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We test the hypothesis that loading conditions affect the statistical
features of crackling noise accompanying the failure of porous
rocks by performing discrete element simulations of the tensile
failure of model rocks and comparing the results to those of
compressive simulations of the same samples. Cylindrical
samples are constructed by sedimenting randomly sized
spherical particles connected by beam elements representing
the cementation of granules. Under a slowly increasing external
tensile load, the cohesive contacts between particles break in
bursts whose size fluctuates over a broad range. Close to
failure breaking avalanches are found to localize on a highly
stressed region where the catastrophic avalanche is triggered
and the specimen breaks apart along a spanning crack. The
fracture plane has a random position and orientation falling
most likely close to the centre of the specimen perpendicular to
the load direction. In spite of the strongly different strengths,
degrees of ‘brittleness’ and spatial structure of damage of
tensile and compressive failure of model rocks, our calculations
revealed that the size, energy and duration of avalanches, and
the waiting time between consecutive events all obey scale-free
statistics with power law exponents which agree within their
error bars in the two loading cases.
1. Introduction
Rocks experience complex loading conditions in nature including
tension, compression and shear during their geological history.
Deformation is accompanied by the release of elastic energy
from micro-cracking events [1,2], collapse of voids in porous
rocks [3], or rearrangement of particles in sheared particle
packings [4], all of which can in principle be registered in the

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.230528&domain=pdf&date_stamp=2023-11-22
mailto:ferenc.kun@science.unideb.hu
http://orcid.org/
http://orcid.org/0009-0000-6353-1421
http://orcid.org/0000-0001-6469-7917
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230528
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 N

ov
em

be
r 

20
23

 

form of acoustic waves [1,5]. Acoustic emissions (AE) are the primary source of information about the
microscopic processes of fracturing [5–8] providing us with valuable data about the temporal and
spatial evolution of the ensemble of micro-cracks including the ability to discriminate between micro-
cracking events dominated either by local tension or shear [9]. In a recent breakthrough, the evolution
of the spatial structure of damage can now be seen directly by synchrotron micro-computer
tomography imaging of live tests [10,11]. The acoustic ‘crackling noise’ generated during the
compressive failure of rocks in laboratory experiments has been found to exhibit scale-free statistics
similar to earthquakes, consistent with the universality of cracking phenomena across a broad range
of length scales [2,4,12–16]. Experiments on the compressive failure of porous rocks have provided
evidence that the final collapse is preceded by an accelerated crackling activity which may allow for
forecasting the imminent event of ultimate collapse under certain conditions, notably for smaller
sample sizes, more rapid deformation rates and more heterogeneous materials [7,17–19]. For example,
detailed experiments on geothite revealed that samples with a high a porosity showed precursory
acceleration [3,8]; however, the effect was completely missing in case of low porosities [20]. Systematic
studies controlling the structure of samples confirmed that the degree of structural heterogeneity plays
an essential role in determining the amount of crackling events increasing the reliability of failure
forecast methods for materials of higher disorder [21]. These experimental findings imply that the
acoustic monitoring of crackling activity, combined with other methods, can in principle be used to
predict the collapse of e.g. mines where porous rocks such as sandstone and coal are the most
relevant materials [18,22]. On the other hand, catastrophic failure events during deformation at slow
driving rate produces more sudden onset failure [23], consistent with the absence of systematic
precursors to large earthquakes [24].

Despite a large amount of experimental and theoretical effort, the effect of the loading conditions on
the statistical features of crackling bursts generating AE is still a significant open question. Recently,
computer simulations of discrete models of heterogeneous materials have provided a deeper
understanding of the statistics and dynamics of crackling noise for different material properties, initial
and boundary conditions at least in numerical tests. In particular, large-scale simulations of the failure
process of lattices of electric fuses [25–27], springs [28], fibre bundles [29,30] and cohesive granular
materials [31,32] all revealed a high degree of robustness of the statistics of bursts of local failures
with respect to the amount of material disorder, but to date no systematic studies have been
performed to isolate the effect of different loading conditions, specifically to investigate any systematic
differences owing to tensile or compressive loading.

