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Anthony W. Wohns7,8, and Jerome Kelleher1†

November 3, 2023

Abstract

As a result of recombination, adjacent nucleotides can have different paths of genetic inheri-
tance and therefore the genealogical trees for a sample of DNA sequences vary along the genome.
The structure capturing the details of these intricately interwoven paths of inheritance is referred
to as an ancestral recombination graph (ARG). New developments have made it possible to infer
ARGs at scale, enabling many new applications in population and statistical genetics. This rapid
progress, however, has led to a substantial gap opening between theory and practice. Standard
mathematical formalisms, based on exhaustively detailing the “events” that occur in the history
of a sample, are insufficient to describe the outputs of current methods. Moreover, we argue that
the underlying assumption that all events can be known and precisely estimated is fundamen-
tally unsuited to the realities of modern, population-scale datasets. We propose an alternative
mathematical formulation that encompasses the outputs of recent methods and can capture the
full richness of modern large-scale datasets. By defining this ARG encoding in terms of specific
genomes and their intervals of genetic inheritance, we avoid the need to exhaustively list (and
estimate) all events. The effects of multiple events can be aggregated in different ways, providing
a natural way to express many forms of approximate and partial knowledge about the recombinant
ancestry of a sample.

Keywords: Ancestral recombination graphs

1 Introduction 1

Estimating the genetic genealogy of a set of DNA sequences under the influence of recombination, 2

usually known as an Ancestral Recombination Graph (ARG), is a long-standing goal in genetics. 3

Broadly speaking, an ARG describes the different paths of genetic inheritance caused by recombination, 4

encapsulating the resulting complex web of genetic ancestry (see Lewanski et al. (2023) for a biologically 5

oriented introduction). Recent breakthroughs in large-scale inference methods (Rasmussen et al., 2014; 6

Kelleher et al., 2019b; Speidel et al., 2019; Schaefer et al., 2021; Wohns et al., 2022; Zhang et al., 2023; 7

Zhan et al., 2023) have raised the realistic prospect of ARG-based analysis becoming a standard part of 8

the population and statistical genetics toolkit (Hejase et al., 2020). Applications using inferred ARGs 9

as input have begun to appear (Osmond and Coop, 2021; Fan et al., 2022; Hejase et al., 2022; Guo 10

et al., 2022; Zhang et al., 2023; Nowbandegani et al., 2023; Ignatieva et al., 2023; Fan et al., 2023) and 11

many more are sure to follow (Harris, 2019, 2023). 12

Although it is widely accepted that ARGs are important, there is some confusion about what, 13

precisely, an ARG is. In its original form, developed by Griffiths and colleagues, the ARG is an 14

alternative formulation of the coalescent with recombination (Hudson, 1983a), where the stochastic 15
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process of coalescence and recombination among ancestral lineages is formalised as a graph (Griffiths, 16

1991; Ethier and Griffiths, 1990; Griffiths and Marjoram, 1996, 1997). Subsequently, an ARG has 17

come to be thought of as a data structure (Minichiello and Durbin, 2006), i.e. describing a realisation 18

of such a random process, or an inferred ancestry of a sample of genomes. The distinction between 19

stochastic process and data structure is not clear cut, however, and subfields use the term differently 20

(Appendix A). Other subtly different concepts that we must be careful to distinguish are the “true” 21

ARG, describing the actual history of a sample of genomes, and a “population” ARG which is the 22

true ARG of every individual in a population. True ARGs are the underlying real history of a sample, 23

perfectly resolved into binary splits and mergers by the cellular processes of meiosis and mitosis, 24

regardless of sampling density or population processes (Appendix D). Although population-scale true 25

ARGs unquestionably exist, they can also never be entirely known, in part because of a fundamental 26

lack of mutational information. Even if mutation rate were high enough to uniquely identify every 27

recent branching point, such a high rate would saturate the genome with mutations and obscure deeper 28

history. 29

Population ARGs may seem fanciful, but the scale of modern datasets makes it necessary for 30

us to grapple with the idea. The UK Biobank (UKB), for example, has genotype data for around 31

500,000 humans (Bycroft et al., 2018), along with exome (Backman et al., 2021) and whole genome 32

sequence (Halldorsson et al., 2022) data for large subsets of the cohort. UKB is just one of many 33

such population-scale sequencing projects (e.g. Turnbull et al., 2018; Karczewski et al., 2020; Tanjo 34

et al., 2021). Agricultural datasets are on a similar scale, and also include dense multi-generational 35

sampling and near-perfect pedigree information (e.g. Hayes and Daetwyler, 2019; Ros-Freixedes et al., 36

2020). Recent advances have made it possible to actually estimate ARGs at population scale: ARGs 37

have already been inferred for the 500,000 humans in UKB (Kelleher et al., 2019b; Zhang et al., 2023) 38

and over a million SARS-CoV-2 genomes (Zhan et al., 2023). While this new population-scale reality 39

presents many exciting opportunities, it also poses substantial challenges to existing methodologies. 40

A major problem currently facing the field is that classical mathematical formalisms and terminol- 41

ogy cannot adequately describe these vast inferred ARGs. Fundamentally, these formalisms assume 42

that an ARG is known in complete detail and are not suited to describing partial or approximate 43

knowledge. As we are actively inferring ARGs at the population scale, and such ARGs can never 44

be known in complete detail, there is currently a substantial gap between our theoretical frameworks 45

and practical application. The breakthroughs in scale achieved by recent methods (e.g. Kelleher et al., 46

2019b; Speidel et al., 2019; Zhang et al., 2023) are all based, in different ways, on inferring approximate 47

structures instead of a complete and fully detailed history. (Note that it is important to distinguish 48

here between structures and models: whether an inference method is based on heuristics or a rigorous 49

mathematical model is orthogonal to the level of detail provided in its estimate. One could heuristi- 50

cally estimate a fully precise ARG, or statistically sample a partial, approximate ARG under a model 51

such as the coalescent.) Although the term “ARG” is now often used in a general sense (e.g. Math- 52

ieson and Scally, 2020; Hejase et al., 2020; Schaefer et al., 2021; Harris, 2023; Zhang et al., 2023; Fan 53

et al., 2023), informally encompassing the varied approximate structures output by modern simulation 54

and inference methods (Rasmussen et al., 2014; Palamara, 2016; Haller et al., 2018; Kelleher et al., 55

2019b; Speidel et al., 2019; Baumdicker et al., 2022; Zhang et al., 2023), there is no corresponding 56

mathematical definition that is sufficiently general. 57

We address this problem by providing a simple formal definition of an ARG data structure, based 58

on recording the intervals of genetic inheritance between specific genomes. We call this the “genome 59

ARG”, or gARG encoding. We contrast this with the classical formal definition of an ARG, based 60

on recording common ancestor and recombination events, which we refer to as the “event ARG” 61

or eARG encoding. We show that the new gARG encoding is a substantial generalisation of the 62

classical eARG approach, providing much more flexibility in how genetic inheritance can be represented, 63

and encompasses the outputs of modern methods. We show that the gARG approach can represent 64

many different types of approximation, in particular allowing us to systematically describe uncertainty 65

about the temporal ordering of multiple recombinations. It is important to note that throughout 66

we are interested in the details of these competing mathematical formulations and their practical 67

consequences. 68

We begin in Section 2 by providing a precise formal definition of a gARG, illustrated by an example 69

ARG embedded in pedigree. We then provide a similar definition of the classical eARG approach 70
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in Section 3, and consider its limitations in the context of current datasets and research questions. 71

Following this, we discuss the important concept of ancestral material in Section 4, and how it relates to 72

the process of converting an eARG to a gARG. We continue in Section 5 by considering the relationship 73

between an ARG and its local trees. Contrary to the prevailing view, we show that a suitably encoded 74

sequence of local trees contains precisely as much information as the corresponding ARG. The gARG 75

encoding opens a rich new set of details about ARGs, including the ideas of locally unary nodes 76

(Section 6), the levels of detail that can be represented in an ARG (Section 7), and the degrees of 77

precision about recombination that can be stored and we may seek to infer (Section 8). These ideas 78

have important practical considerations, which we illustrate by examining the qualitative properties 79

of ARGs inferred by four recent methods for a classical benchmark dataset in Section 9. We then 80

discuss how the gARG framework can be efficiently implemented in Section 10, and finish with an 81

assessment of the key challenges facing the field in the Discussion. Finally, the literature on ARGs 82

is large and confusing, and we attempt to clarify some important aspects in appendices, including a 83

brief history of ancestral graphs (Appendix A), a description of the Big and Little ARG stochastic 84

processes (Appendix B), a survey of ARG inference methods (Appendix C), and a discussion of ARGs 85

at an individual vs cell lineage level (Appendix D). 86

2 Genome ARGs 87

We define a genome as the complete set of genetic material that a child inherits from one parent. A 88

diploid individual therefore carries two genomes, one inherited from each parent (we assume diploids 89

here for clarity, but the definitions apply to organisms of arbitrary ploidy). We will also use the term 90

“genome” in its more common sense of “the genome” of a species, and hope that the distinction will be 91

clear from the context. We are not concerned here with mutational processes or observed sequences, 92

but consider only processes of inheritance, following the standard practice in coalescent theory. We 93

also do not consider structural variation, and assume that all samples and ancestors share the same 94

genome coordinate space. 95

A genome ARG (gARG) is a directed acyclic graph in which nodes represent haploid genomes 96

and edges represent genetic inheritance between an ancestor and a descendant. The topology of 97

a gARG specifies that genetic inheritance occurred between particular ancestors and descendants, 98

but the graph connectivity does not tell us which parts of their genomes were inherited. In order 99

to capture the effects of recombination we “annotate” the edges with the genome coordinates over 100

which inheritance occurred. This is sufficient to describe the effects of inheritance under any form of 101

homologous recombination (such as multiple crossovers, gene conversion events, and many forms of 102

bacterial and viral recombination). 103

We can define a gARG formally as follows. Let N = {1, . . . , n} be the set of nodes representing 104

the genomes in the gARG, and S ⊆ N be the set of sampled genomes. Then, E is the set of edges, 105

where each element is a tuple (c, p, I) such that c, p ∈ N are the child and parent nodes and I is the set 106

of disjoint genomic intervals over which genome c inherits from p. Thus, each topological connection 107

between a parent and child node in the graph is annotated with a set of inheritance intervals I. Here, 108

the terms parent and child are used in the graph sense; these nodes respectively represent ancestor 109

and descendant genomes, which can be separated by multiple generations. We will use these two sets 110

of terms interchangeably. 111

How nodes are interpreted, exactly, is application dependent. Following Hudson (1983a), we can 112

view nodes as representing gametes, or we can imagine them representing, for example, the genomes 113

present in cells immediately before or after some instantaneous event (Appendix D). A node can 114

represent any genome along a chain of cell divisions or can be interpreted as representing one of the 115

genomes of a potentially long-lived individual. All these interpretations are potentially useful, and 116

equally valid under the assumptions of the gARG encoding. In many settings, nodes are dated, i.e. 117

each node u ∈ N is associated with a time τu, and how we assign precise times will vary by application. 118

