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ARTICLE

Celestial compass sensor mimics the insect eye for
navigation under cloudy and occluded skies
Evripidis Gkanias 1✉, Robert Mitchell 1, Jan Stankiewicz1, Sadeque Reza Khan 2, Srinjoy Mitra 3 &

Barbara Webb 1

Insects use the sun’s position (even when concealed) as a compass for navigation by filtering

celestial light intensity and polarisation through their compound eyes. To replicate this

functionality, we present a sensor that imitates essential aspects of insect eyes, particularly

the fan-like arrangement of polarised light receptors in their dorsal rim area. Our sensor

comprises a ring of eight pairs of photodiodes (evaluating two orthogonal orientations of

polarised light) to analyse the skylight coming from different directions. Because the layout of

our sensor aligns with the polarised light pattern in the sky, a circular-mean model that

integrates information spatially across the analysers can estimate the solar azimuth. When

using the same sensor design, our model achieves lower compass errors than alternative

(and computationally more complex) algorithms, especially under cloudy and occluded

skies. Thus, the morphology and processing of the insect celestial compass provide an

efficient and robust directional input for navigation.
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A compass is used in navigation to provide robust orien-
tation estimates. As travel distance increases, idiothetic
orientation information—from proprioception or an

inertial measurement unit (IMU)—will eventually succumb to
noise1. Typical allothetic compass solutions such as magnet-
ometers often suffer from electronic interference, and the alter-
native of relying on a global positioning system (GPS) creates
dependence on a full infrastructure of satellites which may not
always be available. Ideally, a compass should be independent of
external support, impervious to disturbance, lightweight, cheap,
and energy efficient. The celestial compass (inspired by
insects2–4) fits all these criteria.

A celestial compass uses the properties of light coming from
the sky to estimate the position of the primary celestial body
(herein, the sun) or, with appropriate time compensation, the
North. The light from large celestial objects (e.g., the sun or
moon5) creates a regular pattern of intensity and polarisation
across the sky (Fig. 1a). Under clear skies, skylight intensity peaks
at the visual position of the sun (solar azimuth and elevation),
while the degree of polarisation (DoP) is strongest in the opposite
direction (at 90∘ from the sun and across the zenith). At a specific
point, the angle of polarisation (AoP) is always perpendicular to
the arc between the sun and that point, forming concentric rings
of polarisation around the visual position of the sun6–8. These
stereotyped skylight patterns allow for various methods to recover
the sun’s position.

A range of celestial compass sensors has been developed that
integrate AoP estimations from different positions in the sky to
locate the sun (using photodiodes9–13, or cameras14–21). Theo-
retically, one can locate the sun by measuring the AoP in two
points of the concentric-rings pattern. These sensors focus on the
accurate extraction of the AoP and ignore the remaining (useful)
properties of light. Estimating the AoP in silico is
straightforward22 (using at least three polarisation filters and
photodiodes), but the complication arises when attempting to
compute the solar azimuth, which requires computing
eigenvectors9–21, a discrete Fourier transform (DFT)23–25, or
finding the straightest line of AoPs passing through the
zenith26,27.

The eyes and brains of many insects evolved to provide an
alternative solution28,29. Each of their compound eyes has near
180∘ panoramic vision (desert ants30, fruit flies31) and is formed
by hundreds of facets called ommatidia (Fig. 1b). The ommatidia
that occupy the dorsal rim area (DRA) of the eyes are sensitive to
polarisation. Each dorsal rim ommatidium analyses the incident
light in two polarisation axes: one roughly perpendicular to its
meridian from the dorsal-most position on the eye (orange in
Fig. 1b–d; I90), and one parallel to this meridian (blue in Fig. 1c,
d; I0). The fan-like arrangement of DRA ommatidia3 (see Fig. 1b,
e) forms what Wehner called a matched filter32 that imitates the
sky AoP spatial pattern and partially solves the navigational
problem by transferring the complexity from algebra to geometry.

Lambrinos et al.33,34 first developed a sensor that could per-
ceive and process light in a similar way to the DRA ommatidia
(Fig. 1f). They replicated an ommatidium by using two photo-
diodes behind orthogonal polarisation filters (similar to Fig. 1d)
and integrating their signals to the response of polarisation-
opponent (POL-OP) units (Fig. 1g). The response of three units
(pointing at the sky zenith but oriented at 120∘ intervals) was used
to estimate the AoP at the zenith, predicting two possible solar
azimuths that are 180∘ apart. They resolved this ambiguity by
comparing the intensity of light in these two directions from
surrounding polarisation-insensitive photodiodes. A similar bio-
inspired approach has since been followed by others22,24,25,35–40.
However, Smith41 observed that rotating a (simulated) POL-OP
unit at an angle from the zenith breaks the 180∘ ambiguity and its

response is strongest in the opposite direction of the solar azi-
muth (corresponding with the DoP pattern in the sky). Therefore,
they suggested that the fan-like arrangement of the dorsal rim
ommatidia could have evolved to take parallel measurements of
the sky polarisation at different positions, obtaining the infor-
mation from a single reading (without scanning) and inferring an
instantaneous and unambiguous estimate of the sun’s direction.
Gkanias et al.29 independently arrived at the same idea and
provided proof of principle for such a celestial compass using a
simulated sensor array that mimicked the layout of the
insect DRA.