Here, we use discrete element simulations to analyse the statistical and dynamical features of
crackling noise emerging during the tensile failure of a realistic model rock, and compare the results
to those from simulations obtained under compressive loading of the same samples. This provides a
controlled numerical test for the effect of tensile or compressive loading alone. To obtain a computer
representation of sedimentary rocks, we construct cylindrical shaped rock samples by simulating the
sedimentation process of particles, and connect them by beam elements in the final packing, which
captures the cementation of the material. We demonstrate that under uniaxial tensile loading the
model rock samples have a quasi-brittle behaviour where the fluctuating ultimate strength and the
strain where cracking begins are both described by Weibull distributions. Simulations revealed that as
the specimen is slowly elongated under tension, fracturing proceeds in bursts of micro-cracking events
which have scale-free statistics, i.e. the size, duration and energy released by breaking avalanches are
all power law distributed with a finite size cut-off. The beginning of the failure process was found to
be dominated by the disordered micro-structure of the material which gives rise to random nucleation
of small-sized cracks all over the sample. Approaching failure, breaking avalanches tend to localize
and merge into a sharply defined fracture plane along which the specimen falls apart. With a careful
numerical analysis we provide a quantitative characterization of the fluctuating sharpness, orientation,
and position of the fracture plane. We then compare the results to the outcomes of the simulations of
uniaxial compressive failure of the same starting specimens [31,32]. In spite of the substantial
differences of the spatial structure of damage in the two cases, the statistical properties of the
avalanche populations exhibit the same qualitative trends. Moreover, the values of the scaling
exponents are similar to two significant figures, and indistinguishable within the error of estimation.
Thus we can reject the hypothesis that loading conditions significantly affect the statistical features of
crackling noise. By contrast, the bulk mechanical properties are significantly different—the ultimate
strength is much lower in tension, and the bulk material yield stress is much closer to its ultimate
strength, indicating a higher degree of ‘brittleness’ associated with lower predictability of failure time.
Finally, the most likely orientation for the zone of localized deformation just below macroscopic
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Figure 1. (a) To mimic the structure of sedimentary rocks, random homogeneous packings of particles were generated by simulating
the sedimentation process inside a cylindrical container of height H and diameter D. The colour code corresponds to the particle
radius R in such a way that dark blue and red indicate the smallest and the largest particles, respectively. The inset presents a
magnified view on the beam lattice, which is constructed by a Delaunay triangulation of the final packing. The thickness of
beams is scaled down to make the structure visible. (b) The radius R of particles was sampled from a lognormal distribution
p(R) over the range Rmin≤ R≤ Rmax, where Rmax = 20Rmin was set. (c) Probability distribution p(nc) of the number of contacts
nc of particles in the final packing. The decreasing dashed line represents an exponential which gives a reasonable description
of the histogram for nc≥ 3. The average radius 〈R〉(z) (d ) and contact number 〈nc〉(z) (e) of particles measured along the
height z of the cylinder. The horizontal lines represent the corresponding sample averages 〈R〉 and 〈nc〉.
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failure is different from but sub-parallel to the continuum solution in tension owing to material disorder,
and different from that in compression, which is controlled instead by internal friction.
2. Discrete element model of porous rocks
To study crackling bursts generated during the tensile failure of porous rocks, we use a discrete element
model (DEM) which has been introduced recently as a generic modelling framework for heterogenous
materials with a porous micro-structure [31–33]. In the model cylindrical shape, specimens are
considered with diameter D and height H having the aspect ratio H/D = 2.3 typical for experimental
set-ups with geo-materials [9]. The disordered micro-structure of sedimentary rocks is captured by
sedimenting spherical particles in the cylinder with a random radius R. For this purpose, discrete
element simulations were performed settling particles one-by one inside a cylindrical container under
the effect of gravity. Particles lost their kinetic energy by dissipative collisions with the particles of the
growing sediment layer and with the container wall until they came to rest in their final position (see
figure 1a for illustration). We apply a soft particle contact model where particles overlap when pressed
against each other giving rise to a repulsive force [34]. Particles of radii Ri and Rj and positions ri
and rj overlap each other when the overlap distance ξ =Ri +Rj− rij has a positive value ξ > 0, where
rij = |ri− rj| denotes the distance of the particles. The emerging contact force Fc

ij is given by the Hertz
contact law including a viscoelastic dissipation term:

Fc
ij ¼ �kpijðj3=2 þ a

ffiffiffi
j

p
_jÞnij: ð2:1Þ

The stiffness of the contact kpij depends on the geometry and material properties of the particles

kpij ¼ 2Ep

ffiffiffiffiffiffiffiffi
Reff
ij

q
=3ð1� n2pÞ, where the effective radius Reff

ij has the form 1=Reff
ij ¼ 1=Ri þ 1=Rj. The

parameters Ep and νp denote the Young modulus and Poissonian number of the material of particles,
and the unit vector nij points from particle j to i. The equation of motion of the particles was solved
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by a 5th order predictor-corrector scheme [35], which generated ballistic trajectories as the particles
dissipated their kinetic energy over a sequence of collisions starting with a zero initial speed at a
random position above the growing sediment layer. The simulation stopped when the required
number of particles N was reached in the sediment with a smooth upper surface.

In the simulations, the radius of particles R was sampled from a lognormal distribution commonly
found for granules in sedimentary rocks. The range of particle radius was bounded Rmin ≤R≤Rmax

since very small particles may settle to the bottom of the container bouncing through the void space
between the large ones. To avoid this size segregation, the ratio of the largest Rmax and smallest Rmin

radii was set to Rmax/Rmin = 20, while the average particle radius 〈R〉 was fixed to the value 〈R〉 =
8.9Rmin for all the samples [31]. Figure 1b demonstrates the size distribution p(R) of particles in the
final packing, which perfectly agrees with the prescribed lognormal form. To characterize the internal
structure of the sample, we determined the probability distribution p(nc) of the number of contacts nc
of the particles. The probability distribution (figure 1c) for nc can be described by an exponential

pðncÞ � e�nc= nch i, ð2:2Þ
with an average contact number 〈nc〉≈ 5.6, in a reasonable agreement with measurements on
sedimentary rocks [36]. Particles with a few contacts nc = 0, 1, 2 are typically small ones either lying at
the bottom of the container or along the vertical wall. To test the homogeneity of the particle packing,
we determined the average radius 〈R〉(z) and average contact number 〈nc〉(z) of particles as a function
of height z measured along the cylinder axis from the bottom circle. Figure 1d,e shows that both
quantities 〈R〉(z) and 〈nc〉(z) fluctuate close to their sample average which implies a high degree of
homogeneity. In our sedimentation technique, the value of the porosity, i.e. the average fraction of
voids of the sample can be controlled by varying the width of the distribution p(R) of the particle
radius [37]. With the set-up used in the present study the samples’ porosity had mild fluctuations
around the average 0.41.

