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Introduction: Linking free-text addresses to unique identifiers in a structural
address database [the Ordnance Survey unique property reference number
(UPRN) in the United Kingdom (UK)] is a necessary step for downstream
geospatial analysis in many digital health systems, e.g., for identification of care
home residents, understanding housing transitions in later life, and informing
decision making on geographical health and social care resource distribution.
However, there is a lack of open-source tools for this task with performance
validated in a test data set.
Methods: In this article, we propose a generalisable solution (A Framework for
Linking free-text Addresses to Ordnance Survey UPRN database, FLAP) based on
a machine learning–based matching classifier coupled with a fuzzy aligning
algorithm for feature generation with better performance than existing tools.
The framework is implemented in Python as an Open Source tool (available at
Link). We tested the framework in a real-world scenario of linking individual’s
(n = 771,588) addresses recorded as free text in the Community Health Index
(CHI) of National Health Service (NHS) Tayside and NHS Fife to the Unique
Property Reference Number database (UPRN DB).
Results: We achieved an adjusted matching accuracy of 0.992 in a test data set
randomly sampled (n = 3, 876) from NHS Tayside and NHS Fife CHI addresses.
FLAP showed robustness against input variations including typographical errors,
alternative formats, and partially incorrect information. It has also improved
usability compared to existing solutions allowing the use of a customised
threshold of matching confidence and selection of top n candidate records. The
use of machine learning also provides better adaptability of the tool to new data
and enables continuous improvement.
Discussion: In conclusion, we have developed a framework, FLAP, for linking free-
text UK addresses to the UPRN DB with good performance and usability in a real-
world task.
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1. Introduction

Linkage of free-text addresses to a structural address database is

necessary for downstream tasks relying on the geospatial attributes

of individuals and other entities. In the health and social care

context, such tasks include using service-recorded addresses to

identify care home residents or homeless people, understand

housing transitions in later life, and inform geographical health

and social care resource distribution. The COVID-19 pandemic

highlighted the value of this linkage, where understanding of

geographical patterns of infection and impact on care homes was

supported by address-matching to an Ordnance Survey reference

database, an example being the analysis of geographical

clustering of cases (1–4).

The task is a record linkage problem, defined as the problem of

finding records referring to the same entities across different data

sources. Similar to traditional record linkage tasks, the solution

needs to deal with situations when input data are incomplete or

not in the database. Linking free-text addresses to database

records has extra challenges compared to traditional record

linkage tasks. Since NHS address input is semi-structured, there

is no prior knowledge of the position of matching information to

fields of structural records. There are also many possible

variations in the input, such as typographical errors,

abbreviations, and alternative forms (e.g., 5/1 Brunswick Road

could also be written as Flat 1, 5 Brunswick Rd or Flat 1, 5

Brunswick Road). Finally, the free-text addresses are created by

GP practices, and local knowledge may result in addresses being

recorded in a non-standard but locally understandable way (e.g.,

“Ron Sealey Volvo Specialist, Cowdenbeath” corresponds to “17

Wilson Street, Cowdenbeath KY4 9DQ” in the standard

database) (Figure 1).

Different types of methods have been studied for record linkage

including deterministic record linkage, probabilistic record linkage,

and machine learning algorithms. Deterministic record linkage
FIGURE 1

Examples of input address matched to records in the Ordnance Survey Unique
fields with textual address information (empty UPRN fields are not shown here
deviations from the standard address recorded in the UPRN database: text corr
in text corresponding to THOROUGHFARE, missing texts corresponding to DO
region which is not recorded in the UPRN DB, and wrong POSTCODE.
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(also called rule-based record linkage) is the simplest type of

record linkage. Deterministic record linkage aims to generate a

rule or sets of rules, which determine if two records refer to the

same entity (5). Probabilistic record linkage (also called fuzzy

matching) calculates the probability that two given records refer

to the same entity based on potential identifiers and weights of

the identifiers (6). In recent years, machine learning has been

used in record linkage (7). Machine learning algorithms are able

to learn more complex patterns in potential identifiers (or

features in machine learning terminology) and output

probabilistic statements on whether a pair of records links. While

training machine learning algorithm requires the preparation of

labelled data similar to the development of other methods, the

training process of machine learning algorithms require minimal

human intervention, therefore reducing time for developing and

adapting a method to new data.