The topological ordering defined by the directed graph structure and an arrow of time (telling us which 119

direction is pastwards) is sufficient for many applications, however, and we assume node dates are not 120

known here. In practical settings, we will wish to associate additional metadata with nodes such as 121

sample identifiers or quality-control metrics. It is therefore best to think of the integers used here in 122

the definition of a node as an identifier, with which arbitrary additional information can be associated. 123

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.565466doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565466
http://creativecommons.org/licenses/by/4.0/


A B C

D2D1

D4D3

D6D5

D8

a b

e f g h

c d

i j k l

m n o p

D7

[0,2)

[2,10)

[7,10)

[0,7)

7

2

Genome position

0 2 7 10
a

e

b

g

i

c

f

d

h

k

n

b

g

i

ca

f

d

h

k

n

b

g

c

e

i

a

f

d

h

k

n

Figure 1: An example genome ARG (gARG) embedded in a pedigree. (A) Diploid individuals (blue),
visualised in a highly inbred pedigree and labelled D1 to D8, contain both paternal and maternal
genomes labelled a to p. Black lines show inheritance paths connecting genomes in the current gen-
eration (a to d) with their ancestors. Genomes a and c are the product of two independent meioses
(recombination events, in red) between the paternal genomes e and f, and regions of genome inher-
ited are shown with shaded colour. Genomes are shaded such that where, backwards in time, they
merge into a common ancestor, the merged region is darker. (B) The corresponding gARG along with
inheritance annotations on all edges (partial inheritance in bold). (C) The corresponding local trees.

As illustrated in Fig. 1, the gARG for a given set of individuals is embedded in their pedigree. 124

The figure shows the pedigree of eight diploid individuals and their sixteen constituent genomes (each 125

consisting of a single chromosome), along with paths of genetic inheritance. Here, and throughout, 126

nodes are labelled with lowercase alphabetical letters rather than integer identifiers to avoid confusion 127

with genomic intervals. Thus individual D1 is composed of genomes a and b, which are inherited from 128

its two parents D3 and D4. Each inherited genome may be the recombined product of the two genomes 129

belonging to an individual parent. In this example, genome b was inherited directly fromD4’s genome g 130

without recombination, whereas genome a is the recombinant product of D2’s genomes e and f crossing 131

over at position 2. Specifically, genome a inherited the (half-closed) interval [0, 2) from genome e and 132

[2, 10) from genome f. These intervals are shown attached to the corresponding graph edges. The 133

figure shows the annotated pedigree with realised inheritance of genomes between generations (A), the 134

corresponding gARG (B), and finally the corresponding sequence of local trees along the genome (C). 135

The local trees span the three genome regions delineated by the two recombination breakpoints that 136

gave rise to these genomes; see Section 5 for details on how local trees are embedded in an ARG. 137

The genome ARG framework defined here is in many ways simply a clarification of existing treat- 138

ments (e.g. Mathieson and Scally, 2020; Shipilina et al., 2023), adding concrete details to describe the 139

differential inheritance of genetic material between genomes. It is important to note that here, and 140

throughout, we are not questioning the form of the actual ancestral processes that occur in nature, but 141

rather how we represent the outcomes of such processes in a practical manner. These practical details, 142

as demonstrated in later sections, have important consequences not only for how methods exchange 143

information about simulated and inferred ARGs, but more fundamentally in how we set our goals for 144

inference and evaluate the success of results. 145

3 Event ARGs 146

In this section we define the classical view of an ARG data structure, and illustrate its limitations. 147

We are interested in the details of how ARGs are described mathematically, and as a consequence, 148

how they are represented in a practical sense as the output of inference programs. Where details 149

of an ARG data structure (the encoding) are provided (e.g. Wiuf and Hein, 1999b; Gusfield, 2014; 150
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Figure 2: A classical event ARG (eARG). (A) Standard graph depiction with breakpoint x associated
with the recombination node d. Nodes e, f and g are common ancestor events. (B) Corresponding
local trees to the left and right of breakpoint x (note these are shown in the conventional form in which
only coalescences within the local tree are included; see Section 5 for a discussion of this important
point).

Hayman et al., 2023) they follow the approach described by Griffiths and colleagues (but see Parida 151

et al. (2011) and Zhang et al. (2023) for notable exceptions), and a large number of ARG inference 152

methods use it as an output format (e.g. Song and Hein, 2004; Song et al., 2005; Rasmussen et al., 153

2014; Heine et al., 2018; Ignatieva et al., 2021). In this Griffiths encoding we have two types of 154

internal node in the graph, representing the common ancestor and recombination events in the history 155

of a sample. At common ancestor nodes, the inbound lineages merge into a single ancestral lineage 156

with one parent, and at recombination nodes a single lineage is split into two independent ancestral 157

lineages. Recombination nodes are annotated with the corresponding crossover breakpoints, and these 158

breakpoints are used to construct the local trees. This is done by tracing pastwards through the graph 159

from the samples, making decisions about which outbound edge to follow through recombination nodes 160

based on the breakpoint position (Griffiths and Marjoram, 1996). Because it is focused on recording 161

events and their properties, we will refer to this Griffiths encoding as the “event ARG” or eARG 162

encoding. Fig. 2 shows an example of a classical eARG with three sample genomes (a, b, and c), three 163

common ancestor events (e, f, and g) and a single recombination event (node d) with a breakpoint 164

at position x. Assigning a breakpoint to a recombination node is not sufficient to uniquely define the 165

local trees, and either some additional ordering rules (e.g. Griffiths and Marjoram, 1996) or explicit 166

information (e.g. Gusfield, 2014; Ignatieva et al., 2021) is required to distinguish the left and right 167

parents. We assume in Fig. 2 that d inherits genetic material to the left of x from e and to the right 168

of x from f. 169

While the Griffiths approach of annotating recombination nodes with a breakpoint in an eARG 170

is a concise and elegant way of describing realisations of the coalescent, it is inherently limited when 171

implemented literally. The eARG encoding explicitly models only two different types of event and thus 172

anything that is not a single crossover recombination or common ancestor event, must be incorporated 173

either in a roundabout way using these events, or by adding new types of event to the encoding. For 174

example, gene conversion could be accommodated either by stipulating a third type of event (annotated 175

by two breakpoints and corresponding traversal conventions for recovering the local trees) or by two 176

recombination nodes joined by a zero-length edge. From the perspective of practical interchange of 177

data between inference methods and downstream applications, both workarounds are problematic, and 178

the gARG encoding described in the previous section offers a much simpler solution. 179

Aside from these obvious practical challenges arising from a literal implementation of the Griffiths 180

approach, there is a deeper issue with the implicit strategy of basing an ARG data structure on 181

recording events and their properties (e.g. the crossover breakpoint for a recombination event). The 182

fundamental problem is that this approach assumes all events are knowable, and does not provide any 183

obvious mechanism for either aggregating multiple events or expressing uncertainty about them. While 184

this is not a problem when describing the results of simulations (where all details are perfectly known), 185

it is a major issue when we wish to formally describe the output of inference methods, particularly 186

as datasets approach the population scale. As discussed in the introduction, the precise details of all 187

events in these vast ARGs can never be known, and a data structure that enforces complete precision 188

is therefore an impediment to progress. 189

There is also a certain clarity gained by explicitly modelling nodes in the inheritance graph as 190
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genomes. Outside of the context of a mathematical model, an “event” is a slippery concept. For 191

example, which genome along a chain of cell divisions should be regarded as the one where an event 192

occurred, or whether multiple coalescences within a single individual should be regarded as one or 193

multiple events are debatable points (Appendix D). From the perspective of a concrete data structure, 194

ideally forming the basis of an ecosystem of interoperable inference and analysis methods, such debates 195

are unproductive. 196

4 Ancestral material and sample resolution 197

Ancestral material (Wiuf and Hein, 1999a,b) is a key concept in understanding the overall inheritance 198

structure of an ARG (here, and throughout, we use the general term “ARG” when the details of the 199

specific encoding are not important). It denotes the genomic intervals ancestral to a set of samples 200

on the edges of an ARG. For example, in Fig. 1 we have four sample genomes, a–d. As we trace 201

their genetic ancestry into the previous generation (e–h), we can think of their ancestral material 202

propagating through the graph backwards in time. In the region [2, 7), there is a local coalescence 203

where nodes a and c find a common ancestor in f. Thus, in this region, the total number of genome 204

segments that are ancestral to the sample is reduced from four to three. Fig. 1A illustrates this by 205

(shaded) ancestral material being present in only three nodes (f, g, and h) in this region, while node 206

e is blank as it carries non-ancestral material. This process of local coalescence continues through the 207

graph, until all samples reach their most recent common ancestor in node n. 208

The process of tracking local coalescences and updating segments of ancestral material is a core 209

element of Hudson’s seminal simulation algorithm (Hudson, 1983b; Kelleher et al., 2016), and the key 210

distinguishing feature between the “Big” and “Little” ARG stochastic processes (see Appendix B). 211

The ability to store resolved ancestral material is also a key distinction between the eARG and gARG 212

encodings. Because an eARG stores only the graph topology and recombination breakpoints, there is 213

no way to locally ascertain ancestral material without traversing the graph pastwards from the sample 214

nodes, resolving the effects of recombination and common ancestor events. 215

Efficiently propagating and resolving ancestral material for a sample through a pre-existing graph 216

is a well-studied problem, and central to recent advances in individual-based forward-time simula- 217

tions (Kelleher et al., 2018; Haller et al., 2018). In contrast to the usual “retrospective” view of ARGs 218

discussed so far, these methods record an ARG forwards in time in a “prospective” manner. Genetic in- 219

heritance relationships and mutations are recorded exhaustively, generation-by-generation, leading to a 220

rapid build-up of information, much of which will not be relevant to the genetic ancestry of the current 221

population. This redundancy is periodically removed using the “simplify” algorithm (Kelleher et al., 222