Here, we extend this line of work and provide a hardware
prototype of the celestial compass sensor of insects. This sensor
may be used to determine relative solar azimuth using either
polarised light or intensity information. We validated the per-
formance of our compass model by recording sensor data under a
wide range of atmospheric, weather, and sky occlusion

Fig. 1 Overview. a Skylight varies in light intensity (I), angle (a) and degree
(d) of polarisation. b The compound eyes of insects filter light using
specialised ommatidia in the dorsal rim area (DRA). These form a fan-like
distribution, pointing in different directions in the sky, and covering up to
120∘ field of view. d.: dorsal, v.: ventral, p.: posterior, a.: anterior. c In each
ommatidium, the skylight is filtered by orthogonally oriented microvilli
before it is captured by two groups of photoreceptor cells. d Our
polarisation axis analyser (PAA) mimics this function by filtering the
skylight with two orthogonal polarizers before being captured by the
photodiodes. e Our sensor has eight PAAs in a ring arrangement, elevated
by 45∘. f The responses of the orthogonal photodiodes (I0 and I90) over the
e-vector of polarised light. g The normalised difference between the
orthogonal responses (p) matches the response of the polarisation-
sensitive neuron in the insect optic lobes. h Our robot uses a panoramic
camera and our designed sensor to collect skylight data. c, f, and g were
adapted and modified from29.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00132-w

2 COMMUNICATIONS ENGINEERING |            (2023) 2:82 | https://doi.org/10.1038/s44172-023-00132-w |www.nature.com/commseng

www.nature.com/commseng


conditions. We also compared its performance with several
alternative models that could use similar input. Our results
confirm that the proposed sensor provides a robust compass
system that could be used by autonomous vehicles, and also
provides insight into the neural processing stages underlying the
celestial compass of insects.

Results
The celestial compass sensor. The sensor consisted of an array of
eight polarisation axis analysers (PAAs) distributed evenly
around a ring, then tilted to give an inclination of 45∘ (Fig. 1e, h).
This arrangement (loosely) mimics the fan-like arrangement of
the dorsal rim ommatidia across both insect eyes. Each PAA
measured the voltage from four ultraviolet (UV) sensitive pho-
todiodes (Fig. 1d), which were covered by linear polarisers in a
different orientation (0∘, 45∘, 90∘, and 135∘). Readouts from all
four photodiodes were recorded, but to maintain equivalence to
the insect eye, our model used only two—those sensitive to light
polarised at 0∘ and 90∘, which correspond to I0∈ [0, 1] and
I90∈ [0, 1] respectively (Fig. 2a).

Following Stürzl16, the overall light intensity is

I ¼ ðI90 þ I0Þ=2: ð1Þ
Polarisation information is calculated as the intensity-normalised
POL-OP29, which ensures that p∈ [− 1, 1],

p ¼ ðI90 � I0Þ=ð2 IÞ: ð2Þ
This value will be maximal when the PAA is perpendicularly
aligned with the AoP of the light source (negative when parallelly
aligned) and is proportional to the DoP (see Fig. 1g). Subtracting
p from I gives what we call the celestial integration,

c ¼ I � p: ð3Þ
Under clear sky conditions, I is higher when the PAA points

towards the sun (solar azimuth) and is almost uniform across the
remaining directions (Fig. 2b). In contrast, p is highest at the anti-
solar azimuth (where the DoP is highest and the AoP is aligned
with the filter of I90), and negative at the sides and closer to the
solar azimuth. A local maximum in p occurs at the solar azimuth

but is usually lower than the one in the anti-solar azimuth. Thus,
the celestial integration (c) is higher towards and around the solar
azimuth and gradually decreases towards the anti-solar azimuth
(Fig. 2c). Although c looks similar to I under clear sky conditions,
it becomes more informative than I about the solar azimuth
under cloudy or occluded skies (Fig. 2d).

To generate a compass signal from the array, the values from
each PAA were integrated according to the model suggested by
Gkanias et al.29. Values (c) were transformed into vectors with
their polar angles equal to the azimuth of their recording PAAs
and lengths equal to the values themselves. The vectors were then
averaged, yielding a mean vector that points towards the solar
azimuth. If the celestial integration of the kth PAA is ck, the mean
vector can be calculated as a complex number,

zc ¼
1
K

∑
K

k¼1
ck e

i2πðk�1Þ=K ; ð4Þ

where 2π(k− 1)/K represents the azimuth of the kth PAA for K
PAAs evenly distributed around the ring. The response coming
from each PAA is interpreted as its estimation of whether the sun
is in its facing direction. Negative responses would indicate that
the sun is estimated to be in the opposite direction (see Fig. 2b, c,
d). Note that the mean vector also provides a measure of
dispersion in its magnitude42,43. The mean solar azimuth
indicated by each PAA (αc) and the angular deviation of these
values (σc) can therefore be recovered as

αc ¼ �i ln
zc

jjzcjj
; σc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ð1� jjzcjjÞ

p
; ð5Þ

where ∣∣zc∣∣ is the length of the mean vector. By replacing ck with
Ik or− pk in (4), we may also estimate the solar azimuth based
only on intensity (zI) or polarisation (zp) respectively. Depending
on the values used we could have an intensity, polarisation, or
celestial compass.

Figure 2d shows examples of I, p, and c values, along with their
respective estimates of the solar azimuth for two different sky
conditions. Under an almost clear sky, all provided similar
estimates. However, with canopy occlusion, the intensity and
polarisation estimates show a consistent deviation towards

Fig. 2 Description of the computational model. a Adding the pulses from two photodiodes (PDs) with orthogonal polarised light filters can approximate
the light intensity (I); subtracting them approximates the polarisation Fresnel ratio (PFR). Normalising the PFR with light intensity provides a good
approximation of how well the polarity of light is aligned with the orientation of the polarisation axis analyser (PAA, p). The difference between I and p
results in their celestial integration (c), which indicates how well the PAA is aligned with the brightest celestial body in the sky. b An example of the
intensity and polarisation measurements of all the PAAs in a clear sky condition. Each measurement can be multiplied with a unit vector directed towards
the azimuth of the PAA (see red and purple arrows), which can also flip by negative measurements (e.g., for p). c The simple addition of all the vectors of
each unit type results in a vector that has the direction of the solar azimuth (anti-solar for p). d The measured responses of the different types of units
(solid lines) in two different sky conditions (clear and partially cloudy with occlusions from trees) and the estimations of our model using only I (red), p
(purple), or c (blue). Small triangles denote the median estimation across a set of 360 homogeneously distributed facing directions (one per degree) of the
sensor; circular lines denote the first and third quartiles of the distribution; the green line highlights the solar azimuth.
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opposite sides of the foliage opening, which was corrected by the
celestial integration.