In the UK, a standard address database (referred to as the

Unique Property Reference Number database or UPRN DB) is

maintained by Ordnance Survey. The textual addresses are

presented with 11 fields, such as ORGANISATION NAME,

THOROUGHFARE, and POSTCODE. Each record in the UPRN

DB has a unique identifier, namely, the UPRN. Currently, there

are several tools for free-text address to UPRN matching task.

The CHI-UPRN Residential Linkage (CURL) tool is a

deterministic record linkage method developed by Clark et al. for

the same task (8). CURL was developed using address fields

(three address lines plus postcode) extracted from the Public

Health Scotland (PHS) Community Health Index (CHI) monthly

download (dated 03 August 2020). CURL consists of minimal

preprocessing for formatting and abbreviation expansion. The

addresses were linked to UPRN identifiers using a set of rules

(exact rules were not provided with the report). The tool was

able to match more than 89% of the records in the development

data, but its performance was not evaluated using labelled data.

The true performance has therefore not been determined. The
Property Reference Number (UPRN) database (DB). The UPRN DB contains
). Input 1 matches exactly to record with a UPRN entry. Input 2 has several
esponding to ORGANISATION NAME partially missing, typographical errors
UBLE DEPENDENT LOCALITY and POST TOWN, redundant information of
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ASSIGN tool is a deterministic record linkage method developed by

Harper et al (9). ASSIGN was developed using local authority–

sourced addresses in Wales and from the London Borough of

Tower Hamlets in east London. It implemented a preprocessing

step, which is comprised of formatting and parsing. The parsed

fields, namely, Post code, Street, Number, Building, and Flat, are

matched to records in the UPRN database. A set of 29 rules with

descending fitness were created to rank possible matches between

input address and candidate records. The tool achieved 0.995

and 0.996 match rates with a sensitivity of 0.999 and 0.998 and a

positive predictive value of 0.996 and 0.998 in the Welsh and

London derivation datasets, respectively. A 0.986 match rate for a

test population of seven northeast London Clinical

Commissioning Groups (CCGs, the test data set) was achieved,

but the accuracy of matching in the test data set was not

assessed. Proprietary tools are available for address-UPRN

matching tasks, such as Esri UK (10) and Loqate GBG (11), but

they are not publicly evaluated, to the best of our knowledge. In

summary, there is a lack of open-source tools for this task with

performance validated in a test data set. Ideally, the tool should

be adaptable to new data. Usability of the existing methods can

also be improved by introducing a confidence score, so that the

users could choose a threshold that better meet the requirement

of precision and recall in their downstream tasks.

The aim of this study is to develop and validate a generalisable

framework for linking free-text addresses to a structural address

database. In this paper, We described the method used for the

framework FLAP (A Framework for Linking free-text Addresses

to Ordnance Survey UPRN database). We reported the

performance of the framework in a real-world problem of linking

Community Health Index (CHI) addresses in National Health

Service (NHS) Tayside and NHS Fife to the UPRN DB.
2. Material and methods

2.1. Definition of the task

The address-UPRN linking task is defined as follows: Given an

address input/UPRN DB record pair (s, d), determine whether the

pair is a matching record. The address input s is a sequence of

characters and the UPRN DB record d is a dictionary with each

element being a pair of UPRN DB field name and a sequence of

characters (Figure 1).
2.2. Database augmentation

Some input variations of addresses cannot be resolved with

sequence alignment, since alternative forms of the same address

do not necessarily have sequential textual similarity (e.g., “5/1”

could be written as “Flat 1, 5”).

To meet this challenge, we can generate alternative forms of

addresses from standard ones using a sequence transformation

process. Transforming addresses for mapping their alternative

forms to the standard form in the UPRN DB can be done either
Frontiers in Digital Health 03
by trying to normalise input addresses or by deriving alternative

forms of addresses from the standard address database. We

implemented the latter approach for the following reasons: (1)

There is no ambiguity of synonym use in standard addresses

(“ST.” stands for “Saint” in the UPRN DB, while in input

address “ST” or “ST.” can refer to “Saint” but “ST” can

alternatively and more commonly mean “STREET”). (2) Standard

addresses offer structural fields, while input addresses are semi-

structured. Applying transformations to input addresses,

therefore, requires field parsing, which adds another layer of

complexity. Importantly, the database augmentation process can

be independently developed and used. Please refer to

Supplementary Tables S1 and S2 for the list of transformations

used for database augmentation.