2018), which propagates and resolves ancestral material. Efficient simplification is the key enabling 223

factor for this prospective-ARG based approach to forward-time simulation, which can be orders of 224

magnitude faster than standard sequence-based methods (see Section 7 for other applications of ARG 225

simplification). We refer to a gARG that has been simplified with respect to a set of samples, such 226

that the inheritance annotations on its edges contain no non-ancestral material, as sample-resolved. 227

Any eARG can be converted to a sample-resolved gARG via a two-step process illustrated in 228

Fig. 3. The first step is to take the input eARG (Fig. 3A), duplicate its graph topology, and then add 229

inheritance annotations to each of the gARG’s edges (Fig. 3B) as follows. If a given node is a common 230

ancestor event, we annotate the single outbound edge with the interval [0, L), for a genome of length 231

L. If the node is a recombination event with a breakpoint x, we annotate the two outbound edges 232

respectively with the intervals [0, x) and [x, L). These inheritance interval annotations are clearly in 233

one-to-one correspondence with the information in the input eARG. They are also analogous to the 234

inheritance intervals we get on the edges in a prospective gARG produced by a forward-time simulation, 235

which are concerned with recording the direct genetic relationship between a parent and child genome 236

and are not necessarily minimal in terms of the resolved ancestral material of a sample. Thus, the 237

final step is to use the “simplify” algorithm to perform the required sample resolution (Fig. 3C). 238

The sample-resolved gARG of Fig. 3C differs in some important ways to the original eARG 239

(Fig. 3A). Firstly, we can see that some nodes and edges have been removed entirely from the graph. 240

The “grand MRCA” q is omitted from the sample-resolved gARG because all segments of the genome 241

have fully coalesced in k and p before q is reached. Likewise, the edge between g and j is omitted 242

because the recombination event at position 5 (represented by node g) fell in non-ancestral material. 243
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Figure 3: Converting the Wiuf and Hein (1999b, Fig. 1) example to a sample-resolved gARG. (A) The
original eARG; square nodes represent sampling (black), common ancestor (blue), and recombination
(red) events; the latter contain breakpoint positions. (B) The corresponding gARG with breakpoints
directly converted to edges annotated with inheritance intervals. (C) The sample-resolved gARG
resulting from simplifying with respect to the sample genomes, a, b, and c. Dashed lines show edges
that are no longer present (in practice, nodes g, j, and q would also be removed). Coalescence with
respect to the sample is indicated by shaded bars, as in Fig. 1A; nodes n, o, p, q have truncated bars
showing that local ancestry of entirely coalesced regions is omitted. Line thickness is proportional to
the genomic span of each edge. Nodes representing recombination events are retained for clarity, but
could be removed by simplification if desired.

More generally, we can see that the sample resolved gARG of Fig. 3C allows for “local” inspection of 244

an ARG in a way that is not possible in an eARG. Because the ancestral material is stored with each 245

edge of a gARG, the cumulative effects of events over time can be reasoned about, without first “re- 246

playing” those events. Many computations that we wish to perform on an ARG will require resolving 247

the ancestral material with respect to a sample. The gARG encoding allows us to perform this once 248

and to store the result, whereas the eARG encoding requires us to repeat the process each time. 249

Note that the Wiuf and Hein (1999b) eARG in Fig. 3 is not particularly representative, because 250

inference or simulation methods usually only generate ARGs containing nodes and edges ancestral to 251

the sample (but see the discussion of the “Big ARG” stochastic process in Appendix B). Nonetheless, 252

it is an instructive example from the literature which highlights several important properties of ARGs, 253

and the general point about the need to resolve ancestral material “on the fly” for eARG traversals 254

holds. 255

5 ARGs and local trees 256

The relationship between an ARG and its corresponding local trees is subtle and important. A funda- 257

mental property of genetics is that a given DNA nucleotide is inherited from exactly one parent genome, 258

both at an organismal and cell-by-cell level (Appendix D). These paths of single-parent inheritance 259

give rise, by definition, to a tree structure. As a result of recombination, adjacent nucleotides can have 260

different paths of inheritance, and an ARG encodes the entire ensemble of local trees along the genome 261

for a given set of sample nodes. Precisely defining the process by which local trees are extracted from 262

an ARG is essential to our understanding of how ARGs and local trees are related, and we require a 263

concrete mathematical structure to describe the local trees. It is important to note that although the 264

following discussion is phrased in terms of the gARG encoding, the arguments apply equally to eARGs 265

because any eARG can be converted to a gARG without loss of information (Section 4). 266

Oriented trees provide a convenient formalism to capture these parent-child relationships in a well- 267

defined combinatorial object. Let π1 . . . πn be a sequence of integers, such that πu denotes the parent of 268

node u, and πu = 0 if u is a root (Knuth, 2011, p. 461). This encoding is particularly useful to describe 269

evolutionary trees because parent-child relationships are important but the ordering of children at a 270

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.565466doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565466
http://creativecommons.org/licenses/by/4.0/


node is not (Kelleher et al., 2013, 2014, 2016). Thus, for a given gARG with nodes {1, . . . , n} and 271

edges E (Section 2), we recover the local tree at position x as follows. We begin by setting πu = 0 272

for each 1 ≤ u ≤ n. Then, for each sample node in S we trace its path pastwards through the ARG 273

for position x, and record this path in π. Specifically, at a given node u, we find an edge (c, p, I) ∈ E 274

such that u = c and x ∈ I, and set πc ← p. We then set u ← p, and repeat until either πu ̸= 0 275

(indicating we have traversed this section of the ARG already on the path from another sample) or 276

there is no matching outbound edge (indicating we are at a root). Note that the local trees for an 277

ARG are “sparse” (Kelleher et al., 2016), because many ancestral nodes will not be reachable from 278

the samples at a given position (so their corresponding entries in π will be zero). 279

This combinatorial approach provides at least one novel insight, clarifying the fundamental rela- 280

tionship between ARGs and local trees. Suppose we are given a gARG defined by a set of nodes and 281

edges. There is no requirement on the structure of this ARG beyond the basic definitions: it could 282

correspond to an ARG in which every recombination event is exactly specified (e.g. Fig. 3) or one in 283

which local trees are entirely disjoint (i.e. only the sample nodes are shared between them). If we are 284

given the sequence of local trees for this gARG encoded as an oriented tree, along with the genome 285

interval covered by each tree, we can recover the original gARG exactly. More formally, suppose we 286

are given the local tree πx
1 . . . π

x
n for each nucleotide position 1 ≤ x ≤ L on a genome of length L. 287

Then, the edges of the “local ARG” for this tree is given by Ex = {(u, πx
u, {x}) | πx

u ̸= 0}. Because 288

the ARG edges are defined by (c, p, I) tuples, where the set I defines the positions over which node c 289

inherits from parent p, we can then simply combine the “local ARGs” for each position x to recover 290

precisely the same set of edges as the original ARG. Thus, under this definition, there is a one-to-one 291

correspondence between an ARG and the sequence of local trees that it encodes. 292

This is not the prevailing view, however. Kuhner and Yamato (2017) argue that the “interval-tree” 293

representation of an ARG (the local trees and the genome intervals they cover) “does not contain all 294

of the information in the underlying ARG: it lacks the number of recombinations occurring at each 295

site, the times at which recombinations occurred, and the specific sequences involved as recombination 296

partners.” Shipilina et al. (2023) discuss the same ideas, and note that the “full ARG... contains 297

more information than the series of tree sequences along the genome”. These statements that an ARG 298

contains more information than its local trees are true if we represent local trees in their conventional 299

forms, but these forms discard important information that is available in an ARG. 300

There are two properties of how evolutionary trees are conventionally represented that lead to this 301

disagreement about the relationship between local trees and an ARG. Firstly, the internal nodes of 302

evolutionary trees are usually considered to be unlabelled, or equivalently, labelled by the leaves which 303

they subtend. The same canonical labelling cannot be used for internal ARG nodes because the leaves 304

they subtend will typically vary by genomic position. If we do not label the tree nodes in a way which 305

is persistent across the sequence of local trees in the ARG, we lose the fact that the same ancestors 306

sometimes persist across multiple trees. Defining ARG nodes as integers and using the oriented tree 307

encoding explicitly labels internal nodes, and makes the relationship between tree and ARG nodes 308

clear and precise. 309

The second property of how evolutionary trees are conventionally represented that is unhelpful in 310

the context of ARGs is their focus on branching points (coalescences), i.e. nodes that have two or 311

more children. As the introductory paragraph of this section emphasised, parent-child relationships 312

are what fundamentally define a tree, and branching points can be seen as incidental. This is reflected 313

by the oriented tree encoding which simply stores the local parent-child relationships, and does not, for 314

example, directly tell us how many children a particular node has. The local tree at a given position 315

records the path through the ARG; if this path omits nodes that are not branching points (such as e 316

in Fig. 1), we lose information about the ARG. We return to this point in the following two sections, 317

when we discuss “locally unary” nodes and the simplification process. 318

It is important that we make the distinction here between the local trees that we can derive from 319

a known ARG (as just discussed), and an ARG that we can derive from a sequence of estimated 320

local trees. The ARG inference method Espalier (Rasmussen and Guo, 2022) is illustrative in this 321

context. It begins by splitting an input sequence alignment into segments that are assumed to be 322

non-recombining. Within each segment, an initial local tree is estimated using standard phylogenetic 323

methods. By necessity, these local trees will contain internal nodes that are unlabelled and consist 324

only of branching points: there is no information shared between the independent tree estimation steps 325
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across segments. Part of the task of stitching these trees together into an ARG is then, essentially, 326

to generate labels for the internal nodes, and decide which nodes persist across multiple local trees. 327

