct a tree automaton
which accepts (→∗

R)(L(A)). In this paper, the class of
TRSs which effectively preserve recognizability is writ-
ten as EPR-TRS.

Theorem 1: If a TRS R belongs to EPR-TRS, then
the reachability relation and the joinability relation for
R are decidable [8]. It is also decidable whether R is
locally confluent or not [9]. ✷

Unfortunately it is undecidable whether a given
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TRS belongs to EPR-TRS or not [7]. Therefore de-
cidable subclasses of EPR-TRS have been proposed,
for example, ground TRS by Brainerd [2], right-linear
monadic TRS (RL-M-TRS) by Salomaa [13], linear
semi-monadic TRS (L-SM-TRS) by Coquidé et al. [3],
right-linear semi-monadic TRS (RL-SM-TRS), which
is equivalent to the inverse of left-linear growing
TRS by Nagaya and Toyama [11], linear generalized
semi-monadic TRS (L-GSM-TRS) by Gyenizse and
Vágvölgyi [9], and right-linear finite path overlapping
TRS (RL-FPO-TRS) by Takai et al. [14].

Theorem 2: RL-M-TRS ⊂ RL-SM-TRS ⊂ RL-FPO-
TRS ⊂ EPR-TRS and ground TRS ⊂ L-SM-TRS ⊂ L-
GSM-TRS ⊂ RL-FPO-TRS. All inclusions are proper.

✷

Réty [12] defined a subclass of TRSs and showed that
the class effectively preserves recognizability for the
subclass C of tree languages of which member is a set
{tσ | t is a linear term and σ is a substitution such that
xσ is a constructor term for each x ∈ Var(t)} (abbre-
viated as C-EPR). R3 of Example 5 in Sect. 4 is not an
EPR-TRS but it is C-EPR.

3. Layered Transducing TRS

A new class of TRS named layered transducing TRS
(LT-TRS ) is proposed in this section.

Definition 1: Let Σ = F ∪ Q be a signature where
F ∩Q = ∅. A function symbol q in Q is called a marker
and a(q) = 1. A layered transducing TRS (LT-TRS ) is
a linear TRS over Σ in which each rewrite rule has one
of the following forms:

(i) f(t1, · · · , tn)→ r, or
(ii) t1 → r

where

1. f ∈ F ,
2. ti (1 ≤ i ≤ n in Case (i) and i = 1 in Case (ii)) is

either a ground term or a term of the form qi(li)
where qi ∈ Q and li is either a variable or a ground
term and

3. r is either a variable or a term of the form q(r1)
where q ∈ Q and r1 ∈ T (F ,V). ✷

Example 1: Let g ∈ F with a(g) = 1 and let q ∈ Q.
R1 = {q(x)→ q(g(x))} is an LT-TRS. Note that R1 is
an EPR-TRS but is not an FPO-TRS [14]. ✷

Example 2: Let f, g, h ∈ F , q1, q2, q ∈ Q.
R2 = {f (q1(x1), q2(x2)) → q(g(h(x2), x1)), q1(x1) →
q(h(x1))} is an LT-TRS. ✷

In this paper, we use a, b, c to denote a constant, f, g, h
to denote a non-marker symbol, q, q′, q1, q2, . . . to de-
note a marker and s, t, t1, t2, . . . to denote a term in
T (Σ,V).

4. Construction of Tree Automata

In this section, we will present a procedure which takes
an LT-TRS R and a tree automaton A as an input and
constructs a TA A∗ such that L(A∗) = (→∗

R)(L(A)) if
the procedure halts. Let A = (Σ,P ,∆,Pfinal) be a TA.
By the definition of (→∗

R)(L(A)),
if t �∗A p and t→∗

R s then s �∗A∗ p also holds.

To satisfy this property, the proposed procedure starts
with A0 = A and constructs a series of TAs A0,A1, . . ..
We define A∗ as the limit of this chain of TAs. For
example, let f(p1, p2)→ p ∈ ∆ and f(q1(x1), q2(x2))→
q(g(h(x2), x1)) ∈ R and assume that

t = f(q1(t1), q2(t2)) (1)

�∗A f(q1(p′1), q2(p
′
2)) �∗A f(p1, p2) �A p. (2)

Note that f(q1(t1), q2(t2)) →R q(g(h(t2), t1))(= t′)
and hence A∗ is required to satisfy q(g(h(t2), t1)) �∗A∗
p. The procedure constructs a ‘product’ rule of
f(p1, p2) → p and f(q1(x1), q2(x2)) → q(g(h(x2), x1))
and some auxiliary rules so that A∗ can simu-
late the transition sequence (2) when A∗ reads
q(g(h(t2), t1)). More precisely, new states [p, q], 〈h(p′2)〉
and 〈g(h(p′2), p′1)〉 are introduced and rules

h(p′2) → 〈h(p′2)〉,
g(〈h(p′2)〉, p′1) → 〈g(h(p′2), p′1)〉,
〈g(h(p′2), p′1)〉 → [p, q]

(3)

are constructed. The following transition rule is also
added so that s �∗A∗ [p, q] if and only if q(s) �∗A∗ p.

q([p, q])→ p. (4)

When A∗ reads q(g(h(t2), t1)), we can see by (2) that

t′ = q(g(h(t2), t1)) �∗A q(g(h(p′2), p
′
1)). (5)

A∗ guesses that in a term t such that t →R t′, the
markers q1 and q2 were placed above the subterms t1
and t2, respectively, as in (1) and A∗ behaves as if it
reads q1 and q2 at p′1 and p′2. That is, A∗ simulates the
transition f(p1, p2) �A p by rules (3). Also see Fig. 1.

t′ �∗A q(g(h(p′2), p
′
1)) �A q(g(〈h(p′2)〉, p′1))

�A q(〈g(h(p′2), p′1)〉) �A q([p, q]) �A p

t1 t2

q1 q2

f
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✏✏✮

Fig. 1 An idea of automata construction.



288
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

The last transition is by (4); A∗ encounters the marker
q at the state [p, q], which means that the guess was
correct, and A∗ changes its state to p by forgetting the
guess q. The construction of new rules and states is
repeated until Ai saturates. Hence, states with more
than one nesting such as [〈f([〈f([p, q1])〉, q2])〉, q3] may
be defined in general. For a state z′ ∈ Zi, we identify
〈z′〉 with z′. then we implicitly assume that F ∩Q = ∅
and Q is a set of markers.