The database augmentation process can also be used to include

local knowledge of addresses. Local knowledge is the knowledge of

two textually unrelated addresses referring to the same address. For

example, the name of a building in a rural area is normally enough

to be linked to a unique UPRN ID, but this name is not necessarily

included in the UPRN DB (e.g., “Roselea House Cowdenbeath” can

be matched to “175 STENHOUSE STREET COWDENBEATH” in

the UPRN database).

Consistency checking was carried out to ensure that no

duplicated records were created in the database augmentation

process.
2.3. Input preprocessing

There are two steps of preprocessing used in our framework:

elimination of irregular characters and knowledge-based

completion or deletion. Elimination of irregular characters

removes characters that are not common in address strings (e.g.,

special characters other than “-” or “/” and multiple spaces).

Knowledge-based completion aims to complete the input address

or remove redundant information based on knowledge inferred

from the UPRN DB. For example, if an address contains the

subsumption of a region (e.g., a DEPENDENT LOCALITY within

a POST TOWN) but not the region itself, the region was added

to the input address (e.g., “272 HIGH STREET, METHIL, KY8

3EQ” to “272 HIGH STREET, METHIL, LEVEN, KY8 3EQ”).

Elements that are not used by UPRN DB were removed (e.g.,

“RIVERSIDE ROAD, LEVEL, FIFE, KY8 4LT” to “RIVERSIDE

ROAD, LEVEL, KY8 4LT”).
2.4. Alignment of UPRN DB fields to an
input address

Since the input addresses are in the form of free text, alignment

is required to select the best possible candidate character sequence

(and its position) in the input sequences by considering the input

variations (e.g., typographical errors or word concatenation).

Features of the alignment quality such as the positions of match,

insertion, and mismatch were kept.
frontiersin.org
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While there are multiple ways to implement fuzzy alignments

of sequences, we adopted an approach combining the

Needleman–Wunsch sequence alignment algorithm (NW-

alignment) (12) with Damerau–Levenshtein distance (DL-

distance) (13) for easy implementation in safe havens (no

dependency on external libraries). Sequences are aligned twice

using a token-based and a string-based approach. The better of

the two alignments is chosen.

For the token-based approach, the sequences were first tokenised

using the regular expression “not word” (“\W”), and then aligned

using NW-alignment. A threshold for maximum DL-distance was

set to 0.2. The threshold corresponds to less than one error in five

letters. The threshold was chosen empirically due to the observation

that typographical errors typically occurred in words longer than five

letters. If the DL-distance of two tokens was below the threshold,

they were considered to be the same token, which allowed fuzziness

in the token-based sequence alignment. The token-based alignment

approach can be potentially extended to consider semantic

similarities of tokens using word embedding vectors.

For the string-based approach, the sequences were aligned in

the original form using NW-alignment. A post-processing step is

added to limit the non-informative alignment of characters based

on the alignment percentage in the token spans. For each token

span, the string-based alignment is discarded if the percentage of

characters aligned in the span is less than 80%, which is

equivalent to the DL-distance threshold of 0.2 in token

alignment. The string-based approach is essential in situations

like word concatenation (e.g. “GREENBANK” cannot be aligned

to “GREEN BANK” with the token-based method but can be

aligned with the string-based one).

The following metrics were calculated during the alignment

process for each UPRN field that is not blank: percentage aligned

in the input address, percentage aligned in the UPRN field, the

harmonic mean of the two percentages M, character frequency

cosine similarity F, and the number of insertions I. A summary

score was calculated as S ¼ M � 0:01� I þ 0:1� F.

The alignment result with the higher summary score was

chosen (from the two approaches).
2.5. Conversion of UPRN DB to Tree DB and
searching the Tree DB for candidate UPRN
records

Information that is better formatted and more structural in the

input free text can be used to limit the search space to records in

the UPRN DB corresponding to a small area, in which one can

exhaustively match all candidates in a reasonable runtime.

