
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003
285

PAPER Special Issue on Selected Papers from LA Symposium

Layered Transducing Term Rewriting System and Its

Recognizability Preserving Property

Toshinori TAKAI†, Hiroyuki SEKI††, Regular Members, Youhei FUJINAKA††, Nonmember,
and Yuichi KAJI††, Regular Member

SUMMARY A term rewriting system which effectively pre-
serves recognizability (EPR-TRS) has good mathematical prop-
erties. In this paper, a new subclass of TRSs, layered transduc-
ing TRSs (LT-TRSs) is defined and its recognizability preserving
property is discussed. The class of LT-TRSs contains some EPR-
TRSs, e.g., {f(x) → f(g(x))} which do not belong to any of the
known decidable subclasses of EPR-TRSs. Bottom-up linear tree
transducer, which is a well-known computation model in the tree
language theory, is a special case of LT-TRS. We present a suffi-
cient condition for an LT-TRS to be an EPR-TRS. Also reacha-
bility and joinability are shown to be decidable for LT-TRSs.
key words: term rewriting system, tree automaton, recogniz-
ability, recognizability preserving property, layered transducing
TRS

1. Introduction

Tree automaton is a natural extension of finite-state
automaton on strings. A set of ground terms (tree lan-
guage) T is recognizable if there exists a tree automa-
ton which accepts T . Tree automaton inherits good
mathematical properties from finite-state automaton.
For example, the class of recognizable sets is closed un-
der boolean operations (union, intersection and com-
plementation), and decision problems such as empti-
ness and membership are decidable for a recognizable
set. Let L(A) denote the language accepted by a tree
automaton A. For a TRS R and a tree language T ,
define (→∗

R)(T) = {t | ∃s ∈ T s.t. s →∗
R t}. A TRS

R effectively preserves recognizability (abbreviated as
EPR) if for any tree automaton A, (→∗

R)(L(A)) is
also recognizable and a tree automaton A∗ such that
L(A∗) = (→∗

R)(L(A)) can be effectively constructed.
Due to the above mentioned properties of recogniz-
able sets, some important problems, e.g., reachability,
joinability and local confluence are decidable for EPR-
TRSs [8], [9]. Furthermore, with additional conditions,
strong normalization property, neededness and unifia-
bility become decidable for EPR-TRSs [4], [11], [14].

The problem to decide whether a given TRS is
EPR is undecidable [7], and decidable subclasses of

Manuscript received March 22, 2002.
Manuscript revised August 20, 2002.

†The author is with National Institute of Advanced In-
dustrial Science and Technology, Amagasaki-shi, 661–0974
Japan.

††The authors are with Nara Institute of Science and
Technology, Ikoma-shi, 630–0192 Japan.

EPR-TRSs have been proposed in a serie of works [3],
[9]–[11], [13], [14]. These subclasses put a rather strong
constraint on the syntax of the right-hand side of a
rewrite rule. For example, the right-hand side of a
rewrite rule in a linear semi-monadic TRS (L-SM-
TRS) [3] is either a variable or f(t1, t2, . . . , tn) where
each ti (1 ≤ i ≤ n) is either a variable or a ground
term. Linear generalized semi-monadic TRS (L-GSM-
TRS) [9] and right-linear finite path-overlapping TRS
(RL-FPO-TRS) [14] weaken this constraint, but some
simple EPR-TRSs such as {f (x) → f(g(x))} still do
not belong to any of the known decidable subclasses of
EPR-TRSs. To show that a given TRS R is EPR, for
a given tree automaton A, a tree automaton A∗ such
that L(A∗) = (→∗

R)(L(A)) should be constructed. The
above mentioned restrictions on the right-hand side of
a rewrite rule are sufficient conditions for a procedure
of automata construction to halt.

In this paper, a new subclass of TRSs, layered
transducing TRSs (LT-TRSs) is defined and its recog-
nizability preserving property is discussed. Intuitively,
an LT-TRS is a TRS such that certain unary function
symbols are specified as markers and a marker moves
from leaf to root in each rewrite step. Bottom-up lin-
ear tree transducer [6], which is a well-known computa-
tion model in the tree language theory, can be consid-
ered as a special case of LT-TRS. We propose a pro-
cedure which, for a given tree automaton A and an
LT-TRS R, constructs a tree automaton A∗ such that
L(A∗) = (→∗

R)(L(A)). The procedure introduces a
state [z, q] which is the product of a state z already
belonging to A∗ and a marker q and constructs a tran-
sition rule which is the product of a transition rule al-
ready in A∗ and a rewrite rule in R.

However, an LT-TRS is not always EPR and the
above procedure does not always halt. We present a
sufficient condition for the procedure to halt. The sub-
class of LT-TRSs which satisfy the sufficient condition
is still incomparable with any of the known decidable
subclasses of EPR-TRSs. Especially, the class contains
some EPR-TRSs, such as {f (x)→ f(g(x))} mentioned
above. Finally, reachability and joinability are shown
to be decidable for LT-TRSs.

The rest of the paper is organized as follows. After
providing preliminary definitions in Sect. 2, LT-TRS is
defined in Sect. 3. A procedure for automata construc-

286
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

tion is presented and the partial correctness of the pro-
cedure is proved in Sect. 4. Sufficient conditions for the
construction procedure to halt are presented in Sect. 5.
Also reachability and joinability are shown to be decid-
able for LT-TRS in Sect. 5.

2. Preliminaries

2.1 Term Rewriting Systems

We use the usual notions for terms, substitutions, etc
(see [1] for details). Let Σ be a signature and V be an
enumerable set of variables. An element in Σ is called
a function symbol and the arity of f ∈ Σ is denoted
by a(f). A function symbol c with a(c) = 0 is called a
constant. The set of terms, defined in the usual way, is
denoted by T (Σ,V). The set of variables occurring in t
is denoted by Var(t). A term t is ground if Var(t) = ∅.
The set of ground terms is denoted by T (Σ). A ground
term in T (Σ) is also called a Σ-term. A term is linear
if no variable occurs more than once in the term. A
substitution σ is a mapping from V to T (Σ,V), and
written as σ = {x1 �→ t1, . . . , xn �→ tn} where ti with
1 ≤ i ≤ n is a term which substitutes for the variable
xi. The term obtained by applying a substitution σ to a
term t is written as tσ. A position in a term t is defined
as a sequence of positive integers as usual, and the set of
all positions in a term t is denoted by Pos(t). An empty
sequence λ is called the root position. A subterm of t at
a position o is denoted by t/o. If t/o is a variable then o
is called a variable position. If a term t is obtained from
a term t′ by replacing the subterms of t′ at positions
o1, . . . , om (oi ∈ Pos(t′), oi and oj are disjoint if i �= j)
with terms t1, . . . , tm, respectively, then we write t =
t′[oi ← ti | 1 ≤ i ≤ m].

A rewrite rule over a signature Σ is an ordered
pair of terms in T (Σ,V), written as l → r. The vari-
able restriction (Var(r) ⊆ Var(l) and l /∈ V) is not
assumed unless stated otherwise. A term rewriting sys-
tem (TRS) over Σ is a finite set of rewrite rules over
Σ. For terms t, t′ and a TRS R, we write t →R t′

if there exists a position o ∈ Pos(t), a substitution σ
and a rewrite rule l → r ∈ R such that t/o = lσ and
t′ = t[o← rσ]. Define→∗

R to be the reflexive and tran-
sitive closure of→R. Also the transitive closure of→R
is denoted by →+

R. The subscript R of →R is omitted
if R is clear from the context. A redex (in R) is an
instance of l for some l → r ∈ R. A normal form (in
R) is a term which has no redex as its subterm. Let
NFR denote the set of all ground normal forms in R.
A rewrite rule l → r is left-linear (resp. right-linear) if
l is linear (resp. r is linear). A rewrite rule is linear if
it is left-linear and right-linear. A TRS R is left-linear
(resp. right-linear, linear) if every rule inR is left-linear
(resp. right-linear, linear).

Notions such as reachability, joinability, confluence
and local confluence are defined in the usual way.