A dataset of varying skylight conditions. Our sensor was
mounted on a robot to collect data from remote sites (Fig. 1h and
Materials and Methods). Data were collected from field sites in
Italy and South Africa (in May and November 2022 respectively),
and our dataset comprises a variety of solar elevations, weather
conditions, and occlusions. The collection was organised into
sessions, each of which consisted of twelve complete (360∘)
rotations under a given condition. At the beginning of each
recording session, the robot was initialised facing magnetic North
( ± 5∘) and IMU was reset to zero. On each rotation, the robot
would log all photodiode responses and IMU data (to measure
the deviation from the starting direction; Supplementary Fig. 1a).
We computed the angle of the facing direction of the robot with
respect to the solar azimuth by taking the difference between the
IMU and the theoretical solar azimuth (for the particular loca-
tion, time and day of the recording). This raw dataset was then
transformed into a pooled dataset which additionally included the
responses of each optical unit (I, p, and c; Supplementary Fig. 1b).

Using this pooled dataset we were able to reconstruct the
performance of the same basic design using different numbers of
PAAs distributed evenly around the sensor ring (Supplementary
Fig. 1c). This was achieved by determining the preferred direction
of the reconstructed PAAs, then taking the median of the five
responses from the dataset which were most closely clustered
around that preferred direction (Supplementary Fig. 1d).

Spatial sampling. Using the interpolation process described in
Supplementary Fig. 1, we compared the performance of our
sensor in predicting the solar azimuth, for varying numbers of
(hypothetical) PAAs. We refer to solar azimuth prediction error
as the global reference error as it represents how well we could
predict the actual solar azimuth from one compass sensor reading
(from the given number of PAAs). However, this measure is
subject to the ±5∘ error incurred when initialising the robot (note
that attempting to use the fish-eye images to determine the actual
solar azimuth was subject to even more error, due to lens dis-
tortion, lens flare and occlusions). We therefore also evaluate the
local reference error which is how well the sensor can estimate the
robot’s angular displacement, for any point in its rotation, relative
to its starting direction, where the IMU measurement of dis-
placement (which has negligible error over the short time scale) is
taken as ground truth.

To assess the effect of PAA number, we selected the easiest
scenarios from our dataset (little to no cloud, solar elevation at
least 10∘); the results are shown in Fig. 3a, b and Supplementary
Table 1. With the minimum of three PAAs, the root mean square
error (RMSE) for the sun direction (global reference) was
relatively high (10.53∘). The lowest error was achieved with our
maximum of sixty PAAs (RMSE 2.65∘), i.e., within the range of
the initialisation error. Adding PAAs always improved the
performance. The local reference error was high for fewer than
six PAAs but dropped substantially for six or more (3.78∘, see
Supplementary Table 1). Beyond thirty-five PAAs, performance
improvements were negligible (RMSE 0.53∘ for 36 PAAs,
compared to 0.43∘ for 60 PAAs). In all subsequent results, we
use only eight PAAs as in our hardware implementation.

Solar elevations. Under (relatively) clear sky conditions, we
examined the effect of solar elevation on sensor performance.
Data were sorted by their solar elevation and binned in 5∘

intervals from -5∘ (below the horizon) to 85∘ (near zenith).
Figure 4a shows examples of the sensor performance for specific

Fig. 3 Sensor performance over variable spatial sampling. a Root mean
squared error (RMSE) of estimating the solar azimuth ( ± 5∘ error). b RMSE
of tracking any fixed direction. Vertical axes are in the log2 scale. Horizontal
axes are in log6 scale, and random noise (0.5) was added to the (whole)
number of polarisation axis analysers, making them appear as a continuous
distribution. Ticks without labels denote (from bottom to top) 0∘, 2∘, 8∘, 32∘,
and 90∘ RMSE. Although the spread appears to be increasing with higher
spatial resolution, this is an illusion of the logarithmic scale of the vertical
axis. Standard deviation (SD) in a is 21.77∘ for 3 analysers and it falls in the
range from 4.41∘ to 5.15∘ from 4 to 60 analysers (randomly distributed).
The SD in b is 21.92∘ for 3 analysers and it falls in the range from 2.82∘ (4
analysers) to 0.48∘ (60 analysers; decreasing for higher spatial resolutions)
for the rest of the cases.

Fig. 4 Sensor performance over different solar elevations. a Examples of
different solar elevations in the sky. Left: fish-eye images of the sky for each
example. Right: I, p, and c values in each example, the prediction of the
model using these responses (intensity, polarisation, and celestial compass,
respectively). Above the responses are the time of day and the solar
elevation during the session. Each example shows the median (arrowhead)
and quantiles (circle segment) of the 360 predictions produced (at
homogeneously distributed orientations) during each of the twelve full
rotations of the sensor. b Root mean squared error (RMSE) of estimating
the solar azimuth ( ± 5∘ error). c RMSE of tracking any fixed direction.
Vertical axes are in the log2 scale. Ticks without labels denote (from
bottom to top) 0∘, 2∘, 8∘, 32∘, and 90∘ RMSE.
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solar elevations. Figures 4b and c show respectively the global and
local reference errors for all the sessions, which are also sum-
marised in Supplementary Table 2. There was no noticeable
difference in the performance of our sensor for solar elevations
above 10∘ (average RMSE, global: 5.89∘, local: 2.77∘). Lower ele-
vations caused the error to increase rapidly; at and below 0∘

elevations the sensor was unable to provide useful predictions.
There was also a sharp increase in the global error at high ele-
vations that was not reflected in the local error; we believe this
might reflect the increasing inaccuracy of our (hand-selected)
estimate of the true sun direction in the sky images as the sun
nears the zenith, rather than inaccuracy in the compass per se.
Overall, the sensor performance was stable throughout the day
when the sun was higher than 10∘ from the horizon.

