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A thermodynamically consistent kinetic model is proposed for non-equilibrium transport of12
surface-confined van der Waals fluids, where the long-range molecular attraction is consid-13
ered by a mean-field term in the transport equation and the transport coefficients including14
shear and bulk viscosities and thermal conductivity are tuned to match the experimental15
data. Equation of states of van der Waals type can be obtained from appropriate choice of16
the radial distribution function, while in the modified Enskog theory nonphysical negative17
transport coefficients appear near the critical temperature and the Boltzmann equation may18
not be recovered in the dilute limit. The shear viscosity and thermal conductivity are more19
accurately predicted by taking gas molecular attraction into account, while the softened20
Enskog formula for hard-sphere molecules performs better in predicting the bulk viscosity.21
The present kinetic model agrees with the Boltzmann model in the dilute limit and with the22
Navier-Stokes equations in the continuum limit, which indicates its capability in modelling23
of dilute-to-dense and continuum-to-non-equilibrium flows. The new model is thoroughly24
examined and validated by comparing with the molecular dynamics simulation results. In25
contrast to the previous studies, our simulation results reveal the importance of molecular26
attraction even for high temperatures which holds the molecules to the bulk while the hard-27
sphere model significantly overestimates the density near the wall. Because the long-range28
molecular attraction is appropriately considered in the present model, the velocity slip and29
temperature jump at the surface for realistic van der Waals fluids can be accurately predicted.30
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1. Introduction32

The transport of van derWaals fluids throughmicro-/nano-scale surface-confined geometries33
appears in many engineering applications, such as shale gas production (Wu et al. 2016;34
Mehrabi et al. 2017), carbon dioxide geological sequestration (Wang et al. 2018), energy-35
efficient cooling (Rana et al. 2018; Van Erp et al. 2020), and ultrafast filtration using mem-36
branes (Joseph &Aluru 2008; Torres-Herrera & Poiré 2021). The definition of van derWaals37
fluids originates from the celebrated van der Waals equation of state (EoS) (van der Waals38
1873; Maxwell 1874), which extends the ideal gas law by coupling the effects of both the39
finite size of gas molecules and the long-range attraction between gas molecules. The EoS40
for van der Waals fluids is given below,41

𝑝 =
𝑛𝑘𝐵𝑇

1 − 𝑛𝑉0
− 𝑎𝑛2, (1.1)42

where 𝑝 is the pressure, 𝑛 is the gas number density,𝑇 is the temperature, 𝑘𝐵 is the Boltzmann43
constant, 𝑉0 = 2𝜋𝜎3/3 is the excluded volume per molecule with 𝜎 being the molecular44
diameter, and 𝑎 is a constant that measures the average attraction between fluid molecules,45
which can be determined from the critical pressure and temperature of the fluids.46

The gas volume exclusion and long-range molecular attraction are known as the real gas47
effect (Wang et al. 2018; Zhang et al. 2019), which plays a prominent role in high-pressure48
scenarios (Shan et al. 2021) or at near-critical regions (Restrepo & Simões-Moreira 2022).49
In conventional hydrodynamics, the real gas effect is empirically considered by using the50
realistic EoS with the Euler or Navier-Stokes (NS) equations (Zhao et al. 2014; Restrepo &51
Simões-Moreira 2022), which is valid for equilibrium or near-equilibrium flows. For flows52
far from equilibrium, these continuum models are no longer applicable (Torrilhon 2016;53
Rana et al. 2018). In addition, surface confinement can lead to inhomogeneities of not only54
in density but also in transport coefficients (e.g. shear viscosity and thermal conductivity).55
However, the van derWaals EoS assumes homogeneous fluid density (Maxwell 1874) and the56
NS equations assume constant transport coefficients in confined spaces (Todd 2001), making57
the continuummodels inadequate to capture inhomogeneous molecular flow features (Kogan58
1973).59

Consequently, an accurate model of van der Waals fluids under tight surface-confinement60
requires simultaneous consideration of the effects of real gas, rarefaction, and surface-61
confinement, which still remains as a research challenge.62

At the molecular scale, molecular dynamics (MD) simulations can provide an accurate63
computational tool for investigating gas dynamics under tight surface-confinement. In MD64
simulations, the van der Waals interactions are mostly described by 12-6 Lennard-Jones (LJ)65
potential (Martini et al. 2008), i.e.66

𝜙(𝑟) = 4𝜖
[(𝜎
𝑟

)12
−
(𝜎
𝑟

)6
]
, (1.2)67

where 𝜖 and 𝜎 are the characteristic energy and length (equivalently the molecular diameter)68
scales, respectively, and 𝑟 is the distance between molecules. The LJ potential is composed69
of a strong repulsive part and a weak long-range attractive tail, which describes the real70
gas effect from a molecular perspective and captures the fluid inhomogeneity caused by71
the confinement. However, MD simulations are prohibitively expensive for most practical72
simulations (Nie et al. 2004; Sheng et al. 2020), and suffer from statistical noise for low-73
speed flows when the flow velocity is significantly smaller than thermal motions of fluid74
molecules. Consequently, a multiscale model is required to capture both molecular and75
continuum effects.76
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Kinetic theory relates the molecular-scale dynamics to the continuum-scale flow proper-77
ties, serving as a bridge between the continuum and atomistic worlds (Kogan 1973; Guo &78
Shu 2013; Gan et al. 2022). The fundamental equation in kinetic theory is the Boltzmann79
equation for ideal gases (Takata & Noguchi 2018). However, it becomes invalid in sce-80
narios where the gas molecule size is comparable to (i) the gas mean free path (e.g. dense81
gas flows) (Cercignani & Lampis 1988; Sadr & Gorji 2017; Wang et al. 2020) or (ii) the82
characteristic length of the flow domain (e.g. nano-confined flows) (Shan et al. 2020; Sheng83
et al. 2020; Corral-Casas et al. 2022).84

Enskog (1921) extended the localised Boltzmann collision operator to a non-localised one85
by considering the finite size of gas molecules, so that the instantaneous collisional transfer of86
momentum and energy over a molecule size comes into play (Frezzotti 1999). The finite size87
of gasmolecules will increase the collision frequency by reducing the free streaming space for88
gasmolecules by a factor of (1−2𝑛𝑉0) and decrease the collision frequency by shielding other89
molecules (Chapman & Cowling 1990; Wang & Li 2007) by a factor of (1 − 11𝑛𝑉0/8), so90
that the overall change in collision frequency is quantified by the radial distribution function91
𝜒, i.e.92

𝜒𝐸𝑛𝑠𝑘𝑜𝑔 =
1 − 11

8 𝑛𝑉0

1 − 2𝑛𝑉0
. (1.3)93

The Standard Enskog Theory (SET) was refined by van Beijeren & Ernst (1973) to guar-94
antee the irreversible thermodynamics for dense gas mixtures of hard-sphere molecules and95
yield the correct single-particle equilibrium distribution function (van Beijeren 1983), which96
is now known as the Revised Enskog Theory (RET). Both SET and RET for dense gases have97
been rather successful in predicting transport properties of simple fluids (Hanley et al. 1972;98
Amorós et al. 1992), shock waves propagation (Frezzotti 1997), and gas dynamics under99
confinement (Wu et al. 2016; Sheng et al. 2020). However, SET and RET ignore the long-100
range attractive interactions between gas molecules, which are important in real gases (Vera101
& Prausnitz 1972; He & Doolen 2002; Wang & Li 2007; Frezzotti et al. 2019).102

Two approaches have been developed to describe the dynamics of van der Waals fluids,103
namely the Modified Enskog Theory (MET) (Chapman & Cowling 1990; Amorós et al.104
1992; Luo 2000) and the mean-field approximation (Sobrino 1967; Karkheck & Stell 1981).105
MET imposes two modifications to the radial distribution function and the covolume for106
more realistic molecular interactions. One is to use the thermal pressure 𝑇 (𝜕𝑝/𝜕𝑇)𝑉 from107
experimental data (Hanley et al. 1972; Amorós et al. 1992) or the van derWaals pressure (i.e.108
the pressure in the van der Waals-type EoS) (Luo 2000) to replace the pressure 𝑝ℎ𝑠 in the109
hard-sphere EoS 𝑝ℎ𝑠 = 𝑛𝑘𝐵𝑇 (1+𝑛𝑉0𝜒). With (1.1), the radial distribution function becomes110

𝜒𝑀𝐸𝑇 =
1

1 − 𝑛𝑉0
− 𝑎

𝑘𝐵𝑇𝑉0
, (1.4)111

where both the volume exclusion and the molecular attraction are taken into account. The112
other modification is to correct the covolume 𝑉0 according to either the second virial coef-113
ficient (Hanley et al. 1972; Amorós et al. 1992) or the experimental data of the transport114
coefficients (Chapman & Cowling 1990). However, the MET has only been applied to obtain115
transport coefficients of dense real gases, while no application to gas dynamics has been116
reported. In addition, the MET can result in a negative radial distribution function, and thus117
negative transport coefficients for real gases, which is not physical.118

Themean-field approximation adds a weak attractive tail to the Enskog equation to account119
for the long-range molecular attraction (Sobrino 1967), resulting the Enskog-Vlasov (EV)120
equation (Karkheck & Stell 1981; Sadr et al. 2021). Furthermore, a state-dependent hard-121
sphere diameter, as commonly discussed in perturbation theories for classical fluids (Barker122
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& Henderson 1967; Andersen et al. 1971; Cotterman et al. 1986), can be chosen for a better123
approximation of real fluids (Karkheck & Stell 1981; Guo et al. 2006). In this way, the hard-124
core repulsion is softened to account for the softness of the repulsive potential (Ben-Amotz125
& Herschbach 1990), which modifies the transport coefficients. However, the EV collision126
operator still considers hard-sphere molecules. A more realistic molecular potential model127
(e.g. LJ type) needs to be considered for molecular collisions.128