2.2 Tree Automata

A tree automaton (abbreviated as TA) [6] is defined by
a 4-tuple A = (Σ,P ,∆,Pfinal) where Σ is a signature,
P is a finite set of states, Pfinal ⊆ P is a set of final
states, and ∆ is a finite set of transition rules of the
form f(p1, . . . , pn) → p where f ∈ Σ, a(f) = n, and
p1, . . . , pn, p ∈ P or of the form p′ → p where p′, p ∈ P .
A rule with the former form is called a non-ε-rule and
a rule with the latter form is called an ε-rule. In this
paper, we use p, p′, p1, p2, . . . to denote a state. Con-
sider the set of ground terms T (Σ∪P) where we define
a(p) = 0 for p ∈ P . A transition of a TA can be re-
garded as a rewrite relation on T (Σ ∪P) by regarding
transition rules in ∆ as rewrite rules on T (Σ ∪P). For
terms t and t′ in T (Σ ∪P), we write t �A t′ if and only
if t→∆ t′. If t �A t′ is caused by an ε-rule then t �A t′

is called an ε-transition. The reflexive and transitive
closure and the transitive closure of �A is denoted by
�∗A and �+

A respectively. For a TA A and t ∈ T (Σ), if
t �∗A pf for a final state pf ∈ Pfinal , then we say t is
accepted by A. The set of ground terms accepted by A
is denoted by L(A). Also let Lp(A) = {t | t �∗A p} for a
state p. A set T of ground terms is recognizable if there
is a TA A such that T = L(A). A state p ∈ P is reach-
able in A if there exists a Σ-term t such that t �∗A p.
A state p ∈ P is useful in A if there exists a Σ-term t,
a position o ∈ Pos(t) and a final state pf ∈ Pfinal such
that t �∗A t[o ← p] �∗A pf . It is not difficult to show
that for a given TA A, we can construct a TA A′ which
satisfies L(A′) = L(A) and has only useful states. Rec-
ognizable sets inherit some useful properties of regular
(string) languages.
Lemma 1 [6]: The class of recognizable sets is effec-
tively closed under union, intersection and complemen-
tation. For a recognizable set T , the following problems
are decidable. (1) Does a given ground term t belong
to T ? (2) Is T empty? ✷

2.3 TRS which Preserves Recognizability

For a TRS R and a set T of ground terms, define
(→∗

R)(T) = {t | ∃s ∈ T s.t. s →∗
R t}. A TRS R

is said to effectively preserve recognizability if, for any
tree automaton A, the set (→∗

R)(L(A)) is also recogniz-
able and we can effectively construct a tree automaton
which accepts (→∗

R)(L(A)). In this paper, the class of
TRSs which effectively preserve recognizability is writ-
ten as EPR-TRS.

Theorem 1: If a TRS R belongs to EPR-TRS, then
the reachability relation and the joinability relation for
R are decidable [8]. It is also decidable whether R is
locally confluent or not [9]. ✷

Unfortunately it is undecidable whether a given

TAKAI et al.: LT-TRS AND ITS RECOGNIZABILITY PRESERVING PROPERTY
287

TRS belongs to EPR-TRS or not [7]. Therefore de-
cidable subclasses of EPR-TRS have been proposed,
for example, ground TRS by Brainerd [2], right-linear
monadic TRS (RL-M-TRS) by Salomaa [13], linear
semi-monadic TRS (L-SM-TRS) by Coquidé et al. [3],
right-linear semi-monadic TRS (RL-SM-TRS), which
is equivalent to the inverse of left-linear growing
TRS by Nagaya and Toyama [11], linear generalized
semi-monadic TRS (L-GSM-TRS) by Gyenizse and
Vágvölgyi [9], and right-linear finite path overlapping
TRS (RL-FPO-TRS) by Takai et al. [14].

Theorem 2: RL-M-TRS ⊂ RL-SM-TRS ⊂ RL-FPO-
TRS ⊂ EPR-TRS and ground TRS ⊂ L-SM-TRS ⊂ L-
GSM-TRS ⊂ RL-FPO-TRS. All inclusions are proper.

✷

Réty [12] defined a subclass of TRSs and showed that
the class effectively preserves recognizability for the
subclass C of tree languages of which member is a set
{tσ | t is a linear term and σ is a substitution such that
xσ is a constructor term for each x ∈ Var(t)} (abbre-
viated as C-EPR). R3 of Example 5 in Sect. 4 is not an
EPR-TRS but it is C-EPR.

3. Layered Transducing TRS

A new class of TRS named layered transducing TRS
(LT-TRS) is proposed in this section.

Definition 1: Let Σ = F ∪ Q be a signature where
F ∩Q = ∅. A function symbol q in Q is called a marker
and a(q) = 1. A layered transducing TRS (LT-TRS) is
a linear TRS over Σ in which each rewrite rule has one
of the following forms:

(i) f(t1, · · · , tn)→ r, or
(ii) t1 → r

where

1. f ∈ F ,
2. ti (1 ≤ i ≤ n in Case (i) and i = 1 in Case (ii)) is

either a ground term or a term of the form qi(li)
where qi ∈ Q and li is either a variable or a ground
term and

3. r is either a variable or a term of the form q(r1)
where q ∈ Q and r1 ∈ T (F ,V). ✷

Example 1: Let g ∈ F with a(g) = 1 and let q ∈ Q.
R1 = {q(x)→ q(g(x))} is an LT-TRS. Note that R1 is
an EPR-TRS but is not an FPO-TRS [14]. ✷

Example 2: Let f, g, h ∈ F , q1, q2, q ∈ Q.
R2 = {f (q1(x1), q2(x2)) → q(g(h(x2), x1)), q1(x1) →
q(h(x1))} is an LT-TRS. ✷

In this paper, we use a, b, c to denote a constant, f, g, h
to denote a non-marker symbol, q, q′, q1, q2, . . . to de-
note a marker and s, t, t1, t2, . . . to denote a term in
T (Σ,V).

4. Construction of Tree Automata

In this section, we will present a procedure which takes
an LT-TRS R and a tree automaton A as an input and
constructs a TA A∗ such that L(A∗) = (→∗

R)(L(A)) if
the procedure halts. Let A = (Σ,P ,∆,Pfinal) be a TA.
By the definition of (→∗

R)(L(A)),
if t �∗A p and t→∗

R s then s �∗A∗ p also holds.

To satisfy this property, the proposed procedure starts
with A0 = A and constructs a series of TAs A0,A1,
We define A∗ as the limit of this chain of TAs. For
example, let f(p1, p2)→ p ∈ ∆ and f(q1(x1), q2(x2))→
q(g(h(x2), x1)) ∈ R and assume that

t = f(q1(t1), q2(t2)) (1)

�∗A f(q1(p′1), q2(p
′
2)) �∗A f(p1, p2) �A p. (2)

Note that f(q1(t1), q2(t2)) →R q(g(h(t2), t1))(= t′)
and hence A∗ is required to satisfy q(g(h(t2), t1)) �∗A∗
p. The procedure constructs a ‘product’ rule of
f(p1, p2) → p and f(q1(x1), q2(x2)) → q(g(h(x2), x1))
and some auxiliary rules so that A∗ can simu-
late the transition sequence (2) when A∗ reads
q(g(h(t2), t1)). More precisely, new states [p, q], 〈h(p′2)〉
and 〈g(h(p′2), p′1)〉 are introduced and rules

h(p′2) → 〈h(p′2)〉,
g(〈h(p′2)〉, p′1) → 〈g(h(p′2), p′1)〉,
〈g(h(p′2), p′1)〉 → [p, q]

(3)

are constructed. The following transition rule is also
added so that s �∗A∗ [p, q] if and only if q(s) �∗A∗ p.

q([p, q])→ p. (4)

When A∗ reads q(g(h(t2), t1)), we can see by (2) that

t′ = q(g(h(t2), t1)) �∗A q(g(h(p′2), p
′
1)). (5)

A∗ guesses that in a term t such that t →R t′, the
markers q1 and q2 were placed above the subterms t1
and t2, respectively, as in (1) and A∗ behaves as if it
reads q1 and q2 at p′1 and p′2. That is, A∗ simulates the
transition f(p1, p2) �A p by rules (3). Also see Fig. 1.

t′ �∗A q(g(h(p′2), p
′
1)) �A q(g(〈h(p′2)〉, p′1))

�A q(〈g(h(p′2), p′1)〉) �A q([p, q]) �A p

t1 t2

q1 q2

f

p′1

p1

p′2

p2

p

→R

t2

h

g

q

t1
p′2

〈h(p′2)〉
p′1
〈g(h(p′2), p

′
1)〉

[p, q]

p

✁✁ ❆❆ ✁✁ ❅❅ ✁✁ ❅❅

✁✁ ❆❆

�� ❅❅ �� ❅❅
���

���

���

✏✏✮

✏✏✮
���

❅❅❘ ✏✏✮
✛

✘✘✘✘✾

✏✏✮

Fig. 1 An idea of automata construction.