Atmospheric conditions. As well as different sky conditions, our
data were collected in three locations that represent different
atmospheric conditions: Sardinia (Italy), Vryburg (South Africa),
and Bela Bela (South Africa)—see Materials and Methods for
more details. Sardinia is an island and the data were collected
close to the shore, where the humidity was generally high. Vry-
burg is located in the African Savannah, where the climate is dry,
and Bela Bela is in the woodlands, which provides an average
climate. Supplementary Table 3 shows that the performance of
our compass sensor and model was not affected by the climates of
these different locations. Interestingly, the panoramic images of
the sky that we collected from Sardinia look surprisingly similar
to the ones reported in oceanic atmospheric conditions44. Thus,
they could approximate off-shore atmospheric conditions and
suggest that our sensor could be used in intercontinental
missions.

Cloudy skies. The examples in Fig. 4a suggested that (under clear
skies) the predictions of solar azimuth made by our compass
model were unaffected by the value used (I, p, or c). Under a clear
sky, the relationship between solar azimuth, light intensity, and
polarisation remains stable. However, the presence of clouds
disrupts this relationship. The thickness of clouds determines
how sunlight is scattered, and affects both the polarisation and
intensity distribution in the sky. Our dataset includes recording
sessions under a variety of sky conditions which we classified
based on their cloud cover (for examples see Fig. 5a). Global and
local error under varying cloud conditions can be seen in Fig. 5b,
c and Supplementary Table 4. Sensor function was not sub-
stantially disrupted by thin or broken cloud cover but deterio-
rated for thicker cloud cover (uniform and solid).

Occluded skies. Some insects which are known to use polarisa-
tion for orientation live in densely wooded areas, so an insect-
inspired celestial compass should function under canopy cover.
The same principle extends to robots working in built-up areas; a
celestial compass should be robust to local occlusion due to
buildings. We tested our sensor with different degrees of canopy
occlusion (examples can be seen in Fig. 6a). Results are shown in
Fig. 6b, c and Supplementary Table 5. In general, the intensity
and polarisation compasses showed a strong dependence on
whether the solar or anti-solar side of the sky was blocked
respectively. The celestial integration could effectively use infor-
mation from whichever was most useful at the time. Where trees
occupied the central area or full panorama (with relatively open
foliage), polarisation tended to be more robust than the intensity
or celestial compasses. Additional PAAs generally reduced both
global and local RMSE (especially for the intensity compass, and
for scenarios close to trees and with dense cover; see Supple-
mentary Table 5).

Fig. 5 Sensor performance over cloudy skies. a Examples of different
levels of cloud cover in the dataset, in increasing difficulty: no clouds, thin
broken clouds, thick broken clouds, mixed broken clouds, thin solid clouds,
thin uniform clouds, thick solid clouds, and thick uniform clouds. Each block
represents a different condition with two examples and reports the total
number of available examples in the dataset (n). Left: fish-eye images of the
sky for each example. Right: I, p, and c values for each example, the
prediction of the solar azimuth using the different models (intensity,
polarisation, and celestial compass). Each example shows the median
(arrowhead) and quantiles (circle segment) of the 360 predictions
produced (at homogeneously distributed orientations) during each of the
twelve full rotations of the sensor. b Root mean squared error (RMSE) of
estimating the solar azimuth ( ± 5∘ error) using the celestial compass.
c RMSE of tracking any fixed direction. Box-plot: centre line, median; box
limits: upper and lower quartiles; whiskers: 1.5 × interquartile range; points:
outliers. Vertical axes are in the log2 scale. Ticks without labels denote
(from bottom to top) 0∘, 2∘, 8∘, 32∘, and 90∘ RMSE.
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Alternative compass models. We have noted several instances
above in which the celestial compass (c= I− p) provides a better
estimate than a compass using only intensity I or polarisation p.
Here we provide a more direct comparison between these three
alternatives and two further models that use different methods to
estimate the solar azimuth from polarisation measurements.
Considering first the use of c vs. I or p (Fig. 7), in nearly every
condition, the celestial integration provided better estimates of
the solar azimuth than the other two compasses. An exception
was when the sun was completely hidden, in which case the

polarisation compass was more accurate (Supplementary Fig. 2a,
b and Supplementary Table 6). In the remaining cases, the
intensity compass and celestial integration had a better perfor-
mance than the polarisation compass alone. Increasing the
number of PAAs (from eight to thirty-six) had almost no effect
on the estimation of the intensity compass, but positively affected
the estimations of the polarisation and celestial compasses in
occluded skies. When tracking a fixed azimuth (local RMSE), the
intensity and celestial compasses achieved the most accurate
estimation of orientation (Supplementary Fig. 2c and Supple-
mentary Table 6).

We also implemented two alternative models that can use the
signals from our PAAs to extract the solar azimuth. In the first
model, we calculated a unit vector for each PAA, which was
directed perpendicularly to the AoP (as computed by the
complete set of four photodiodes per PAA, at 0∘, 45∘, 90∘, and
135∘, and following the computations suggested by Zhao et al.40).
However, the AoP ranges in [− 90∘,+ 90∘], which creates a 180∘

ambiguity of the direction. To resolve this, we assumed that all
the unit vectors point towards the interior of the compass sensor
(see Supplementary Fig. 3a). Then we followed the approach of
Stürzl and Carey15 and used the covariance of these vectors to
calculate the eigenvector with the lowest eigenvalue, which should
point towards the average direction of all these vectors, and we
refer to this as the eigenvectors model. Numerous other celestial
compasses used variations of this method9–21. Smith and Stewart
proposed the second model41,45,46 and suggested that, when
rotating a tilted PAA, the polarisation responses (p) as calculated
by equation (2) form a curve that takes both positive and negative
values along the rotating axis and that this curve is zero at exactly
four directions (see Supplementary Fig. 3b). The two directions
that are the closest to each other should also be the closest to the
solar azimuth. Thus the solar azimuth can be calculated as the
mean direction of these two directions (described by the four
zeros), and we refer to this as the four-zeros model. A detailed
description of how we implemented these models can be found in
Materials and Methods.