To represent the cementation between granules, a Delaunay triangulation was performed with the
centre of spheres in the final packing, and the particle centres were connected by beam elements
along the edges of the triangles. The geometrical features of beams are determined by the random
particle packing in such a way that the equilibrium length l0ij of the beam between particles i and j is
the distance of the particle centres in the initial configuration l0ij ¼ jr0i � r0j j, while the beam cross
section Sij is calculated as 1=Sij ¼ 1=ðR2

i pÞ þ 1=ðR2
j pÞ. It follows that the heterogeneous micro-structure

of the particle packing gives rise to randomness of the beam geometry which in turn affects the
values of the physical quantities, e.g. stiffness of beams, as well. A magnified view of a small part of
the beam lattice attached to the particles is highlighted by the inset of figure 1a. In the model, we
implemented a beam dynamics based on Euler–Bernoulli beams as described in [34,38,39]. A
quantitative estimate of the deformation of beams is obtained from a local coordinate system attached
to both particles at the beam ends. As the particles undergo translational and rotational motion
during the deformation of the sample, the beams suffer elongation, compression, shear and torsion,
resulting in forces and torques on the particles. The axial force Fb

ij exerted on particle i by the beam
connecting particles i and j is controlled by the beam elongation Dlij ¼ rij � l0ij in the form

Fb
ij ¼ �kbijDlijnij: ð2:3Þ

The stiffness of beams kbij is determined by the Young modulus Eb and the geometrical features of the
beams represented by the term kbij ¼ EbSij=l0ij. A dissipative component of the force is also added to
equation (2.3) similar to that used in the sedimentation simulations, equation (2.1). The flexural forces
and torques can be determined by keeping trace of the change of the orientation of beam ends with
respect to the body fixed coordinate system ebx, e

b
y, e

b
z of the particles, where ebx is aligned with the

beam orientation [34]. In a simple case when both beam ends rotate around the ebz axis of the body
fixed system by angles Qz

i and Qz
j , the resulting force Qz,b

i and torque Mz,b
i acting on particle i can be

cast into the form [34]

Qz,b
i ¼ 3EbIij

Qz
i þQz

j

ðl0ijÞ2
eby ð2:4Þ

and

Mz,b
i ¼ EbIij

Qz
i þQz

j

l0ij
ebz þ (Qz,b

i � jrijjebx), ð2:5Þ
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where Iij denotes the beam’s moment of inertia. Torsion arises owing to the relative rotation around the ebx
axis which gives rise to the moment

Mx,b
i ¼ GbItij

Qx
i �Qx

j

l0ij
ebx: ð2:6Þ

Here, Gb denotes the shear modulus of the beam, and Itij is the torsional moment of inertia with respect to
the beam axis. Beam forces and torques were transformed to the global coordinate system of the particle
packing where the equation of motion is solved numerically for the translational and rotation degrees of
freedom [35]. The same fifth-order predictor-corrector solver is used for the simulations as for the
generation of the initial particle packing taking into account the boundary and loading conditions [35].

As the specimen deforms under an externally exposed loading, beams break when their local strength
is equalled or exceeded, leading to the formation of micro-cracks. We use a physical breaking criterion
which allows beam breaking either by stretching or bending:

1ij

1th

� �2

þmax (jQij, jQjj)
Qth

� 1, ð2:7Þ

where 1ij ¼ Dlij=l0ij is the axial strain of the beam between particles i and j, while Qi and Qj denote the
generalized bending angles at the two beam ends. The breaking parameters 1th and Qth, which control
the relative importance of the two breaking modes, have fixed values for all the beams 1th ¼ 0:003
and Qth ¼ 2�, however, the structural randomness of the particle packing generates emergent disorder,
e.g. in the stiffness parameters of beam elements. Those particles which are not coupled by beams
interact through contact forces where the normal force is modelled by the law given by equation (2.1),
while for the tangential force the Coulomb friction law is applied with a friction coefficient of μ = 0.5
[31–34].

Tensile loading of the cylindrical samples with deformation control was performed by clamping a
few boundary layers of particles at the bottom and top of the cylinder, which were then slowly
moved further apart along the cylinder axis at a constant speed v0, resulting in a constant strain rate
_1. On the side wall of the cylinder no confining pressure was applied. The breaking criterion, equation
(2.7) was evaluated in each iteration step and those beams which fulfil the condition were removed
from the sample. As a result of consecutive beam breakings, cracks are formed and the sample
eventually breaks apart, when these grow, coalesce and localize on a sub-planar deformation zone
containing the surface of the eventual macroscopic fracture. The simulation stops when the force
acting on the clamped layer of particles drops down to zero which marks the point where the
specimen disintegrates. The initial sample and the loading condition are illustrated in figure 2a. The
model has been successfully used to study the failure process of porous rocks under compressive