288
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

The last transition is by (4); A∗ encounters the marker
q at the state [p, q], which means that the guess was
correct, and A∗ changes its state to p by forgetting the
guess q. The construction of new rules and states is
repeated until Ai saturates. Hence, states with more
than one nesting such as [〈f([〈f([p, q1])〉, q2])〉, q3] may
be defined in general. For a state z′ ∈ Zi, we identify
〈z′〉 with z′. then we implicitly assume that F ∩Q = ∅
and Q is a set of markers.

As mentioned above, the TA construction proce-
dure introduces a state of the form [z, q] or 〈t〉 where
z ∈ Z, q is a marker, t ∈ T (Σ ∪ Z)\Z and Z is the set
of states of the TA being constructed. To slightly abuse
the notation, for a state z, let 〈z〉 denote z itself. For
example, if we write 〈t1〉 where t1 = [p, q] then 〈t1〉 de-
notes [p, q]. Similarly, if we write 〈t2〉 where t2 = 〈f(p)〉
then 〈t2〉 denotes 〈f(p)〉 since 〈f(p)〉 itself is a state.

Procedure 1: The set difference is denoted by A \
B(= {x | x ∈ A and x /∈ B}). Suppose Σ = F ∪Q and
F ∩Q = ∅.

Input: a tree automaton A = (Σ,P ,∆,Pfinal) and an
LT-TRS R over Σ. Without loss of generality,
assume that (i) A has no ε-rule, (ii) every state in
P is reachable and (iii) there exists a state pany

such that Lpany (A) = T (Σ).
Output: a tree automatonA∗ such that L(A∗) = (→∗

R)
(L(A)).

Step 1 Let i := 0 and A0 = (Σ,Z0,∆0,Pfinal) :=
A. In Step 2–Step 4, this procedure constructs
A1,A2, · · · by adding new states and transition
rules to A0.

Step 2 Let i := i + 1 and Ai = (Σ,Zi,∆i,Pfinal) :=
Ai−1.

Step 3 For each rewrite rule l → r ∈ R, state z ∈ Zi−1

and substitution ρ:V → Zi−1 such that:

1. xρ = pany for x ∈ Var(r) \ Var(l),
2. lρ �∗Ai−1

z (6)

holds and no ε-transition occurs at the root
position or at the variable positions oj (1 ≤
j ≤ h) where l has h distinct variables,
Var(l) = {x1, . . . , xh}, and xj (1 ≤ j ≤ h)
occurs at a position oj in l,

do the following:

(a) if r ∈ V and rρ �= z, then add rρ→ z to ∆i;
(b) if r /∈ V , then let r = q(r1)

add 〈r1ρ〉 and [z, q] to Zi;
add 〈r1ρ〉 → [z, q] and q([z, q]) → z
to ∆i;
do ADDREC(r1, i, ρ).

Step 4 If Ai−1 = Ai, then let A∗ := Ai and output
A∗, else go to Step 2. ✷

Procedure 2: (ADDREC) This procedure takes a
term t ∈ T (F ,V), an integer i ≥ 1 and a substitution
ρ:V → Zi−1 as an input, and adds new states and
transition rules to Ai so that tσ �∗Ai

〈tρ〉 holds for
every substitution σ:V → T (Σ) such that σ = {xj �→
sj | sj �∗Ai

xjρ, 1 ≤ j ≤ h}.

ADDREC(t, i, ρ)=
if t = x then return;
else let t = h(t1, · · · , tn)
add 〈t1ρ〉, · · · , 〈tnρ〉 to Zi;
add h(〈t1ρ〉, · · · , 〈tnρ〉) → 〈tρ〉 to ∆i;
do ADDREC(tj , i, ρ) (1 ≤ j ≤ n). ✷

Example 3: Let A = (Σ,P ,∆,Pfinal) be a TA
where Σ = F ∪ Q, F = {f, g, h, c}, Q =
{q1, q2, q}, P = {p1, p

′
1, p2, pc, pf}, Pfinal = {pf}

and ∆ = {c → pc, q1(pc) → p′1, q1(p′1) →
p1, q2(pc) → p2, f(p1, p2) → pf}. It can be
easily verified that L(A) = {f (q1(q1(c)), q2(c))}.
We apply Procedure 1 to A and LT-TRS R2 of
Example 2. For i = 1, f(q1(x1), q2(x2)) →
q(g(h(x2), x1)) ∈ R2 is considered. Let ρ =
{x1 �→ p′1, x2 �→ pc}. Since f(q1(x1), q2(x2))ρ =
f(q1(p′1), q2(pc)) �∗A0

f(p1, p2) �A0 pf , condition (6)
is satisfied and rules 〈g(h(pc), p′1)〉 → [pf , q] and
q([pf , q])→ pf are added to ∆1. Also g(〈h(pc)〉, p′1)→
〈g(h(pc), p′1)〉 and h(pc) → 〈h(pc)〉 are constructed
by ADDREC(g(h(x2), x1), 1, ρ). Consider q1(x1) →
q(h(x1)) ∈ R2. Since q1(p′1) �A0 p1, condition (6) is
satisfied and rules 〈h(p′1)〉 → [p1, q], q([p1, q])→ p1 and
h(p′1) → 〈h(p′1)〉 are constructed. For ρ′ = {x1 �→
pc}, 〈h(pc)〉 → [p′1, q] and q([p′1, q]) → p′1 are con-
structed. The transition rules constructed in Proce-
dure 1 are listed in Table 1. Since no rule is added to
A2, the procedure halts and we obtain A∗ = A2 as the
output. We can verify that L(A∗) = (→∗

R2
)(L(A)). ✷

Example 4: Let A = (Σ,P ,∆,Pfinal), Σ = F ∪ Q,
F = {c, g}, Q = {q}, P = {pc, pf}, Pfinal = {pf} and
∆ = {c → pc, q(pc) → pf}. Clearly, L(A) = {q(c)}.
If we apply Procedure 1 to A and R1 of Example 1,
then for i = 1 of the procedure, q(x) → q(g(x)) ∈ R1

and ρ1 = {x �→ pc} are considered and g(pc)→ 〈g(pc)〉,
〈g(pc)〉 → [pf , q] and q([pf , q]) → pf are added. For
i = 2, q(x) → q(g(x)) ∈ R1 and ρ2 = {x �→
[pf , q]} are considered and g([pf , q]) → 〈g([pf , q])〉 and
〈g([pf , q])〉 → [pf , q] are added. Since no rule is added

Table 1 The transition rules constructed by Procedure 1
(Example 3).