Although the van derWaals-type EoS can be recovered, both theMET and the EV equation129
have their own problems in modelling van der Waals fluids, e.g. recovering correct transport130
coefficients. Therefore, it is still an open question about how to model molecular attraction131
in the kinetic theory of dense gases (Luo 1998; He et al. 1998; Luo 2000; He & Doolen132
2002). Another major issue that hinders the application of kinetic models is its computational133
complexity and cost. As the computational cost of solving the Enskog and EV equations134
directly using either probabilistic or deterministic method is prohibitive (Frezzotti & Sgarra135
1993; Alexander et al. 1995; Sadr & Gorji 2019; Frezzotti et al. 2019; Wu et al. 2015, 2016),136
simplified models have been proposed to achieve efficient computations using the relaxation137
time approach, e.g.(Luo 1998; He et al. 1998; Wang et al. 2020; Su et al. 2023). Based138
on the intuitive observations of the underlying molecular physics, various types of simple139
kinetic models (Suryanarayanan et al. 2013; Takata & Noguchi 2018; Takata et al. 2021)140
have been developed for the van der Waals fluids, which have been successfully applied to141
the study of phase transition problems. However, these models are either limited to the low-142
speed/isothermal flows or fail to reproduce the correct transport coefficients. In this study,143
we will therefore review the available approaches theoretically and numerically, and attempt144
to develop an improved kinetic model for the van der Waals fluids that is computationally145
efficient to solve.146

To develop an efficient and accurate kinetic model to describe surface-confined non-147
equilibrium transport of van der Waals fluids, the following considerations are made:148

(i) the volume exclusion is described for both hard-sphere and LJ molecular interactions,149
with appropriate modifications of the transport coefficients, so that the kinetic model is not150
only mathematically simpler than the Enskog and EV equations, but also physically more151
appropriate;152

(ii) the long-range molecular attraction is considered in a thermodynamically consistent153
manner;154
(iii) the kinetic model reduces to the Boltzmann model equation in the dilute gas limit, i.e.155

when 𝜒 → 1 and 𝜎 → 0;156
(iv) it recovers the NS equations in the continuum limit, i.e. when 𝐻/𝜎 → ∞ and Kn→ 0;157
(v) the non-equilibrium (e.g. velocity slip), thermal (e.g. temperature jump), and confine-158

ment (e.g. inhomogeneous fluid properties) effects can be accurately captured.159

The remainder of the paper is organised as follows: in §2, a simplified kinetic model for160
van der Waals fluids is developed starting from the generalised Boltzmann equation using161
the mean-field approximation. Through the Chapman-Enskog expansion, we show that the162
correct EoS can be recovered from the kinetic model to achieve thermodynamic consistency,163
where the relaxation time and Prandtl number (Pr) can be determined using the transport164
coefficients of real gases. In §3, numerical simulations are performed to validate the model165
and to understand the effects of long-range molecular attraction and viscous dissipation on166
gas dynamics at different density, non-equilibrium and confinement conditions, using the167
MD data serves as a benchmark. We also show that the current kinetic model reduces to the168
Shakhov model for hard-sphere molecules in the dilute limit and recovers the NS equations169
when the confinement and non-equilibrium effects are negligible. Finally, the conclusions170
are drawn in §4.171

Focus on Fluids articles must not exceed this page length
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2. Kinetic modelling of van der Waals fluids172

As the gas density increases, the assumptions of binary collisions and molecular chaos173
that underlie the Boltzmann equation become inappropriate. For dense gases, the molecular174
interactions, including short-range repulsion and long-range attraction, play a prominent role,175
especially in applications such as phase transitions (Frezzotti et al. 2019; Huang et al. 2021)176
and multiphase flows (Sadr et al. 2021; Huang et al. 2022). A rigorous description of dense177
gases is the generalised Boltzmann equation derived from the Liouville equation (Ferziger178
& Kaper 1972; He & Doolen 2002), in which the evolution of the one-particle distribution179
function can be written as180

𝜕 𝑓

𝜕𝑡
+ 𝝃 · ∇ 𝑓 + 𝑭𝑒𝑥𝑡

𝑚
· ∇𝝃 𝑓 =

∬
𝜕 𝑓 (2)

𝜕𝝃
· ∇𝜙(𝒓, 𝒓1)d𝝃1d𝒓1, (2.1)181

where 𝑓 = 𝑓 (𝒓, 𝝃, 𝑡) is the velocity distribution function of molecular velocity 𝝃 at the spatial182
position 𝒓 and the time 𝑡; 𝑭𝑒𝑥𝑡 is the external force; 𝑓 (2) = 𝑓 (𝒓, 𝝃, 𝒓1, 𝝃1, 𝑡) is the two-183
particle distribution function, and 𝜙(𝒓, 𝒓1) is the pairwise intermolecular potential. For the LJ184
potential (1.2), it can be decomposed into a short-range repulsive core 𝜙𝑟𝑒𝑝 and a long-range185
attractive tail 𝜙𝑎𝑡𝑡 according to perturbation rules (Barker & Henderson 1967; Andersen186
et al. 1971; Cotterman et al. 1986). Furthermore, two simplifications are made on the two-187
particle distribution function. First, fluid molecules are assumed to satisfy the molecular188
chaos hypothesis, i.e. the velocities of colliding molecules are not correlated and independent189
of the position so that the two-particle distribution function can be expressed by the product190
of two one-particle distribution functions, i.e.191

𝑓 (𝒓, 𝝃, 𝒓1, 𝝃1, 𝑡) = 𝜒
( 𝒓 + 𝒓1

2

)
𝑓 (𝒓, 𝝃, 𝑡) 𝑓 (𝒓1, 𝝃1, 𝑡). (2.2)192

The second simplification is based on the observation that the radial distribution function is193
approximately unity in the attractive range (Reichl 1998). With these two simplifications, the194
generalised Boltzmann equation can be transformed to195

𝜕 𝑓

𝜕𝑡
+ 𝝃 · ∇ 𝑓 + 𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡

𝑚
· ∇𝝃 𝑓 = 𝐽𝐸 , (2.3)196

where 𝐽𝐸 and 𝑭𝑎𝑡𝑡 are the Enskog collision operator and the mean-field force for molecular197
attractions, respectively. Equation (2.3) is also known as the EV equation (Sobrino 1967).198
The Enskog collision operator can be expressed as199

𝐽𝐸 ( 𝑓 , 𝑓 ) = 𝜎2
∬ [

𝜒(𝒓 + 1
2𝜎𝒌) 𝑓 (𝒓, 𝝃

′) 𝑓1(𝒓 + 𝜎𝒌, 𝝃′1)
−𝜒(𝒓 − 1

2𝜎𝒌) 𝑓 (𝒓, 𝝃) 𝑓1(𝒓 − 𝜎𝒌, 𝝃1)

]
𝒈 · 𝒌d𝒌d𝝃1, (2.4)200

where 𝒈 = 𝝃1 − 𝝃 is the relative velocity of two colliding molecules, 𝒌 = (𝒓1 − 𝒓)/|𝒓1 − 𝒓 |201
is the unit vector that specifies the relative position of two colliding molecules, and 𝝃′ and202
𝝃′1 are the post-collision velocities, which are related to the pre-collision velocities 𝝃 and 𝝃1203
through204

𝝃′ = 𝝃 + 𝒌 (𝒈 · 𝒌), 𝝃′1 = 𝝃1 − 𝒌 (𝒈 · 𝒌). (2.5)205

Meanwhile, the mean-field force term can be expressed as207

𝑭𝑎𝑡𝑡 = −∇
[∫

|𝒓′ |>𝜎
𝑛(𝒓1)𝜙𝑎𝑡𝑡 (𝒓, 𝒓1)d𝒓1

]
. (2.6)208

To better represent realistic gases, the hard-sphere collisions (2.4) are softened by taking a209
state-dependentmolecular diameter according to the perturbation theories (Barker&Hender-210
son 1967; Andersen et al. 1971; Cotterman et al. 1986). For example, the effective molecular211
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diameter, according to Barker & Henderson (1967), can be calculated as212

𝜎𝑒 = 𝜎
∫ ∞

0

{
1 − exp

[
−𝜙(𝑟)
𝑘𝐵𝑇

]}
d𝑟, (2.7)213

which decreases with increasing temperature and plays a role similar to that of two colliding214
molecules penetrating into each other. It is not surprising that this state-dependent molecular215
diameter changes the transport coefficients. Shear viscosity 𝜇ℎ𝑠𝑠 and thermal conductivity 𝜅ℎ𝑠216
can be calculated as217

𝜇ℎ𝑠𝑠 =
1
𝜒
[1 + 0.8𝑛𝑉0𝜒 + 0.7614(𝑛𝑉0𝜒)2]𝜇0, (2.8)218

and219

𝜅ℎ𝑠 =
1
𝜒
[1 + 1.2𝑛𝑉0𝜒 + 0.7574(𝑛𝑉0𝜒)2]𝜅0, (2.9)220

respectively, with 𝜇0 and 𝜅0 being the viscosity and thermal conductivity at the atmospheric221
pressure, respectively. Although a state-dependent diameter aims for a better approximation222
of the molecular collision process, the Enskog collision operator (2.4) is still for hard-sphere223
gases. Ideally, more general molecular interaction models such as the LJ potential should be224
considered in the collision operator.225

Equation (2.3) combined with (2.4) and (2.6) formulates an integral procedure to simulate226
the dynamics of van der Waals fluids. However, the collision operator (2.4) is more complex227
than the Boltzmann collision operator, so a simplified model is required to achieve compu-228
tational efficiency with reasonable simulation accuracy.229

2.1. The simplified kinetic model for van der Waals fluids230

Following our previous works (Wang et al. 2020; Su et al. 2023), we expand the collision231
operator (2.4) into a Taylor series near 𝒓 and retain up to the second order terms as shown232
below,233

𝐽𝐸 ( 𝑓 , 𝑓 ) = 𝜒𝐽 (0) ( 𝑓 , 𝑓 ) + 𝐽 (1) ( 𝑓 , 𝑓 ) + 𝐽 (2) ( 𝑓 , 𝑓 ), (2.10)234

with236

𝐽 (0) ( 𝑓 , 𝑓 ) = 𝜎2
∬

( 𝑓 ′ 𝑓 ′1 − 𝑓 𝑓1)𝒈 · 𝒌d𝒌d𝝃1,

𝐽 (1) ( 𝑓 , 𝑓 ) = 𝜎3𝜒

∬
𝒌 · ( 𝑓 ′∇ 𝑓 ′1 + 𝑓∇ 𝑓1)𝒈 · 𝒌d𝒌d𝝃1

+ 𝜎
3

2

∬
𝒌 · ∇𝜒( 𝑓 ′ 𝑓 ′1 + 𝑓 𝑓1)𝒈 · 𝒌d𝒌d𝝃1,

𝐽 (2) ( 𝑓 , 𝑓 ) = 𝜎4

2
𝜒

∬
𝒌𝒌 : ( 𝑓 ′∇∇ 𝑓 ′1 − 𝑓∇∇ 𝑓1)𝒈 · 𝒌d𝒌d𝝃1

+ 𝜎
4

2

∬
𝒌 · ∇𝜒[𝒌 · ( 𝑓 ′∇ 𝑓 ′1 − 𝑓∇ 𝑓1)]𝒈 · 𝒌d𝒌d𝝃1

+ 𝜎
4

8

∬
𝒌𝒌 : ∇∇𝜒( 𝑓 ′ 𝑓 ′1 − 𝑓 𝑓1)]𝒈 · 𝒌d𝒌d𝝃1

(2.11)237

where all the quantities are evaluated at the position 𝒓, and 𝐽 (0) ( 𝑓 , 𝑓 ) is the Boltzmann238
collision operator for dilute gases, which can be further simplified by kinetic models. Here,239
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we choose the Shakhov model (Shakhov 1968), which is written as240