Fig. 6 Sensor performance over occluded skies. a Examples of different
levels of occlusion in the dataset: no occlusion, occlusion based on sensor
distance from trees (far or close), dense tree cover with openings, and trees
or buildings on one side. Each block represents a different condition with up
to two examples and reports the total number of available examples in the
dataset (n). Left: fish-eye images of the sky for each example. Right: I, p, and
c values in each example, the prediction of the solar azimuth using the
different models (intensity, polarisation, and celestial compass). Each
example shows the median (arrowhead) and quantiles (circle segment) of
the 360 predictions produced (at homogeneously distributed orientations)
during each of the twelve full rotations of the sensor. b Root mean squared
error (RMSE) of estimating solar azimuth ( ± 5∘ error). c RMSE of tracking
any fixed direction. Box-plot: centre line, median; box limits: upper and
lower quartiles; whiskers: 1.5 × interquartile range; points: outliers. Vertical
axes are in the log2 scale.

Fig. 7 Performance of alternative models. Boxes represent the distribution
of root mean square error (RMSE) across the subset of the data where the
sky was almost clear (sun), with thick clouds (cloud), with severe
occlusions (tree), or where the sun was completely covered by clouds or
canopies. Blue represents the celestial compass, purple represents the
polarisation compass, red represents the intensity compass, dark grey
represents the eigenvectors model, and white represents the four zeros
model. We report the root mean square error (RMSE) of predicting the
solar azimuth. The data shown are for solar elevations of at least 15∘. Box-
plot: centre line, median; box limits: upper and lower quartiles; whiskers:
1.5 × interquartile range; points: outliers.
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Figure 7 suggests that our proposed model outperformed the
other two models described above in all the tested sky conditions.
In the easiest scenario, where the compass was composed of 36
PAAs and used a local reference under almost clear sky
conditions, our celestial compass model achieved (on average)
0.59∘ RMSE, while the eigenvector and four-zeros models
achieved 2.70∘ and 70.38∘ respectively (Supplementary Fig. 2c
and Supplementary Table 6). The four-zeros model was very
fragile even for clear sky conditions, as any solar elevations higher
than the PAA (>45∘) produced only two zeros instead of four
(Supplementary Fig. 3a—first example) and elevations below 15∘

produced evenly spaced zeros (Supplementary Fig. 3a,b—second
example) resulting in a random direction choice. In most
conditions, the eigenvector model performance was better than
the four-zeros model but not as good as the celestial compass
model. The performance of the eigenvector model was affected
less by occlusions, but substantially affected by clouds, and more
substantially when the sun was hidden completely. The main
reason for this performance drop was the 180∘ ambiguity of the
unit vectors (which were based on the AoP) and the assumption
that they always face towards the interior of the compass.
Impressive results reported previously for this method rely
(instead of this assumption) on a calibration process to minimise
the RMSE11–21. However, such a process does not seem
biologically plausible and can also be expensive from a technical
perspective.

Discussion
Inspired by insect vision, we physically implemented the sensor
design and computational model proposed by Gkanias et al.29,
verified that it can be used as a robust celestial compass sensor,
and that even better estimations can be obtained by a simple
integration of the skylight polarisation and intensity signals. The
performance of the model was tested in various sky conditions,
with different types of clouds and occlusions. Compared to the
performance of two other compass models, it demonstrated
superiority in its estimations of both the (global) solar azimuth
and of a (local) point of reference.

Our computational model was also developed as an in-
principle way to process the information from an array of PAAs.
However, it is interesting to compare the algorithm to known
processing pathways in the insect brain (illustrated in Fig. 8 for
the Drosophila melanogaster fruit fly). The orthogonally placed
polarisers of our PAAs imitate the microvilli of the photo-
receptors in the dorsal rim ommatidia. Respectively, I90 and I0
values are analogous to the responses of R7 and R8 photoreceptor
cells in the insect retina. Interestingly, R7 axons are inhibited by
R8s, implementing the I90− I0 node in Fig. 2a47,48. Intensity
information (I) is probably encoded by the Dm9 neurons, which
collect R7 and R8 responses and feedback to the R7 axons.
Polarisation information (p values in our model) could then be
encoded by the DmDRA1 interneurons and is projected to the
anterior optic tubercle (AOTu) through a subset of medulla-
tubercule (MeTu) neurons. This is because the R7-R8 difference
encoded by the R7 axon is normalised by the Dm9 activity before
connecting to the DmDRA1, which results in a response that is
increased by R7 (I90) and decreased by R8 activity (I0)47,49,50 or
unpolarised light (I, feedback from Dm9)48,51. We predict that
the final intensity information (I value) is encoded by a different
subset of MeTu neurons that receive direct input from Dm8
neurons (downstream of non-DRA R7 neurons that respond to
unpolarised light)48. The responses of all these neurons are col-
lected by the AOTu and communicated by the tubercular-bulb
(TuBu) neurons to central brain regions. Note that the repre-
sentation in the AOTu keeps the fan-like retinotopic structure of

the DRA, but pooled and summarised in 10 columns per
hemisphere51. Also, it establishes an inter-hemisphere
communication48,51–55, which we predict connects the two
AOTus in a complete ring that represents the solar azimuth.
Thus, our celestial integration values (c) should be analogous to
the responses of the TuBu neurons and collectively represent a
vector pointing towards the solar azimuth. However, these
responses should also be affected by spectral and optic flow
inputs51, which are omitted from our model. The celestial com-
pass of insects also corrects for the sun’s movement during the
day, which might happen through a circadian mechanism
(modelled29) or synaptic plasticity. Therefore, downstream ring
neurons roughly correspond to our zc, but their responses might
also reflect other inputs relevant to the sun’s position, such as
spectral cues and even circadian corrections to create a true
compass.