As mentioned above, the TA construction proce-
dure introduces a state of the form [z, q] or 〈t〉 where
z ∈ Z, q is a marker, t ∈ T (Σ ∪ Z)\Z and Z is the set
of states of the TA being constructed. To slightly abuse
the notation, for a state z, let 〈z〉 denote z itself. For
example, if we write 〈t1〉 where t1 = [p, q] then 〈t1〉 de-
notes [p, q]. Similarly, if we write 〈t2〉 where t2 = 〈f(p)〉
then 〈t2〉 denotes 〈f(p)〉 since 〈f(p)〉 itself is a state.

Procedure 1: The set difference is denoted by A \
B(= {x | x ∈ A and x /∈ B}). Suppose Σ = F ∪Q and
F ∩Q = ∅.

Input: a tree automaton A = (Σ,P ,∆,Pfinal) and an
LT-TRS R over Σ. Without loss of generality,
assume that (i) A has no ε-rule, (ii) every state in
P is reachable and (iii) there exists a state pany

such that Lpany (A) = T (Σ).
Output: a tree automatonA∗ such that L(A∗) = (→∗

R)
(L(A)).

Step 1 Let i := 0 and A0 = (Σ,Z0,∆0,Pfinal) :=
A. In Step 2–Step 4, this procedure constructs
A1,A2, · · · by adding new states and transition
rules to A0.

Step 2 Let i := i + 1 and Ai = (Σ,Zi,∆i,Pfinal) :=
Ai−1.

Step 3 For each rewrite rule l → r ∈ R, state z ∈ Zi−1

and substitution ρ:V → Zi−1 such that:

1. xρ = pany for x ∈ Var(r) \ Var(l),
2. lρ �∗Ai−1

z (6)

holds and no ε-transition occurs at the root
position or at the variable positions oj (1 ≤
j ≤ h) where l has h distinct variables,
Var(l) = {x1, . . . , xh}, and xj (1 ≤ j ≤ h)
occurs at a position oj in l,

do the following:

(a) if r ∈ V and rρ �= z, then add rρ→ z to ∆i;
(b) if r /∈ V , then let r = q(r1)

add 〈r1ρ〉 and [z, q] to Zi;
add 〈r1ρ〉 → [z, q] and q([z, q]) → z
to ∆i;
do ADDREC(r1, i, ρ).

Step 4 If Ai−1 = Ai, then let A∗ := Ai and output
A∗, else go to Step 2. ✷

Procedure 2: (ADDREC) This procedure takes a
term t ∈ T (F ,V), an integer i ≥ 1 and a substitution
ρ:V → Zi−1 as an input, and adds new states and
transition rules to Ai so that tσ �∗Ai

〈tρ〉 holds for
every substitution σ:V → T (Σ) such that σ = {xj �→
sj | sj �∗Ai

xjρ, 1 ≤ j ≤ h}.

ADDREC(t, i, ρ)=
if t = x then return;
else let t = h(t1, · · · , tn)
add 〈t1ρ〉, · · · , 〈tnρ〉 to Zi;
add h(〈t1ρ〉, · · · , 〈tnρ〉) → 〈tρ〉 to ∆i;
do ADDREC(tj , i, ρ) (1 ≤ j ≤ n). ✷

Example 3: Let A = (Σ,P ,∆,Pfinal) be a TA
where Σ = F ∪ Q, F = {f, g, h, c}, Q =
{q1, q2, q}, P = {p1, p

′
1, p2, pc, pf}, Pfinal = {pf}

and ∆ = {c → pc, q1(pc) → p′1, q1(p′1) →
p1, q2(pc) → p2, f(p1, p2) → pf}. It can be
easily verified that L(A) = {f (q1(q1(c)), q2(c))}.
We apply Procedure 1 to A and LT-TRS R2 of
Example 2. For i = 1, f(q1(x1), q2(x2)) →
q(g(h(x2), x1)) ∈ R2 is considered. Let ρ =
{x1 �→ p′1, x2 �→ pc}. Since f(q1(x1), q2(x2))ρ =
f(q1(p′1), q2(pc)) �∗A0

f(p1, p2) �A0 pf , condition (6)
is satisfied and rules 〈g(h(pc), p′1)〉 → [pf , q] and
q([pf , q])→ pf are added to ∆1. Also g(〈h(pc)〉, p′1)→
〈g(h(pc), p′1)〉 and h(pc) → 〈h(pc)〉 are constructed
by ADDREC(g(h(x2), x1), 1, ρ). Consider q1(x1) →
q(h(x1)) ∈ R2. Since q1(p′1) �A0 p1, condition (6) is
satisfied and rules 〈h(p′1)〉 → [p1, q], q([p1, q])→ p1 and
h(p′1) → 〈h(p′1)〉 are constructed. For ρ′ = {x1 �→
pc}, 〈h(pc)〉 → [p′1, q] and q([p′1, q]) → p′1 are con-
structed. The transition rules constructed in Proce-
dure 1 are listed in Table 1. Since no rule is added to
A2, the procedure halts and we obtain A∗ = A2 as the
output. We can verify that L(A∗) = (→∗

R2
)(L(A)). ✷

Example 4: Let A = (Σ,P ,∆,Pfinal), Σ = F ∪ Q,
F = {c, g}, Q = {q}, P = {pc, pf}, Pfinal = {pf} and
∆ = {c → pc, q(pc) → pf}. Clearly, L(A) = {q(c)}.
If we apply Procedure 1 to A and R1 of Example 1,
then for i = 1 of the procedure, q(x) → q(g(x)) ∈ R1

and ρ1 = {x �→ pc} are considered and g(pc)→ 〈g(pc)〉,
〈g(pc)〉 → [pf , q] and q([pf , q]) → pf are added. For
i = 2, q(x) → q(g(x)) ∈ R1 and ρ2 = {x �→
[pf , q]} are considered and g([pf , q]) → 〈g([pf , q])〉 and
〈g([pf , q])〉 → [pf , q] are added. Since no rule is added

Table 1 The transition rules constructed by Procedure 1
(Example 3).