𝐽 (0) ( 𝑓 , 𝑓 ) ≡ 𝐽𝑠 = − 1
𝜏𝑠

[
( 𝑓 − 𝑓 𝑒𝑞) − 𝑓 𝑒𝑞 (1 − Pr) 𝝃 · 𝑸𝑘

5𝑝0𝑅𝑇

(
𝜉2

𝑅𝑇
− 5

)]
, (2.12)241

where 𝜏𝑠 is the relaxation time, Pr is the Prandtl number, 𝑸𝑘 is the heat flux due to the242
translational motion of gas molecules, 𝒄 = 𝝃 − 𝒖 is the peculiar velocity, 𝑝0 = 𝑛𝑘𝐵𝑇 is243
the EoS for ideal gases, 𝑅 = 𝑘𝐵/𝑚 is the specific gas constant, and 𝑓 𝑒𝑞 is the Maxwellian244
distribution function, which reads as245

𝑓 𝑒𝑞 = 𝑛

(
𝑚

2𝜋𝑘𝐵𝑇

) 3
2

exp
(
− 𝑚𝑐2

2𝑘𝐵𝑇

)
. (2.13)246

The terms 𝐽 (1) ( 𝑓 , 𝑓 ) and 𝐽 (2) ( 𝑓 , 𝑓 ) describe the dense gas effect arising from increas-247
ing density. Considering that (i) for dilute gases far from equilibrium, the density terms248
𝐽 (1) ( 𝑓 , 𝑓 ) and 𝐽 (2) ( 𝑓 , 𝑓 ) are negligible and the non-equilibrium effect can be captured249
by the Shakhov model (2.12); (ii) for gases at high densities, the density terms 𝐽 (1) ( 𝑓 , 𝑓 )250
and 𝐽 (2) ( 𝑓 , 𝑓 ) become important, where the gas mean free path should be small as 𝜆 ∝251
1/𝑛, implying that the gases are not far from equilibrium; and (iii) for gases not far from252
equilibrium, the equilibrium distribution function 𝑓 𝑒𝑞 is the leading part of the distribution253
function 𝑓 , further simplifications can be made on 𝐽 (1) ( 𝑓 , 𝑓 ) and 𝐽 (2) ( 𝑓 , 𝑓 ) by replacing254
the velocity distribution functions therein with their corresponding equilibrium distribution255
functions, leading to the following two terms as (Rangel-Huerta & Velasco 1996; Kremer256
2010; Wang et al. 2020; Su et al. 2023)257

𝐽 (1) ( 𝑓 , 𝑓 ) ≡ I (1) = −𝑛𝑉0𝜒 𝑓
𝑒𝑞


𝒄 ·

[
∇ ln(𝑛2𝜒𝑇) + 3

5

(
C2 − 5

2

)
∇ ln𝑇

]
+ 2

5

[
2CC : ∇𝒖 +

(
C2 − 5

2

)
∇ · 𝒖

]  , (2.14)258

and259

𝐽 (2) ( 𝑓 , 𝑓 ) ≡ I (2) = ∇ ·
[
𝑓 𝑒𝑞

𝜇𝐵
𝑝0

(∇ · 𝒖)
(
C2 − 3

2

)
𝒄

]
+ R, (2.15)260

where C = (𝑚/2𝑘𝐵𝑇)1/2𝒄 is the non-dimensional peculiar velocity, 𝜇𝐵 is the bulk viscosity.261
R is a second order quantity which has no contribution to the transfer of mass, momentum262
and energy, so it can be ignored hereafter in the kinetic model.263

It should be noted that the bulk viscosity 𝜇𝐵 appears in the expansion of the Enskog264
equation, but is absent in previous kinetic models (Luo 1998; He &Doolen 2002;Wang et al.265
2020; Takata et al. 2021). Although it is a small quantity involved in the second order term266
of the Taylor series (Rangel-Huerta & Velasco 1996; Kremer 2010), it is important in many267
applications (Jaeger et al. 2018), such as sound attenuation and shock wave propagation,268
where gases undergo strong compression or expansion (Hoover et al. 1980a,b).269

For simplicity, the radial distribution function 𝜒 in (2.10) can be absorbed into the relax-270
ation time 𝜏𝑠 in (2.12). The final evolution equation of the kinetic model for van der Waals271
fluids can be written as272

𝜕 𝑓

𝜕𝑡
+ 𝝃 · ∇ 𝑓 + 𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡

𝑚
· ∇𝝃 𝑓 = 𝐽

(0)
𝑠 + I (1) + I (2) , (2.16)273

where274

𝐽 (0)𝑠 = −1
𝜏

[
( 𝑓 − 𝑓 𝑒𝑞) − 𝑓 𝑒𝑞 (1 − Pr) 𝝃 · 𝑸𝑘

5𝑝0𝑅𝑇

(
𝜉2

𝑅𝑇
− 5

)]
, (2.17)275
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with the relaxation time 𝜏 = 𝜏𝑠/𝜒. The attractive part of the LJ potential, i.e., 𝜙𝑎𝑡𝑡 =
−4𝜖 (𝜎/𝑟)6 is chosen to simulate themolecular attraction in themean-field force term ( 2.6). It
should be emphasised that equation (2.16) is accurate to the second order in the Taylor series
of the Enskog collision operator (2.4) with omitted second order quantities which have no
contribution to mass, momentum and energy transfer. The macroscopic properties can then
be obtained by taking moments of the distribution function, i.e.

𝑛(𝒓, 𝑡) =
∫

𝑓 (𝒓, 𝝃, 𝑡)d𝝃, (2.18a)

𝑛𝒖(𝒓, 𝑡) =
∫

𝝃 𝑓 (𝒓, 𝝃, 𝑡)d𝝃, (2.18b)

3
2
𝑛𝑘𝐵𝑇 (𝒓, 𝑡) =

∫
𝑚

2
𝑐2 𝑓 (𝒓, 𝝃, 𝑡)d𝝃, (2.18c)

P𝑘 (𝒓, 𝑡) =
∫

𝑚𝒄𝒄 𝑓 (𝒓, 𝝃, 𝑡)d𝝃, (2.18d)

𝑸𝑘 (𝒓, 𝑡) =
∫

𝑚

2
𝑐2𝒄 𝑓 (𝒓, 𝝃, 𝑡)d𝝃, (2.18e)

where P𝑘 and 𝑸𝑘 are the kinetic stress tensor and heat flux, respectively, which arise from276
the free streaming of gas molecules.277

It should be noted that although the collisional terms 𝐽 (0)𝑠 , I1 and I2 are derived from278
the Enskog collision operator (2.4), the kinetic model (2.16) is not restricted to hard-sphere279
molecules as the transport coefficients are corrected to account for the influence of inter-280
molecular potentials. In the following sections, we will demonstrate the thermodynamic281
consistency of our kinetic model and how to obtain correct transport coefficients.282

2.2. The hydrodynamic equations and relaxation time283

Using the Chapman-Enskog expansion (see Appendix A for the details), the following hy-284
drodynamic equations can be obtained285

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0,

𝜕 (𝜌𝒖)
𝜕𝑡

+ ∇ · (𝜌𝒖𝒖) + ∇[𝑝 − 𝜇𝐵 (∇ · 𝒖)] − ∇ · (2𝜇𝑠S̊) − ∇ · K − 𝑛𝑭𝑒𝑥𝑡 = 0,

𝜕 (𝜌𝐸)
𝜕𝑡

+ ∇ · (𝜌𝐸𝒖) − ∇ · (𝜅∇𝑇) + [𝑝 − 𝜇𝐵 (∇ · 𝒖)] (∇ · 𝒖) − (2𝜇𝑠S̊) : ∇𝒖

−K : ∇𝒖 − 𝑛𝑭𝑒𝑥𝑡 · 𝒖 = 0,

(2.19)286

where the shear viscosity 𝜇𝑠 and thermal conductivity 𝜅 relate to the relaxation time 𝜏 and287
the Prandtl number Pr through (A 13). Accordingly, the relaxation time 𝜏 and the Prandtl288
number Pr can be obtained as289

𝜏 =
𝜇𝑠

𝑛𝑘𝐵𝑇

1
1 + 2

5𝑛𝑉0𝜒
,

Pr =
5𝑘𝐵
2𝑚

1 + 3
5𝑛𝑉0𝜒

1 + 2
5𝑛𝑉0𝜒

𝜇𝑠
𝜅
.