Espalier approaches this task by identifying maximal subtrees that do not change between pairs 328

of adjacent local trees and then heuristically exploring the space of possible rearrangements of these 329

subtrees. To derive details about recombination events, Espalier then attempts to infer the precise 330

subtree prune-and-regraft (SPR) operations (Hein, 1990; Song, 2003, 2006) induced by recombination 331

between these partially reconciled local trees. Inferring the SPRs between leaf-labelled trees is NP- 332

hard (Hein et al., 1996; Allen and Steel, 2001; Bordewich and Semple, 2005), but it is unclear what 333

the complexity is when there is a degree of internal node sharing between trees. The combinatorial 334

formulation of ARGs and local trees provided here may help clarify these fundamental questions. 335

6 Locally unary nodes 336

As discussed in the previous section, the local tree at a given position x is best seen as the path through 337

the ARG at that position, defined by the oriented tree πx
1 . . . π

x
n. This path does not directly contain 338

information about branching points, and defining a node’s arity (number of child nodes) is therefore 339

useful. The “local arity” of a node is the number of children it has in the local tree at position x, i.e., 340

axu = |{v : πx
v = u}| for each 1 ≤ u ≤ n. The “ARG arity” of a node u is the number of children it has 341

in the graph topology, i.e. au = |{v : (v, u, I) ∈ E}|. Thus, the local arity is less than or equal to the 342

ARG arity (more precisely, 0 ≤ axu ≤ au), and the local arity of a node may change as we move along 343

the genome. 344

This distinction between ARG and local arity is mainly of interest when we consider nodes that 345

have a single child: those that are unary. Returning to the example in Fig. 1, nodes g and h are 346

ARG-unary (Fig. 1B), and are consequently also unary in the local trees (Fig. 1C). On the other hand, 347

node f has two children in the graph, but is binary only in the local tree covering the interval [2, 7), 348

representing the coalescence of samples a and c in this genome region. Over the interval [0, 2) no 349

coalescence occurs, but we still record the fact that genome c inherits from f in the local tree. Thus, 350

node f has a single child in this interval: it is locally unary. In another example, e is binary in the 351

graph, being a common ancestor of a and c, but is locally unary in all trees in which it is present. This 352

is because no ancestral material coalesces in e: a inherits genetic material from the far left hand end 353

of e, while c only inherits the (disjoint) right hand end. 354

By definition, ARG-unary nodes have one child but can have one or more parents. A node with one 355

child and only one parent represents a “pass-through” node: these occur where we wish the record the 356

passage of ancestral material through a known node. For example, in simulations it is sometimes useful 357

to record the passage of ancestral material through known pedigree individuals regardless of whether 358

common ancestry occurs. Nodes with one child and two parents arise when we model a recombination 359

event using a single node in the classical manner (e.g. Fig. 3). It is also possible for sample nodes to 360

be ARG-unary, for example in inferences from longitudinal datasets where genetic data is sampled at 361

many timepoints and recombination is rare (e.g. SARS-CoV-2; see Discussion). 362

More generally, locally unary nodes, which can have one or more children in the graph, are a 363

common and important feature of many different types of ARG. As discussed in the previous section, 364

without these nodes marking the passage of ancestral material through specific ancestors, the local 365

trees lack information about events other than local coalescence. For example, the local trees for 366

the classical event ARG depicted in Fig. 2B follow the usual conventions and do not include any 367

information about the recombination that occurred at node d. Given these two local trees in isolation 368

we lack specific information about the recombination. Explicitly recording that node d lies on the 369

branch joining b to e in the left hand tree, and b to f in the right hand tree resolves all ambiguity, and 370

makes the collection of local trees exactly equivalent to the corresponding ARG (see previous section). 371

Unary nodes are a vital link between ARGs and local trees, and we cannot fully reason about how 372

a local tree is embedded in an ARG without them. As we see in the next two sections, both ARG 373

and locally unary nodes occur in various scenarios, and are produced by a range of current inference 374

methods. 375
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7 Levels of simplification 376

ARG simplification is a powerful tool. In general, we can think of simplification as the process of 377

removing nodes and re-writing edges (and their inheritance annotations) to remove various types of 378

redundancy, much of which revolves around the presence of unary nodes (see previous section). We 379

illustrate this successive removal of redundancy through a series of simplification steps in Fig. 4. 380

The ARG in Fig. 4A is the output of a backwards-time Wright-Fisher simulation for a sample 381

of two diploid individuals (population size N = 10), and follows a similar process to the methods 382

described by Nelson et al. (2020). As we proceed backwards in time, generation by generation, the 383

extant lineages choose parents randomly. With a certain probability recombination occurs, and the 384

ancestral material of a lineage is split between the two parental genomes. Local coalescence occurs 385

when lineages with overlapping ancestral material choose the same parent genome. Note that in this 386

simulation we do not explicitly model recombination events via an ARG node, but simply record the 387

outcome of a recombination via edges to the parent’s two genomes. Thus, a recombinant node such as 388

g in Fig. 4 may also correspond to a coalescence. The distinction of using a single node to represent 389

a recombination event, as is done in Fig. 3, or two to represent the parent genomes, as in Fig. 4, is 390

usually not important. Either is possible in the gARG encoding, and the most convenient approach will 391

vary by application (discussed e.g. in Appendix B). Note also that node k in Fig. 4 has three children. 392

Polytomies like this are a natural feature of such a Wright-Fisher model (but see Appendix D). 393

The graph visualisations in Fig. 4 have three novel features which require some explanation. Firstly, 394

edge weights (the thickness of the lines joining nodes) correspond to the length of the inheritance 395

intervals they are annotated with. This allows us to distinguish edges that persist across many local 396

trees from those that are less influential (contrast the edge (g, h) with (g, i) in Fig. 4A). Secondly, node 397

colours denote the number of parents that they have in the graph, allowing us to easily see roots (those 398

with zero parents), recombinants (those with two parents) and more complex situations arising from 399

simplification (see below). Thirdly, the shading intensity of a node denotes the “coalescent span”, the 400

fraction of the node’s span (the length of genome in which it is reachable from the samples in the local 401

trees) over which it has more than one child. Nodes which are never locally unary therefore have a 402

coalescent span of 100%, whereas nodes in which ancestral material never coalesces have a coalescent 403

span of 0%. 404

Returning to the main topic of this section, Fig. 4A is the original simulation output, in which we 405

retain all nodes involved in recombination or common ancestry events. This is the true history, and 406

contains a very high level of detail, some of which may be considered redundant (or, from another 407

perspective, unobservable). In Fig. 4A the local trees (right) contain many unary nodes, fewer as we 408

successively simplify (Fig. 4B,C), until we reach Fig. 4D, where there are none. 409

The first level of simplification that we can perform is based only on the graph topology. An example 410

of graph topology that we may consider redundant (or non-identifiable) is a “diamond” (Rasmussen 411

et al., 2014) in which the two parent nodes of a recombination immediately join again into a common 412

ancestor (e.g. j, l, m and n in Fig. 4A). Unless we are specifically interested in the recombination event 413

or these ancestral genomes, the diamond can be replaced by a single edge without loss of information. 414

More generally, any subgraph that is singly-connected in both the leafward and rootward direction (a 415

“super-diamond”) can be replaced by one edge. This definition includes the case of a node that has 416

one inbound and one outbound edge, such as nodes f and h. Fig. 4B shows the result of this type of 417

graph topology simplification. 418

Simplifying away diamonds will remove many unary nodes from the local trees, but there can still 419

be nodes that are unary in all of the local trees. In particular, a node can represent a recombinant 420

with multiple parents in the graph but only a single child (e.g. node n in Fig. 4B), or can represent 421

a common ancestor with multiple children in the graph but in which no coalescence takes place in 422

the local trees (node r in Fig. 4B). The distinction between the “common ancestry” of two or more 423

genomes in an ancestral genome and the “coalescence” which may or may not occur in the local trees 424

is important (Hudson, 1983b; Kelleher et al., 2016). Consider e in Fig. 4A, for example. We can see 425

from the graph that it is a common ancestor of samples a and b, but it does not correspond to any 426

coalescence in the local trees to the left of position 44, and is therefore unary in these three trees. 427

Such nodes are not singly connected in the graph, but are nevertheless unary in all of the local trees. 428

The operation to remove them therefore requires knowledge not just of the graph topology but also of 429
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Figure 4: Levels of ARG simplification. (A) An example gARG simulated from a diploid Wright-
Fisher model. (B) Remove all singly-connected graph components (e.g., diamonds such as jlnm). (C)
Remove nodes that never represent coalescences, i.e. are unary everywhere (e.g. n and r). (D) Rewrite
edges to bypass nodes in local trees in which they are unary. In each case, the graph is shown on the
left and corresponding local trees on the right. In the interest of visual clarity, inheritance intervals
are not shown on the graph edges; Supplementary Fig. S1 shows the graphs with these inheritance
intervals included. Graph nodes are coloured by the number of parents and shaded according to the
proportion of their span over which they are coalescent; see the text for more details.
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the ancestral material associated with the edges. As we see in Fig. 4C, removal of recombinant nodes 430

can produce graph nodes with more than two parents (e.g. node e); and likewise, removal of common 431

ancestor but non-coalescent nodes can produce graph nodes with more than two children (e.g. node 432

s). Both cases represent the merged effects of multiple evolutionary events in a single node (genome), 433

and the ARG no longer contains the intermediate genomes corresponding to those events (see also 434

Appendix D). 435

The remaining nodes are MRCAs of some subset of the samples at some positions along the genome. 436