Fruit flies (D. melanogaster) have been shown to integrate their
absolute compass with self-motion in two different stages of
processing: first in the AOTu (optic flow input), and later in the
ellipsoid body (feedback from motor neurons and optical
flow)48,51. In an interesting parallel, the use of Kalman
filters12,13,56 or recurrent neural networks57,58 has been explored
to improve the performance of some celestial compass sensors.
This might therefore be a biologically plausible way to improve
the performance of our compass. Insects also demonstrate colour
opponency in the medulla, and this approach has been explored
by Stürzl16 showing an advantage in distinguishing sky from tree
branches to improve celestial compass performance under
canopies. Thus, adding photoreceptors that respond to different
wavelengths could also improve the performance of our compass.
Celestial compass sensors can also be used for navigation at
night44 when the moon replaces the sun and forms a similar
pattern of AoP and DoP5. The photodiodes of our sensor
responded in twilight (when the moon had a weak effect on the
polarisation pattern of the sky; Supplementary Fig. 4) and
revealed a potential for a nocturnal (as well as diurnal) function.
This aligns with the abilities of insects4,59 and, thus, a more

Fig. 8 Pathway of the polarised light in the insect brain (here Drosophila
melanogaster) and the suggested parallels to the processing in
our model. R7/8: retina neuron 7/8, Me: medulla, Lo: lobula, DmDRA1:
distal medulla dorsal rim area neuron 1, Dm8/9: distal medulla neuron 8/9,
MeTu: medulla-tubercule, AOTu: anterior optic tubercle, TuTu: tubercular-
tubercle, TuBu: tubercular-bulb, Bu: bulb, Bus: superior bulb, Bua: anterior
bulb, ER: ellipsoid-body from ring neurons, EB: ellipsoid body, CX: central
complex. Adapted and modified from51; data from48,51.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00132-w ARTICLE

COMMUNICATIONS ENGINEERING |            (2023) 2:82 | https://doi.org/10.1038/s44172-023-00132-w |www.nature.com/commseng 7

www.nature.com/commseng
www.nature.com/commseng


systematic test of the nocturnal abilities of our sensor in the
future would be interesting.

Although our sensor might appear bulky (especially compared
to camera approaches), we designed this prototype to be easily
customised. In principle creating a miniaturised version seems
straightforward, by integrating all the photodiodes onto one
printed circuit board (PCB); and the first stages of optical pro-
cessing to obtain I, p and c could happen onboard. An alternative
could be a complementary metal-oxide-semiconductor (CMOS)
with carefully tuned polarisers on the top to follow a fan-like
arrangement (as in60) or the full dome as described in29.
Nevertheless, to approach the size, speed, and efficiency of the
insect brain, stretchable electronics61,62, nanowire technology and
photonic computations might be an interesting way forward.

Materials and Methods
Array of polarisation axis analysers. Each PAA was made of 3D-
printed housing, a PCB, 4 photodiodes that were sensitive to UV
light (221–358 nm), and 4 linear polarisers that allowed UV light
(280–450 nm) with AoP at (1) 45∘, (2) 135∘, (3) 0∘, and (4) 90∘

with respect to the vertical axis of the PAA. The specific materials
of the photodiodes, filters, and PCB parts are summarised in
Supplementary Table 7.

Figure 9a shows the block diagram of the designed PCB for
each PAA. It includes four photodiodes (SG01D-18, SGLUX)
followed by their trans-impedance amplifiers (TIAs). A Schematic
of the designed TIA is provided in Fig. 9b. Linear technology
LTC6082 quad low offset (60 μV), bias current (1 pA), voltage
noise (13 nv ⋅Hz−0.5) and current noise (0.5 fA ⋅Hz−0.5) CMOS
operational amplifier (opamp) was used where the photodiode
was operating in photoconductive mode. The output voltage, Vout

of the TIA was IPD × RF, where IPD is the photodiode reverse

current which is proportional to the wavelength of the light and
RF is the feedback resistor. A higher gain was achieved by using a
30 MΩ feedback resistor, which also helped to achieve a higher
signal-to-noise ratio. A gain bandwidth product (GBWP) of 15
kHz was achieved by using a 6.8 pF feedback capacitor. This
helped to improve the noise performance of the TIA and also
provided a good transient response for the analogue-to-digital
converter (ADC). The Texas Instruments ADS112C04 16-bit 4-
channel precision delta-sigma ADC was selected. It was
configured as differential mode ADC, where one channel was
the input of the TIA output signal and another channel was fed
with VBias of 2.5 V. A multiplexer was used to select the
differential input signals from a particular TIA and the bias
voltage. A programmable gain amplifier was acting as a
differential amplifier with a gain of 1. This configuration
improved the dynamic range of the ADC, which was configured
to run in normal mode, with a data rate of 45 Hz (samples
per second). The ADC was set to continuous conversion mode
and the input multiplexer was configured as necessary during
operation. All other configurations used default options. Two
ADS112C04 chips were used to accommodate 4 TIAs in the PCB,
which were configured with different interintegrated circuit (I2C)
addresses. The power management unit was built with the linear
technology ADP7118-2.5V and ADP7118-5V for the bias and
power supply voltage respectively. A 6-pin JST-GH connection
was used to connect the PCB of each PAA to the battery and
processing unit. Figure 9c shows the result PCB.