We generalised the tasks of limiting the search space to a local

area and exhaustive search in this local area to depth-first search

(DFS) and breadth-first search (BFS) in a tree-structured

database, respectively. From the prospective of record linkage,

our strategy was equivalent to blocking using filters.

The conversion of UPRN DB to Tree DB follows the rules: (1)

Each layer of the tree corresponds to a field (columns) in the UPRN

DB and the order of the layers is set in advance. (2) The UPRN DB
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is attached to the root of the tree. (3) For each node of the current

layer, the UPRN DB is split by unique values of the corresponding

field. For each unique value and the corresponding slice of the

UPRN DB, a child node is created with the name of the unique

value and the slice of the UPRN DB is attached. (4) The UPRN

DB is deleted from the parent node. (5) Steps (3) and (4) are

iterated until the last layer, at which point, each leaf node

corresponds to one UPRN DB record (Supplementary Figure S1).

For DFS, the child node with the best summary score (see

Section 2.4) from the alignment of the node name with the input

address string was chosen. DFS was done for one step using

parsed postcode or for two steps using parsed post town and

thoroughfare. The chosen best child node from DFS was then

passed to BFS. For BFS, the names of all children nodes were

aligned to the input address string and move on to the next layer

of the tree until the leaf nodes are reached. For each alignment

of the node name with the input address string, aligned positions

in the input address string were redacted and passed on to the

children nodes. At each leaf node, alignment metrics of the input

string to all UPRN fields were collected by tracing back to the

root of the Tree DB. These metrics served as input to the

matching classifier (see Section 2.6).
2.6. The matching classifier

The matching classifier is a binary classifier predicting whether

an input address is an equivalent entity of a UPRN DB record. We

chose the Random Forest Classifier for this task for three reasons.

First, there are many zero-valued features because a UPRN DB

record normally contains some but not all of the UPRN fields.

The ensemble setup of the Random Forest Classifier increases the

chance that some classification trees utilise the important features

during the random feature selection process. Second, for

matching records, all matching metrics are expected to be higher.

Therefore, there is high co-linearity among the features, which is

not a concern for the Random Forest Classifier. Finally, the

hardware requirement of the classifier is low.

The alignment process in Section 2.4 generates 52 features as the

input to the matching classifier. A summary of all features can be

found in Table 1. For supervised training of the matching classifier,

we assembled labelled data of true matches and false matches as

the training data set. Matching addresses from manual annotation

(see Section 2.10) served as true matches. False matches were

sampled by generating pairs of the input address and UPRN

records in the same postcode excluding the correct UPRN match.

The probability output of the Random Forest Classifier was

used as the summary score for the matching between an address

input and a UPRN DB record.
2.7. The matching work flow

An input address is preprocessed and then used to narrow

down to the local area using the Tree DB and the alignment

algorithm. Features for the Random Forest Classifier are
frontiersin.org
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TABLE 1 The summary of features for training the matching classifier.

Description Source N feature
(s)

% aligned in the input address Each UPRN
field

11

% aligned in the UPRN field Each UPRN
field

11

N of insertions in alignments Each UPRN
field

11

Character frequency cosine similarity Each UPRN
field

11

Mean character frequency cosine similarity Overall 1

Digits in alignment residual of input address Overall 1

Single character in alignment residual of input
address

Overall 1

Digits in alignment residual of UPRN fields Overall 1

Single character in alignment residual of UPRN
fields

Overall 1

Sum of % aligned in the input address Overall 1

Sum of % aligned in the UPRN fields Overall 1

Sum of harmonic means Overall 1

Total 52

Zhang et al. 10.3389/fdgth.2023.1186208
generated for all pairs of the input address and records of addresses

in the local area in the UPRN DB. Probabilities of matching are

computed using the features and the trained classifier. The

UPRN DB record with the highest probability is predicted to be

the matching record (Figure 2).
FIGURE 2

The Workflow of FLAP. UPRN DB is expanded by common alternative
forms and abbreviations and converted to Tree DB. Each input
address string is parsed by regular expression to extract postcode,
post town, and thoroughfare. The address input string and parsed
information were used to search in the Tree DB. Alignment features
were generated for leaf nodes, each of which corresponds to a UPRN
2.8. Cohort

Addresses were extracted from CHI records for people

registered at GPs in NHS Fife or NHS Tayside on 01 April 2017.