We still have some unary nodes in the local trees, but these nodes will correspond to a coalescence 437

in at least one other local tree. For example, node k is unary in the fourth tree of Fig. 4C, but is 438

either binary or ternary in all other local trees (recall this is a Wright-Fisher simulation). The final 439

level of simplification is to alter the edge annotations such that, although no nodes are removed from 440

the graph, all unary nodes disappear from the local trees (Fig. 4D). Note that although this last stage 441

produces simpler local trees, by removing information about the exact paths taken by lineages through 442

the graph, we lose potentially useful information about shared edges between trees. The msprime 443

simulator, and the version of Hudson’s algorithm described by Kelleher et al. (2016), produces ARGs 444

that are fully simplified (i.e., contain no locally unary nodes). It is not difficult, however, to update 445

these methods to record information about the passage of ancestral material through genomes under 446

a range of conditions. 447

An important consequence of simplifying ARGs to remove unary nodes in local trees is that we 448

lose some information about recombination events. This is related to the amount of precision about 449

recombination events that we store and can hope to infer from sampled genomes, which is the topic of 450

the next section. 451

8 Precision of recombination information 452

As illustrated in Fig. 4, successive levels of ARG simplification reduce the amount of information about 453

the history of the sample that is stored. Some of the information lost, e.g. “diamond” removal (Fig. 4A), 454

seems like a reasonable tradeoff for a simpler structure. The consequences of other simplifications, 455

however, are more subtle and relate directly to what can be known about recombination events and 456

the levels of precision that we should seek to infer about them. 457

The ARGs in Fig. 4 contain different numbers of local trees (6, 5, 5 and 4 respectively for A 458

through D). When we move from A to B the local trees for the intervals [44, 61) and [61, 87) are 459

merged because the only differences between them are their paths through nodes l and m. These nodes 460

that participated in the diamond are removed from the ARG, and we have lost all information about 461

the corresponding recombination at position 61. Other nodes (e.g. o and p) have also been removed 462

but these represent the parents of recombinants. The recombinant nodes themselves (e.g. n) are still 463

present, and represent precise information about the time, genomic location and lineages involved in 464

the recombination event. 465

Fig. 4C has the same number of local trees as Fig. 4B, but has less precise information about 466

recombination. Continuing the previous example, node n has been removed from the graph because it 467

was unary in all of the local trees; its outbound edges to s and q have effectively been “pushed down” 468

to e (which is retained because it is the coalescent parent of a and b over the interval [44, 100)). We 469

have therefore lost precision about the timing of this recombination event, and know only that it must 470

have occurred between the times of node e and q. 471

Fig. 4D removes all unary nodes from the local trees, and further reduces the precision of recombi- 472

nation information. Node e has not been removed from the graph because it is coalescent in the final 473

tree, but we no longer know that the recombination event at position 30 was ancestral to it, or have 474

any indication of its timings. Furthermore, trees for [44, 87) and [87, 100) were only distinguishable by 475

the passage of the former tree through nodes e and q, and so the recombination on node g at position 476

87 has been lost entirely. 477
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Figure 5: Inference of sample-resolved ARGs for 11 Drosophila melanogaster DNA sequences over
a 2.4kb region of the ADH locus (Kreitman, 1983). Results for four different methods: (A) KwARG;
(B) ARGweaver; (C) tsinfer; and (D) Relate. See the text for details of these methods. Edge
colours indicate time of the edge’s child node (lighter: older; darker: younger). Vertical and horizontal
positions of graph nodes are arbitrary. Line width and node colour are as described in Fig. 4. Bottom
row graphics show the genome positions, relative to the start of the ADH gene, for each graph edge
from the corresponding ARG. Edge intervals are drawn as horizontal lines, stacked in time order (edges
with youngest children at the bottom); vertical dashed lines denote breakpoints between local trees.

9 Example inferred ARGs 478

The scalability gains made by recent ARG inference methods such as Relate (Speidel et al., 2019) 479

and tsinfer (Kelleher et al., 2019b) have been, in part, due to inferring lower levels of precision 480

about recombination than classical methods. Neither method infers explicit recombination events, 481

and therefore their outputs cannot be described using the classical eARG formalisms (Section 3). 482

Nonetheless, both methods produce estimates in which nodes and edges persist across multiple trees, 483

creating inheritance graphs which fit naturally into the gARG formulation. To illustrate the varying 484

levels of information captured by current methods, and some qualitative differences between them, 485

Fig. 5 shows graphical depictions of example ARGs produced by four tools using substantially different 486

inference strategies. 487

The first two methods explicitly infer recombination events. KwARG (Ignatieva et al., 2021) is a 488

parsimony based approach which searches the space of plausible ARGs, outputting minimal ones using 489

heuristics. ARGweaver (Rasmussen et al., 2014) on the other hand is model-based, sampling from a 490

discretised version of the SMC (McVean and Cardin, 2005; Marjoram and Wall, 2006). Note that 491

both KwARG and ARGweaver produce many ARGs, and those shown in Fig. 5 are arbitrarily selected 492

examples. While the second two methods both produce a single best-guess estimate and do not 493

explicitly infer recombination events, they are based on quite different principles. Tsinfer works in 494

a two-step process, first generating ancestral haplotypes via heuristics and then inferring inheritance 495

relationships between them using the Li and Stephens model (Li and Stephens, 2003). Relate first 496

reconstructs local tree topologies across the genome, using a variant of the Li and Stephens model 497

to estimate the ordering of coalescence events in each tree, and then estimates branch lengths using 498

MCMC with a coalescent-based prior. See Appendix C for more details on these and other inference 499

methods. 500

Inferred ARGs are based on the Kreitman (1983) dataset, a standard benchmark in the classical 501
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ARG literature. It consists of 43 biallelic SNPs spanning 2.4Kb of the D. melanogaster ADH locus 502

on chromosome 2L. Where required for inference purposes we assume mutation and recombination 503

rates of 5.49× 10−9 and 2.40463× 10−9 per site per generation (Schrider et al., 2013; Comeron et al., 504

2012) and a constant effective population size of 1,720,600 (Li and Stephan, 2006), as provided by the 505

stdpopsim catalog (Adrion et al., 2020; Lauterbur et al., 2023). Software versions were KwARG v1.0, 506

ARGweaver-D (2019), tsinfer v0.3.1, and Relate v1.1.9. Full details and code for generating these 507

figures are available on GitHub (see Data Availability). 508

Considering Fig. 5, we can see that there is substantial variation in the number of recombination 509

breakpoints inferred by different methods, with e.g. ARGweaver suggesting far more than the 7 required 510

for this dataset under minimal parsimony assumptions (Song and Hein, 2003). A sense of the amount 511

of recombination in each ARG is provided by the node colouring scheme, which shows the number of 512

parents for each node. In Fig. 5A,B, each recombination event corresponds to a node with exactly two 513

parents and one child. As these methods explicitly infer a recombination event for each breakpoint, 514

the number of breakpoints equals the number of two-parent (brown) nodes. In contrast, Fig. 5C,D 515

do not have this straightforward relationship between the number of nodes with multiple parents and 516

number of breakpoints along the genome. In both ARGs the number of breakpoints is smaller than 517

the number of multiple-parent ARG nodes, showing that several multiple-parent nodes must share 518

breakpoint positions. There are also ARG nodes with multiple parents and multiple children, where 519

one or more recombinations have been pushed down onto a more recent node. As a consequence, it 520

may be difficult to condense each transition between trees in these ARGs into a set of SPR operations. 521

Shading within nodes in Fig. 5 indicates the fraction of the node’s span over which it is coalescent 522

(Section 6). For example, brown nodes in Fig. 5A,B are clear because there is no local coalescence at 523

these recombination nodes (they are “ARG unary”, and so local coalescence is impossible). The signif- 524

icant number of partially shaded nodes in Fig. 5A,B and C demonstrates that the KwARG, ARGweaver 525

and tsinfer ARGs all contain locally unary nodes. Another difference between methods highlighted 526

in this figure is the presence of polytomies, which only tsinfer creates. The most obvious exam- 527

ple involves nodes Fr-F, Wa-F, and Af-F, which happen to have identical sequences. Because KwARG, 528

ARGweaver, and Relate require bifurcating trees by design, each picks an arbitrary order of branching 529

(hence Fig. 5A and B disagree in this order, and Fig. 5D even shows different orders in different trees). 530

The bottom row of Fig 5 shows the extent along the genome to which graph edges are shared 531

between multiple trees. All four methods infer nodes and edges that are shared between multiple 532

trees, to varying degrees. For example, all of the methods infer infer that Af-f, Fr-f, and Wa-f form 533

a clade along the entire sequence. In particular, we can see both tsinfer and (to a lesser extent) 534

Relate have edges that span multiple tree boundaries, indicating that they are not inferring a series 535

of unrelated local trees. However, in comparison to KwARG and ARGweaver neither method results in 536

extensive node sharing in the oldest time periods. Overall, Fig. 5 shows that tsinfer and Relate 537

ARGs contain a level of detail that lies somewhere between a sequence of unrelated local trees on one 538

extreme and an ARG with precisely specified recombination events on the other (Fig 5A,B). 539

10 Implementation and efficiency 540

The gARG encoding defined here leads to highly efficient storage and processing of ARG data, and 541

has already been in use for several years. The succinct tree sequence data structure (usually known 542

as a “tree sequence” for brevity) is a practical gARG implementation focused on efficiency. It was 543

originally developed as part of the msprime simulator (Kelleher et al., 2016) and has subsequently 544

been extended and applied to forward-time simulations (Kelleher et al., 2018; Haller et al., 2018), 545

inference from data (Kelleher et al., 2019b; Wohns et al., 2022; Zhan et al., 2023), and calculation of 546

population genetics statistics (Ralph et al., 2020). The succinct tree sequence encoding extends the 547

basic definition of a gARG provided here by stipulating a simple tabular representation of nodes and 548

edges, and also defining a concise representation of sequence variation using the “site” and “mutation” 549

tables. The key property of the succinct tree sequence encoding that makes it an efficient substrate 550

for defining analysis algorithms is that it allows us to sequentially recover the local trees along the 551

genome very efficiently, and in a way that allows us to reason about the differences between those 552

trees (Kelleher et al., 2016; Ralph et al., 2020). 553

The tskit library is a liberally licensed open source toolkit that provides a comprehensive suite 554
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of tools for working with gARGs (encoded as a succinct tree sequence). Based on core functionality 555

written in C, it provides interfaces in C, Python and Rust. Tskit is mature software, widely used in 556

population genetics, and has been incorporated into numerous downstream applications (e.g., Haller 557

and Messer, 2019; Speidel et al., 2019; Adrion et al., 2020; Terasaki Hart et al., 2021; Baumdicker et al., 558

2022; Fan et al., 2022; Guo et al., 2022; Korfmann et al., 2023; Mahmoudi et al., 2022; Petr et al., 2022; 559

Rasmussen and Guo, 2022; Zhang et al., 2023; Nowbandegani et al., 2023; Ignatieva et al., 2023; Fan 560

et al., 2023). The technical details of tskit, and how it provides an efficient and portable platform for 561