(2.20)290

Consequently, 𝜏 and Pr depend on the appropriate determination of the shear viscosity 𝜇𝑠291
and thermal conductivity 𝜅 of the fluids, which will be discussed in §§ 2.3.292

It should be noted that the hydrostatic pressure 𝑝 in (2.19) satisfies the van der Waals-type293
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EoS, where both the volume exclusion and the intermolecular attraction are considered. The294
specific form of the EoS depends on the choice of the radial distribution function 𝜒. If we295
choose 𝜒 = 1/(1 − 𝑛𝑉0), the hydrostatic pressure (A 19) recovers the exact van der Waals296
EoS (1.1). However, the shielding effect of the gas molecules is not taken into account by297
this choice. Based on the revised Enskog theory (van Beijeren & Ernst 1973), the radial298
distribution function can be evaluated at a non-local density over the contact point of two299
colliding molecules considering the shielding effect (Carnahan & Starling 1969), which can300
be written as301

𝜒(𝑛̄) = 1 − 0.5𝜂
(1 − 𝜂)3 , 𝜂 = 0.25𝑛̄𝑉0, (2.21)302

where 𝑛̄ =
∫
𝑤(𝒓′)𝑛(𝒓 + 𝒓′)d𝒓′ (Tarazona 1985) is the local average density. Substituting303

(2.21) into (A 19), we can get the hydrostatic pressure 𝑝 satisfying the following EoS304

𝑝 = 𝑛𝑘𝐵𝑇
1 + 𝜂 + 𝜂2 − 𝜂3

(1 − 𝜂)3 − 𝑎𝑛2. (2.22)305

Clearly, this hydrostatic pressure (equilibrium) shows that our kinetic model (2.16) is ther-306
modynamically consistent.307

2.3. Transport coefficients for van der Waals fluids308

The transport coefficients in (2.8) and (2.9) are obtained through the first order Chapman-309
Enskog expansion of the Enskog equation, which include both the kinetic and collisional310
contributions. For simplicity, the derivation of (2.8) and (2.9) was based on the hard-sphere311
molecules, i.e. all intermolecular collisions are rigid and elastic. To improve the accuracy312
of the predictions for real gases, the molecular dimensions are assumed to change with313
temperature, i.e., a higher temperature leads to a smaller molecular diameter, which has314
been widely adopted inMET (Hanley et al. 1972), kinetic reference theory (Karkheck & Stell315
1981), and other models (Guo et al. 2005, 2006; Shan et al. 2020). This modification accounts316
for the softness of molecules during the collision, but the effect of the gas molecular attraction317
on transport coefficients is still not considered. In contrast to the Enskog equation, which318
describes dynamics of hard-sphere gases, no molecular potential model appears explicitly in319
our kinetic model (2.16). Instead, the intermolecular potential including molecular attraction320
for real gases is included in the transport coefficients.321

For different molecular potential models (Chapman & Cowling 1990), the shear viscosity322
of real dilute gases can be written as323

𝜇0 =
𝜇ℎ𝑠0

Ω(2,2) , 𝜇ℎ𝑠0 =
5

16𝜎2

√
𝑚𝑘𝐵𝑇

𝜋
, (2.23)324

where 𝜇ℎ𝑠0 is the viscosity of dilute gases of hard-sphere molecules, andΩ(2,2) is the transport325
collision integral depending on the intermolecular potential, which accounts for the effect of326
gas molecular attraction on viscosity and is difficult to obtain theoretically. Neufeld et al.327
(1972) proposed an empirical form of the integral that performs well (with error less than328
0.1%) in the temperature range of 0.3 ⩽ 𝑇 ⩽ 100 with 𝑇 = 𝑘𝐵𝑇/𝜖 , which can be written as329

Ω(2,2) =
𝑐1

𝑇𝑐2
+ 𝑐3 exp(𝑐4𝑇) + 𝑐5 exp(𝑐6𝑇) + 𝑐7𝑇

𝑐8 sin(𝑐9𝑇
𝑐10 + 𝑐11), (2.24)330

with corresponding coefficients given in table 1.331
To obtain the shear viscosity and thermal conductivity of van der Waals fluids, we use332

the method proposed by Chung et al. (1984, 1988), which is based on the kinetic theory333
and experimental correlation. For convenience, we convert the original expression to the334
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𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6
1.16145 0.14874 0.52487 -0.7732 2.16178 -2.43787
𝑐7 𝑐8 𝑐9 𝑐10 𝑐11
-0.0006435 0.14874 18.0323 -0.7683 -7.27371

Table 1: Coefficients for calculating of the transport integral in equation (2.24).

𝑖 𝑎0 (𝑖) 𝑎1 (𝑖)
1 6.32402 50.4119
2 0.0012102 −0.0011536
3 5.28346 254.209
4 6.62263 38.0957
5 19.7454 7.63034
6 −1.89992 −12.5367
7 24.2745 3.44945
8 0.79716 1.11764
9 −0.23816 0.067695
10 0.068629 0.34793

Table 2: Coefficients for calculating the viscosity of van der Waals fluids in (2.26).

following form where the shear viscosity can be calculated as335

𝜇𝑠 = 𝜇
ℎ𝑠
0

(
𝐹𝐴𝐹𝐵

Ω(2,2) + 𝐹𝑐
)
, (2.25)336

with

𝐹𝐴 = 1 − 0.2756𝜔, (2.26a)
𝐹𝐵 = 1

𝐺𝑣
+ 𝐴6𝜂, (2.26b)

𝐹𝐶 = 1
𝑇̂

1
2
𝐴7𝜂

2𝐺𝑣 exp(𝐴8 + 𝐴9
𝑇̂

+ 𝐴10
𝑇̂2 ), (2.26c)

𝐺𝑣 = 𝐴1/𝜂 [1−exp(−𝐴4𝜂) ]+𝐴2𝜒 exp(𝐴5𝜂)+𝐴3𝜒
𝐴1𝐴4+𝐴2+𝐴3

, (2.26d)

where 𝐹𝐴 accounts for the effect of acentric of molecules with 𝜔 being the acentric factor,337
𝐹𝐵 and 𝐹𝐶 account for the dependence of viscosity on gas density. For monatomic gases, the338
acentric factor is 𝜔 = 0 so that 𝐹𝐴 = 1. The coefficients 𝐴1 − 𝐴9 can be calculated by339

𝐴𝑖 = 𝑎0(𝑖) + 𝑎1(𝑖)𝜔, (2.27)340

with the corresponding constants shown in table 2.341
Similarly, the thermal conductivity of dilute gases can be calculated as342

𝜅0 =
𝜅ℎ𝑠0

Ω(2,2) , 𝜅ℎ𝑠0 =
75𝑘𝐵

64𝑚𝜎2

√
𝑚𝑘𝐵𝑇

𝜋
. (2.28)343

The thermal conductivity of van der Waals fluids at high densities can be calculated as344

𝜅 = 𝜅ℎ𝑠0

(
𝐹𝑃𝐹𝐴𝐹𝐷

Ω(2,2) + 𝐹𝐸
)
, (2.29)345

Rapids articles must not exceed this page length
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𝑖 𝑏0 (𝑖) 𝑏1 (𝑖)
1 2.41657 0.74824
2 −0.50924 −1.50936
3 6.61069 5.62073
4 14.5425 −8.91387
5 0.79274 0.82019
6 −5.8634 12.8005
7 81.171 114.158

Table 3: Coefficients to calculate the thermal conductivity of van der Waals fluids
in (2.30).

with

𝐹𝐷 = 1
𝐺𝑡

+ 𝐵6𝜂, (2.30a)
𝐹𝐸 = 0.8906𝐵7𝜂

2𝐺𝑡 , (2.30b)
𝐺𝑡 =

𝐵1/𝜂 [1−exp(−𝐵4𝜂) ]+𝐵2𝜒 exp(𝐵5𝜂)+𝐵3𝜒
𝐵1𝐵4+𝐵2+𝐵3

, (2.30c)

where 𝐹𝑃 accounts for the polyatomic effect on thermal conductivity, which is unity for346
monatomic gases, 𝐹𝐷 and 𝐹𝐸 account for the dependence of thermal conductivity on density,347
and the coefficients 𝐵1 − 𝐵7 can be calculated from348

𝐵𝑖 = 𝑏0(𝑖) + 𝑏1(𝑖)𝜔 (2.31)349

using the constants shown in table 3.350
Since the correlated density-dependent functions are introduced to extend the Enskog351

model (2.8) and (2.9) to real gases by taking gas molecular attraction into account, we refer to352
this modified Enskog model (2.25) and (2.29) as the correlated Enskog model in this study.353
Once the shear viscosity 𝜇𝑠 and thermal conductivity 𝜅 are calculated from (2.25) and (2.29)354
respectively, the relaxation time 𝜏 and Prandtl number Pr can be determined through equation355
(2.20).356

One last parameter that needs to be determined is the bulk viscosity 𝜇𝐵, which was derived357
for hard-sphere fluids as358

𝜇ℎ𝑠𝐵 = (𝑛𝑉0)2𝜒𝜇ℎ𝑠0 . (2.32)359

This equation overestimates the bulk viscosity of dense LJ fluids according to Hoover et al.360
(1980a) and Borgelt et al. (1990). This overestimation is inherent in the calculation of the361
shear viscosity and thermal conductivity of the Enskog predictions given by (2.8) and (2.9),362
as these two transport coefficients are a combination of kinetic and collisional contributions.363
Taking the shear viscosity (2.8) as an example, equation (2.8) can be rewritten as364

𝜇ℎ𝑠 =
𝜇ℎ𝑠0
𝜒

(
1 + 2

5
𝑛𝑉0𝜒

)
︸                ︷︷                ︸

𝜇𝑘

+
𝜇ℎ𝑠0
𝜒

(
1 + 2

5
𝑛𝑉0𝜒

)
2
5
𝑛𝑉0𝜒 + 3

5
𝜇ℎ𝑠𝐵︸                                      ︷︷                                      ︸

𝜇𝑐

, (2.33)365

where 𝜇𝑘 and 𝜇𝑐 are the kinetic and collisional contributions to the shear viscosity, respec-366
tively. An overestimation of the bulk viscosity in the 𝜇𝑐 will naturally lead to an overestima-367
tion of the shear viscosity, especially at high densities where 𝜇𝑐 dominates. This explains the368
poor performance of the Enskog prediction of the transport coefficients at high densities.369

Gray & Rice (1964) proposed an explicit formula for the bulk viscosity, suggesting that370
the bulk viscosity consists of three parts: the hard-core collision part 𝜇ℎ𝑠𝐵 , the long-range371
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attractive part 𝜇𝑎𝑡𝑡𝐵 , and the cross (intermediate) part 𝜇𝑐𝑟𝑠𝐵 between hard-core collision and372

long-range attraction, namely 𝜇𝐵 = 𝜇ℎ𝑠𝐵 + 𝜇𝑎𝑡𝑡𝐵 + 𝜇𝑐𝑟𝑠𝐵 . There are conflicting explanations373

for this formula. Madigosky (1967) stated that the cross part 𝜇𝑐𝑟𝑠𝐵 is negligible when 𝑇 >374

1 and the long-rang attractive part 𝜇𝑎𝑡𝑡𝐵 ∝ 𝜌2, which is always positive. On the contrary,375
Collings & Hain (1976) found that the cross part 𝜇𝑐𝑟𝑠𝐵 cannot be neglected and the long-376
range-attractive part can be negative at high densities, which is consistent with the fact that377
the Enskog prediction of the transport coefficients is much larger than the experimental values378
at high densities, where the contribution of the long-range molecular attraction to the bulk379
viscosity is ignored.380