In total, our data set contains 771,588 addresses of people

registered with general practitioner practices in NHS Fife

(363,091) and NHS Tayside (408,497).

record. The alignment features were scored by a trained classifier.
Top n- matched UPRN records were selected based on the scores.
2.9. Sampling training and test data set

The testing samples were selected from the addresses with

stratified sampling by postcode. In each postcode, 12% of

addresses were sampled (rounded up to the next integer), leading

to the inclusion of 3,876 addresses. The training samples were

selected with stratified sampling by postcode supplemented with

oversampling of addresses that are likely to be ones of care homes.

The reason is that care home addresses are often recorded more

variably and, hence, provide enriched situations for model

training. In total, 4,228 samples were included in the training data

set. The test data set was not used in the development of FLAP.
2.10. Manual annotation of addresses in the
cohort

Two annotators manually annotated each address in the

training and test sets. The annotation involved the following
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steps: (1) If the address can be matched to a UPRN record using

the best human effort, the UPRN number is allocated. The

manual allocation allowed the use of external information (such

as using the Royal Mail postcode finder and searching the

address of a hotel name online). (2) If not, the address is labelled

not possible and one of the following reasons is given: (a) Not in

database: if the input address is in Royal Mail postcode finder

but not in the current version of the UPRN database. (b) Too

broad: if the input address corresponds to multiple records in the

UPRN database. (c) Low quality: if the input address cannot be

found in the Royal Mail postcode finder or is ambiguous.

Annotation was done independently by a general practitioner

with experience in using addresses recorded in the input format

in clinical practice (CM) and by a data scientist (HZ) with

discrepancies resolved by discussions. The inter-annotator

agreement (Cohen’s Kappa k) was 0.980 before resolving the

conflicts.
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TABLE 2 The baseline descriptive of input addresses in the test set.

Situation Number (fraction in the test set)
Whole set 3,876 (1.000)

Possible to match 3,714 (0.958)

Of ones that are not possible

Not in database 92 (0.024)

Too broad 25 (0.006)

Low quality 45 (0.012)

TABLE 3 Performance metrics of FLAP.

Metrics Score
Raw accuracy 0.950

Adjusted accuracy 0.992

Adjusted accuracy in Top 5 0.994

Precisiona 0.993

Recalla 0.983

F1a 0.988

aMetrics shown here are calculated at the default threshold of t ¼ 0:5.
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2.11. Performance assessment

For performance assessment, matching results were compared

against the manual annotation.

We calculated the following performance metrics to assess the

performance of FLAP:

• Raw accuracy: c=n

• Adjusted accuracy: c=p

where c is the number of addresses that are correct matches, n is the

number of address samples, and p is the number of addresses that

can be matched in manual annotation (see Section 2.10).

As described in Section 2.6, FLAP also outputs the probability

of match as a score. We use the score to illustrate the usability

aspect of FLAP. Accuracy in Top 5 was defined as any correct

mapping in the five candidates with the highest scores. Given the

score s and the threshold of the score t, a cross-tabulation is

created for the confidence score and matching correctness:
F

FIGURE 3

Performance of FLAP at different thresholds of classifier s

rontiers in Digital Health
s .¼ t
core.
s , t
Correct
 tp
 fn
Not Correct
 fp
 tn
The following metrics are calculated:

• Precision (or Positive Predictive Value): tp=(tpþ fp)

• Recall (or Sensitivity): tp=(tpþ fn)

• F1: harmonic mean of Recall and Precision

A lift curve was generated to demonstrate the usability of FLAP at

different confidence score thresholds (Figure 3).