Step 3 ADDREC

A1 〈g(h(pc), p′1)〉 → [pf , q] g(〈h(pc)〉, p′1) →
q([pf , q]) → pf 〈g(h(pc), p′1)〉
〈h(p′1)〉 → [p1, q] h(pc) → 〈h(pc)〉
q([p1, q]) → p1 h(p′1) → 〈h(p′1)〉
〈h(pc)〉 → [p′1, q]
q([p′1, q]) → p′1
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when i = 3, the procedure halts with A∗ = A2. Clearly,
L(A∗) = {q(gn(c)) | n ≥ 0}. Note that the transition
g([pf , q]) �A∗ 〈g([pf , q])〉 �A∗ [pf , q] simulates infinitely
many rewrite steps caused by the rule q(x)→ q(g(x)).
In the methods proposed in [14] and [5] (without ap-
proximation), infinitely many states such as 〈gn(pc)〉
and 〈q(gn(pc))〉 (n ≥ 1) are introduced to simulate
each rewrite step q(gn−1(c)) →R1 q(gn(c)) by a dif-
ferent transition g(〈gn−1(pc)〉) � 〈gn(pc)〉, and thus the
construction does not halt in their methods. ✷

Example 5: Let A = (Σ,P ,∆,Pfinal), Σ = F ∪ Q,
F = {c, f}, Q = {q}, P = Pfinal = {p}, ∆ = {c →
p, f(p)→ p, q(p)→ p} and R3 = {f (q(x))→ q(f(x))}.
R3 is an LT-TRS. Assume that Procedure 1 is exe-
cuted for A and R3. For i = 1, consider a substitution
ρ1 = {x �→ p}, then f(q(x))ρ1 = f(q(p)) �∗A0

p. Hence,
f(p) → 〈f(p)〉, 〈f(p)〉 → [p, q] and q([p, q]) → p are
added to ∆1. Next, for a substitution ρ2 = {x �→ [p, q]},
f(g(x))ρ2 = f(q([p, q])) �A1 f(p) �A0 p holds and
f([p, q]) → 〈f([p, q])〉 and 〈f([p, q])〉 → [p, q] are added
to ∆2. For the same ρ2, f(q(x))ρ2 �A1 f(p) �A1

〈f(p)〉 also holds and 〈f([p, q])〉 → [〈f(p)〉, q] and
q([〈f(p)〉, q]) → 〈f(p)〉 are added to ∆2. The proce-
dure repeats a similar construction and does not halt.

✷

Note that R3 is not an EPR-TRS since for a recogniz-
able set T1 = {(fq)n(c) | n ≥ 0}, (→∗

R3
)(T1)∩NFR3 =

{qn(fn(c)) | n ≥ 0} is not recognizable.
We first show a few technical lemmas which will be

used for the proof of soundness (Lemma 6) and com-
pleteness (Lemma 7) of Procedure 1.

Lemma 2: (i) If f(z1, . . . , zn) → z ∈ ∆i \ ∆0 (i ≥
1, f ∈ F), then z = 〈τρ〉 for some τ ∈ T (F ,V) and
ρ:V → Zi−1. (ii) If q(z1)→ z ∈ ∆i \∆0 (i ≥ 1, q ∈ Q),
then z ∈ P or z = 〈τρ〉 for some τ and ρ, and z1 = [z, q].

Proof. (i) Obvious from ADDREC. (ii) Obvious
from Step 3 (b) of Procedure 1. ✷

Lemma 3: If Step 3 is executed for a rule l → q(r1),
state z ∈ Zi−1 and substitution ρ:V → Zi−1 and a state
of the form 〈tρ〉 is constructed, then t is a subterm of
r1.

Proof. A state 〈tρ〉 mentioned in the lemma is con-
structed either Step 3 (b) or ADDREC. If 〈tρ〉 is con-
structed in Step 3 (b), then t = r1 and the lemma holds.
Assume 〈tρ〉 is constructed in ADDREC. Note that
when ADDREC is called from Step 3 (b), its first ar-
gument is r1 and after that ADDREC is recursively
called based on the term structure of its first argument.
Hence, t is a subterm of r1 in this case. ✷

Lemma 4: Let A = (Σ,P ,∆,Pfinal) be a TA. As-
sume that every state p ∈ P is reachable (resp. useful)
in A. If Procedure 1 is executed for A and an LT-TRS
R, then every state z ∈ Zi constructed during the exe-
cution of Procedure 1 is reachable (resp. useful) in Ai.

Proof. See Appendix. ✷

Note that an ε-rule is constructed only in Step 3 (a)
or (b) of Procedure 1.

Lemma 5: (i) An ε-rule in ∆i constructed in
Step 3 (a) of Procedure 1 is one of the following forms:

p′ → p, [z′, q′]→ p,
p′ → 〈τρ〉, [z′, q′]→ 〈τρ〉

where p, p′ ∈ P , z′ ∈ Zi−1, q
′ ∈ Q, τ ∈ T (F ,V) and

ρ:V → Zi−1. (ii) An ε-rule in ∆i constructed in
Step 3 (b) of Procedure 1 is one of the following forms:

p′ → [z, q], [z′, q′]→ [z, q], 〈τρ〉 → [z, q]

where p′ ∈ P , z, z′ ∈ Zi−1, q, q
′ ∈ Q, τ ∈ T (F ,V) and

ρ:V → Zi−1.

Proof. See Appendix. ✷

Lemma 6: (Soundness) Let i ≥ 1, t ∈ T (Σ) and τ ∈
T (Σ,V). Let t �∗Ai

z′′.

(A) If z′′ = p ∈ P then there exists a Σ-term s such
that s �∗Ai−1

p and s→∗
R t.

(B) If z′′ = [z, q] then there exists a Σ-term s such that
s �∗Ai−1

z and s→∗
R q(t).

(C) If z′′ = 〈τρ〉 then there exists a substitution σ:V →
T (Σ) such that τσ →∗

R t and xσ �∗Ai−1
xρ for

x ∈ Var(τ).
Proof. We will prove the lemma by double induction
on i and the length of the transition sequence t �∗Ai

z′′.
In the rest of the proof, for a rule l → r in R, we
assume Var(l) = {x1, . . . , xh} and xj (1 ≤ j ≤ h).
(A) Assume t �∗Ai

p. The following three cases (i)–(iii)
should be considered according to the rule applied in
the last transition in t �∗Ai

p.