A two-parametric function has recently been proposed by Chatwell & Vrabec (2020)381
to calculate the bulk viscosity, which is in good agreement with the experimental data382
and the MD simulation results at ultra-low temperature and ultra-high density conditions.383
However, it may become problematic when the density reduces or temperature increases, as384
nonphysical bulk viscosity would appear. Overall, the bulk viscosity for dense monatomic385
gases needs further investigation. Here, we adopt an empirical approach (Hoover et al. 1980b)386
to the calculation of the bulk viscosity, which considers the effect of attraction between gas387
molecules as388

𝜇𝐵 = 𝑛𝑉0𝑦

(
𝜖

𝑘𝐵𝑇

) 1
12

𝜇ℎ𝑠0 , (2.34)389

with

𝑦 = 2.722𝑥 + 3.791𝑥2 + 2.495𝑥3 − 1.131𝑥5, (2.35a)

𝑥 = 0.477465𝑛𝑉0

(
𝜖

𝑘𝐵𝑇

) 1
4
. (2.35b)

To be consistent with the shear viscosity and thermal conductivity, we refer to this equation390
(2.34) as the correlated Enskog model since the effect of gas molecular attraction is included.391

3. Numerical results and discussion392

Here, we examine whether our kinetic model (2.16) can capture the non-equilibrium and393
dense gas effects of surface-confined flows of van der Waals fluids. The kinetic model is394
solved by the discrete velocity method together with the diffuse boundary condition, which395
is set at the position a half-molecule size away from the physical boundary as the molecule396
dimension is considered (see figure 1). The steady-state solutions are obtained using a semi-397
implicit iteration scheme (Su et al. 2020), with the flow field initialised at the equilibrium398
state.399

MD simulations are conducted to validate the current kinetic model. In the MD simula-
tions, fluidmolecules interact with each other through the LJ potential (1.2). For initialisation,
molecular velocities are generated with a Gaussian distribution to produce the required
temperature, followed by a run of 5 × 104 steps in the NVT system to ensure that the initial
states (mass, momentum, and energy) are the same for the MD and the kinetic simulations.
Afterwards, the NVE system is employed to run all the cases with sufficient time steps and
obtain the flowfield data. The energy and size (molecule diameter) parameters are obtained
through the critical temperature and volume of the fluids (Chung et al. 1988), respectively,
as

𝜖 = 𝑘𝐵𝑇𝑐
1.2593 , (3.1a)

𝜎 =
(
𝑀𝑉𝑐

𝑁𝐴𝜋

) 1
3
, (3.1b)
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Figure 1: Schematic of (𝑎) Poiseuille, (𝑏) Couette, and (𝑐) Couette-Fourier flows.

where 𝑇𝑐 is the critical temperature (K), 𝜎 is the molecular diameter (m), 𝑉𝑐 = 1/𝜌𝑐 is the400
critical volume (m3/kg), 𝑀 is the molar mass (kg/mol), and 𝑁𝐴 is the Avogadro constant. For401
argon, the critical temperature 𝑇𝑐 = 150.69 K and the critical density 𝜌𝑐 = 535.60 kg/m3 are402
chosen in this study.403

We consider the van der Waals fluids confined between two parallel plates located at 𝑦 = 0404
and 𝑦 = 𝐻 respectively, as shown in figure 1. In Poiseuille flow, the plates are kept stationary405
and all the fluidmolecules are subjected to an external force 𝑭𝑒𝑥𝑡 in the 𝑥 direction. In Couette406
and Couette-Fourier flows, the top and bottom plates move with velocity 𝑢𝑤 and −𝑢𝑤 in the407
opposite directions, which drive fluid molecules to move. In Poiseuille and Couette flows,408
the temperatures of the top and bottom plates are identical, while the temperature of the top409
plate temperature 𝑇ℎ is higher than the bottom plate 𝑇𝑐 in Couette-Fourier flow.410

3.1. Model analysis and comparison411

The radial distribution function plays an essential role in the MET. A key requirement for412
determining the radial distribution function is that 𝜒 → 1 as 𝑛 → 0, so that the Enskog413
equation for dense gases reduces to the Boltzmann equation in the dilute limit. However,414
the MET does not satisfy this requirement when the van der Waals pressure is chosen, as415
shown by equation (1.4), which makes the MET inaccurate in capturing the effect of the416
long-range molecular attraction. A temperature-dependent diameter (Hanley et al. 1972) can417
be employed to correct this problem, which relates the covolume 𝑉0 with the second virial418
coefficient 𝐵 through𝑉0 = 𝐵+𝑇d𝐵/d𝑇 , and leads directly to the following EoS for real gases419

𝑝 = 𝑍𝑛𝑘𝐵𝑇, 𝑍 = 1 + 𝑛𝜒(𝐵 + 𝑇 d𝐵
d𝑇

), (3.2)420

where 𝑍 is the compressibility factor. Clearly, the real gas EoS recovers the ideal gas EoS421
as the compressibility factor 𝑍 → 1 when 𝑛 → 0. However, the compressibility factor 𝑍422
may be less than unity near the critical temperature, which means that the radial distribution423
function 𝜒 may be negative in (3.2) as both 𝑛 > 0 and 𝑉0 = 𝐵 +𝑇d𝐵/d𝑇 > 0, thus leading to424
negative shear viscosity and thermal conductivity, as can be seen from (2.8) and (2.9), which425
is physically inappropriate. Therefore, the MET is not suitable for modelling gas dynamics426
of van der Waals fluids.427

As shown in figure 2, the Enskog prediction overestimates the shear viscosity and thermal428
conductivity at high densities. The assumption of a state-dependent diameter (2.7) attenuates429
this overestimation at low temperatures, see figure 2(𝑎), but leads to an overestimation of the430
shear viscosity at low densities, see figure 2(𝑏). Overall, the correlated Enskog model agrees431
well with the experimental data for a wide range of temperatures and densities, particularly432
for shear viscosity and thermal conductivity, which indicates the accuracy of taking the433
molecular attraction into account to calculate the transport coefficients.434

Similar to the shear viscosity and thermal conductivity, it improves the prediction accuracy435
by taking the molecular attraction into account to calculate the bulk viscosity. However, the436
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Figure 2: Comparison of transport coefficients: (𝑎) and (𝑏) for the shear viscosity at 𝑇 =
173.0 K and 298.0 K, respectively, with the experimental data from Haynes (1973); (𝑐)
and (𝑑) for the thermal conductivity at 𝑇 = 298.15 K and 348.15 K, respectively, with the
experimental data from Michels et al. (1963); and (𝑒) and ( 𝑓 ) for the bulk viscosity with
the experimental data from Malbrunot et al. (1983) and Madigosky (1967), respectively.
The correlated Enskog model considers the effect of gas attraction on shear viscosity and
thermal conductivity using the approach of Chung et al. (1988), and on bulk viscosity

using the approach of Hoover et al. (1980b). The softened Enskog uses a state-dependent
molecule diameter (2.7) in the Enskog prediction of transport coefficients (2.32). The

Enskog (corrected 𝜇𝐵) uses the corrected bulk viscosity in the Enskog prediction of shear
viscosity (2.33).



15

0 3 6 9 12 15
0

100

200

300

400

500

0 3 6 9 12
15

20

25

30

r,
 k

g/
m

3

y, nm

 MD
 Viscosity with attraction
 Viscosity without attraction

(a)

m,
 m

Pa
 s

y, nm

0 3 6 9 12 15
0

20

40

60

80

u,
 m

/s

y, nm

 MD
 Viscosity with attraction
 Viscosity without attraction

(b)

Figure 3: The effect of viscosity models on (a) density and viscosity and (b) velocity
profiles, where the viscosity without attraction refers to the hard-sphere model (2.8)

and viscosity with attraction refers to the Chung model (2.25).

bulk viscosity is more accurately predicted using the Enskog prediction formula (2.32) with437
a state-dependent diameter (2.7), i.e. the softened Enskog prediction, as shown in figure 2(𝑒)438
and ( 𝑓 ). Consequently, the Enskog prediction of shear viscosity and thermal conductivity is439
in better agreement with the experimental data at high densities if we take this corrected bulk440
viscosity into (2.33) to replace the original hard-sphere bulk viscosity 𝜇ℎ𝑠𝐵 , see figure2(𝑎), (𝑏),441
(𝑐) and (𝑑), which proves that the overestimation of bulk viscosity from the Enskog theory442
leads to the overestimation of the shear viscosity and thermal conductivity, see figure2(𝑎),443
(𝑏), (𝑐) and (𝑑), at high densities.444

The effect of viscosity models on gas density, viscosity and velocity distributions is shown445
in figure 3, where a Poiseuille-type flow is investigated with the bottom and top wall temper-446
atures 𝑇𝑐 = 173 K and 𝑇ℎ = 373 K, respectively, the averaged density 𝜌𝑎𝑣𝑔 = 150 kg/m3, the447

channel width 𝐻 = 15 nm, and the external force 𝐹𝑒𝑥𝑡 = 0.0003 kcal/(mol Å). Although the448
viscosity model barely affects the density distribution, it is more accurate to predict the flow449
velocity profile when themolecular attraction is taken into account. The tendency of viscosity450
and density across the channel is opposite since the viscosity is dominated by temperature at451
a relatively low density.452

The present kinetic model (2.16) will then be evaluated by comparison with the simulation
results of MD, the Shakhov-Enskog model (Wang et al. 2020), and the NS equations. For
incompressible, steady state and laminar flows, the NS equations reduces to

𝜇 𝜕2𝑢
𝜕𝑦2 + 𝐹𝑒𝑥𝑡𝑛 = 0, (3.3a)

𝜅 𝜕
2𝑇

𝜕𝑦2 + 𝜇
(
𝜕𝑢
𝜕𝑦

)2
= 0, (3.3b)

with the second-order boundary condition for velocity slip and the first-order boundary
condition for temperature jump, namely

𝑢𝑠 = ±𝐴1𝜆
𝜕𝑢
𝜕𝑦 |𝑦=0 − 𝐴2𝜆

2 𝜕2𝑢
𝜕𝑦2 |𝑦=0, (3.4a)

𝑇𝑗 = 𝛽
2𝛾
𝛾+1

𝜆
Pr

𝜕𝑇
𝜕𝑦 |𝑦=0, (3.4b)

where the slip coefficients 𝐴1 = 1.0 and 𝐴2 = 0.5 are chosen (Chapman & Cowling 1990),453
and 𝛽 = (2 − 𝜎𝑇 )/𝜎𝑇 with the chosen thermal accommodation coefficient 𝜎𝑇 = 1.0.454
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3.2. Poiseuille flows455