As each PCB uses the same configuration, we included an I2C
multiplexer (TCA9548A, Adafruit) which allows sequential
communication with each PCB. The I2C multiplexer was
mounted in a custom breakout board that used Grove Universal
4-pin connectors (Seeed Studio) to interface with connected I2C
PAAs, with a custom adaptor cable to link the 6-pin PCB

Fig. 9 Assembly of the celestial compass sensor. a Block diagram of the polarisation axis analyser (PAA) printed circuit board (PCB). Red lines represent
positive voltage, blue lines are bias voltage, and the black line is ground; the rest are as indicated in the figure. TIA: trans-impedance amplifier, MUX:
multiplexer, PGA: programmable gain amplifier, ADC: analogue-to-digital converter, I2C: inter-integrated circuit. b Schematic of the TIA circuit. PD:
photodiode. c Front (left) and back (right) images of the PCB. d Picture of the photodiodes. e Four photodiodes on the PCB, and (f) in the 3D printed casing
with polarisation filters attached. g The array of PAAs and the camera mounted on the 3D-printed caddy. Numbers denote the identity of each PAA and the
order in which their output was read. h The acceptance angle was measured using a torch; the average response distribution of the photodiodes was
estimated by using data from photodiodes 3 and 4.
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connector to the breakout board. To communicate with the
multiplexer (and PCBs) we used the I2C interface of Raspberry Pi
and custom software using the Linux I2C/system management
bus subsystem (adapted from existing Arduino libraries).

Our sensor was 3D printed using polylactic acid (parts were
printed on Ultimaker 2+ extended and Ultimaker S3 3D
printers). Each PCB had its own housing, comprised of a base,
mid, and top plate. The base and mid plates closed around the
PCB. The mid plate has square insets over each photodiode,
holding the polarisers (OUV2525, Knight Optical) and giving
each photodiode its polarisation tuning (see Fig. 9d–f). A small
amount of adhesive putty (e.g., Blu Tack, Bostik, or similar) was
used to fix the polarisation filters in place (Fig. 9e). The PCB with
filters and housing creates one PAA (Fig. 9f). Eight PAAs were
constructed and arranged on a 3D-printed caddy which
positioned the units with an elevation of 45∘ (Fig. 1h). The caddy
was mounted to the robot using two different configurations (due
to external constraints on the robot at the time). While in
Sardinia, the caddy was mounted to the robot using a pillar at the
rear of the robot base. While in South Africa, the sensor was
mounted directly to the top of the robot base. We noted no
difference in operation or performance using the different
mounts—both sets of computer-aided design (CAD) files are
available in Supplementary Data 1. The camera module was
mounted in the centre of the caddy (Fig. 9g).

To measure the effective acceptance angle of each PAA, we
placed it vertically on a protractor and flashed UV light from the
side with a torch (Alonefire SV10, at 365 nm wavelength). We
targeted a single photodiode at a time from different angles, and
logged the apparent angle and recorded pulses from the
photodiode—blue and orange shaded areas in Fig. 9h for
photodiodes 3 and 4 respectively. We then recorded from the
photodiode 3 while swinging the torch with roughly stable
angular velocity and inferred the apparent angle of the torch
using the carefully collected samples from before and linear
interpolation (these are illustrated with blue crosses in Fig. 9h).
There was a small deviation in the centre of the acceptance
between photodiodes 3 and 4, probably because of a small
deviation in their placement angle and was not intentional
(Fig. 9h). The average acceptance angle was measured roughly to
45∘; the photodiodes responded more weakly for up to 60∘.

The robot platform. The robot was constructed using a Turtle-
Bot3 Burger kit (ROBOTIS). The kit contained a Raspberry Pi 3B
+, OpenCR1.0, two Dynamixel XL430-W250 actuators, and a
light detection and ranging (LIDAR) subsystem which we did not
use (full details are available in the Turtlebot e-manual provided
by ROBOTIS). In addition, the kit contained several standardised
structural plates and beams to construct the body of the robot as
appropriate. The kit was augmented with a 3rd party Raspberry
Pi Camera module (B0103, Arducam) which was mounted such
that it pointed towards the zenith. Figure 1h illustrates the final
appearance of the robot. The IMU is embedded in the
OpenCR1.0 board included with the TurtleBot kit and interaction
with it was facilitated by libraries provided by ROBOTIS for the
OpenCR1.0 platform.

The Turtlebot was controlled via the robot operating system
(ROS). A ROS master node ran on a host laptop (ROS Noetic,
Ubuntu 20.04) which generated a Wi-Fi hotspot. The Turtlebot
(ROS Kinetic, Raspbian 9 stretch) was connected to this Wi-Fi
hotspot as soon as it was available and was configured to view the
host laptop IP as the ROS master. Thus, ROS nodes running on
the Turtlebot and host laptop could communicate. For all data
presented, the laptop ran only the recording routine (see below).
On board, we ran nodes to read from the sensor and camera (as

well as all those concerned with the basic operation of the
Turtlebot). On the host laptop, we ran the roscore and
recording routine. All data were recorded using the rosbag C+
+ application programming interface (API). All interaction with
the IMU was performed via ROS.

Data collection. Data was collected in three locations: Sardinia
(Italy; 39.258648N, 8.440184E) in May 2022, Vryburg (South
Africa; -26.398643N, 24.327144E) from 10 to 16 November
2022, and Bela Bela (South Africa; -24.714872N, 27.918972E)
from 16 to 29 November 2022. During each recording session,
the robot was placed on a smooth level surface facing approxi-
mately north. The robot would then record statically for five
seconds, rotate slowly through 360∘, and then record statically
for five seconds. On subsequent rotations, the robot would
correct using the IMU for any over-rotation before starting to
record. The IMU was periodically re-initialised to prevent
noticeable drifts over the course of a recording session. At the
beginning of each recording session, a time-stamped sky photo
was captured using the onboard camera. Recording sessions
lasted around 12-15 minutes on average and consisted of 12
rotations under the condition of interest (different solar eleva-
tions, cloud cover, or occlusions).

Compass models. The output of the photodiodes (voltage pulses
scaled down by a factor of 11 ⋅ 103 and clipped to [0, 1]) was used
from our model to estimate the solar azimuth, which represented
the compass direction. Using this prediction, an ephemeris
function (describing the course of the sun during the day) and the
coordinated universal time (UTC) we can accurately estimate the
true north as well as an approximation to the coordinates of the
sensor on Earth. Equation (1), (2), (3), (4), and (5) describe how
our model transforms the photodiode pulses into a compass
direction. For comparison, we implemented two additional
compass models: the eigenvectors16,40 and the four-zeros41. All
the models were implemented in Python 3.