(i) If t �∗Ai
z′ �Ai p (z′ ∈ Zi), then by Lemma 5

z′ → p is constructed in Step 3 (a). Hence, there
exists a rewrite rule l → r ∈ R and a substitu-
tion ρ:V → Zi−1 satisfying the conditions 1 and 2
stated in Step 3. Since Step 3 (a) is applied, r ∈ V .
By Lemma 4, there exists a Σ-term sj such that
sj �∗Ai−1

xjρ (1 ≤ j ≤ h). By Lemma 5 (i), we
further consider two subcases, (i-a) z′ = p′ ∈ P
and (i-b) z′ = [z, q] (z ∈ Zi−1, q ∈ Q).
(i-a) If t �∗Ai

p′ �Ai p, then by the inductive hy-
pothesis (A), there exists a Σ-term s′ such that
s′ �∗Ai−1

p′ and s′ →∗
R t. If r = xk for some k

(1 ≤ k ≤ h) then p′ = rρ = xkρ. Let s = l[oj ←
sj | 1 ≤ j ≤ h, j �= k][ok ← s′]. If r /∈ Var(l) then
p′ = rρ = pany . Let s = l[oj ← sj | 1 ≤ j ≤ h]. In
either case, s→R s′ →∗

R t and s �∗Ai−1
lρ �∗Ai−1

p.
(i-b) If t �∗Ai

[z, q] �Ai p, then r ∈ Var(l) and
rρ = xkρ = [z, q] for some k (1 ≤ k ≤ h). By the
inductive hypothesis (B), there exists a Σ-term s′

such that s′ �∗Ai−1
z and s′ →∗

R q(t). Since R is
an LT-TRS, the occurrence ok of xk in l can be
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written as ok = o′ · 1 for some o′ and l/o′ = q(xk).
Let s = l[oj ← sj | 1 ≤ j ≤ h, j �= k][o′ ← s′].
We can see that s →∗

R l[oj ← sj | 1 ≤ j ≤ h, j �=
k][o′ ← q(t)] →R t and s �∗Ai−1

l[oj ← xjρ | 1 ≤
j ≤ h, j �= k][o′ ← z] �∗Ai−1

p.
(ii) If t = f(t1, . . . , tn) �∗Ai

f(z1, . . . , zn) �Ai p (f ∈
F , zj ∈ Zi (1 ≤ j ≤ n)) then f(z1, . . . , zn) →
p ∈ ∆0 and thus zj ∈ P by Lemma 2 (i). By the
inductive hypothesis (A), there exists a Σ-term sj

such that sj →∗
R tj and sj �∗Ai−1

zj for 1 ≤ j ≤ n.
For s = f(s1, . . . , sn), s →∗

R t and s �∗Ai−1
p and

the lemma holds.
(iii) If t = q(t1) �∗Ai

q(z1) �Ai p (q ∈ Q, z1 ∈ Zi)
then z1 ∈ P or z1 = [p, q]. We can prove the
lemma in a similar way to the case (ii), using the
inductive hypothesis (A) when z1 ∈ P and using
the inductive hypothesis (B) when z1 = [p, q].

(B) Assume t �∗Ai
[z, q]. By Lemma 2, the right-

hand side of a non-ε-transition rule constructed in Pro-
cedure 1 does not have the form of [z, q]. Also, by
Lemma 5 (i), an ε-rule constructed in Step 3 (a) does
not have the form of [z, q]. Hence the last rule applied
in t �∗Ai

[z, q] is an ε-rule constructed in Step 3 (b), and
thus there exists a rule l → r ∈ R and a substitution
ρ:V → Zi−1 which satisfies the conditions 1 and 2 in
Step 3. By Lemma 4, there exists a Σ-term sj such
that sj �∗Ai−1

xjρ for 1 ≤ j ≤ h. Note that r = q(r1)
for some r1 ∈ T (F ,V). There are three cases: (i)
t �∗Ai

p �Ai [z, q] (p ∈ P), (ii) t �∗Ai−1
[z′, q′] �Ai−1 [z, q]

(z′ ∈ Zi−1, q
′ ∈ Q) and (iii) t �∗Ai

〈τρ〉 �Ai [z, q]
(τ ∈ T (F ,V), ρ:V → Zi−1). In cases (i) and (ii), either
r1 = xk for some k (1 ≤ k ≤ h) or r1 ∈ Var(r) \ Var(l).
(i) If t �∗Ai

p �Ai [z, q] (p ∈ P), then by the inductive
hypothesis (A), there exists a Σ-term s′ such that
s′ �∗Ai−1

p and s′ →∗
R t. If r1 = xk then p = xkρ.

Let s = l[oj ← sj | 1 ≤ j ≤ h, j �= k][ok ← s′]. If
r1 /∈ Var(l) then p = pany . Let s = l[oj ← sj | 1 ≤
j ≤ h]. In either case, s →R q(s′) →∗

R q(t) and
s �∗Ai−1

lρ �∗Ai−1
z.

(ii) If t �∗Ai−1
[z′, q′] �Ai−1 [z, q] (z′ ∈ Zi−1, q

′ ∈ Q),
then by the inductive hypothesis (B), there exists
a Σ-term s′ such that s′ �∗Ai−1

z′ and s′ →∗
R q′(t).

The rest of the proof is similar to the proof of (A)
(i-b).

(iii) If t �∗Ai
〈τρ〉 �Ai [z, q], then by the inductive hy-

pothesis (C), there exists a substitution σ:V →
T (Σ) such that τσ →∗

R t and xσ �∗Ai−1
xρ for

x ∈ Var(τ). Note that r = q(r1) = q(τ) in this
case. Let s = lσ then s →R rσ = q(τσ) →∗

R q(t)
and s �∗Ai−1

lρ �∗Ai−1
z and the lemma holds.

(C) Assume t �∗Ai
〈τρ〉 for some τ ∈ T (Σ,V) and sub-

stitution ρ:V → Zi−1. There are three cases to con-
sider.