In Poiseuille flows, an external body force is acted on all the fluid molecules in the 𝑥 di-
rection with the wall temperature 𝑇𝑤 = 273𝐾 . By solving (3.3) and (3.4), the velocity and
temperature distribution across the channel can be obtained as

𝑢(𝑦) = −𝐹𝑒𝑥𝑡𝑛
2𝜇 [𝑦2 − 𝑦𝐻 − 𝐻2(𝐴1Kn + 2𝐴2Kn2)], (3.5a)

𝑇 (𝑦) = − (𝐹𝑒𝑥𝑡𝑛)2

24𝜇𝜅 (2𝑦4 − 4𝐻𝑦3 + 3𝐻2𝑦2 − 𝐻3𝑦 − 𝐿𝑇𝐻4) + 𝑇𝑤 , (3.5b)

where Kn is the Knudsen number defined as456

Kn =
1

√
2𝑛𝜋𝜎2𝜒𝐻

. (3.6)457

Figure 4 shows the density and velocity profiles of the Poiseuille flows under a small ex-458
ternal body force at different densities, i.e. different degrees of non-equilibrium (rarefaction)459
effect. As shown, the results of our kinetic model are in good agreement with the MD data460
for a broad range of densities (the reduced number density 𝜂 ranges from 0.00031 to 0.14). In461
contrast, the Shakhov-Enskog model (Wang et al. 2020), which neglects the gas molecular462
attraction, overestimates the density near the wall and underestimates the overall velocity463
profiles, particularly at high densities. The NS prediction, on the other hand, is better at high464
densities where the non-equilibrium effect is not significant.465

For high-speed flows, the viscous dissipation plays an important role, which is investigated466
in figure 5 with the average density 𝜌𝑎𝑣𝑔 = 350 kg/m3, channel width 𝐻 = 5 nm, and467
wall temperature 𝑇𝑤 = 273 K. Two large external forces are considered, namely 𝐹𝑒𝑥𝑡 =468
0.01 and 0.02 kcal/(mol Å), respectively. Again, the density oscillation, parabolic velocity,469
and quartic temperature profiles are well captured by the current kinetic model, while the470
Shakhov-Enskogmodel and the NS equation show large errors. The discrepancy in the results471
between the current kineticmodel and the Shakhov-Enskogmodel suggests the important role472
of the long-range molecular attraction in gas dynamics, leading to reduced density near the473
wall, and enhanced velocity slip and temperature jump.474

The effect of temperature on density and velocity profiles is shown in figure 6, with the475
average density 𝜌𝑎𝑣𝑔 = 350 kg/m3, channel width 𝐻 = 5 nm, and external force 𝐹𝑒𝑥𝑡 =476

0.001 Kcal/(mol Å). It is very clear that the density and velocity profiles predicted by our477
kinetic model agree with theMD data, while the NS equation fails to predict density variation478
and the Shakhov-Enskog model overpredicts the density near the wall. The main difference479
between our model and the Shakhov-Enskog model is that we include the gas molecular480
attraction, which can hold the gas molecules to the bulk. As a result, our prediction of the481
density at the wall is significantly smaller than the Shakhov-Enskog model for hard-sphere482
molecules which ignores the molecular attraction. As shown by figure 6(𝑒), even at high483
temperatures, the gas density of van der Waals fluids is still significantly affected by the484
long-range molecular attraction, i.e. the gas molecular attraction is not negligible even at485
high temperatures, which has rarely been reported in previous studies.486

The velocity decreases with the temperature, as shown by figure 6(𝑏), (𝑑) and ( 𝑓 ), which487
is caused by the higher near-wall density and lager viscosity at high temperatures. The higher488
near-wall density means more efficient momentum transfer between the fluid and the wall,489
leading to less velocity slip at the boundary, while a higher viscosity means more flow490
resistance for bulk gas flows in the channel. This can be more clearly seen by normalising491
the slip velocity 𝑢𝑠 by 𝐹𝑒𝑥𝑡𝐻/(𝑚𝑢𝑚), namely492

𝑢̂𝑠 =
𝑢𝑠𝑚𝑢𝑚
𝐹𝑒𝑥𝑡𝐻

, 𝑢𝑚 =

√
2𝑘𝐵𝑇
𝑚

, (3.7)493
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Figure 4: Density and velocity profiles at: (𝑎) and (𝑏) for 𝜌𝑎𝑣𝑔 = 10 kg/m3 (𝜂 = 0.00031,
Kn = 2.56); (𝑐) and (𝑑) for 𝜌𝑎𝑣𝑔 = 150 kg/m3 (𝜂 = 0.047, Kn = 0.15); and (𝑒) and ( 𝑓 ) for
𝜌𝑎𝑣𝑔 = 450 kg/m3 (𝜂 = 0.14, Kn= 0.039). The external force 𝐹𝑒𝑥𝑡 = 0.001 kcal/(mol Å)
is small so that the viscous dissipation is negligible, the channel width is 𝐻 =5 nm, and

the wall temperature is 273 K.

where 𝑢𝑚 is the most probable velocity. The variation of the normalised slip velocity with494
temperature is shown in figure 7. The normalised slip velocity of hard-sphere gases predicted495
by the Shakhov-Enskog model is nearly constant as the temperature changes, while the496
present kinetic model andMD simulation predict a decreasing slip velocity with temperature.497
For hard-sphere gases, the density distribution is not affected by the temperature, and the498
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Figure 5: Density, velocity and temperature profiles at different external forces: (𝑎), (𝑏)
and (𝑐) for 𝐹𝑒𝑥𝑡 = 0.01 kcal/(mol Å); and (𝑑), (𝑒) and ( 𝑓 ) for 𝐹𝑒𝑥𝑡 = 0.02 kcal/(mol Å).
The average density is 𝜌𝑎𝑣𝑔 = 350 kg/m3 (𝜂 =0.11), the channel width is 𝐻 =5 nm, and

the wall temperature is 𝑇𝑤 = 273 K. The resulting Knudsen number is Kn=0.055.

velocity distribution 𝑢(𝑦) ∝ 1/𝜇ℎ𝑠𝑠 . As shown by (2.8), the viscosity 𝜇ℎ𝑠𝑠 ∝
√
𝑇 , so the nor-499

malised velocity is temperature independent as 𝑢𝑚 ∝
√
𝑇 . However, the relationship between500

viscosity and temperature 𝜇𝑠 ∝
√
𝑇 no longer holds for van der Waals fluids as the transport501

collision integral Ω(2,2) , which is temperature dependent, comes into play. Furthermore, a502
new dimensionless number, namely the reduced temperature 𝑇 = 𝑘𝐵𝑇/𝜖 is introduced to503
signify the competition between gasmolecular attraction and kinetic energy for van derWaals504



19

0 1 2 3 4 5
0

300

600

900

1200
r,

 k
g/

m
3

y, nm

 MD
 Present kinetic model
 Shakhov-Enskog
 NS

(a)

0 1 2 3 4 5
0

10

20

30

40

50

60

u,
 m

/s

y, nm

 MD
 Present kinetic model
 Shakhov-Enskog
 NS

(b)

0 1 2 3 4 5
0

300

600

900

1200

r,
 k

g/
m

3

y, nm

 MD
 Present kinetic model
 Shakhov-Enskog
 NS

(c)

0 1 2 3 4 5
0

10

20

30

40

50

60

u,
 m

/s

y, nm

 MD
 Present kinetic model
 Shakhov-Enskog
 NS

(d)

0 1 2 3 4 5
0

300

600

900

1200

r,
 k

g/
m

3

y, nm

 MD
 Present kinetic model
 Shakhov-Enskog
 NS

(e)

0 1 2 3 4 5
0

10

20

30

40

50

60

u,
 m

/s

y, nm

 MD
 Present kinetic model
 Shakhov-Enskog
 NS

(f )

Figure 6: Density and velocity profiles at different temperatures: (𝑎) and (𝑏) for 𝑇 = 253
K; (𝑐) and (𝑑) for 𝑇 = 313 K; and (𝑒) and ( 𝑓 ) for 𝑇 = 373 K. The average density is 𝜌𝑎𝑣𝑔

= 350 kg/m3, the channel width is 𝐻 =5 nm, and the external force 𝐹𝑒𝑥𝑡 = 0.001
kcal/(mol Å).

fluids. As the temperature increases, the gas molecules gain more kinetic energy to overcome505
the attraction holding them in the bulk. This results in greater accumulation near the walls,506
leading to increased momentum transfer between the solid and the gas, thus reducing the slip507
velocity.508

As the viscous dissipation is non-negligible for fluids under high shear rates, we investigate509
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its effect on the normalised mass flow rate 𝑄𝑛, which is defined as510

𝑄𝑛 =

∫ 𝐻

0 𝑛(𝑦)𝑦(𝑦)d𝑦
𝑛𝑎𝑣𝑔𝐹𝑒𝑥𝑡𝐻2/(𝑚𝑢𝑚)

. (3.8)511

As shown in figure 8, increased viscous dissipation reduces the mass flow rate in all the512
flow regimes. This is because the viscous dissipation leads to a smaller slip velocity and513
larger flow resistance, as shown by the results in figure 5. The effect of viscous dissipation514
on mass flow rate is similar to that of confinement, which is also included in figure 8 for515
comparison. However, the confinement reduces the mass flow rate more significantly for516
small-Kn flows, resulting in the disappearance of the Knudsen minimum. On the contrary,517
the viscous dissipation flattens the variation curve (𝑄𝑛 ∼ Kn), but no Knudsen minimum518
disappearance is observed.519

3.3. Couette flows520

In Couette flows, the top and bottom walls move in opposite directions at the speed of 𝑢𝑤
in the opposite directions, as shown in figure 1(𝑏). No external force is exerted on fluid
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molecules, so 𝐹𝑒𝑥𝑡 = 0 and the wall temperature is set to be 𝑇𝑤 = 273 K. The velocity
and temperature profiles can also be obtained by solving (3.3) and (3.4), which are written
as

𝑢(𝑦) = 2𝑢𝑤
𝐻 𝑦 − 𝑢𝑤 , (3.9a)

𝑇 (𝑦) = − 2𝜇𝑢2
𝑤

𝜅𝐻2

(
𝑦2 − 𝐻𝑦 − 𝐻2𝛽 2𝛾

𝛾+1
Kn
Pr

)
+ 𝑇𝑤 . (3.9b)