Step 3 ADDREC

A1 〈g(h(pc), p′1)〉 → [pf , q] g(〈h(pc)〉, p′1) →
q([pf , q]) → pf 〈g(h(pc), p′1)〉
〈h(p′1)〉 → [p1, q] h(pc) → 〈h(pc)〉
q([p1, q]) → p1 h(p′1) → 〈h(p′1)〉
〈h(pc)〉 → [p′1, q]
q([p′1, q]) → p′1

TAKAI et al.: LT-TRS AND ITS RECOGNIZABILITY PRESERVING PROPERTY
289

when i = 3, the procedure halts with A∗ = A2. Clearly,
L(A∗) = {q(gn(c)) | n ≥ 0}. Note that the transition
g([pf , q]) �A∗ 〈g([pf , q])〉 �A∗ [pf , q] simulates infinitely
many rewrite steps caused by the rule q(x)→ q(g(x)).
In the methods proposed in [14] and [5] (without ap-
proximation), infinitely many states such as 〈gn(pc)〉
and 〈q(gn(pc))〉 (n ≥ 1) are introduced to simulate
each rewrite step q(gn−1(c)) →R1 q(gn(c)) by a dif-
ferent transition g(〈gn−1(pc)〉) � 〈gn(pc)〉, and thus the
construction does not halt in their methods. ✷

Example 5: Let A = (Σ,P ,∆,Pfinal), Σ = F ∪ Q,
F = {c, f}, Q = {q}, P = Pfinal = {p}, ∆ = {c →
p, f(p)→ p, q(p)→ p} and R3 = {f (q(x))→ q(f(x))}.
R3 is an LT-TRS. Assume that Procedure 1 is exe-
cuted for A and R3. For i = 1, consider a substitution
ρ1 = {x �→ p}, then f(q(x))ρ1 = f(q(p)) �∗A0

p. Hence,
f(p) → 〈f(p)〉, 〈f(p)〉 → [p, q] and q([p, q]) → p are
added to ∆1. Next, for a substitution ρ2 = {x �→ [p, q]},
f(g(x))ρ2 = f(q([p, q])) �A1 f(p) �A0 p holds and
f([p, q]) → 〈f([p, q])〉 and 〈f([p, q])〉 → [p, q] are added
to ∆2. For the same ρ2, f(q(x))ρ2 �A1 f(p) �A1

〈f(p)〉 also holds and 〈f([p, q])〉 → [〈f(p)〉, q] and
q([〈f(p)〉, q]) → 〈f(p)〉 are added to ∆2. The proce-
dure repeats a similar construction and does not halt.

✷

Note that R3 is not an EPR-TRS since for a recogniz-
able set T1 = {(fq)n(c) | n ≥ 0}, (→∗

R3
)(T1)∩NFR3 =

{qn(fn(c)) | n ≥ 0} is not recognizable.
We first show a few technical lemmas which will be

used for the proof of soundness (Lemma 6) and com-
pleteness (Lemma 7) of Procedure 1.

Lemma 2: (i) If f(z1, . . . , zn) → z ∈ ∆i \ ∆0 (i ≥
1, f ∈ F), then z = 〈τρ〉 for some τ ∈ T (F ,V) and
ρ:V → Zi−1. (ii) If q(z1)→ z ∈ ∆i \∆0 (i ≥ 1, q ∈ Q),
then z ∈ P or z = 〈τρ〉 for some τ and ρ, and z1 = [z, q].

Proof. (i) Obvious from ADDREC. (ii) Obvious
from Step 3 (b) of Procedure 1. ✷

Lemma 3: If Step 3 is executed for a rule l → q(r1),
state z ∈ Zi−1 and substitution ρ:V → Zi−1 and a state
of the form 〈tρ〉 is constructed, then t is a subterm of
r1.

Proof. A state 〈tρ〉 mentioned in the lemma is con-
structed either Step 3 (b) or ADDREC. If 〈tρ〉 is con-
structed in Step 3 (b), then t = r1 and the lemma holds.
Assume 〈tρ〉 is constructed in ADDREC. Note that
when ADDREC is called from Step 3 (b), its first ar-
gument is r1 and after that ADDREC is recursively
called based on the term structure of its first argument.
Hence, t is a subterm of r1 in this case. ✷

Lemma 4: Let A = (Σ,P ,∆,Pfinal) be a TA. As-
sume that every state p ∈ P is reachable (resp. useful)
in A. If Procedure 1 is executed for A and an LT-TRS
R, then every state z ∈ Zi constructed during the exe-
cution of Procedure 1 is reachable (resp. useful) in Ai.

Proof. See Appendix. ✷

Note that an ε-rule is constructed only in Step 3 (a)
or (b) of Procedure 1.

Lemma 5: (i) An ε-rule in ∆i constructed in
Step 3 (a) of Procedure 1 is one of the following forms:

p′ → p, [z′, q′]→ p,
p′ → 〈τρ〉, [z′, q′]→ 〈τρ〉

where p, p′ ∈ P , z′ ∈ Zi−1, q
′ ∈ Q, τ ∈ T (F ,V) and

ρ:V → Zi−1. (ii) An ε-rule in ∆i constructed in
Step 3 (b) of Procedure 1 is one of the following forms:

p′ → [z, q], [z′, q′]→ [z, q], 〈τρ〉 → [z, q]

where p′ ∈ P , z, z′ ∈ Zi−1, q, q
′ ∈ Q, τ ∈ T (F ,V) and

ρ:V → Zi−1.

Proof. See Appendix. ✷

Lemma 6: (Soundness) Let i ≥ 1, t ∈ T (Σ) and τ ∈
T (Σ,V). Let t �∗Ai

z′′.

(A) If z′′ = p ∈ P then there exists a Σ-term s such
that s �∗Ai−1

p and s→∗
R t.

(B) If z′′ = [z, q] then there exists a Σ-term s such that
s �∗Ai−1

z and s→∗
R q(t).

(C) If z′′ = 〈τρ〉 then there exists a substitution σ:V →
T (Σ) such that τσ →∗

R t and xσ �∗Ai−1
xρ for

x ∈ Var(τ).
Proof. We will prove the lemma by double induction
on i and the length of the transition sequence t �∗Ai

z′′.
In the rest of the proof, for a rule l → r in R, we
assume Var(l) = {x1, . . . , xh} and xj (1 ≤ j ≤ h).
(A) Assume t �∗Ai

p. The following three cases (i)–(iii)
should be considered according to the rule applied in
the last transition in t �∗Ai

p.

(i) If t �∗Ai
z′ �Ai p (z′ ∈ Zi), then by Lemma 5

z′ → p is constructed in Step 3 (a). Hence, there
exists a rewrite rule l → r ∈ R and a substitu-
tion ρ:V → Zi−1 satisfying the conditions 1 and 2
stated in Step 3. Since Step 3 (a) is applied, r ∈ V .
By Lemma 4, there exists a Σ-term sj such that
sj �∗Ai−1

xjρ (1 ≤ j ≤ h). By Lemma 5 (i), we
further consider two subcases, (i-a) z′ = p′ ∈ P
and (i-b) z′ = [z, q] (z ∈ Zi−1, q ∈ Q).
(i-a) If t �∗Ai

p′ �Ai p, then by the inductive hy-
pothesis (A), there exists a Σ-term s′ such that
s′ �∗Ai−1

p′ and s′ →∗
R t. If r = xk for some k

(1 ≤ k ≤ h) then p′ = rρ = xkρ. Let s = l[oj ←
sj | 1 ≤ j ≤ h, j �= k][ok ← s′]. If r /∈ Var(l) then
p′ = rρ = pany . Let s = l[oj ← sj | 1 ≤ j ≤ h]. In
either case, s→R s′ →∗

R t and s �∗Ai−1
lρ �∗Ai−1

p.
(i-b) If t �∗Ai

[z, q] �Ai p, then r ∈ Var(l) and
rρ = xkρ = [z, q] for some k (1 ≤ k ≤ h). By the
inductive hypothesis (B), there exists a Σ-term s′

such that s′ �∗Ai−1
z and s′ →∗

R q(t). Since R is
an LT-TRS, the occurrence ok of xk in l can be

290
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

written as ok = o′ · 1 for some o′ and l/o′ = q(xk).
Let s = l[oj ← sj | 1 ≤ j ≤ h, j �= k][o′ ← s′].
We can see that s →∗

R l[oj ← sj | 1 ≤ j ≤ h, j �=
k][o′ ← q(t)] →R t and s �∗Ai−1

l[oj ← xjρ | 1 ≤
j ≤ h, j �= k][o′ ← z] �∗Ai−1

p.
(ii) If t = f(t1, . . . , tn) �∗Ai

f(z1, . . . , zn) �Ai p (f ∈
F , zj ∈ Zi (1 ≤ j ≤ n)) then f(z1, . . . , zn) →
p ∈ ∆0 and thus zj ∈ P by Lemma 2 (i). By the
inductive hypothesis (A), there exists a Σ-term sj

such that sj →∗
R tj and sj �∗Ai−1

zj for 1 ≤ j ≤ n.
For s = f(s1, . . . , sn), s →∗

R t and s �∗Ai−1
p and

the lemma holds.
(iii) If t = q(t1) �∗Ai

q(z1) �Ai p (q ∈ Q, z1 ∈ Zi)
then z1 ∈ P or z1 = [p, q]. We can prove the
lemma in a similar way to the case (ii), using the
inductive hypothesis (A) when z1 ∈ P and using
the inductive hypothesis (B) when z1 = [p, q].