Table 1. Summary of the notation of characteristic quantities of the system, and the parameter values of DEM simulations.

parameter notation value unit

beams

Eb Young modulus 6 GPa

Gb shear modulus 6 GPa

1th breaking threshold 0.003 —

Qth breaking threshold 2 °

particles

〈R〉 average radius 0.1 mm

ρ density 3000 kg m−3

Ep particle Young modulus 6 GPa

νp particle Poission ratio 0.3 —

μ Coulomb friction coefficient 0.5 —

loading

Δt time step 10−8 s

_1 strain rate 0.01 1 s−1

notation for macroscopic response

σ stress

1 strain

Yeff effective Young modulus

σc, 1c failure stress, strain

σY yield stress

smin, 1min stress, strain at first micro-crack

10 post-peak strain where σ falls to zero
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loading where it closely reproduced the experimental findings on the spatial structure of damage and on
the intermittent breaking activity accompanying the failure process and the relevant scaling exponents
for the crackling noise [31–33,37]. Here, we repeat these simulations in exactly the same way, changing
only the external loading condition from compression to tension.

To match our previous simulations in compression, we considered cylindrical samples comprising on
average N≈ 20.000 particles but this time under tensile load. We then compare the results with those
from previously published simulations on uniaxial compressive loading. Unless stated otherwise, the
results presented here refer to new results obtained from the tensile load case. The diameter D of the
base circle of the sample is D≈ 87〈R〉, where 〈R〉 denotes the average radius of the spherical particles.
We generated a good statistical sample of the behaviour from over K = 1000 simulations using
different starting samples created by independent simulations of the sedimentation process. The
parameter values of the simulations and the notation of characteristic quantities of the system are
summarized in table 1. For further details of the modelling approach, see [31,33,37].
3. Quasi-brittle response
We performed computer simulations of the uniaxial tensile loading of cylindrical specimens to monitor
their macroscopic response and the underlying microscopic process of fracturing. To characterize the
mechanical response of the sample under deformation controlled loading, we measured the force F
needed to maintain the deformation as the clamped boundary particle layers were slowly moved
along the cylinder axis. The macroscopic stress σ and strain 1 of the sample were obtained as σ = F/A
and 1 ¼ DH=H, where A = πD2/4 is the initial cross-section of the cylinder, and ΔH is the elongation
of the sample. As the sample is slowly elongated individual beams, representing local cohesive
particle contacts, gradually break and form cracks which eventually leads to global failure when the
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specimen breaks apart into two large pieces. The simulation stops when the force F acting on the
boundary layers drops down to zero. Figure 2b presents the constitutive curve sð1Þ for a single
sample, i.e. the stress–strain curve following the evolution of the system up to final breakdown. The
system has a linearly elastic behaviour over a broad range of 1 and nonlinearity is only observed in
the vicinity of the maximum stress σ after which σ falls to zero. The overall strength of the sample can
be characterized by the position 1c and value σc of the maximum of the sð1Þ curve, which define the
critical strain and the critical stress of the system, respectively.

The state of damage can be quantified by the fraction of broken contacts d =Nbr/NB, where Nbr and
NB denote the number of broken beams and the total number of intact ones in the initial state,
respectively. Comparing the damage curve dð1Þ to the evolution of the mechanical response sð1Þ,
figure 2b shows that the growing nonlinearity of sð1Þ is caused by the acceleration of the cumulative
damage as the critical point is approached. The relatively weak nonlinearity and the sudden stress
drop at global failure imply a quasi-brittle response of the model rock. The tensile and compressive
responses of the same specimen are compared in figure 3a, where all the model parameters had the
same values in the simulations, but where the direction of the motion of the boundary particle layers
were opposite to each other. The two sð1Þ curves fall on the top of each other, which confirms that
the effective Young modulus Yeff, i.e. the slope of the linear regime of sð1Þ, does not depend on the
loading condition. Careful fitting of the constitutive curves yields Yeff/Eb≈ 0.22. However, the ultimate
strength defined by the position of the maximum stress at 1c and σc, where global failure occurs
proved to be significantly higher under compression owing to the stabilizing effect of closing cracks,
primarily perpendicular to the direction of maximum principal stress. This greater strength in
compression than tension has been known empirically since Roman times, when the arch replaced the
much weaker pillar and beam design of earlier Greek architecture. The stress drop at global failure is
less abrupt for compression and failure is preceded by a stronger nonlinearity than for tensile loading
implying a higher degree of ‘brittleness’ (defined below) of the sample in the tensile case.
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The disordered micro-structure of the sample controls the strain of the onset of local cracking 1min and
the macroscopic yield stress σY, furthermore, the critical strain 1c and stress σc of ultimate failure are
stochastic quantities with sample-to-sample fluctuations. To give a measure of these fluctuations, we
determined the probability distributions pð1minÞ and pð1cÞ for both tensile and compressive loading,
which are presented in figure 3b. The relative variances have the values varð1minÞ= 1minh i � 0:09 and
varð1cÞ= 1ch i � 0:025 (tension), varð1minÞ= 1minh i � 0:105 and varð1cÞ= 1ch i � 0:014 (compression), which
indicate that both quantities 1min and 1c have mild fluctuations at the system size N considered.
Numerical analysis revealed that for both loading cases the probability distributions pð1minÞ and pð1cÞ
can be well fitted by the Weibull distribution:

pðxÞ ¼ m
l

x
l

� �m�1
e�ðx=lÞm , ð3:1Þ

with two parameters, where λ sets the scale of the values of x, while the exponent m controls the shape of
the distribution. Best fits presented in figure 3b were obtained with equation (3.1) using the parameter
values λ = 0.0012, m = 11 for 1min, and λ = 0.00204, m = 50 for 1c, and λ = 0.00209, m = 12 for 1min, and
λ = 0.0054, m = 99 for 1c, for tensile and compressive loading, respectively. The critical load σc was
found to obey the same statistics with similarly high Weibull exponents both for tension and
compression. The high Weibull exponents are consistent with the mild fluctuations in the emergent
parameters between starting samples quantified by the relative variances above. The modal values of
the strain of crack initiation 1min and ultimate failure 1c are 0.00112, 0.00199, and 0.00219, 0.00536 for
tensile and compressive loading, respectively. It follows from the numerical analysis that the average
strength of the sample is about 2.7 times higher under compression than under tensile loading,
although the relative fluctuations of the strength values are nearly the same, in agreement with
experimental findings [40].

To characterize the degree of brittleness of the sample, we used two quantities: the pre-peak brittleness
of the macroscopic response is quantified by the ratio of the yield stress σY and of the critical stress σc of
ultimate failure, where σY is obtained as the stress where the first discernible deviation of the sð1Þ curve
occurs from the linear behaviour. We also measured the difference of the critical strain 1c and the strain
10 where the stress drops to zero after failure. (For a definition of 10, see figure 2b.) The ratio
ð10 � 1cÞ=1c characterizes how fast the sð1Þ curve falls towards zero so that it serves as a post-peak
brittleness parameter. Figure 4a shows σY/σc as a function of σmin/σc in the form of a scatter plot where
each symbol represents a single sample. In figure 4b, a similar scatter plot of the post-peak brittleness
parameter is presented as a function of the order number i of the samples. All quantities have relatively
low sample-to-sample variations fluctuating around well-defined averages. Comparing the average
ratios 〈σY/σc〉 obtained for tension 〈σY/σc〉≈ 0.89 and for compression 〈σY/σc〉≈ 0.72, there is a
significantly higher degree of pre-peak brittleness of the samples under tension associated with a higher
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ratio 〈σY/σc〉. This is accompanied by a higher degree of post-peak brittleness, i.e. in tension the stress
significantly faster goes to zero after failure with ð10 � 1cÞ=1ch i � 0:02 than for compression where
ð10 � 1cÞ=1ch i � 0:12 was obtained.
 230528
4. Scale-free bursting activity
Simulations revealed that damaging of the sample proceeds in intermittent bursts of beam breakings,
which can be considered as the counterparts of AE sources in real experiments. The reason is that the
breaking of a beam is followed by the redistribution of stress in the sample, which can relax but also
in turn increase the load on beams in certain regions of the local neighbourhood thereby triggering
additional failure events, which are again followed by load redistribution. Thus a single beam
breaking may trigger an entire avalanche of breaking events which either stops when all the beams
can sustain the local load inside the sample or leads to catastrophic failure of the system. The time
scale tc of load redistribution is controlled by the speed of elastic waves of the sample. In order to
identify avalanches of local breaking events, we follow the techniques developed in [31,32]: in the
simulations, we record the time tj of all individual beam breakings and assume that those breaking
events which follow each other within the correlation time tj+1− tj < tc belong to the same trail of
breakings. Single avalanches determined by the algorithm are characterized by their size Δ, duration
T, spatial position r and energy E dissipated during the avalanche. The burst size Δ is obtained as the
total number of beams breaking in the bursts, which is proportional to the newly created free surface
inside the sample. The spatial position r of an avalanche of size Δ is calculated as the centre of mass
position of the cloud of beams:

r ¼
PD

j¼1 r
b
j

D
, ð4:1Þ

where rbj ( j = 1,…, Δ) denotes the position vector of the centre of beams breaking in the avalanche. The
burst duration T is calculated as the time difference between the last and the first breakings of
the avalanche:

T ¼ tlast � tfirst, ð4:2Þ
while the dissipated energy E is obtained as the sum of the elastic energies stored in the deformation of
beams at the time of their breaking.

The sequence of bursts is illustrated for a failure process in figure 5, where the size of bursts Δi (i = 1,
…, nb), represented by the height of the orange bars, is plotted at the strain where the bursts occurred. At
the beginning of fracturing bursts comprise only a few broken beams, however, as global failure is
approached the bursts have an increasing size Δ apart from fluctuations, and they follow each other
after smaller and smaller strain increments indicating the acceleration of the failure process. Owing to
the inherent disorder of the structure of the sample the fluctuating burst size Δ covers a broad range,
where the largest burst is always the final one, i.e. the catastrophic avalanche during which a macro-
crack is formed spanning the entire sample. To quantify the statistics of the fluctuating quantities, we
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determined the probability distributions of the size p(Δ), duration p(T ) and energy p(E) of burst
considering all events except for the catastrophic one. The double logarithmic plots of figure 6 show
that for sufficiently large values of Δ, T and E the three distributions are well approximated by a
power law functional form followed by an exponential cutoff owing to the finite sample size

pðxÞ � x�t exp (� x=x0): ð4:3Þ

Here, x0 denotes the characteristic value of the avalanche quantity controlling the cut-off. The value of the
power law exponent τ was obtained by fitting the curves in figure 6a–c as τΔ = 2.4 ± 0.11, τT = 2.25 ± 0.08
and τE = 2.11 ± 0.05 for the distributions of the burst size p(Δ), duration p(T ), and dissipated energy p(E),
respectively. In the case of the dissipated energy, the local maximum of p(E) is caused by the energy
distribution of single-breaking beams.