For the eigenvector model, we first needed to calculate the AoP
(a) and DoP (d) from the photodiode responses. We calculated
these following Zhao et al.40, whose PAAs were similar to ours,

an ¼
1
2
arctan

r2;n � r1;n þ r1;nr2;n � 1

r1;n � r2;n þ r1;nr2;n � 1
þ ϕn; ð6Þ

dn ¼
r1;n � 1

ðr1;n þ 1Þ cosð2anÞ
; ð7Þ

r1;n ¼
I0;n
I90;n

; r2;n ¼
I45;n
I135;n

; ð8Þ

where ϕn= 2π(n− 1)/N is the azimuth angle of the respective
PAA, and n is its identity as illustrated in Fig. 9g. The respected
elevation of each PAA is always 45∘ (π/4). The polarisation vector
associated with each PAA is perpendicular to the respective AoP
and points towards the inside of our sensor,

pn ¼ ½sinðan þ πÞ cosðan þ πÞ�: ð9Þ
Weighting each of these vectors with the respective DoP (dn) did
not affect any of our results. The covariance matrix of these
vectors was calculated as

C ¼ P � PT ; ð10Þ
and its eigenvectors represent the principal facing axes. The
eigenvector with the highest eigenvalue (ê) points towards the
solar azimuth16. We calculated the eigenvectors and eigenvalues
of the covariance using the NumPy package63, and transformed
this eigenvector with the highest eigenvalue into a complex
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number for consistency with the other two models,

zev ¼ ê2 þ i ê1; ð11Þ
while the estimated solar azimuth (αev) can be calculated using
equation (5). Three examples of the AoP, p vectors, and solar
azimuth estimations of this model are illustrated in Supplemen-
tary Fig. 3a. For the four-zeros model, we used as input the
polarisation responses (pn) of N PAAs, which were computed
using equation (2). For this model, we needed to fit a curve on the
responses, which could be described by the first three Fourier
coefficients of the DFT. However, we were interested in centring
the curve to zero, so the zero-coefficient can be omitted,

z1 ¼
2
N

∑
N

n¼1
pn e

i2πðn�1Þ=N ; ð12Þ

z2 ¼
2
N

∑
N

n¼1
pn e

i4πðn�1Þ=N : ð13Þ

The magnitude of these coefficients is ρk= ∣∣zk∣∣ (k∈ {1, 2}), and
their angle (αk) is given by equation (5). The function describing
the curve of the responses is then

f ðθÞ ¼ ρ1 cosðα1 � θÞ þ ρ2 cosðα2 � 2 θÞ; ð14Þ
which is plotted in Supplementary Fig. 3b in black, and its
derivative is

df
dθ

¼ ρ1 sinðα1 � θÞ þ 2 ρ2 sinðα2 � 2 θÞ: ð15Þ

We used these equations as input to the Newton-Raphson
optimiser (from the SciPy package64) to estimate the four
solutions of equation (14). We ran the optimation four times
with different initialisations that were homogeneously distributed
around the angle of the second coefficient (i.e., θinit= α2/2 ± π/
2 ± π/4). This ensured that the optimisation starts roughly at the
correct position and falls in the correct local solution. Examples
of these solutions are plotted in Supplementary Fig. 3b (red dots),
demonstrating the correctness of the method so far. Next, the
angles of the four zeros were normalised in [0, 2π) and sorted.
The absolute difference between the consecutive solutions was
calculated, and the pair of solutions with the lowest difference was
identified,

δm ¼ jjðθðmþ1mod 4Þ � θm þ πÞ mod 2π � πjj; ð16Þ

m̂1 ¼ argmin
4

m¼1
δm; ð17Þ

m̂2 ¼ m̂1 þ 1 mod 4 ð18Þ
where mod denotes and modulo operation, and argmin finds the
identity that represents the minimum value of δm. The estimated
solar azimuth is then calculated,

αfz ¼ θm̂1
þ δm̂2

2
: ð19Þ

Performance evaluation. We evaluated the performance of the
models by using the RMSE as a global and local error measure-
ment across different orientations of the sensor in the same sky
condition and rotation. The RMSE for a specific model, sky
condition, and rotation was calculated as

RMSEmodel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
360

∑
360

s¼1
ϵ2model;s

s
; ð20Þ

where ϵmodel,s represents the (global or local) error of the model,
and s∈ {1,…, 360} are the homogeneously distributed

orientations of the sensor during a rotation with respect to the
starting orientation.

The global error represents the overall deviation of the
estimated solar azimuth from the real solar azimuth during a
rotation ( ± 5∘, due to the approximate initialisation towards the
north),

ϵGmodel;s ¼ ðαmodel;s � α̂s þ πÞ mod ð2πÞ � π; ð21Þ
where αmodel,s is the prediction of the model for the solar azimuth
(with respect to the front of the sensor) when the sensor was in
orientation s, and α̂s is the respective true solar azimuth ( ± 5∘).

The local RMSE is the overall deviation of the estimated solar
azimuth from the average estimated solar azimuth, and it
represents the consistency of the predictions of the sensor,

ϵLmodel;s ¼ ðαmodel;s � �αmodel þ πÞ mod ð2πÞ � π; ð22Þ
where �αmodel is the average prediction of the model for the solar
azimuth across the different tested orientations (s).

Data availability
The data regarding the sensor design (CAD files) are provided in Supplementary Data 1.
The raw and summarised data that were collected using the robot are publicly available
in DataShare with identifier https://doi.org/10.7488/ds/6106.

Code availability
The code used for the robot, data collection, analysis and plots is available on GitHub.
Code for robot and data collection is available by the authors upon request. Code for the
data analysis and generation of plots is publically available in zenodo with identifier
https://doi.org/10.5281/zenodo.8393056.
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