(B) Assume t �∗Ai
[z, q]. By Lemma 2, the right-

hand side of a non-ε-transition rule constructed in Pro-
cedure 1 does not have the form of [z, q]. Also, by
Lemma 5 (i), an ε-rule constructed in Step 3 (a) does
not have the form of [z, q]. Hence the last rule applied
in t �∗Ai

[z, q] is an ε-rule constructed in Step 3 (b), and
thus there exists a rule l → r ∈ R and a substitution
ρ:V → Zi−1 which satisfies the conditions 1 and 2 in
Step 3. By Lemma 4, there exists a Σ-term sj such
that sj �∗Ai−1

xjρ for 1 ≤ j ≤ h. Note that r = q(r1)
for some r1 ∈ T (F ,V). There are three cases: (i)
t �∗Ai

p �Ai [z, q] (p ∈ P), (ii) t �∗Ai−1
[z′, q′] �Ai−1 [z, q]

(z′ ∈ Zi−1, q
′ ∈ Q) and (iii) t �∗Ai

〈τρ〉 �Ai [z, q]
(τ ∈ T (F ,V), ρ:V → Zi−1). In cases (i) and (ii), either
r1 = xk for some k (1 ≤ k ≤ h) or r1 ∈ Var(r) \ Var(l).
(i) If t �∗Ai

p �Ai [z, q] (p ∈ P), then by the inductive
hypothesis (A), there exists a Σ-term s′ such that
s′ �∗Ai−1

p and s′ →∗
R t. If r1 = xk then p = xkρ.

Let s = l[oj ← sj | 1 ≤ j ≤ h, j �= k][ok ← s′]. If
r1 /∈ Var(l) then p = pany . Let s = l[oj ← sj | 1 ≤
j ≤ h]. In either case, s →R q(s′) →∗

R q(t) and
s �∗Ai−1

lρ �∗Ai−1
z.

(ii) If t �∗Ai−1
[z′, q′] �Ai−1 [z, q] (z′ ∈ Zi−1, q

′ ∈ Q),
then by the inductive hypothesis (B), there exists
a Σ-term s′ such that s′ �∗Ai−1

z′ and s′ →∗
R q′(t).

The rest of the proof is similar to the proof of (A)
(i-b).

(iii) If t �∗Ai
〈τρ〉 �Ai [z, q], then by the inductive hy-

pothesis (C), there exists a substitution σ:V →
T (Σ) such that τσ →∗

R t and xσ �∗Ai−1
xρ for

x ∈ Var(τ). Note that r = q(r1) = q(τ) in this
case. Let s = lσ then s →R rσ = q(τσ) →∗

R q(t)
and s �∗Ai−1

lρ �∗Ai−1
z and the lemma holds.

(C) Assume t �∗Ai
〈τρ〉 for some τ ∈ T (Σ,V) and sub-

stitution ρ:V → Zi−1. There are three cases to con-
sider.

(i) Assume t �∗Ai
z′ �Ai 〈τρ〉 (z′ ∈ Zi). There are two

subcases by Lemma 5 (i).
(i-a) If t �∗Ai

p′ �Ai 〈τρ〉 (p ∈ P), then by the
inductive hypothesis (A), there exists a Σ-term
s′ such that s′ →∗

R t and s′ �∗Ai−1
p′. The rule

p′ → 〈τρ〉 is introduced in Step 3 (a). Hence, there
exists a rewrite rule l → r ∈ R, a state z ∈ Zi−1

and a substitution ρ:V → Zi−1 which satisfies the
conditions in Step 3, lρ �∗Ai−1

〈τρ〉 and r ∈ V . By
Lemma 4, there exists sj such that sj �∗Ai−1

xjρ

(1 ≤ j ≤ h). If r = xk then p′ = rρ = xkρ. Let
s = l[oj ← sj | 1 ≤ j ≤ h, j �= k][ok ← s′]. If
r /∈ Var(l) then p′ = pany . Let s = l[oj ← sj |
1 ≤ j ≤ h]. In either case, s →R s′ →∗

R t and
s �∗Ai−1

lρ �∗Ai−1
〈τρ〉. By the inductive hypothesis

(C), there exists a substitution σ:V → T (Σ) such
that τσ →∗

R s and xσ �∗Ai−1
xρ for x ∈ Var(τ).

Hence, τσ →∗
R s→∗

R t and the lemma holds.
(i-b) The case t �∗Ai

[z, q] �Ai 〈τρ〉 can be treated
in a similar way to (i-a).

(ii) Assume t = q(t′) �∗Ai
q ([〈τρ〉, q]) �Ai 〈τρ〉.

Applying the inductive hypothesis (B) to t′ �∗Ai

[〈τρ〉, q], there exists a Σ-term s′ such that s′ →∗
R

q(t′) = t and s′ �∗Ai−1
〈τρ〉. By the inductive hy-

pothesis (C), there exists a substitution σ:V →
T (Σ) such that τσ →∗

R s′ and xσ �∗Ai−1
xρ for

x ∈ Var(τ). Hence, τσ →∗
R s′ →∗

R t and the
lemma holds.

(iii) Assume t = f(t1, . . . , tn) �∗Ai
f(〈τ1ρ〉, . . . , 〈τnρ〉)

�Ai 〈τρ〉 where τ = f(τ1, . . . , τn). By the inductive
hypothesis (C), there exists a substitution σj :V →
T (Σ) such that τjσj →∗

R tj (1 ≤ j ≤ n). Let σ =
σ1σ2 · · ·σn. Note that dom(σj) is mutually disjoint
since τ is linear. Clearly, τσ = f(τ1, . . . , τn)σ =
f(τ1σ1, . . . , τnσn) →∗

R f(t1, . . . , tn) = t and the
lemma holds.

✷

Lemma 7: (Completeness) If s →∗
R t and s �∗A0

p ∈
P , then there exists an integer i ≥ 0 such that t �∗Ai

p.

Proof. Assume that s→∗
R t and s �∗A0

p. The lemma
is shown by induction on the number of rewrite steps
in s →∗

R t. If s = t then the lemma holds clearly.
Assume s →∗

R t′ →R t. By the inductive hypothesis,
there exists i′ ≥ 0 such that t′ �∗Ai′

p. Consider a
rewrite step t′ →R t. There exists a rewrite rule l →
r ∈ R, a position o in t′ and a substitution σ such
that t′ = t′[o ← lσ] and t = t′[o ← rσ]. Assume
r = q(r1) (q ∈ Q, r1 ∈ T (Σ,V)). (The case when r
is a variable is easier and omitted.) Since t′ = t′[o ←
lσ], the transition sequence t′ �∗Ai′

p can be written as
t′ = t′[o ← lσ] �∗Ai′

t′[o ← lρ] �∗Ai′
t′[o ← z] �∗Ai′

p
for some z ∈ Zi′ and ρ:V → Zi′ . Since lρ �∗Ai′

z,
transition rules which enable r1ρ �∗Ai′+1

〈r1ρ〉 �∗Ai′+1

[z, q] are added to ∆i′+1 in Step 3 of Procedure 1. Also
q([z, q]) → z is added to ∆i′+1 and hence t = t′[o ←
rσ] = t′[o← q(r1σ)] �∗Ai′+1

t′[o← q(r1ρ)] �∗Ai′+1
t′[o←

TAKAI et al.: LT-TRS AND ITS RECOGNIZABILITY PRESERVING PROPERTY
291

q([z, q])] �Ai′+1
t′[o← z] �∗Ai′+1

p and the lemma holds.
✷

Lemma 8: (Partial Correctness) Let A = (Σ, P , ∆,
Pfinal) be a TA without ε-rule and R be an LT-TRS.
Assume that for inputA andR, Procedure 1 constructs
a series of tree automata A0,A1,A2, · · ·. For any term
t ∈ T (Σ) and state p ∈ P ,

there exists a term s ∈ T (Σ) such that s �∗A p
and s →∗

R t if and only if there exists i ≥ 0
such that t �∗Ai

p.