Figure 9 shows the density, velocity, and temperature profiles of the Couette flows at521
different shear rates, with the average density 𝜌𝑎𝑣𝑔 = 350 kg/m3, and channel width 𝐻 = 5522
nm. The present kinetic model captures the density oscillation, linear velocity distribution,523
and parabolic temperature distribution, which are in good agreement with the MD data.524
Similar to the Poiseuille flows, the Shakhov-Enskog model, which neglects the long-range525
attraction between gas molecules, overestimates the density near the wall and underestimates526
both the velocity slip and the temperature jump. As the shear rate increases, gas molecules527
are more likely to accumulate near the wall, as the long-range molecular attraction may not528
be sufficient to hold the gas molecules to the bulk, also shown in figure 10. In contrast to529
the density peak near the wall, the viscosity is lowest in this region, see figure 10(𝑑). This530
is because the bulk gas has higher temperatures due to the viscous heating. Figure 10(𝑏)531
shows that stronger viscous dissipation causes a reduction in velocity slip as a combined532
consequence of a higher density peak and a greater viscosity near the wall.533

The viscous dissipation effect on Couette flows under tighter confinement is also investi-534
gated, where the channel width shrinks from 5 nm to 2 nm, as shown in figure 11. For such535
a case, both the non-equilibrium and confinement effects become stronger. The results from536
the Shakhov-Enskog model and the NS equations exhibit larger discrepancies compared to537
the MD simulation results, while our kinetic model can still accurately capture the density,538
velocity, and temperature profiles.539

3.4. Couette-Fourier flows540

The Couette-Fourier flow differs from the Couette flow only in the different wall temper-
atures, with the top wall temperature at 𝑇ℎ = 373 K and the bottom wall temperature at
𝑇𝑐 = 273 K. By solving (3.3) and (3.4), the velocity and temperature can be obtained as

𝑢(𝑦) = 2𝑢𝑤
𝐻 𝑦 − 𝑢𝑤 , (3.10a)

𝑇 (𝑦)−𝑇𝑐
𝑇ℎ−𝑇𝑐 = −2Br

[ ( 𝑦
𝐻

)2 − (1 − 2𝐿𝑇 ) 𝑦
𝐻 − 𝐿𝑇 (1 − 2𝐿𝑇 )

]
+ 𝑦

𝐻 + 𝐿𝑇 , (3.10b)

where Br = 𝜇𝑢2
𝑤/[𝜅(𝑇ℎ − 𝑇𝑐)] is the Brinkman number measuring the competition between541

viscous heating and thermal conduction, and 𝐿𝑇 is the thermal jump length, which can be542
obtained from the temperature jump condition as543

𝐿𝑇 = 𝛽
2𝛾
𝛾 + 1

Kn
Pr
. (3.11)544

The density, velocity, and temperature profiles of the Couette-Fourier flows at two different545
wall velocities are shown in figure 12, with the channel width 𝐻 = 5 nm. At a small546
wall moving velocity (𝑢𝑤 =50 m/s), the viscous dissipation is negligible, so the density547
and temperature distributions recover that of Fourier flows, while the velocity distribution548
is similar to the Couette flows. When the wall velocity increases to 𝑢𝑤 = 300 m/s, the549
temperature profile becomes a combination of the linear and parabola distributions resulting550
from the Fourier and Couette flows, respectively. Again, the present kinetic model accurately551
predicts these profiles, while the results of the Shakhov-Enskog model significantly deviate552
from the MD data , particularly for the density and temperature profiles.553
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Figure 9: Density, velocity and temperature profiles: (𝑎 − 𝑐) 𝑢𝑤 = 200 m/s; and (𝑑 − 𝑓 )
𝑢𝑤 = 400 m/s. The average density is 𝜌𝑎𝑣𝑔 = 350 kg/m3, the channel width is 𝐻 =5 nm,

and the wall temperature is 𝑇𝑤 = 273 K.

With increased viscous dissipation at high wall velocities, the heat generated in the gases554
leads to higher gas temperatures, as shown in figure 13(𝑎). The viscous dissipation increases555
the heat transfer rate between the gas and the cold (bottom) wall, while it limits the heat556
transfer rate between the gas and the hot (top) wall, which can be clearly seen from the heat557
flux variation in figure 13(𝑏). When the wall velocity is sufficiently large, the hot wall can558
also be heated by the gases due to the large amount of heat generated by viscous heating.559
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Figure 10: Distribution of density (𝑎), velocity (𝑏), temperature (𝑐), and viscosity (𝑑)
across the channel at different wall velocities. The average density is 𝜌𝑎𝑣𝑔 = 350 kg/m3,

the channel width is 𝐻 =5 nm, and the wall temperature is 𝑇𝑤 = 273 K.

Thus, our kinetic model may provide a design simulation tool to develop next-generation560
technologies such as nanoscale evaporative cooling.561

3.5. Model solution in the dilute and continuum limits562

As shown in figure 14(𝑎) and (𝑏), the results of the present kinetic model for van der563
Waals fluids are in good agreement with the Shakov-Boltzmann model for dilute gases and564
the MD simulation when the real gas effects (namely the volume exclusion and the long-565
range molecular attraction) and the confinement are negligible. This is because the density566
terms I (1) (2.14) and I (2) (2.15) and the mean-field force (2.6) become negligible, and the567
kinetic model (2.16) reduces to the Shakhov model for hard-sphere molecules in the dilute568
limit. Meanwhile, the results of our kinetic model, NS equations, and MD simulations are569
very close in the continuum limit where the non-equilibrium and confinement effects are570
sufficiently small, as shown in figure 14(𝑐) and (𝑑). This is also expected because the NS571
equations are recovered from the kinetic model (2.16) in the small-Kn limit, as shown in572
appendix A. Therefore, the present kinetic model, which is an extension from the Enskog-573
Vlasov model for hard-sphere molecules to include real gas effects, is capable of simulating574
non-equilibrium flows of surface-confined van der Waals fluids.575
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Figure 11: Density and velocity profiles at: (𝑎 − 𝑐) 𝑢𝑤 = 200 m/s; and (𝑑 − 𝑓 ) 𝑢𝑤 = 400
m/s. The average density is 𝜌𝑎𝑣𝑔 = 350kg/m3, the channel width is 𝐻 =2 nm, and the wall

temperature is 𝑇𝑤 = 273 K. The resulting Knudsen number is Kn = 0.14.

4. Conclusions576

We have proposed a simplified kinetic model for surface-confined flows of van der Waals577
fluids, which is consistent with the Boltzmann model in the dilute limit and with the NS578
equations in the continuum limit. The long-range molecular attraction is taken into account579
both in the kinetic equation and in the transport coefficients (shear viscosity and thermal580
conductivity). Through the Chapman-Enskog expansion, macroscopic equations can be ob-581
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Figure 12: Density, velocity and temperature profiles of the Couette-Fourier flows at
different wall velocities: (𝑎 − 𝑐) 𝑢𝑤 = 50 m/s; and (𝑑 − 𝑓 ) 𝑢𝑤 = 300 m/s. The average

density is 𝜌𝑎𝑣𝑔 = 350 kg/m3, the channel width is 𝐻 =5 nm, and the top and bottom wall
temperatures are 𝑇ℎ = 373 K and 𝑇𝑐=273 K, respectively.

tained with a correct form of EoS if the radial distribution function is chosen appropriately,582
demonstrating the thermodynamic consistency of our kinetic model.583

Further analysis shows that the shear viscosity and thermal conductivity are in better584
agreement with the experimental data when the gas attraction is taken into account, while the585
bulk viscosity is more accurately predicted by the Enskog formula for hard-sphere molecules586
with a state-dependent diameter. The Enskog theory greatly overestimates the bulk viscosity587
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Figure 13: Temperature (𝑎) and heat flux (𝑏) distributions of Couette-Fourier flows at
different wall velocities, where the symbols denote the MD data. The averaged density is

𝜌𝑎𝑣𝑔 = 350 kg/m3, the channel width is 𝐻 =5 nm, and the top and bottom wall
temperatures are 𝑇ℎ = 373 K and 𝑇𝑐=273 K, respectively.
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Figure 14: The present kinetic model agrees with the Boltzmann model in the dilute limit
(𝑎) and (𝑏), and with the NS equations in the continuum limit (𝑐) and (𝑑). The average

density 𝜌𝑎𝑣𝑔 = 2 kg/m3, the channel width 𝐻 =100 nm, and the external force
𝐹𝑒𝑥𝑡 = 0.00003 kcal/(mol Å) in (𝑎) and (𝑏), correspond to 𝜂 = 0.00062 and Kn = 0.64; the
average density 𝜌𝑎𝑣𝑔 = 450 kg/m3, the channel width 𝐻 =50 nm, and the external force
𝐹𝑒𝑥𝑡 = 0.00005 kcal/(mol Å) in (𝑐) and (𝑑), correspond to 𝜂 = 0.14 and Kn = 0.0039.
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of dense gases, which explains the overestimation of shear viscosity and thermal conductivity588
at high densities. The empirical MET which incorporates the gas attraction into the radial589
distribution function either fails to recover the Boltzmann equation in the dilute limit or pro-590
duces non-physical properties, e.g. negative transport coefficients near critical temperatures.591
Momentum and energy transfer become temperature dependent for van der Waals fluids due592
to gas molecular attraction, which is not the case for hard-sphere molecules. The extensive593
numerical tests suggest that the present model can capture the non-equilibrium, confinement,594
real gas, and thermal effects simultaneously.595
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Appendix A. Chapman-Enskog expansion of the kinetic model606

The Chapman-Enskog expansion (Chapman & Cowling 1990) is used to derive the hydro-607
dynamic equations from the kinetic model (2.16), on the basis of which the relaxation time608
𝜏 and the Prandtl number Pr can be assigned according to their relationship with the shear609
viscosity and thermal conductivity. First, the following expansions are introduced as610

𝜕

𝜕𝑡
= 𝜀 (1)

𝜕

𝜕𝑡1
+ 𝜀 (2) 𝜕

𝜕𝑡2
,

𝜕

𝜕𝒓
= 𝜀 (1)

𝜕

𝜕𝒓1
,

𝜕

𝜕𝝃
= 𝜀 (1)

𝜕

𝜕𝝃1
,

𝑓 = 𝑓 (0) + 𝜀 (1) 𝑓 (1) + 𝜀 (2) 𝑓 (2) +𝑂 ( 𝑓 (3) ),
𝑸𝑘 = 𝑸 (0)

𝑘 + 𝜀 (1)𝑸 (1)
𝑘 + 𝜀 (2)𝑸 (2)

𝑘 +𝑂 (𝑸 (3)
𝑘 ),

(A 1)611

where 𝜀 is a small parameter on the order of the Knudsen number. Following these expansions612
(A 1), the kinetic equation (2.16) can be transformed into a hierarchy of equations according613
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to the order of 𝜀, with the preceding equations given as614

𝜀 (0) : 𝑓 (0) = 𝑓 𝑒𝑞 ,

𝜀 (1) :
𝜕 𝑓 (0)

𝜕𝑡1
+ 𝝃 · 𝜕 𝑓

(0)

𝜕𝒓1
+ 𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡

𝑚
· 𝜕 𝑓

(0)

𝜕𝝃1

= −1
𝜏

[
𝑓 (1) − 𝑓 𝑒𝑞 (1 − Pr)

𝒄 · 𝑸 (1)
𝑘

5𝑝0𝑅𝑇

(
𝑐2

𝑅𝑇
− 5

)]
+ I (1) ,

𝜀 (2) :
𝜕 𝑓 (1)

𝜕𝑡1
+ 𝜕 𝑓

(0)

𝜕𝑡2
+ 𝝃 · 𝜕 𝑓

(1)

𝜕𝒓1
+ 𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡

𝑚
· 𝜕 𝑓

(1)

𝜕𝝃1

= −1
𝜏

[
𝑓 (2) − 𝑓 𝑒𝑞 (1 − Pr)

𝒄 · 𝑸 (2)
𝑘

5𝑝0𝑅𝑇

(
𝑐2

𝑅𝑇
− 5

)]
+ I (2) .