(i) Assume t �∗Ai
z′ �Ai 〈τρ〉 (z′ ∈ Zi). There are two

subcases by Lemma 5 (i).
(i-a) If t �∗Ai

p′ �Ai 〈τρ〉 (p ∈ P), then by the
inductive hypothesis (A), there exists a Σ-term
s′ such that s′ →∗

R t and s′ �∗Ai−1
p′. The rule

p′ → 〈τρ〉 is introduced in Step 3 (a). Hence, there
exists a rewrite rule l → r ∈ R, a state z ∈ Zi−1

and a substitution ρ:V → Zi−1 which satisfies the
conditions in Step 3, lρ �∗Ai−1

〈τρ〉 and r ∈ V . By
Lemma 4, there exists sj such that sj �∗Ai−1

xjρ

(1 ≤ j ≤ h). If r = xk then p′ = rρ = xkρ. Let
s = l[oj ← sj | 1 ≤ j ≤ h, j �= k][ok ← s′]. If
r /∈ Var(l) then p′ = pany . Let s = l[oj ← sj |
1 ≤ j ≤ h]. In either case, s →R s′ →∗

R t and
s �∗Ai−1

lρ �∗Ai−1
〈τρ〉. By the inductive hypothesis

(C), there exists a substitution σ:V → T (Σ) such
that τσ →∗

R s and xσ �∗Ai−1
xρ for x ∈ Var(τ).

Hence, τσ →∗
R s→∗

R t and the lemma holds.
(i-b) The case t �∗Ai

[z, q] �Ai 〈τρ〉 can be treated
in a similar way to (i-a).

(ii) Assume t = q(t′) �∗Ai
q ([〈τρ〉, q]) �Ai 〈τρ〉.

Applying the inductive hypothesis (B) to t′ �∗Ai

[〈τρ〉, q], there exists a Σ-term s′ such that s′ →∗
R

q(t′) = t and s′ �∗Ai−1
〈τρ〉. By the inductive hy-

pothesis (C), there exists a substitution σ:V →
T (Σ) such that τσ →∗

R s′ and xσ �∗Ai−1
xρ for

x ∈ Var(τ). Hence, τσ →∗
R s′ →∗

R t and the
lemma holds.

(iii) Assume t = f(t1, . . . , tn) �∗Ai
f(〈τ1ρ〉, . . . , 〈τnρ〉)

�Ai 〈τρ〉 where τ = f(τ1, . . . , τn). By the inductive
hypothesis (C), there exists a substitution σj :V →
T (Σ) such that τjσj →∗

R tj (1 ≤ j ≤ n). Let σ =
σ1σ2 · · ·σn. Note that dom(σj) is mutually disjoint
since τ is linear. Clearly, τσ = f(τ1, . . . , τn)σ =
f(τ1σ1, . . . , τnσn) →∗

R f(t1, . . . , tn) = t and the
lemma holds.

✷

Lemma 7: (Completeness) If s →∗
R t and s �∗A0

p ∈
P , then there exists an integer i ≥ 0 such that t �∗Ai

p.

Proof. Assume that s→∗
R t and s �∗A0

p. The lemma
is shown by induction on the number of rewrite steps
in s →∗

R t. If s = t then the lemma holds clearly.
Assume s →∗

R t′ →R t. By the inductive hypothesis,
there exists i′ ≥ 0 such that t′ �∗Ai′

p. Consider a
rewrite step t′ →R t. There exists a rewrite rule l →
r ∈ R, a position o in t′ and a substitution σ such
that t′ = t′[o ← lσ] and t = t′[o ← rσ]. Assume
r = q(r1) (q ∈ Q, r1 ∈ T (Σ,V)). (The case when r
is a variable is easier and omitted.) Since t′ = t′[o ←
lσ], the transition sequence t′ �∗Ai′

p can be written as
t′ = t′[o ← lσ] �∗Ai′

t′[o ← lρ] �∗Ai′
t′[o ← z] �∗Ai′

p
for some z ∈ Zi′ and ρ:V → Zi′ . Since lρ �∗Ai′

z,
transition rules which enable r1ρ �∗Ai′+1

〈r1ρ〉 �∗Ai′+1

[z, q] are added to ∆i′+1 in Step 3 of Procedure 1. Also
q([z, q]) → z is added to ∆i′+1 and hence t = t′[o ←
rσ] = t′[o← q(r1σ)] �∗Ai′+1

t′[o← q(r1ρ)] �∗Ai′+1
t′[o←
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q([z, q])] �Ai′+1
t′[o← z] �∗Ai′+1

p and the lemma holds.
✷

Lemma 8: (Partial Correctness) Let A = (Σ, P , ∆,
Pfinal) be a TA without ε-rule and R be an LT-TRS.
Assume that for inputA andR, Procedure 1 constructs
a series of tree automata A0,A1,A2, · · ·. For any term
t ∈ T (Σ) and state p ∈ P ,

there exists a term s ∈ T (Σ) such that s �∗A p
and s →∗

R t if and only if there exists i ≥ 0
such that t �∗Ai

p.

Proof. (⇒) By Lemma 7. (⇐) By induction on i and
Lemma 6 (A). ✷

Lemma 9: If Procedure 1 halts for a TA A having no
ε-rule and an LT-TRS R, then L(A∗) = (→∗

R)(L(A))
holds for the output A∗ of the procedure.

Proof. (⊆) Assume t ∈ L(A∗). Since A∗ = Ai for
some i ≥ 0, there exists a final state pf such that t �∗Ai

pf . By Lemma 8, there exists a Σ-term s such that
s �∗A pf and s →∗

R t. Therefore, t ∈ (→∗
R)(L(A)).

L(A∗) ⊇ (→∗
R)(L(A)) can be shown in a similar way.

✷

5. Recognizability Preserving Property

In this section, two sufficient conditions for Procedure 1
to halt are proposed. One condition is that the sets of
non-marker function symbols occurring in the left-hand
sides and the right-hand sides of rewrite rules are dis-
joint. The other condition is the one which in effect
restricts the class of recognizable sets. An LT-TRS R
which satisfies the former condition effectively preserves
recognizability. Although the latter condition does not
directly give a subclass of LT-TRSs which are EPR, we
can show that some properties of LT-TRSs are decid-
able by using results derived from the latter condition.

5.1 I/O-Separated LT-TRS

An LT-TRS R is I/O-separated if R satisfies the fol-
lowing condition.