Proof. (⇒) By Lemma 7. (⇐) By induction on i and
Lemma 6 (A). ✷

Lemma 9: If Procedure 1 halts for a TA A having no
ε-rule and an LT-TRS R, then L(A∗) = (→∗

R)(L(A))
holds for the output A∗ of the procedure.

Proof. (⊆) Assume t ∈ L(A∗). Since A∗ = Ai for
some i ≥ 0, there exists a final state pf such that t �∗Ai

pf . By Lemma 8, there exists a Σ-term s such that
s �∗A pf and s →∗

R t. Therefore, t ∈ (→∗
R)(L(A)).

L(A∗) ⊇ (→∗
R)(L(A)) can be shown in a similar way.

✷

5. Recognizability Preserving Property

In this section, two sufficient conditions for Procedure 1
to halt are proposed. One condition is that the sets of
non-marker function symbols occurring in the left-hand
sides and the right-hand sides of rewrite rules are dis-
joint. The other condition is the one which in effect
restricts the class of recognizable sets. An LT-TRS R
which satisfies the former condition effectively preserves
recognizability. Although the latter condition does not
directly give a subclass of LT-TRSs which are EPR, we
can show that some properties of LT-TRSs are decid-
able by using results derived from the latter condition.

5.1 I/O-Separated LT-TRS

An LT-TRS R is I/O-separated if R satisfies the fol-
lowing condition.

Condition 1: For a signature Σ = F ∪ Q, F is fur-
ther divided as F = FI ∪FO, FI ∩FO = ∅. A function
symbol in FI (respectively, FO) is called an input sym-
bol (respectively, output symbol). Consider a rewrite
rule

(i) f(t1, · · · , tn)→ r, or
(ii) t1 → r

in R where f, t1, . . . , tn and r satisfy the conditions
stated in Definition 1. Then f ∈ FI and no input
symbol appears in r. ✷

R1 in Example 1 and R2 in Example 2 are both I/O-
separated LT-TRSs.

Lemma 10: If q(z′)→ z ∈ ∆i (q ∈ Q) then either of
z ∈ P or z = 〈l〉 for some rule l → r in R such that l is
a ground term.

Proof. See Appendix. ✷

Lemma 11: LetR be an I/O-separated LT-TRS over
Σ = FI ∪FO ∪Q. If Procedure 1 is executed for a TA
A and R, then it always halts.

Proof. Assume a TA A and an I/O separated LT-
TRS R are given to Procedure 1 as an input. A new
state is introduced in Step 3 (b) or ADDREC and it
is of the form 〈tρ〉 or [z, q] where l → r1, ρ and q satisfy
condition (6) in Step 3, r = q(r1) and t is a subterm of
r1 (by Lemma 3). Hence, it is sufficient to show that
the number of ρ and z which satisfy (6) is finite.

First, we show that the number of substitution ρ
which satisfy (6) is finite. In a similar way to the proof
of Lemma 5 (i), we can easily prove that for any substi-
tution ρ:V → Zi−1 which satisfies (6), xρ (x ∈ Var(l))
is either in P or of the form [z, q]. If xρ = [z, q] then
x = xk ∈ Var(l) and for the position ok of xk in l,
l/o′ = q(xk) where ok = o′ · 1. Thus, q([z, q])→ z ∈ ∆i

and by Lemma 10, the number of such substitutions ρ
is finite.

We can also show there are only finite number of
states z which satisfy (6) since such a state z is either
in P or of the form 〈τ〉 where τ is the left-hand side of
a rule in R. ✷

Theorem 3: Every I/O-separated LT-TRS effec-
tively preserves recognizability. ✷

A bottom-up tree transducer [6] is a well-known com-
putation model in the theory of tree languages. For
a linear bottom-up tree transducer M, if we consider
the set of states of M as the set of markers, M cor-
responds to an I/O-separated LT-TRS. Hence, the fol-
lowing known property of tree transducer is obtained
as a corollary.

Corollary 1: [6] Every linear bottom-up tree trans-
ducer effectively preserves recognizability. ✷

5.2 Marker-Bounded Sets

Let Σ′ ⊆ Σ be a subset of function symbols. Consider
a tree representation of a term t. Let depthΣ′(t) denote
the maximum number of occurrences of function sym-
bols in Σ′ which occur in a single path from the root
to a leaf in t. That is, depthΣ′(t) is defined as:

depthΣ′(g(t1, · · · , tn))

=
{
max{depthΣ′(ti) | 1 ≤ i ≤ n}+ 1 g ∈ Σ′,
max{depthΣ′(ti) | 1 ≤ i ≤ n} g /∈ Σ′.

For example, for Σ = {f, g, h, c}, Σ′ = {f, g},
depthΣ′(f(g(c), g(h(g(c))))) = 3.

For a signature Σ = F ∪ Q, a set T ⊆ T (Σ) is
marker-bounded if the following condition holds:

292
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

Condition 2: There exists k ≥ 0 such that |t|Q ≤ k
for each t ∈ T . ✷

An LT-TRS R is simple if every rule l → r in R
satisfies the following conditions:

(1) l is not a ground term,
(2) r is not a variable, and
(3) Var(r) ⊆ Var(l).
Lemma 12: Let R be an LT-TRS over Σ = F ∪ Q
which satisfy conditions (1) and (3) in the above defi-
nition. If t→∗

R t′ then depthQ(t) ≥ depthQ(t′).

Proof. The lemma can be easily proved by the form
of a rewrite rule of an LT-TRS. ✷

Definition 2: (deg) For each state z ∈ Zi, let deg(z)
denote the number of nestings in z, which is defined as
follows:



deg(p) = 0 (p ∈ P),
deg([z, q]) = deg(z) + 1 (z ∈ Zi, q ∈ Q),
deg(〈f(t1, · · · , tn)〉)
= max{deg(〈tj〉) | 1 ≤ j ≤ n}

✷

By definition, deg(〈f(t1, . . . , tn)〉) = max({0} ∪
{deg([z, q]) | [z, q] occurs in f(t1, . . . , tn)})
Lemma 13: (i) For f(z1, . . . , zn) → z ∈ ∆i (f ∈
F , i ≥ 0), deg(zj) ≤ deg(z) (1 ≤ j ≤ n).

(ii) For 〈r1ρ〉 → [z, q] ∈ ∆i (r1 ∈ T (F ,V), ρ:V →
Zi−1, z ∈ Zi−1, q ∈ Q), deg(〈r1ρ〉) ≤ deg([z, q]).

Proof. (i) If i = 0 then deg(zj) = deg(z) = 0 (1 ≤
j ≤ n) by definition. If f(z1, . . . , zn) → z is added to
∆i by ADDREC, then zj = 〈tjρ〉 (1 ≤ j ≤ n) and
z = 〈h(t1, . . . , tn)ρ〉 for some h ∈ F and tj ∈ T (Σ,V)
(1 ≤ j ≤ n). Hence deg(zj) ≤ deg(z) (1 ≤ j ≤ n) by
the definition of deg(·).

(ii) Suppose that 〈r1ρ〉 → [z, q] is added to ∆i in
Step 3 (b). Then there exists a rewrite rule l → q(r1)
and a state z ∈ Zi−1 such that lρ �∗Ai−1

z where no
ε-transition occurs at the root position or at any vari-
able position of l. Assume that l → q(r1) has the form
of (i) in Definition 1, namely, l = f(t1, . . . , tn) where
f ∈ F and each tj is either a ground term or tj = qj(lj).
(The case that l → q(r1) has the form of (ii) in Defi-
nition 1 is easier and omitted.) If deg(〈r1ρ〉) = 0 then
the lemma holds clearly. If deg(〈r1ρ〉) ≥ 1, then a
state [z′, q′] with deg(z′) = deg(〈r1ρ〉) − 1 occurs in
r1ρ. The transition sequence lρ �∗Ai−1

z can be written
as lρ �∗Ai−1

f(z1, . . . , zn) �∗Ai−1
z. Since [z′, q′] is not a

subterm of r1, there exists a variable x ∈ Var(r1) such
that [z′, q′] occurs in xρ. Note that x ∈ Var(l) since
otherwise xρ = pany by Step 3 of Procedure 1, which is
a contradiction. Let l = f(t1, . . . , gm(x), . . . , tn). Re-
member that no ε-transition occurs at any variable po-
sition of l in lρ �∗Ai−1

z. By Lemma 2(ii), xρ = [zm, qm]
for some zm ∈ Zi−1. On the other hand, [z′, q′] is a

subterm of xρ and hence xρ = [zm, qm] = [z′, q′] since
deg([zm, qm]) = deg(xρ) ≤ deg(〈rρ〉) = deg([z′, q′]).
Since f(z1, . . . , zn) → z ∈ ∆i−1, deg(zm) ≤ deg(z)
by (i) of this lemma. Summarizing, deg(〈r1ρ〉) =
deg(zm) + 1 ≤ deg(z) + 1 ≤ deg([z, q]) and the lemma
holds. ✷

Lemma 14: Procedure 1 always halts for a TA A
having no ε-rule and an LT-TRS R which satisfy the
following conditions.