ARG-based analysis, are beyond the scope of this manuscript. In the interest of avoiding confusion, 562

however, we list a few minor details in which the formal details of gARGs provided in Section 2 563

differ from their practical implementation in tskit. Firstly, “edges” in tree sequence terminology 564

would perhaps be better described as “edge-intervals”, as each describes a single contiguous interval 565

of genome inheritance between a pair of nodes. This denormalisation of the gARG data model is for 566

efficiency purposes. Secondly, zero- rather than one-based indexing is used for nodes in ARGs and 567

oriented trees; consequently −1 is used to denote the presence of roots (rather than 0 as used here for 568

notational simplicity). 569

11 Discussion 570

Recent breakthroughs have finally made large-scale ARG inference feasible in practice, leading to a 571

surge of interest in inference methods, their evaluation, and their application to biological questions. 572

The prospect of ARGs being used routinely within population and statistical genetics is tantalising, 573

but in reality there is substantial work to be done to enable this. A necessary first step is a degree 574

of terminological clarity. As discussed in Appendix A, the term “ancestral recombination graph” has 575

several subtly different interpretations, depending on context. The trend to decouple ARGs from 576

their original definition within the context of stochastic processes and instead use the term as a more 577

general representation of any recombinant genetic ancestry seems useful; we have tried to clarify and 578

systematise it here. Thus we can think of an ARG as any structure that encodes the reticulate genetic 579

ancestry of a sample of colinear sequences under the influence of recombination. The “genome” ARG 580

(gARG) encoding made explicit here is one way we can concretely define such recombinant ancestry, 581

which we have shown is both flexible and efficient. The flexibility of the gARG encoding contrasts 582

with the classical “event” ARG (eARG) encoding, which is more limited in what can be described. 583

Importantly, gARGs do not require fully precise estimates of ancestral recombination events, and allow 584

us to directly express important forms of temporal uncertainty. 585

Fully decoupling the general concept of an ARG from the coalescent with recombination (hence- 586

forth, “coalescent”) is an important step. While the coalescent has proven to be a useful and robust 587

model (Wakeley et al., 2012; Bhaskar et al., 2014; Nelson et al., 2020), many modern datasets have 588

properties that grossly violate its assumptions. One key assumption is that sample size n is much less 589

than the effective population size, Ne. Several human datasets now consist of hundreds of thousands 590

of genomes (Turnbull et al., 2018; Bycroft et al., 2018; Karczewski et al., 2020; Tanjo et al., 2021; 591

Halldorsson et al., 2022), and so sample size is an order of magnitude larger than the usually assumed 592

Ne values. Agricultural datasets are an even more extreme departure from this assumption, with hun- 593

dreds of thousands of samples embedded in multi-generational pedigrees (Hayes and Daetwyler, 2019; 594

Ros-Freixedes et al., 2020) and effective population sizes of 100 and even less (MacLeod et al., 2013; 595

Makanjuola et al., 2020; Hall, 2016; Pocrnic et al., 2016). A model assuming a single Ne would be a 596

drastic over-simplification of course, but even if sufficiently complex demographic models (Gower et al., 597

2022) encompassing hundreds of populations, explosive growth rates and myriad interconnections of 598

migration, were somehow estimated and provided as input, ARGs sampled from the coalescent cannot 599

capture the complexities of family structure in these datasets (e.g. Turnbull et al., 2018; Ros-Freixedes 600

et al., 2020). Another core assumption of the coalescent model is that the genome (or at least the 601

region under study) is short enough that the number of extant lineages remains much smaller than Ne 602

at all times. High-quality whole genome assemblies are now available for many species and projects 603

are under way to obtain them for tens of thousands more (Darwin Tree of Life Project Consortium, 604

2022; Lewin et al., 2022), and so we can expect inferred ARGs to routinely span large fractions of a 605

chromosome. 606

Recent large-scale methods have simplified the inference problem by making a single, deterministic 607
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best-guess at ARG inference (Kelleher et al., 2019b; Speidel et al., 2019; Zhang et al., 2023; Zhan et al., 608

2023). Even under strict parsimony conditions and for small sample sizes, the number of plausible 609

ARGs compatible with a given dataset is vast. Thus, although it is clearly an oversimplification to 610

arbitrarily choose one best guess, it is not clear that generating many guesses when sample sizes are 611

large will achieve much. At the scale of millions of samples, we could only ever explore the tiniest corner 612

of the incomprehensibly large space of plausible ARGs. Therefore, it is important to systematically 613

describe and utilise uncertainty about ARG inference, and to incorporate uncertainty encountered 614

during inference into the returned ARG. One approach, enabled by the gARG encoding described 615

here, is to allow nodes to have more than two children (polytomies representing uncertainty over the 616

ordering of coalescence events, Appendix D) or more than two parents (representing uncertainty over 617

the ordering of multiple recombination events, Section 7). Development of other methods to capture, 618

for example, uncertainty about node ages and recombination breakpoint positions, is an important 619

aspect of future work. How this uncertainty can be utilised in downstream applications is an open 620

question. 621

The timing, positions, and even the number of recombination events is generally not possible to 622

infer precisely from genome sequencing data. Under coalescent-based models, the proportion of re- 623

combination events that change the ARG topology grows very slowly with sample size (Hein et al., 624

2004), and of those events only a small proportion are actually detectable from the data, assuming 625

human-like mutation and recombination rates (Myers, 2002; Hayman et al., 2023). Even when a re- 626

combination event is detectable, its timing and breakpoint position can only be inferred approximately, 627

depending on how much information can be elucidated from mutations in the surrounding genomic 628

region. The fact that the eARG encoding requires precise information about recombination is therefore 629

a fundamental limitation. 630

Besides the inherent limitations that exist on inferring fully precise ARGs from data, we should also 631

consider the value that such exact estimates provide for downstream applications. Many applications 632

work by examining local trees independently, making detailed information about recombination events 633

superfluous. For example, the Relate selection test (Speidel et al., 2019) obtains p-values by computing 634

clade size probabilities conditional on the timing of coalescence events in a given local tree. In their 635

method for estimating dispersal rates and the locations of genetic ancestors, Osmond and Coop (2021) 636

downsample trees along the genome so that they can be regarded as approximately independent. 637

Similarly, Fan et al. (2023) compute the likelihood of an ARG under a particular demographic model 638

as the product over a sample of widely-separated local trees, assumed to be independent. The SIA 639

method for detecting selection (Hejase et al., 2022) encodes local trees as a set of lineage counts at 640

discrete time intervals, and uses these as feature for a type of machine learning algorithm that takes 641

“temporal” correlations into account. Thus, while SIA takes advantage of information about local 642

tree correlation, it is in quite an indirect way, and clearly much of the detail about recombination 643

events in an ARG is lost. The main application for fully precise ARGs thus far has been to compute 644

a likelihood under the coalescent (e.g. Kuhner et al., 2000; Mahmoudi et al., 2022; Guo et al., 2022), 645

which currently requires the details of all recombination events to be known. 646

The advantages of a model-agnostic representation that naturally incorporates uncertainty about 647

the ordering of events in an ARG are well-illustrated by Zhan et al. (2023), who inferred ARGs 648

using millions of SARS-CoV-2 sequences from the GISAID database (Shu and McCauley, 2017). In 649

contrast to typical human sequencing datasets, the SARS-CoV-2 data is sampled continuously through 650

time, sometimes with tens of thousands of sequences collected per day, with relatively little genetic 651

diversity to distinguish them. The reconstructed ARGs thus contain polytomies and non-leaf sample 652

nodes (sequences with descendants also present in the dataset) many of which only have a single 653

child (i.e. are ARG-unary). Recombination is an important factor in the evolution of SARS-CoV-2 654

(VanInsberghe et al., 2021; Jackson et al., 2021; Ignatieva et al., 2022), and the inferred ARGs contain 655

an unprecedented level of detail about the combined processes of viral mutation and recombination. 656

Because parental sequences are generally never sampled themselves, and often a recombinant strain 657

is the product of multiple recombination events, uncertainty around this is captured by recording the 658

ancestry of each part of the recombinant sequence without arbitrarily assigning times or orderings for 659

these events. 660

This view of ARGs, decoupled from generative models and without the hard requirement of com- 661

plete precision on all historical events, may clarify inference goals and improve methods for evaluation. 662
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In most cases, ARG inference is evaluated by simulating data from a known ground truth ARG, and 663

comparing this to the inferred version via pairwise comparison of local trees along the genome using 664

tree distance metrics (e.g. Robinson and Foulds, 1981; Kendall and Colijn, 2016), as described by Kuh- 665

ner and Yamato (2015a). In comparing tree-by-tree along the genome, the effects of recombination are 666

incorporated in a rather indirect manner through the correlations between the local trees, instead of 667

directly taking into account the persistence of nodes and edges across multiple trees. The performance 668

of tree distance metrics varies by application (Kuhner and Yamato, 2015b), and the correct approach to 669

handling subtleties such as polytomies is an open question (Kelleher et al., 2019b; Zhang et al., 2023). 670

Tree distance metrics often have O(n2) time complexity or worse and therefore cannot be applied to 671

the very large sample sizes currently of interest. A recent trend has been to move away from such 672

tree distance-based approaches and to examine more properties of the inferred ARGs, such as distri- 673

butions of pairwise MRCA times (Brandt et al., 2022), waiting distances between local trees (Deng 674

et al., 2021), and the genomic span of an edge or clade of samples (Ignatieva et al., 2023). In each 675

case, simulation studies demonstrated substantial differences between these quantities in simulated 676

and reconstructed ARGs that were not captured using tree-by-tree comparisons. Evaluations to-date 677

have almost all been based on ground truth data from highly idealised simulations, with sample sizes 678

limited to at most a few thousand (typically much fewer). Beyond the effects of very simplistic error 679

models (e.g. Kelleher et al., 2019b), the effects of the richness of real data at biobank-scale on ARG 680

inference are almost entirely unknown. The development of ARG evaluation metrics that take into 681

account more of the global topology and can be applied to large ARGs would be a valuable and timely 682

addition to the field. Using ARGs simulated from observed pedigree data (Anderson-Trocmé et al., 683