Condition 1: For a signature Σ = F ∪ Q, F is fur-
ther divided as F = FI ∪FO, FI ∩FO = ∅. A function
symbol in FI (respectively, FO) is called an input sym-
bol (respectively, output symbol). Consider a rewrite
rule

(i) f(t1, · · · , tn)→ r, or
(ii) t1 → r

in R where f, t1, . . . , tn and r satisfy the conditions
stated in Definition 1. Then f ∈ FI and no input
symbol appears in r. ✷

R1 in Example 1 and R2 in Example 2 are both I/O-
separated LT-TRSs.

Lemma 10: If q(z′)→ z ∈ ∆i (q ∈ Q) then either of
z ∈ P or z = 〈l〉 for some rule l → r in R such that l is
a ground term.

Proof. See Appendix. ✷

Lemma 11: LetR be an I/O-separated LT-TRS over
Σ = FI ∪FO ∪Q. If Procedure 1 is executed for a TA
A and R, then it always halts.

Proof. Assume a TA A and an I/O separated LT-
TRS R are given to Procedure 1 as an input. A new
state is introduced in Step 3 (b) or ADDREC and it
is of the form 〈tρ〉 or [z, q] where l → r1, ρ and q satisfy
condition (6) in Step 3, r = q(r1) and t is a subterm of
r1 (by Lemma 3). Hence, it is sufficient to show that
the number of ρ and z which satisfy (6) is finite.

First, we show that the number of substitution ρ
which satisfy (6) is finite. In a similar way to the proof
of Lemma 5 (i), we can easily prove that for any substi-
tution ρ:V → Zi−1 which satisfies (6), xρ (x ∈ Var(l))
is either in P or of the form [z, q]. If xρ = [z, q] then
x = xk ∈ Var(l) and for the position ok of xk in l,
l/o′ = q(xk) where ok = o′ · 1. Thus, q([z, q])→ z ∈ ∆i

and by Lemma 10, the number of such substitutions ρ
is finite.

We can also show there are only finite number of
states z which satisfy (6) since such a state z is either
in P or of the form 〈τ〉 where τ is the left-hand side of
a rule in R. ✷

Theorem 3: Every I/O-separated LT-TRS effec-
tively preserves recognizability. ✷

A bottom-up tree transducer [6] is a well-known com-
putation model in the theory of tree languages. For
a linear bottom-up tree transducer M, if we consider
the set of states of M as the set of markers, M cor-
responds to an I/O-separated LT-TRS. Hence, the fol-
lowing known property of tree transducer is obtained
as a corollary.

Corollary 1: [6] Every linear bottom-up tree trans-
ducer effectively preserves recognizability. ✷

5.2 Marker-Bounded Sets

Let Σ′ ⊆ Σ be a subset of function symbols. Consider
a tree representation of a term t. Let depthΣ′(t) denote
the maximum number of occurrences of function sym-
bols in Σ′ which occur in a single path from the root
to a leaf in t. That is, depthΣ′(t) is defined as:

depthΣ′(g(t1, · · · , tn))

=
{
max{depthΣ′(ti) | 1 ≤ i ≤ n}+ 1 g ∈ Σ′,
max{depthΣ′(ti) | 1 ≤ i ≤ n} g /∈ Σ′.

For example, for Σ = {f, g, h, c}, Σ′ = {f, g},
depthΣ′(f(g(c), g(h(g(c))))) = 3.

For a signature Σ = F ∪ Q, a set T ⊆ T (Σ) is
marker-bounded if the following condition holds:
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Condition 2: There exists k ≥ 0 such that |t|Q ≤ k
for each t ∈ T . ✷

An LT-TRS R is simple if every rule l → r in R
satisfies the following conditions:

(1) l is not a ground term,
(2) r is not a variable, and
(3) Var(r) ⊆ Var(l).
Lemma 12: Let R be an LT-TRS over Σ = F ∪ Q
which satisfy conditions (1) and (3) in the above defi-
nition. If t→∗

R t′ then depthQ(t) ≥ depthQ(t′).

Proof. The lemma can be easily proved by the form
of a rewrite rule of an LT-TRS. ✷

Definition 2: (deg) For each state z ∈ Zi, let deg(z)
denote the number of nestings in z, which is defined as
follows:



deg(p) = 0 (p ∈ P),
deg([z, q]) = deg(z) + 1 (z ∈ Zi, q ∈ Q),
deg(〈f(t1, · · · , tn)〉)
= max{deg(〈tj〉) | 1 ≤ j ≤ n}

✷

By definition, deg(〈f(t1, . . . , tn)〉) = max({0} ∪
{deg([z, q]) | [z, q] occurs in f(t1, . . . , tn)})
Lemma 13: (i) For f(z1, . . . , zn) → z ∈ ∆i (f ∈
F , i ≥ 0), deg(zj) ≤ deg(z) (1 ≤ j ≤ n).

(ii) For 〈r1ρ〉 → [z, q] ∈ ∆i (r1 ∈ T (F ,V), ρ:V →
Zi−1, z ∈ Zi−1, q ∈ Q), deg(〈r1ρ〉) ≤ deg([z, q]).

Proof. (i) If i = 0 then deg(zj) = deg(z) = 0 (1 ≤
j ≤ n) by definition. If f(z1, . . . , zn) → z is added to
∆i by ADDREC, then zj = 〈tjρ〉 (1 ≤ j ≤ n) and
z = 〈h(t1, . . . , tn)ρ〉 for some h ∈ F and tj ∈ T (Σ,V)
(1 ≤ j ≤ n). Hence deg(zj) ≤ deg(z) (1 ≤ j ≤ n) by
the definition of deg(·).