(1) L(A) is marker-bounded.
(2) R is simple.

Proof. Let A and R be a TA and an LT-TRS which
satisfy the conditions of the lemma. Without loss of
generality, assume that A = (Σ,P ,∆,Pfinal) has only
useful states. The proof is by contradiction. Assume
that Procedure 1 does not halt for A and R. We will
show that there exists a term t ∈ L(A) which does
not satisfy condition 2, which is a contradiction. By
Lemma 3, a state constructed in Procedure 1 is of the
form 〈tρ〉 or [z, q] where t is a subterm of the right-hand
side of a rule in R, ρ:V → Zi−1 is a substitution and
q ∈ Q. This implies that for an arbitrary integer v, the
number of states z0 with deg(z0) < v constructed in the
procedure and the number of rules which contain only
such states are both finite. Since Procedure 1 does not
halt, there exists an integer i ≥ 0 and a state z0 ∈ Zi

with deg(z0) = k′ ≥ k+1 where k is a constant in Con-
dition 2. Note that k′ ≤ i by the definition of deg(z0)
and the construction in Procedure 1. By Lemma 4,
there exists a Σ-term s0 such that s0 �∗Ai

z0. Since
deg(z0) ≥ 1, z0 can be written as z0 = 〈· · · [z′1, q′1] · · ·〉
(= 〈ξ〉, including the case that z0 = [z′1, q

′
1]) and

deg(z0) = deg([z′1, q′1]). The state z0 = 〈ξ〉 is intro-
duced in Step 3 (b) of Procedure 1 or ADDREC when
the loop counter of the procedure is i′ ≤ i. Hence there
exists a rewrite rule l → r ∈ R, a state z′1 ∈ Zi′−1 and
a substitution ρ:V → Zi′−1 such that lρ �∗Ai′−1

z′1 and
r = q1(r1). By construction, 〈r1ρ〉 → [z′1, q1] is added
to ∆i′ . By Lemma 13, deg(〈r1ρ〉) ≤ deg([z′1, q1]). By
Lemma 3, ξ is a subterm of r1ρ, and hence k′ = deg(z0)
= deg([z′1, q

′
1]) ≤ deg(〈r1ρ〉). Hence, deg(z′1) ≥ k′ − 1.

Since s0 �∗Ai
z0 = 〈ξ〉 and ξ is a subterm of r1ρ, there

exists a Σ-term t0 such that t0 �∗Ai
〈r1ρ〉 �Ai [z1, q1]

and s0 is a subterm of t0. By Lemma 6 (B), there exists
a Σ-term s1 such that s1 →∗

R q1(t0) and s1 �∗Ai−1
z1.

Summarizing, s1 �∗Ai−1
z1, s1 →∗

R q1(t0), deg(z1) ≥
k′ − 1, and s0 is a subterm of t0. Repeating the above
argument, we can see that there exist states zj ∈ Zi−j

(1 ≤ j ≤ i), markers qj ∈ Q (1 ≤ j ≤ i), Σ-terms sj

(0 ≤ j ≤ i), tj (0 ≤ j ≤ i− 1) such that:

sj �∗Ai−j
zj , sj →∗

R qj(tj−1),deg(zj) ≥ k′ − j

and sj−1 is a subterm of tj−1 (1 ≤ j ≤ i).
(7)

Since sj →∗
R qj(tj−1) (1 ≤ j ≤ i), depthQ(sj) ≥

depthQ(tj−1) + 1 by Lemma 12. Since sj is a subterm

TAKAI et al.: LT-TRS AND ITS RECOGNIZABILITY PRESERVING PROPERTY
293

of tj (0 ≤ j ≤ i− 1), depthQ(tj) ≥ depthQ(sj). Hence,
depthQ(si) ≥ depthQ(s0) + i ≥ i ≥ k′. Since zi is use-
ful by Lemma 4, there exists a Σ-term t′, a position
o ∈ Pos(t′) and a final state pf ∈ Pfinal such that

t′ �∗A t′[o← zi] �∗A pf . (8)

Let t = t′[o ← si], then t �∗A t′[o ← zi] �∗A pf ∈ Pfinal

by (7) and (8). Thus, t ∈ L(A) holds. Furthermore,
depthQ(t) ≥ depthQ(si) ≥ k′ ≥ k + 1. This conflicts
with Condition 2. Therefore, Procedure 1 halts. ✷

Theorem 4: For any TA A and an LT-TRS R which
satisfy conditions (1) and (2) of Lemma 14, (→∗

R)
(L(A)) is recognizable.

Proof. By Lemmas 9 and 14. ✷

Example 6: Let F = {add , s′, 0} and Q = {s}. The
following TRS R4 is a simple LT-TRS.

R4 =




add(s(x), s(y))→ s(s′(add(x, y)))
add(s(x), 0)→ s(x)
add(0, s(y))→ s(y)

Let R5 = {s′(x) → s(x), add (0, 0) → 0}, then the re-
lation →∗

R4
· →∗

R5
defines addition on natural num-

bers. Since we can easily see that R5 is an EPR-
TRS [13], for any TA A such that L(A) is marker-
bounded, (→∗

R5
)((→∗

R4
)(L(A))) is always recognizable.

✷

R1, R2, R3 in the examples 1 through 4 are also simple
LT-TRSs. As mentioned in Sect. 2.3, a TRS in Réty’s
subclass [12] is C-EPR. The subclass of TRSs defined
in [12] and the subclass of simple LT-TRSs are incom-
parable. In fact, any non-left-linear TRS in the former
class is not an LT-TRS. On the other hand, {f (q(x))→
q(f(f(x)))} belongs to the latter class but does not
belong to the former class. Also the class of marker-
bounded sets and C are incomparable. For example,
consider R3 of Example 5. L(A) = {f (gn(c)) | n ≥ 0}
is not marker-bounded but R3 belongs to Réty’s sub-
class and L(A) belongs to C.

Corollary 2: For a finite set T of ground terms and
a simple LT-TRS R, (→∗

R)(T) is recognizable. ✷

Corollary 3: For a simple LT-TRS R, reachability
and joinability are decidable.

Proof. The reachability problem is to decide whether
for a given TRSR andΣ-terms s and t, s→∗

R t holds or
not. It is obvious that s →∗

R t if and only if t ∈ (→∗
R)

({s}). The latter condition is decidable by Lemma 1
and Corollary 2.

Decidability of joinability can easily be verified by
noting that ∃w: s →∗

R w and t →∗
R w if and only if

(→∗
R)({s}) ∩ (→∗

R)({t}) �= ∅. ✷

6. Conclusion

In this paper, a new subclass of TRSs called LT-TRSs is
defined and a sufficient condition for an LT-TRS to ef-
fectively preserve recognizability is provided. The sub-
class of LT-TRSs satisfying the condition contains sim-
ple EPR-TRSs which do not belong to any of the known
decidable subclasses of EPR-TRSs.

Extending the proposed class is a future study.
For example, Procedure 1 could be extended by packed
state technique used in [14] so that Procedure 1 is sound
even if the left-linearity condition is dropped for an in-
put LT-TRS. Finding a more general sufficient condi-
tion on a TA A to satisfy that (→∗

R)(L(A)) is recogniz-
able for any LT-TRS R is another interesting question.