(A 2)615

From the result on the order 𝜀 (0) , we can get that616 ∫
Ψ𝑖 𝑓

𝑘d𝝃 = 0, 𝑘 ⩾ 1, (A 3)617

where Ψ𝑖 = {1, 𝑚𝝃, 𝑚𝝃2/2} is the summation invariants. Consequently, the hydrodynamic618
equations at the order of 𝜀 (1) can be obtained as619

𝜕𝜌

𝜕𝑡1
+ 𝜕

𝜕𝒓1
· (𝜌𝒖) = 0,

𝜕 (𝜌𝒖)
𝜕𝑡1

+ 𝜕

𝜕𝒓1
· [P (0)

𝑘 + 𝜌𝒖𝒖] − 𝑛(𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡 ) = −∇(𝑛𝑉0𝜒𝑛𝑘𝐵𝑇),

𝜕 (𝜌𝐸)
𝜕𝑡1

+ 𝜕

𝜕𝒓1
· [𝑸 (0)

𝑘 + 𝜌𝐸𝒖 + P (0)
𝑘 · 𝒖] − 𝑛(𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡 ) · 𝒖

= −(𝑛𝑉0𝜒𝑛𝑘𝐵𝑇) (∇ · 𝒖),

(A 4)620

where 𝐸 = (𝒖2 + 3𝑅𝑇)/2 is the total energy per unit mass of gases, and the zeroth order621

pressure tensor P (0)
𝑘 and heat flux 𝑸 (0)

𝑘 can be calculated as622

P (0)
𝑘 =

∫
𝑚𝒄𝒄 𝑓 (0)d𝝃 = 𝑛𝑘𝐵𝑇U ,

𝑸𝒌
(0) =

∫
𝑚𝑐2𝒄

2
𝑓 (0)d𝝃 = 0,

(A 5)623

where U is the unit tensor.624
Similarly, the hydrodynamic equations on the order of 𝜀 (2) can be obtained by taking the625

moments in terms of the summation invariants Ψ𝑖 as626

𝜕𝜌

𝜕𝑡2
= 0,

𝜕 (𝜌𝒖)
𝜕𝑡2

+ 𝜕

𝜕𝒓1
· Pk

(1) = ∇[𝜇𝐵 (∇ · 𝒖)],

𝜕 (𝜌𝐸)
𝜕𝑡2

+ 𝜕

𝜕𝒓1
· [𝑸 (1)

𝑘 + P (1)
𝑘 · 𝒖] = 𝜇𝐵 (∇ · 𝒖)2,

(A 6)627
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where the first order pressure tensor P (1)
𝑘 and heat flux 𝑸 (1)

𝑘 can be calculated as628

P (1)
𝑘 =

∫
𝑚𝒄𝒄 𝑓 (1)d𝝃 = −2𝑛𝑘𝐵𝑇𝜏

(
1 + 2

5
𝑛𝑉0𝜒

)
S̊,

𝑸 (1)
𝑘 =

∫
𝑚𝑐2𝒄

2
𝑓 (1)d𝝃 = −5𝑘𝐵

2𝑚
𝑛𝑘𝐵𝑇𝜏

Pr

(
1 + 3

5
𝑛𝑉0𝜒

)
∇𝑇,

(A 7)629

where 𝑓 (1) can be obtained from the 𝜀 (1) order relationship in equation (A 2) as631

𝑓 (1) = −𝜏
[
𝜕 𝑓 (0)

𝜕𝑡1
+ 𝝃 · 𝜕 𝑓

(0)

𝜕𝒓1
+ 𝑭𝑒𝑥𝑡 + 𝑭𝑎𝑡𝑡

𝑚
· 𝜕 𝑓

(0)

𝜕𝝃1

]
+ 𝑓 𝑒𝑞 (1 − Pr)

𝒄 · 𝑸 (1)
𝑘

5𝑝0𝑅𝑇

(
𝑐2

𝑅𝑇
− 5

)
+ 𝜏I (1) ,

(A 8)632

and S̊ is the rate-of-shear tensor expressed as633

S̊ =
1
2
[∇𝒖 + (∇𝒖)⊺] − 1

3
(∇ · 𝒖)U , (A 9)634

where (∇𝒖)⊺ denotes the transpose of ∇𝒖.635
If the size of the gas molecule is not negligible, the momentum and energy can be trans-636

ferred at the instant collisions over a molecule size 𝜎. According to Cercignani & Lampis637
(1988) and Frezzotti (1999), the collisional pressure tensor P𝑐 and heat flux 𝑸𝑐 relate to the638
collision operator through639 ∫

𝑚𝝃 [𝐽 (0)𝑠 + I (1) + I (2) ]d𝝃 = −∇ · P𝑐,∫
𝑚𝜉2

2
[𝐽 (0)𝑠 + I (1) + I (2) ]d𝝃 = −∇ · (𝑸𝑐 + P𝑐 · 𝒖),

(A 10)640

from which we can get641

P𝑐 = [𝑛𝑘𝐵𝑇𝑛𝑉0𝜒 − 𝜇𝐵 (∇ · 𝒖)]U ,
𝑸𝑐 = 0.

(A 11)642

The total pressure tensor P and heat flux 𝑸 are the combination of kinetic and collisional643
contributions, which are644

P = [𝑛𝑘𝐵𝑇𝑛𝑉0𝜒 − 𝜇𝐵 (∇ · 𝒖)]U − 2𝑛𝑘𝐵𝑇𝜏
(
1 + 2

5
𝑛𝑉0𝜒

)
S̊,

𝑸 = −5𝑘𝐵
2𝑚

𝑛𝑘𝐵𝑇𝜏

Pr

(
1 + 3

5
𝑛𝑉0𝜒

)
∇𝑇.

(A 12)645

Comparing (A 12) to the Newton’s law of viscosity and the Fourier’s law of thermal conduc-646
tion, the relationship between the relaxation time and transport coefficients can be obtained647
as648

𝜇𝑠 = 𝑛𝑘𝐵𝑇𝜏

(
1 + 2

5
𝑛𝑉0𝜒

)
,

𝜅 =
5𝑘𝐵
2𝑚

𝑛𝑘𝐵𝑇𝜏

Pr

(
1 + 3

5
𝑛𝑉0𝜒

)
.

(A 13)649

When the long-range attraction between gas molecules is considered, the intermolecular650
potential energy comes into play (Chapman & Cowling 1990; Martys 1999; He & Doolen651
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2002). Assuming that the density varies slowly with space in the hydrodynamic limit, the652
mean-field force term can be approximated by653

𝑭𝑎𝑡𝑡 = 2𝑎∇𝑛 + 𝑘∇∇2𝑛, (A 14)654

where 𝑎 and 𝑘 are two constants related to the attractive potential as655

𝑎 = −1
2

∫
𝑟>𝜎

𝜙𝑎𝑡𝑡 (𝑟)d𝒓,

𝑘 = −1
6

∫
𝑟>𝜎

𝑟2𝜙𝑎𝑡𝑡 (𝑟)d𝒓.
(A 15)656

Considering the identity of 𝑛∇∇2𝑛 in the form of657

𝑛∇∇2𝑛 = ∇ ·
[(
𝑛∇2𝑛 + 1

2
|∇𝑛|2

)
U − ∇𝑛∇𝑛

]
, (A 16)658

the mean-field force term in (A 4) can be transformed as659

𝑛𝑭𝑎𝑡𝑡 = 𝑎∇𝑛2 + 𝑘∇ ·
[(
𝑛∇2𝑛 + 1

2
|∇𝑛|2

)
U − ∇𝑛∇𝑛

]
. (A 17)660

Finally, combining (A 4), (A 6) and (A 17), we obtain the hydrodynamic equations of the661
kinetic model (2.16) in the following form662

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0,

𝜕 (𝜌𝒖)
𝜕𝑡

+ ∇ · (𝜌𝒖𝒖) + ∇[𝑝 − 𝜇𝐵 (∇ · 𝒖)] − ∇ · (2𝜇𝑠S̊) − ∇ · K − 𝑛𝑭𝑒𝑥𝑡 = 0,

𝜕 (𝜌𝐸)
𝜕𝑡

+ ∇ · (𝜌𝐸𝒖) − ∇ · (𝜅∇𝑇) + [𝑝 − 𝜇𝐵 (∇ · 𝒖)] (∇ · 𝒖) − (2𝜇𝑠S̊) : ∇𝒖

−K : ∇𝒖 − 𝑛𝑭𝑒𝑥𝑡 · 𝒖 = 0,

(A 18)663

where the pressure 𝑝 in both the momentum and energy equations satisfies664

𝑝 = 𝑛𝑘𝐵𝑇 (1 + 𝑛𝑉0𝜒) − 𝑎𝑛2, (A 19)665

and K is the capillary tensor given by666

K = 𝑘

[(
𝑛∇2𝑛 + 1

2
|∇𝑛|2

)
U − ∇𝑛∇𝑛

]
. (A 20)667

Noted that if there is no interface, e.g. for single phase flows, the capillary force does not668
appear, and the hydrodynamic equations (A 18) reduce to the conventional NS equations for669
compressible flows.670
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