(ii) Suppose that 〈r1ρ〉 → [z, q] is added to ∆i in
Step 3 (b). Then there exists a rewrite rule l → q(r1)
and a state z ∈ Zi−1 such that lρ �∗Ai−1

z where no
ε-transition occurs at the root position or at any vari-
able position of l. Assume that l → q(r1) has the form
of (i) in Definition 1, namely, l = f(t1, . . . , tn) where
f ∈ F and each tj is either a ground term or tj = qj(lj).
(The case that l → q(r1) has the form of (ii) in Defi-
nition 1 is easier and omitted.) If deg(〈r1ρ〉) = 0 then
the lemma holds clearly. If deg(〈r1ρ〉) ≥ 1, then a
state [z′, q′] with deg(z′) = deg(〈r1ρ〉) − 1 occurs in
r1ρ. The transition sequence lρ �∗Ai−1

z can be written
as lρ �∗Ai−1

f(z1, . . . , zn) �∗Ai−1
z. Since [z′, q′] is not a

subterm of r1, there exists a variable x ∈ Var(r1) such
that [z′, q′] occurs in xρ. Note that x ∈ Var(l) since
otherwise xρ = pany by Step 3 of Procedure 1, which is
a contradiction. Let l = f(t1, . . . , gm(x), . . . , tn). Re-
member that no ε-transition occurs at any variable po-
sition of l in lρ �∗Ai−1

z. By Lemma 2(ii), xρ = [zm, qm]
for some zm ∈ Zi−1. On the other hand, [z′, q′] is a

subterm of xρ and hence xρ = [zm, qm] = [z′, q′] since
deg([zm, qm]) = deg(xρ) ≤ deg(〈rρ〉) = deg([z′, q′]).
Since f(z1, . . . , zn) → z ∈ ∆i−1, deg(zm) ≤ deg(z)
by (i) of this lemma. Summarizing, deg(〈r1ρ〉) =
deg(zm) + 1 ≤ deg(z) + 1 ≤ deg([z, q]) and the lemma
holds. ✷

Lemma 14: Procedure 1 always halts for a TA A
having no ε-rule and an LT-TRS R which satisfy the
following conditions.

(1) L(A) is marker-bounded.
(2) R is simple.

Proof. Let A and R be a TA and an LT-TRS which
satisfy the conditions of the lemma. Without loss of
generality, assume that A = (Σ,P ,∆,Pfinal) has only
useful states. The proof is by contradiction. Assume
that Procedure 1 does not halt for A and R. We will
show that there exists a term t ∈ L(A) which does
not satisfy condition 2, which is a contradiction. By
Lemma 3, a state constructed in Procedure 1 is of the
form 〈tρ〉 or [z, q] where t is a subterm of the right-hand
side of a rule in R, ρ:V → Zi−1 is a substitution and
q ∈ Q. This implies that for an arbitrary integer v, the
number of states z0 with deg(z0) < v constructed in the
procedure and the number of rules which contain only
such states are both finite. Since Procedure 1 does not
halt, there exists an integer i ≥ 0 and a state z0 ∈ Zi

with deg(z0) = k′ ≥ k+1 where k is a constant in Con-
dition 2. Note that k′ ≤ i by the definition of deg(z0)
and the construction in Procedure 1. By Lemma 4,
there exists a Σ-term s0 such that s0 �∗Ai

z0. Since
deg(z0) ≥ 1, z0 can be written as z0 = 〈· · · [z′1, q′1] · · ·〉
(= 〈ξ〉, including the case that z0 = [z′1, q

′
1]) and

deg(z0) = deg([z′1, q′1]). The state z0 = 〈ξ〉 is intro-
duced in Step 3 (b) of Procedure 1 or ADDREC when
the loop counter of the procedure is i′ ≤ i. Hence there
exists a rewrite rule l → r ∈ R, a state z′1 ∈ Zi′−1 and
a substitution ρ:V → Zi′−1 such that lρ �∗Ai′−1

z′1 and
r = q1(r1). By construction, 〈r1ρ〉 → [z′1, q1] is added
to ∆i′ . By Lemma 13, deg(〈r1ρ〉) ≤ deg([z′1, q1]). By
Lemma 3, ξ is a subterm of r1ρ, and hence k′ = deg(z0)
= deg([z′1, q

′
1]) ≤ deg(〈r1ρ〉). Hence, deg(z′1) ≥ k′ − 1.

Since s0 �∗Ai
z0 = 〈ξ〉 and ξ is a subterm of r1ρ, there

exists a Σ-term t0 such that t0 �∗Ai
〈r1ρ〉 �Ai [z1, q1]

and s0 is a subterm of t0. By Lemma 6 (B), there exists
a Σ-term s1 such that s1 →∗

R q1(t0) and s1 �∗Ai−1
z1.

Summarizing, s1 �∗Ai−1
z1, s1 →∗

R q1(t0), deg(z1) ≥
k′ − 1, and s0 is a subterm of t0. Repeating the above
argument, we can see that there exist states zj ∈ Zi−j

(1 ≤ j ≤ i), markers qj ∈ Q (1 ≤ j ≤ i), Σ-terms sj

(0 ≤ j ≤ i), tj (0 ≤ j ≤ i− 1) such that:

sj �∗Ai−j
zj , sj →∗

R qj(tj−1),deg(zj) ≥ k′ − j

and sj−1 is a subterm of tj−1 (1 ≤ j ≤ i).
(7)

Since sj →∗
R qj(tj−1) (1 ≤ j ≤ i), depthQ(sj) ≥

depthQ(tj−1) + 1 by Lemma 12. Since sj is a subterm
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of tj (0 ≤ j ≤ i− 1), depthQ(tj) ≥ depthQ(sj). Hence,
depthQ(si) ≥ depthQ(s0) + i ≥ i ≥ k′. Since zi is use-
ful by Lemma 4, there exists a Σ-term t′, a position
o ∈ Pos(t′) and a final state pf ∈ Pfinal such that

t′ �∗A t′[o← zi] �∗A pf . (8)

Let t = t′[o ← si], then t �∗A t′[o ← zi] �∗A pf ∈ Pfinal

by (7) and (8). Thus, t ∈ L(A) holds. Furthermore,
depthQ(t) ≥ depthQ(si) ≥ k′ ≥ k + 1. This conflicts
with Condition 2. Therefore, Procedure 1 halts. ✷

Theorem 4: For any TA A and an LT-TRS R which
satisfy conditions (1) and (2) of Lemma 14, (→∗

R)
(L(A)) is recognizable.

Proof. By Lemmas 9 and 14. ✷

Example 6: Let F = {add , s′, 0} and Q = {s}. The
following TRS R4 is a simple LT-TRS.