Of course, the exponents τΔ, τT and τE are not independent of each other, avalanche quantities are
usually positively correlated because avalanches of larger size typically have a longer duration and
dissipate a higher amount of energy. To give a quantitative characterization of this correlation, we
calculated the average duration 〈T〉 and energy 〈E〉 of bursts of a given size Δ. Figure 7a demonstrates
that for sufficiently large burst sizes the correlation of the three quantities can be well described by
power laws

Th i � DnT

and Eh i � DnE ,

)
ð4:4Þ

where best fit of the curves was obtained with the exponents νT = 0.770 ± 0.025 and νE = 1.01 ± 0.02. The
best-fit exponents νT, νE, τΔ, τT and τE quoted above are consistent within error with the following
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equations:

tT ¼ ðtD þ nT � 1Þ
nT

and tE ¼ ðtD þ nE � 1Þ
nE

:

9>>>=
>>>;

ð4:5Þ

For the time evolution of the intermittent avalanche sequence, it is crucial to study the statistics of
waiting times tW, i.e. the duration of silent periods between consecutive bursts. Figure 8 demonstrates
that the probability distribution of waiting times p(tW) also has a scale-free behaviour that is well
described by the functional form of equation (4.3). The exponent τW of the waiting time distribution
p(tW) has a relatively high value τW = 1.81 ± 0.04 which implies that large waiting times are relatively
rare in the sequence. Because avalanches are driven by the gradual redistribution of load over the
intact beams in the solid, a correlation may arise between the size of avalanches and the waiting time
until the next avalanche is triggered. Avalanches release stress in their close vicinity so that it can be
expected that after a larger avalanche one has to wait longer to build up again the stress field and
initiate the next avalanche under the slowly increasing deformation controlled loading. To quantify
this effect, we determined the average values of the waiting time that elapsed between consecutive
events before tbW

� �
and after taW

� �
avalanches of a given size Δ. Figure 7b shows that tbW

� �
rapidly

converges to the vicinity of tc, which implies no correlation between tbW and the size of the following
burst Δ. However, taW

� �
exhibits a power law increase with Δ:

taW
� � � DnW , ð4:6Þ



Table 2. Power law exponents characterizing the statistics of breaking avalanches obtained under strain-controlled uniaxial
tensile and compressive loading. Results of compression simulations are taken from [31,32].

exponent notation tension compression

avalanche size τΔ 2.40 ± 0.11 2.22 ± 0.12

avalanche duration τT 2.25 ± 0.08 2.4 ± 0.13

avalanche energy τE 2.11 ± 0.05 2.02 ± 0.06

waiting time τW 1.81 ± 0.04 2.0 ± 0.06

size-duration νT 0.770 ± 0.025 0.8 ± 0.02

size-energy νE 1.01 ± 0.02 1.15 ± 0.03

size-waiting time νW 1.02 ± 0.02 1.37 ± 0.05
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which shows that it takes longer to initiate the next avalanche after a larger one. The exponent νW proved
to have the value νW = 1.02 ± 0.02.

Computer simulations of uniaxial compression of the same specimens performed in [31,32] revealed
the same type of scale-free statistics of avalanche characteristics. Table 2 summarizes the value of the
exponents of the probability distribution of the size, energy and duration of cracking avalanches, the
correlation exponents of the three quantities and the waiting time exponents for both tension and
compression simulations. Owing to the higher strength and stability of the sample observed under
compression, the system can tolerate a larger number of bursts nb which can grow to larger sizes
without becoming catastrophic. So a material is not only stronger in compression, but can also absorb
more damage. Our analysis revealed that the cut-offs of the distributions of avalanche quantities, i.e.
the average of the largest avalanche size 〈Δmax〉, energy 〈Emax〉 and duration 〈Tmax〉, and the average
number of avalanches 〈nb〉 are five to eight times larger under compression than under tension. From
table 2, the corresponding exponents of tension and compression simulations agree with each other
within the error bars except for the correlation exponents νE and νW which are smaller for tension.
Despite this caveat, there is no significant difference in the scaling properties of avalanches produced
in the same starting material under tension and compression.
5. Spatial structure of damage
In spite of the robustness of the statistics of crackling noise, computer simulations revealed substantial
differences between the spatial structure of the damage of tensile and compressive failure. As the
specimen is slowly elongated first the weakest beams break, which results in random crack nucleation
scattered all over the sample in an uncorrelated manner as illustrated by figure 9a. The early cracks
have a small size, comprising only a few broken bonds, however, as fracturing proceeds the size of
avalanches and the resulting cracks increase in size and their spatial appearance becomes increasingly
correlated. In figure 9a, the spatial region where micro-cracks of the last five avalanches occurred
before the catastrophic one is highlighted by a circle. A localization of damage can be inferred inside
the circle which contains the nucleation point for the catastrophic avalanche. In order to characterize
the spatial properties of the sequence of avalanches, we determined the average distance 〈|Δri,i+1|〉 of
consecutive events, where Δri,i+1 = ri+1− ri is the relative position of two bursts with positions ri and ri+1
following each other in the event sequence. In figure 10, the average distance 〈|Δri,i+1|〉 is re-
scaled with the diameter D of the cylindrical sample so that the value 〈|Δri,i+1|〉/D≈ 0.45 of the
ratio indicates the random dispersion of consecutive events over the entire sample. This behaviour
is characteristic for the beginning of the fracture process until avalanches have a relatively low
average size 〈Δ〉. However, when 〈Δ〉 starts to increase in the vicinity of global failure, the
distance of consecutive avalanches gets gradually reduced indicating the emergence of spatial
correlations in agreement with the spatial clustering of damage in figure 9a,b. Note that the high
values of 〈|Δri,i+1|〉/D observed below the average crack initiation strain 1minh i are caused by large
sample to sample fluctuations.