2023) as ground-truth would also add a valuable dimension to our understanding of how well methods 684

perform when faced with realistic population and family structure. 685

Interest in ARG inference methods and downstream applications is burgeoning, with exciting devel- 686

opments arriving at ever-increasing pace. Without agreement on basic terminology and some standard- 687

isation on data formats, however, the ARG revolution may falter. For ARG-based methods to achieve 688

mainstream status, we require a rich supporting software ecosystem. Ideally, this would comprise a 689

wide range of inference methods specialised to different organisms, inference goals, and types and scales 690

of data. If these diverse inference methods share a common, well-defined data format, their outputs 691

could then be processed by many different downstream applications without the productivity-sapping 692

problems of converting between partially incompatible formats (Excoffier and Heckel, 2006). Earlier 693

efforts to standardise ARG interchange shared this vision, but did not succeed (Cardona et al., 2008; 694

McGill et al., 2013). Current methods tend to tightly couple both ARG inference and downstream 695

analysis within the same software package, which is ultimately not compatible with the widespread 696

use of ARGs for routine data analysis, and a healthy and diverse software ecosystem. The gARG 697

encoding described here is a significant generalisation of classical concepts, capable of describing even 698

the bewildering complexity of contemporary datasets and encompassing a wide range of approximate 699

ARG structures, and would be a reasonable basis for such a community interchange format. 700

Rigorously defining interchange formats (e.g. Kelleher et al., 2019a) is difficult and time-consuming, 701

and no matter how precise the specification, in practise it is the implementations that determine how 702

well methods interoperate. The BAM read alignment format (Li et al., 2009) is an instructive example. 703

Originally developed as part of the 1000 Genomes project (1000 Genomes Project Consortium, 2015) 704

to address the fragmented software ecosystem that existed at the time (Danecek et al., 2021), BAM has 705

since become ubiquitous in bioinformatics pipelines. The excellent interoperability between methods 706

exchanging alignment data is largely attributable to the success of htslib (Bonfield et al., 2021), 707

the software library that implements BAM and several other foundational bioinformatics file formats. 708

Today, there are thousands of software projects using htslib (Bonfield et al., 2021), and it this 709

shared use of community software infrastructure that guarantees the smooth flow of data between 710

applications. The emerging ARG software ecosystem could similarly benefit from the adoption of 711

such shared community infrastructure to handle the mundane and time-consuming details of data 712

interchange. The tskit library (Section 10) is a high-quality open-source gARG implementation, with 713

proven efficiency and scalability (e.g. Anderson-Trocmé et al., 2023; Zhan et al., 2023), that is already 714

in widespread use. Adopting it as a community standard may ease software implementation burden 715

on researchers, freeing their time to address the many fascinating open questions and challenges that 716

exist. 717
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Appendix 1076

A Ancestral graphs: a brief history 1077

The coalescent (Kingman, 1982a,b; Hudson, 1983b; Tajima, 1983) models the ancestry of a sample 1078

of genomes under an idealised population model, and provides the theoretical underpinning for much 1079

of contemporary population genetics. It is a stochastic process, where each random realisation is a 1080

genealogical tree describing the genetic ancestry of the sample. Numerous extensions to the model 1081

have been proposed (Hudson, 1990; Hein et al., 2004; Wakeley, 2008), incorporating many evolutionary 1082

processes. Hudson (1983a) first incorporated recombination into the coalescent process, providing 1083

several fundamental analytical results and describing the basic simulation algorithm, still in widespread 1084

use (Hudson, 2002; Kelleher et al., 2016; Baumdicker et al., 2022). In the 1990s, Griffiths and colleagues 1085

revisited the coalescent with recombination from a different perspective, formulating it as a stochastic 1086

process where each realisation is encoded as a graph (Griffiths, 1991; Ethier and Griffiths, 1990; Griffiths 1087

and Marjoram, 1996, 1997). They referred to both the stochastic process and its random realisations 1088

as the Ancestral Recombination Graph (ARG). Although mathematically equivalent, it is important to 1089

note that the Griffiths and Hudson formulations of the coalescent with recombination are not identical; 1090

in particular, a direct implementation of the ARG process as originally described requires exponential 1091

time to simulate (see Appendix B for details). However, ARGs provided a way to reason about and 1092

infer recombinant ancestry as a single object, in a way that is not possible within Hudson’s framework, 1093

which emphasised instead the collection of local trees along the genome resulting from recombination. 1094

Subsequent work on ARGs proceeded in broadly three main directions: (1) exploring the mathe- 1095

matical properties of the coalescent with recombination and related stochastic processes; (2) inferring 1096

evolutionary parameters under (approximations to) this model, either with or without explicitly re- 1097

constructing the genealogy of the sample; and (3) treating the ARG as a discrete graph, ignoring 1098

the generating stochastic process, and studying its properties from a computational and algorithmic 1099

perspective. 1100

An extensive body of work has been developed from studying the coalescent with recombination 1101

and other related graph-valued stochastic processes from a mathematical perspective. In particular, 1102

the Ancestral Selection Graph (ASG) (Krone and Neuhauser, 1997; Neuhauser and Krone, 1997) uses 1103

a similar approach to model natural selection instead of recombination. Unlike the ARG process, the 1104

ASG imposes a hard distinction between the stochastic process, which constructs a random ARG-like 1105

graph, and an observable realisation, which is a single tree sampled from the graph in a non-uniform 1106

way to encode desired patterns of natural selection. Constructions of ASG-like stochastic processes 1107
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encoding various forms of selection, often in parallel with recombination or other genetic forces, are an 1108

area of considerable and ongoing theoretical interest (e.g. Neuhauser, 1999; Donnelly and Kurtz, 1999; 1109

Fearnhead, 2001, 2003; Etheridge and Griffiths, 2009; González Casanova and Spanò, 2018; Koskela 1110

and Wilke Berenguer, 2019). 1111

Early work on inference under the coalescent with recombination focused on the problem of infer- 1112

ring the parameters of the stochastic process, where the ancestry was regarded as a latent parameter 1113

to be averaged out (e.g. Griffiths and Marjoram, 1996; Kuhner et al., 2000; Nielsen, 2000; Fearnhead 1114

and Donnelly, 2001). These methods met with limited success because the state space of ARGs is 1115

overwhelmingly large, and lacks a simple geometry or neighbourhood structure for inference or sam- 1116

pling methods to exploit. Several breakthroughs in this direction were achieved through formulating 1117

simplified but more tractable approximations to the full model (McVean and Cardin, 2005; Marjoram 1118

and Wall, 2006; Li and Durbin, 2011; Paul et al., 2011; Schiffels and Durbin, 2014). The related prob- 1119

lem of sampling genealogies compatible with a given dataset under the coalescent with recombination 1120

also proved notoriously difficult computationally; progress in explicitly inferring genealogies at scale 1121

has similarly been achieved through resorting to principled approximations (Rasmussen et al., 2014; 1122

Mahmoudi et al., 2022), or moving away from the coalescent with recombination altogether and seek- 1123

ing to infer a single plausible ARG (e.g. Minichiello and Durbin, 2006; Kelleher et al., 2019b; Speidel 1124

et al., 2019). 1125

There has also been substantial interest in formulating and answering fundamental questions about 1126

properties of the ARG as a discrete graph structure, focusing on the ARG topology without considering 1127

either branch lengths or indeed the generating process. The first prominent problem was calculating 1128

(lower bounds on) the minimum number of recombinations required to reconstruct a valid genealogy 1129

for a given sample (Myers and Griffiths, 2003), and constructing the corresponding minimal (parsi- 1130

monious) ARGs (Song and Hein, 2003; Song et al., 2005; Lyngsø et al., 2005). These problems are 1131

NP-hard in general (Wang et al., 2001), and progress has been achieved through studying various con- 1132

strained special cases of ARGs (e.g. Gusfield et al., 2004) and other more general types of phylogenetic 1133

networks (Huson et al., 2010). The focus has been on algorithmic and combinatorial results (Gusfield, 1134

2014) that are often not of direct relevance to the inference problems described above. 1135

The goal of this historical overview is to illustrate that the meaning of the term “ARG” now strongly 1136

depends on the context in which it is used, and can mean both the stochastic process that generates 1137

genealogies in the presence of recombination (e.g. Nordborg, 2000; Birkner et al., 2013; Wilton et al., 1138

2015; Griffiths et al., 2016), as well as, more commonly, the concrete realisation of ancestry from a 1139

process (e.g. Gusfield, 2014; Mathieson and Scally, 2020; Brandt et al., 2022). 1140

B The Big and Little ARG 1141

Here we review two important stochastic processes that construct ARGs: the “Big” ARG process 1142

of Griffiths and Marjoram (1997), and the “Little” ARG process of Hudson (1983a). The Big ARG 1143

process is mathematically simpler but is computationally intractable due to generating a vast number 1144

of ancestors which contribute no genetic material to the initial sample. The Little ARG process avoids 1145

non-genetic ancestors at the cost of more complex dynamics and state space. We also demonstrate that 1146

applications relying on the grouping of inheritance pathways into ancestral lineages, such as likelihood- 1147

based inference under the coalescent, requires that the gARG (or eARG) data structure be interpreted 1148

in a model-specific way. 1149

A generic state of the Little ARG process consists of a finite collection of lineages L, each of which 1150

is a list of disjoint ancestry segments (ℓ, r, a), where [ℓ, r) is a half-closed genomic interval and a is 1151

an integer tracking the number of samples to which the lineage is ancestral over that interval. We 1152

also usually track the node associated with each segment, but that is not important for our purposes 1153

here so we omit it to lighten notation. The initial condition for a sample of n genomes of length m 1154

consists of n lineages of the form {(0,m, 1)}. The process traverses a series of common ancestor and 1155

recombination events backwards in time. Recombination events happen at rate ρν/(m − 1), where 1156

ρ ≥ 0 is a per-genome recombination rate and 1157

ν =
∑
x∈L

(
max

(ℓ,r,a)∈x
r − min

(ℓ,r,a)∈x
ℓ− 1

)
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Figure A1: (A) A realisation of the graph traversed by Hudson’s algorithm started from a sample
of three chromosomes with m discrete sites each at time t = 0, and propagated until time T . The
MRCA on the genetic interval [v, w) is reached at event b, while that on [0, v) is reached at event c.
The non-ancestral segment [v, w) above a contributes to the rate of effective recombinations because
it is trapped between ancestral segments. The two columns titled CA and RE are the respective rates
of mergers and recombinations when the recombination rate is ρ. (B) A corresponding realisation of
a Big ARG, which augments Hudson’s algorithm by tracking non-ancestral lineages. The result is a
simpler state space and dynamics, at the cost of extra nodes and edges, highlighted in red, which do
not affect the local tree at any site. Recombination positions are labelled alphabetically in time, and
their ordering along the genome is y < v < x < w, of which the first only appears in panel B. There
are two separate recombination events at link w.