R4 =




add(s(x), s(y))→ s(s′(add(x, y)))
add(s(x), 0)→ s(x)
add(0, s(y))→ s(y)

Let R5 = {s′(x) → s(x), add (0, 0) → 0}, then the re-
lation →∗

R4
· →∗

R5
defines addition on natural num-

bers. Since we can easily see that R5 is an EPR-
TRS [13], for any TA A such that L(A) is marker-
bounded, (→∗

R5
)((→∗

R4
)(L(A))) is always recognizable.

✷

R1, R2, R3 in the examples 1 through 4 are also simple
LT-TRSs. As mentioned in Sect. 2.3, a TRS in Réty’s
subclass [12] is C-EPR. The subclass of TRSs defined
in [12] and the subclass of simple LT-TRSs are incom-
parable. In fact, any non-left-linear TRS in the former
class is not an LT-TRS. On the other hand, {f (q(x))→
q(f(f(x)))} belongs to the latter class but does not
belong to the former class. Also the class of marker-
bounded sets and C are incomparable. For example,
consider R3 of Example 5. L(A) = {f (gn(c)) | n ≥ 0}
is not marker-bounded but R3 belongs to Réty’s sub-
class and L(A) belongs to C.

Corollary 2: For a finite set T of ground terms and
a simple LT-TRS R, (→∗

R)(T ) is recognizable. ✷

Corollary 3: For a simple LT-TRS R, reachability
and joinability are decidable.

Proof. The reachability problem is to decide whether
for a given TRSR andΣ-terms s and t, s→∗

R t holds or
not. It is obvious that s →∗

R t if and only if t ∈ (→∗
R)

({s}). The latter condition is decidable by Lemma 1
and Corollary 2.

Decidability of joinability can easily be verified by
noting that ∃w: s →∗

R w and t →∗
R w if and only if

(→∗
R)({s}) ∩ (→∗

R)({t}) �= ∅. ✷

6. Conclusion

In this paper, a new subclass of TRSs called LT-TRSs is
defined and a sufficient condition for an LT-TRS to ef-
fectively preserve recognizability is provided. The sub-
class of LT-TRSs satisfying the condition contains sim-
ple EPR-TRSs which do not belong to any of the known
decidable subclasses of EPR-TRSs.

Extending the proposed class is a future study.
For example, Procedure 1 could be extended by packed
state technique used in [14] so that Procedure 1 is sound
even if the left-linearity condition is dropped for an in-
put LT-TRS. Finding a more general sufficient condi-
tion on a TA A to satisfy that (→∗

R)(L(A)) is recogniz-
able for any LT-TRS R is another interesting question.
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Appendix: Proof of the Lemmas

A.1 Proof of Lemma 4

Assume that every state p ∈ P is useful and show that
every state z ∈ Zi is useful in Ai by induction on i (A
proof for reachable states is easier and omitted). The
basis case is obvious. Assume that Step 3 is executed
for a rule l → q(r1), state z ∈ Zi−1 and substitution
ρ:V → Zi−1 and states 〈r1ρ〉, [z, q] and some states
of the form 〈tρ〉 are constructed. By Lemma 3, t is a
subterm of r1. We show all these new states are useful.
By the inductive hypothesis, z is useful and hence there
exists a Σ-term t, a position o ∈ Pos(t) and a final state
pf ∈ Pfinal such that

t �∗Ai−1
t[o← z] �∗Ai−1

pf . (A· 1)

Let Var(l) = {x1, . . . , xn}. By the inductive hypothe-
sis, xjρ is useful and thus reachable in Ai−1, and hence
there exists a Σ-term sj such that sj �∗Ai−1

xjρ for
1 ≤ j ≤ h. Let σ = {xj �→ sj | 1 ≤ j ≤ h}, then

q(r1σ) �∗Ai
q(〈r1ρ〉) �Ai q([z, q]) � z. (A· 2)

By (A· 1) and (A· 2),

t[o← q(r1σ)] �∗Ai
t[o← z] �∗Ai−1

pf . (A· 3)

All the new states appear in (A· 3) and thus they are
useful. ✷

A.2 Proof of Lemma 5

(i) Consider the condition (6) lρ �∗Ai−1
z in Step 3.

An ε-rule added in Step 3 (a) is of the form rρ → z
where r ∈ V . Note that since R is an LT-TRS, for any
variable position oj in l, oj is written as oj = o′j · 1
and l/o′j = qj(xj) where qj ∈ Q. Since no ε-transition
occurs at any variable position oj in (6), each xjρ (es-
pecially, rρ) is either in P or of the form [z′, q′] by
Lemma 2 (ii). Similarly, since no ε-transition occurs at
the root position in (6), z is either in P or of the form
〈τρ〉 by Lemma 2 (i) and (ii).

(ii) Obvious from Step 3 (b) of Procedure 1. ✷

A.3 Proof of Lemma 10

We prove the lemma by induction on i. If i = 0 then

the lemma holds clearly. Suppose that q([z, q]) → z is
added to ∆i in Step 3 (b). Then there exists a rewrite
rule l → r, a state z ∈ Zi−1 and a substitution ρ:V →
Zi−1 satisfying lρ �∗Ai−1

z. Since R is an I/O-separated
LT-TRS, (i) l = f(t1, . . . , tn) (f ∈ FI) or (ii) l = t1
where each tj is a ground term or tj = qj(lj) such that
qj ∈ Q and lj is a variable or a ground term.

(i) If l = f(t1, . . . , tn) then the transition se-
quence lρ �∗Ai−1

z can be written as lρ �∗Ai−1

f(z1, . . . , zn) �Ai−1 z. Since f ∈ FI , by the dis-
cussion before the above claim, f(z1, . . . , zn) →
z ∈ ∆0 and thus z ∈ P .

(ii) If l is a ground term then for the sequence lρ(=
l) �∗Ai−1

z, we can see z ∈ P or z = 〈l〉. If l =
q1(l1) (q1 ∈ Q) then lρ �∗Ai−1

z can be written
as lρ �∗A0

q1(p′) �Ai−1 z (p′ ∈ P) or lρ �∗Ai−1

q1([z, q1]) �Ai−1 z. In the former case, z ∈ P . In
the latter case, by the induction hypothesis, z ∈ Z
or z = 〈τ〉 where τ is the left-hand side of a rule in
R.

Thus the lemma holds in every case. ✷
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