Computer simulations revealed that failure of the sample occurs when avalanches become
spontaneously localized in space and the broken beams form a fracture plane which spans the sample
nearly perpendicular to the load direction (see figure 9b for illustration). The macroscopic fracture is
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formed within a cloud or localized damage zone of predominantly tensile micro-cracks (broken beams)
which accumulate during the localized avalanches. To characterize the spatial extension and shape of this
cloud, and hence, the sharpness of the fracture plane, we determined the moment of inertia matrix I of
the set of the middle points of the broken beams. The three eigenvalues of I, i.e. the principal moments of
inertia A, B and C give a measure of the extensions and shape of the point cloud. Calculations revealed
that two eigenvalues have nearly the same magnitude A≈ B, while the third one is significantly lower
C <A. These relative magnitudes imply that the shape of the point cloud can be approximated by an
oblate ellipsoid. As an example, figure 9c presents the ellipsoid obtained by this analysis where the
three axes are directed along the eigenvectors of I and the lengths of the axes are proportional to
the corresponding eigenvalues C < B <A. The centre of the ellipsoid is positioned to the location of the
centre of mass of the point cloud of broken beams of the catastrophic avalanche.

To obtain a deeper quantitative insight into the shape and orientation of the fracture plane, we
determined the angle ϕ enclosed by the eigenvector of the moment of inertia matrix I corresponding
to the smallest eigenvalue C and the direction of the external load (see figure 9c for illustration). With
this definition ϕ is always positive, zero implies a normal parallel to the stress direction and π/2
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perpendicular to it. The distribution p(ϕ) on figure 11a has its mode ϕm at the angle ϕm/(π/2)≈ 0.12 and
the average value 〈ϕ/(π/2)〉≈ 0.22. The results imply that apart from some fluctuations the direction of
the eigenvector is sub-parallel to the load direction. For a continuum, we would expect ϕ = 0, which is a
local minimum in the probability distribution on figure 11a below the most likely sub-parallel orientation
(mode) and the mean as shown. Thus all angles are possible, with a strong preference for sub-parallel
orientations at low angles rather than the continuum solution ϕ/(2π) = 0. The sub-parallel orientation
of the mean and mode indicate that material disorder (fluctuations) and the local dynamics (including
interactions) have a discernible effect on the outcome. How sharply the fracture plane is defined can
be characterized by the aspect ratio of the oblate ellipsoid, i.e. by the ratio of the smallest and largest
eigenvalues C/A of the moment of inertia matrix I. The value of the aspect ratio C/A fluctuates in
figure 11c but its distribution has a relatively sharp peak at C/A≈ 0.55, which indicates that ellipsoid
clouds of damage like the one presented in figure 9c are typical for the tensile failure of the uniaxially
loaded cylindrical sample. Simulations showed that this behaviour emerges because the fracture path
is composed of several planar segments which are somewhat shifted with respect to each other along
the load direction. During the final catastrophic avalanche, these segments merge and form the
spanning crack, which is not planar, again inconsistent with the continuum solution. The position z of
the crack plane along the cylinder axis, approximated as the z-coordinate of the centre of mass of the
catastrophic avalanche, equation (4.1), is randomly selected only during the fracture process, and
cannot be predicted in advance from the micro-structure alone. This is illustrated in figure 11b where
the distribution p(z) has a broad maximum centred at z/H≈ 0.5.