Acknowledgments

The authors would like to thank Dr. Yoshiki Kinoshita
and Dr. Hitoshi Ohsaki of National Institute of Ad-
vanced Industrial Science and Technology for their
valuable discussions and insightful comments.

References

[1] F. Baader and T. Nipkow, Term Rewriting and All That,
Cambridge University Press, 1998.

[2] W.S. Brainerd, “Tree generating regular systems,” Inform.
and Control, vol.14, pp.217–231, 1969.

[3] J.L. Coquidé, M. Dauchet, R. Gilleron, and S. Vágvölgyi,
“Bottom-up tree pushdown automata: Classification and
connection with rewrite systems,” Theoretical Computer
Science, vol.127, pp.69–98, 1994.

[4] I. Durand and A. Middeldorp, “Decidable call by need com-
putations in term rewriting (extended abstract),” Proc.
of CADE-14, LNAI 1249, pp.4–18, North Queensland,
Australia, 1997.

[5] T. Genet, “Decidable approximations of sets of descen-
dants and sets of normal forms,” Proc. RTS98, LNCS 1379,
pp.151–165, Tsukuba, Japan, 1998.

[6] F. Gécseg and M. Steinby, Tree Automata, Académiai
Kiadó, 1984.

[7] R. Gilleron, “Decision problems for term rewriting systems
and recognizable tree languages,” Proc. STACS’91, LNCS
480, pp.148–159, Hamburg, Germany, 1991.

[8] R. Gilleron and S. Tison, “Regular tree languages
and rewrite systems,” Fundamenta Informaticae, vol.24,
pp.157–175, 1995.

[9] P. Gyenizse and S. Vágvölgyi, “Linear generalized semi-
monadic rewrite systems effectively preserve recognizabil-
ity,” Theoretical Computer Science, vol.194, pp.87–122,
1998.

[10] F. Jacquemard, “Decidable approximations of term rewrit-
ing systems,” Proc. RTA96, LNCS 1103, pp.362–376, New
Brunswick, NJ, 1996.

[11] T. Nagaya and Y. Toyama, “Decidability for left-linear
growing term rewriting systems,” Proc. RTA99, LNCS
1631, pp.256–270, Trento, Italy, 1999.

[12] P. Réty, “Regular sets of descendants for constructor-based
rewrite systems,” Proc. LPAR’99, LNCS 1705, pp.148–160,
Tbilisi, Georgia, 1999.

294
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.2 FEBRUARY 2003

[13] K. Salomaa, “Deterministic tree pushdown automata and
monadic tree rewriting systems,” J. Comput. System Sci.,
vol.37, pp.367–394, 1988.

[14] T. Takai, Y. Kaji, and H. Seki, “Right-linear finite path
overlapping term rewriting systems effectively preserve rec-
ognizability,” Proc. RTA2000, LNCS, vol.1833, pp.246–260,
Norwich, U.K., 2000.

Appendix: Proof of the Lemmas

A.1 Proof of Lemma 4

Assume that every state p ∈ P is useful and show that
every state z ∈ Zi is useful in Ai by induction on i (A
proof for reachable states is easier and omitted). The
basis case is obvious. Assume that Step 3 is executed
for a rule l → q(r1), state z ∈ Zi−1 and substitution
ρ:V → Zi−1 and states 〈r1ρ〉, [z, q] and some states
of the form 〈tρ〉 are constructed. By Lemma 3, t is a
subterm of r1. We show all these new states are useful.
By the inductive hypothesis, z is useful and hence there
exists a Σ-term t, a position o ∈ Pos(t) and a final state
pf ∈ Pfinal such that

t �∗Ai−1
t[o← z] �∗Ai−1

pf . (A· 1)

Let Var(l) = {x1, . . . , xn}. By the inductive hypothe-
sis, xjρ is useful and thus reachable in Ai−1, and hence
there exists a Σ-term sj such that sj �∗Ai−1

xjρ for
1 ≤ j ≤ h. Let σ = {xj �→ sj | 1 ≤ j ≤ h}, then

q(r1σ) �∗Ai
q(〈r1ρ〉) �Ai q([z, q]) � z. (A· 2)

By (A· 1) and (A· 2),

t[o← q(r1σ)] �∗Ai
t[o← z] �∗Ai−1

pf . (A· 3)

All the new states appear in (A· 3) and thus they are
useful. ✷

A.2 Proof of Lemma 5

(i) Consider the condition (6) lρ �∗Ai−1
z in Step 3.

An ε-rule added in Step 3 (a) is of the form rρ → z
where r ∈ V . Note that since R is an LT-TRS, for any
variable position oj in l, oj is written as oj = o′j · 1
and l/o′j = qj(xj) where qj ∈ Q. Since no ε-transition
occurs at any variable position oj in (6), each xjρ (es-
pecially, rρ) is either in P or of the form [z′, q′] by
Lemma 2 (ii). Similarly, since no ε-transition occurs at
the root position in (6), z is either in P or of the form
〈τρ〉 by Lemma 2 (i) and (ii).

(ii) Obvious from Step 3 (b) of Procedure 1. ✷

A.3 Proof of Lemma 10

We prove the lemma by induction on i. If i = 0 then

the lemma holds clearly. Suppose that q([z, q]) → z is
added to ∆i in Step 3 (b). Then there exists a rewrite
rule l → r, a state z ∈ Zi−1 and a substitution ρ:V →
Zi−1 satisfying lρ �∗Ai−1

z. Since R is an I/O-separated
LT-TRS, (i) l = f(t1, . . . , tn) (f ∈ FI) or (ii) l = t1
where each tj is a ground term or tj = qj(lj) such that
qj ∈ Q and lj is a variable or a ground term.

(i) If l = f(t1, . . . , tn) then the transition se-
quence lρ �∗Ai−1

z can be written as lρ �∗Ai−1

f(z1, . . . , zn) �Ai−1 z. Since f ∈ FI , by the dis-
cussion before the above claim, f(z1, . . . , zn) →
z ∈ ∆0 and thus z ∈ P .

(ii) If l is a ground term then for the sequence lρ(=
l) �∗Ai−1

z, we can see z ∈ P or z = 〈l〉. If l =
q1(l1) (q1 ∈ Q) then lρ �∗Ai−1

z can be written
as lρ �∗A0

q1(p′) �Ai−1 z (p′ ∈ P) or lρ �∗Ai−1

q1([z, q1]) �Ai−1 z. In the former case, z ∈ P . In
the latter case, by the induction hypothesis, z ∈ Z
or z = 〈τ〉 where τ is the left-hand side of a rule in
R.

Thus the lemma holds in every case. ✷

Toshinori Takai received his B.E. de-
gree in information science from Kyushu
Institute of Technology, Fukuoka, Japan,
in 1996, and received M.E. and D.E. de-
grees in information science from Nara In-
stitute of Science and Technology, in 1998
and 2002, respectively. Now he is a re-
search associate of National Institute of
Advanced Industrial Science and Technol-
ogy.

Hiroyuki Seki received B.E. and Ph.
D. degrees in information and computer
sciences from Osaka University, Japan, in
1982 and 1987, respectively. He was with
Osaka University as an Assistant Profes-
sor in 1990–1992 and an Assoicate Profes-
sor in 1992–1994. In 1994, he joined the
faculty of Nara Institute of Science and
Technology, where he has been a Profes-
sor since 1996.

Youhei Fujinaka received his
B.E. degree in information science from
Shimane University, Matsue, Japan, in
2000, and received M.E. degree in infor-
mation science from Nara Institute of Sci-
ence and Technology, in 2002. Now he is a
teacher of Izumo high school and teaching
mathematics.

TAKAI et al.: LT-TRS AND ITS RECOGNIZABILITY PRESERVING PROPERTY
295

Yuichi Kaji received the B.E., M.E.,
and Ph.D. degrees in information and
computer sciences from Osaka University,
Osaka, Japan, in 1991, 1992 and 1994, re-
spectively. In 1994, he joined Nara In-
stitute of Science and Technology, Nara,
Japan. His current research interests in-
clude the theory of error correcting codes,
information security, and the theory of au-
tomata and rewriting systems.