is the number of available “links” surrounded by ancestral material. At a recombination event we 1158

choose one of these links uniformly and break it, replacing the original lineage in L with two new 1159

lineages containing the ancestral material to the left and right of the break point, respectively. 1160

Common ancestor events occur at rate
(|L|

2

)
. In a common ancestor event, two uniformly sampled 1161

lineages have their segments merged into a single ancestor lineage, which is added to L. If the lineages 1162

have overlapping intervals of ancestry, say, (ℓ, r, a1) and (ℓ, r, a2), a coalescence occurs. The result 1163

is a segment (ℓ, r, a1 + a2), and if a1 + a2 < n it is included in the ancestor lineage. Otherwise, if 1164

a1 + a2 = n, we have found the most recent common ancestor of all samples in the interval [ℓ, r) and 1165

do not need to simulate its history any further. Non-overlapping intervals from the two lineages are 1166

included in the ancestor lineage without changes. Eventually, we find resultant lineages in which all 1167

segments have fully coalesced, and so the number of extant lineages gradually falls to zero. 1168

In the Griffiths formulation (the Big ARG process), each edge in the graph corresponds to an extant 1169

lineage and nodes are events in the process. The n initial leaf nodes are sampling events. Common 1170

ancestor events occur at rate
(|L|

2

)
. When a common ancestor event happens, two uniformly chosen 1171

lineages merge into a common ancestor lineage. Recombination events happen at rate |L|ρ. Here, we 1172

choose a lineage (i.e. edge) uniformly, and a breakpoint 0 < x < m uniformly on its genome. We 1173

terminate the edge at a node, record the breakpoint, and start two new edges from this node. The 1174

process then continues until there is only one lineage left (the Grand Most Recent Common Ancestor, 1175

GMRCA), which is guaranteed to happen in finite time because of the quadratic rate of coalescing vs. 1176

linear rate of branching. 1177

The state-space of the Big ARG process is much simpler than that of the Little ARG process, 1178

which greatly facilitates mathematical reasoning. This simplicity comes at a substantial cost, however, 1179

if we wish to use it as a practical means of simulating recombinant ancestries. The number of events 1180

in the Big ARG all the way back to the GMRCA is O(eρ) (Griffiths and Marjoram, 1997), whereas the 1181

number of events required to simulate the Little ARG is O(ρ2) (Hein et al., 2004; Baumdicker et al., 1182

2022). This disparity arises because the majority of the events in the Big ARG are recombination 1183

events which occur outside of ancestral material, and these do not have any bearing on the ancestry 1184

of the initial sample. Because we don’t keep track of the distribution of ancestral material during the 1185

process, we generate a vastly larger graph. 1186
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Figure A1 illustrates the more complex state space of the Little ARG process, as well as the extra 1187

events which occur in the Big ARG process. Moreover, it depicts the rates of common ancestors and 1188

recombination events in each interval of time of the realisations. In order to evaluate these rates, e.g. 1189

for likelihood-based inference (Baumdicker et al., 2022; Mahmoudi et al., 2022), it is necessary to know 1190

the number of lineages and number of extant links available for recombination in each time interval. 1191

Some representations may not provide this information. For example, in the gARG encoding depicted 1192

in Figure 3C, it is clear that a recombination takes place between nodes i, k and j. But the exact 1193

time of the recombination event is ambiguous: it could take place at any time between node i and its 1194

parents and produce the same gARG. Because a recombination increases the number of extant lineages 1195

by one (in the rootward direction of time), the number of lineages during the same time interval is 1196

ambiguous as well. In fact, this information cannot be recovered from the gARG encoding used in 1197

Figure 3C without an extrinsic convention. For the basic coalescent with recombination, it is sufficient 1198

to create two gARG nodes at the time of the recombination event, with the interpretation that the 1199

two rootward edges from node i in Figure 3C belong to the same lineage until the time of nodes k 1200

and j, and split into two separate lineages at that time point. Similarly, the trapped, non-ancestral 1201

links along that lineage remain available for effective recombination (i.e. one which splits up ancestral 1202

material) for the same time interval. This interpretation is highlighted in Figure A1 by drawing only 1203

one vertical edge between a recombinant child and its two parents. 1204

C Survey of ARG inference methods 1205

The problem of reconstructing ARGs for samples of recombining sequences has been of interest since 1206

the ARG was first defined. Early methods focused on finding parsimonious ARGs, i.e. those with a 1207

minimal number of recombination events (Hein, 1990). Two main approaches emerged: “backwards- 1208

in-time” (Lyngsø et al., 2005) and “along-the-genome” (Song and Hein, 2003, 2005). Backwards-in- 1209

time approaches start with a data matrix and reduce it to an empty matrix through row and column 1210

operations corresponding to coalescence, mutation, and recombination events, which construct an ARG 1211

from the bottom up (Song et al., 2005; Wu, 2008; Thao and Vinh, 2019; Ignatieva et al., 2021). Along- 1212

the-genome approaches begin from an initial local tree at a single focal site. Moving the focal site along 1213

the genome changes the local tree via a subtree prune and regraft operation whenever a recombination 1214

is encountered (Hein, 1993; Wu, 2011; Mirzaei and Wu, 2017). Rasmussen and Guo (2022) focus on 1215

parsimonious fusion of local trees into an ARG, while the method described by Cámara et al. (2016) 1216

is based on topological data analysis. Reconstructing a parsimonious ARG for a given data set is NP- 1217

hard (Wang et al., 2001), so parsimony-based methods resort to heuristics and are limited to analysing 1218

at most hundreds of sequences. Hence, a number of methods aim to balance computational efficiency 1219

with reconstruction of “reasonable”, rather than parsimonious ARGs (Minichiello and Durbin, 2006; 1220

Parida et al., 2008; Kelleher et al., 2019b; Speidel et al., 2019; Schaefer et al., 2021; Zhang et al., 2023). 1221

An alternative approach is to treat the ARG as a latent parameter to be averaged out by Monte 1222

Carlo methods, based either on importance sampling (Griffiths and Marjoram, 1996; Fearnhead and 1223

Donnelly, 2001; Jenkins and Griffiths, 2011) or MCMC (Kuhner et al., 2000; Kuhner, 2006; Nielsen, 1224

2000; Wang and Rannala, 2008, 2009; O’Fallon, 2013; Vaughan et al., 2017; Mahmoudi et al., 2022). 1225

These methods operate on representations of the “Little ARG” (see Appendix B), and are computa- 1226

tionally expensive, being applicable to at most hundreds of samples consisting of tens or hundreds of 1227

kilobases with human-like parameters. State-of-the-art methods rely on cheaper, approximate models 1228

(Didelot et al., 2010; Heine et al., 2018; Hubisz et al., 2020; Hubisz and Siepel, 2020; Medina-Aguayo 1229

et al., 2020). The most scalable method, ARGWeaver (Rasmussen et al., 2014), can be applied to dozens 1230

of mammal-like genomes (Hubisz and Siepel, 2020). 1231

Methods to sample ARGs generate a “cloud” of estimates, and Kuhner and Yamato (2017) provide 1232

an approach to generate a set of consensus breakpoints and local trees from such a cloud. The approach 1233

is based on examining the recombination breakpoints in all of the input ARGS, and including those 1234

that are in at least k of the input ARGs (with some additional filtering criteria) in the output. Within 1235

the resulting intervals, a consensus local tree is then generated using standard phylogenetic methods. 1236
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D Cell lineages and ARGs 1237

In eukaryotes, ARGs are a result of the cellular processes of mitosis and meiosis. Mitosis leads to com- 1238

mon ancestor events, and meiosis leads to recombination events (both crossover and gene conversion). 1239

Fig. 4 shows a schematic of the events and the genomes (chromosome icons) that occur in the cellular 1240

germline of a simplified, diploid multicellular hermaphrodite eukaryote with partially overlapping gen- 1241

erations. Here, an event is not represented by a specific genome. Rather, genomes can be associated 1242

with, or “tag”, events above (ancestral to) or below (descended from) them. For example, tagging the 1243

two genomes above a recombination event leads to the two node representation seen in Figs. 4 and 1244

A1, whereas tagging the genome below a recombination event leads to the more conventional graphs 1245

in Figs. 3 and 5A,B. 1246

The schematic illustrates an important point about the biological reality of polytomies. Three 1247

lineages coalesce in the left-hand genome of individual D10, but do so as the result of two successive 1248

bifurcations. This is necessarily so, because the only known method of reproducing DNA is by (semi- 1249

conservative) duplication. Whether this polytomy is resolvable depends on the available mutational 1250

data. Mutations can occur along any cell lineages. For example, a mutation in the first cell division 1251

of D10 could be shared between the two gametes produced by the cells in the left half of D10 but not 1252

shared by the right hand gamete. With enough mutations, each round of mitotic germline genome 1253

duplication within a single multicellular organism could in principle be distinguished. 1254
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Figure A2: Cellular inheritance of a single chromosome in a diploid population. Individuals (blue)
contain diploid cells (white circles enclosing a homologous pair of chromosomes). For clarity, only two
rounds of mitotic germ-line cell division are shown per individual, and meiosis is not illustrated in detail.
Lines show prospective inheritance paths for all chromosomes. Solid lines show all possible retrospective
ancestry paths for four chosen chromosomes (indicated by square black “sampling events”) sampled
from 3 diploid individuals (D1, D2, D3) in the current generation. Ancestral recombination events
and coalescence events are shown as red and blue squares respectively. A realised ARG path for the
lower arm of the sampled chromosomes is highlighted as a thick solid line, passing through a set of
potential gARG nodes (green). This ARG involves a single recombination event and four coalescence
events (highlighted as deep red and blue squares within individuals D5, D10, and D13). ARG lineages
also show gametic genomes, contained within shaded circles. As in Fig. 1A, inherited regions within
the sampled chromosome arm are shaded by the number of descendant samples.
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Supplementary Material 1255

Figure S1: Example ARGs Fig. 4A–D, with edges annotated with inheritance intervals.
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