Computer simulations in [31–33,37] showed that for uniaxial compression the spatial structure of
damage undergoes a similar overall evolution, i.e. early stages of the fracture process are characterized
by the random nucleation of small-sized micro-cracks scattered over the entire sample in an
uncorrelated manner. As the system gradually approaches failure, spatial correlation of subsequent
bursts emerges which leads to localization of damage. However, instead of a fracture plane,
localization leads to the formation of an extended damage band [31–33,37]. Inside the band a large



royalsoc
15

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 N

ov
em

be
r 

20
23

 

number of avalanches concentrate which leads to the complete fragmentation of the material with a
power law distribution of fragment sizes [31,33]. Large-scale simulations in [33] revealed that the
orientation of the damage band is determined by the internal friction coefficient of the material in
agreement with experiments.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230528
6. Discussion and conclusion
The fracture of heterogeneous materials is accompanied by the emission of crackling noise generated by
avalanches of local breaking activity. AE measurements provide a deep insight into the dynamics of
fracturing addressing even the possibility of forecasting the imminent catastrophic failure of loaded
systems under certain conditions. Understanding the statistical features of cracking avalanches and the
spatial structure of damage, furthermore, their dependence on the loading conditions, is essential both
for the acoustic monitoring of engineering constructions and for field measurements on natural
catastrophes such as earthquakes and landslides. Here, we performed a computational study of
breaking avalanches generated during the fracture of porous rocks under tensile loading. Comparing
the results to the corresponding outcomes of compression experiments obtained with the same
specimens we wanted to isolate the effect of the loading condition on crackling noise in geomaterials.

Computer simulations revealed that the overall response of the specimen is significantly more brittle
under tensile loading than under compression, because it has a higher ratio of yield stress to the ultimate
strength and a faster drop down of the stress after failure in the tensile case. This means that the stress–
strain curve has an overall linear character, and nonlinearity is only observed in the close vicinity of
global failure. The critical strain where failure occurs proved to be only about one-third of the
compressive strength of the same specimens. The fluctuating ultimate strength between starting
materials obeys a Weibull distribution with a rather large value of the shape parameter confirming the
mild fluctuations of strength values at the sample size considered. On the micro-scale fracture of the
specimen proceeds in bursts which are driven by the gradual redistribution of load in the local
neighbourhood of micro-cracks. Compared to the case of compressive failure, micro-cracking sets in
earlier at a lower strain and the specimen can tolerate a lower amount of accumulated damage where
a catastropic avalanche destroys the entire sample at a lower ultimate strength. Avalanches, identified
as correlated trails of consecutive micro-cracking events, have a fluctuating size with a growing
average as failure is approached. Our calculations revealed that under tensile loading a smaller
number of avalanches occurs spanning a narrower range of size, duration and energy than during
compression. This implies that under tensile loading the sample is more prone to system-scale failure
in the sense that avalanches are more unstable leading to earlier and more sudden catastrophic collapse.

DEM simulations have the advantage that in addition to revealing the dynamics of fracturing they
provide direct access to the spatial structure of damage. Our calculations showed that the beginning
of the fracture process is dominated by the structural disorder giving rise to randomly dispersed
small-sized avalanches all over the specimen. Spatial localization of avalanches is only observed in the
close vicinity of macroscopic failure in such a way that a spatial region randomly emerges where the
load concentration generated by breaking avalanches triggers further avalanches and eventually leads
to the emergence of a catastrophic avalanche. As a consequence, a sharply defined fracture plane is
formed along which the specimen breaks apart into two large pieces. Contrary to compressive failure
[31,32,37] no damage band emerges where the material gets crushed. Instead, a localized damage
zone formed of a cloud of tensile cracks emerges with an elliptical outline. The fracture plane in
tension has a random position and orientation falling most likely in the centre of the cylindrical
specimen and is oriented so that the normal to the best-fit ellipsoid is sub-parallel to the continuum
solution of zero degrees. The continuum solution is a local minimum in the probability distribution of
this angle for our simulations.

Single avalanches are characterized by their size, duration and energy dissipated during the
avalanche. All quantities are found asymptotically to follow power law distributions with an
exponential cut-off. Avalanches of larger size typically have a longer duration and a higher energy,
which is described by a power law form of their correlation. Comparison of the avalanche exponents
obtained under tension and compression revealed the robustness of the statistics of avalanche
quantities. In spite of the substantially different micro-structure of damage and overall strength, there
is no significant systematic difference of the statistics of breaking bursts between the two loading
cases: the total number of avalanches and the range spanned by the avalanche size, duration and
energy proved to be higher under compression but the power law exponents of tension and
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compression agree within the error bars. Our simulation results confirm the high degree of robustness of
the statistical features of crackling noise with respect to the external loading conditions.

By contrast, the loading configuration has a strong effect on the local failure mode of cohesive
contacts inside the sample. The failure criterion equation (2.7) captures that the stretching and
bending (shear) of a beam contribute to its breaking. The failure mode of a beam can be called
tension or shear dominated if the first or second term of equation (2.7) is greater than the other one.
The fraction of beams nt and ns of the tension and shear failure modes is plotted for a single sample
in figure 12 as function of strain 1 together with the constitutive curve for both loading cases. For
uniaxial tensile loading (figure 12a) almost all the beams fail owing to local tension, and shear
dominated failure only occurs in the close vicinity of final breakdown. Under uniaxial compression
(figure 12b), the early uncorrelated cracking is dominated by tension, however, as fracture proceeds,
shear-induced breaking more often occurs and it becomes dominating around the final localization in
the damage band. The results are in agreement with experimental findings on fracture processes of
porous rocks where the tensile and shear type of cracking could be discriminated [9]. Our results
imply that these details of the local failure mode do not affect the overall statistics of avalanches, but
they do play a decisive role in the temporal evolution of the burst sequence, which will be explored in
a forthcoming publication.
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