3. Results

3.1. Performance of FLAP

The test samples contain 3,876 input addresses, of which 162

(4.18%) could not be matched to the UPRN database by human

annotation. Among those not possible to match, 92 (56.8%) were

not in the database, 25 (15.4%) were too broad, and 45 (27.8%)
06
were of low quality (Table 2). FLAP achieved a raw accuracy of

0.950 (3,683/3,876) and adjusted accuracy of 0.992 (3,683/3,714)

(Table 3). FLAP is able to handle common input variations like

abbreviations, wrong postcodes, range-like addresses, and

alternative forms. The number of successfully handled cases is

summarised in Table 4. Among incorrectly matched, the most

frequent reasons for wrong matching were: addresses requiring

local knowledge for matching (7/31) (e.g., addresses with names

of university halls and wrong postcodes with room numbers

which can be mistaken as BUILDING NUMBER); partially

incorrect information which happens to align with fields of other

UPRN records (6/31); and incorrect information in both

postcode and one of post town or thoroughfare (4/31).
3.2. Usability of FLAP

In addition to accuracy, it is important that FLAP outputs

higher scores for correct matches. Precision, recall, and the F1

were calculated for a range of thresholds (Figure 3). At the

default threshold of t ¼ 0:5, FLAP achieved a precision of 0.993,

a recall of 0.983, and an F1 of 0.988 (Table 4). A customised

threshold can be set to favour precision or recall, depending on

the need of downstream applications.

Using the confidence scores formatching, we could select the top

five candidates from UPRNDB for matching to an address. The rate

of finding any correct matching in the top five candidates (accuracy

in top 5) is 0.994 (in addresses that are possible to match) up from

0.992 for choosing the candidate with the highest score.

We performed a runtime analysis of FLAP to demonstrate the

usability in scenarios involving large amount of data. On average,

FLAP can process 6.94 addresses per second on an Intel i7-

12700k CPU (or 144 ms per address) (Table 5). Parsing and

matching of the address take 34.1% and 65.9% of the runtime,

respectively. For the 771,588 GP-registered in Tayside and Fife,

the total runtime was under 31 h.
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TABLE 5 Comparison of existing non-proprietary methods.

Tool FLAP ASSIGN CURL
Type Probabilistic Deterministic Deterministic

Match method Machine
learning

Rules Rules

Reported match rate in test data
set

0.950/0.992a 0.986b 0.890b

Average runtime per address 144 ms 1.58 msc Not reported

Manual annotation in test data
set

þ � �

Adaptability to new data þ � �
Allow continuous improvement þ � �
Allow local knowledge þ � �
Output matching quality þ þ þ?

Independent components þ ? ?

Compare to ground truth in
training data set

þ þ �

Potential of semantic matching þ � �
aThese match rates are raw accuracy and adjusted accuracy,respectively.
bThese match rates did not consider accuracy of match or if a match is possible.
cThe hardware specification was not reported.

TABLE 4 Statistics where situations of input variations are handled.

Situation Number (fraction)
Abbreviations 1,166 (0.313)

Wrong postcode 36 (0.097)

Range-like 8 (0.022)

Alternative form 6 (0.016)

Zhang et al. 10.3389/fdgth.2023.1186208
4. Discussion

In this article, we described the FLAP framework, a

generalisable probabilistic record linkage tool based on machine

learning for linking UK addresses to UPRN DB entries. We have

achieved state-of-the-art performance in real-world data with

more comprehensive evaluation metrics and improved usability

aspects (Table 5).

FLAP employedmachine learning algorithms as the classifier for

record-matching decisions. The use of machine learning improves

the address linking task in three ways: (1) The probabilistic output

allows quality control of linkage by adjusting the threshold of

matching probability and output of top n candidates of matching.

Although, including top five candidates only led to a marginal

increase of adjusted accuracy (0.002) in our data set, this feature is

potentially useful when FLAP is applied to unseen data, where we

expect a drop of accuracy for top one matching. In a real-world

scenario, being able to query the top n match for an address saves

one from the time-consuming job of matching to the entire

database. (2) When applying FLAP to unseen data, the machine

learning classifier has the flexibility to be further trained using new

data, which is difficult for rule-based methods. (3) The machine

learning classifier can be continuously improved during use with a

stream of newly labelled data.

Among the three existing non-proprietary tools, our study is

the only one which measures accuracy against a test data set,

instead of reporting only the percentage of matched addresses
Frontiers in Digital Health 07
(Table 5). We believe that our approach provides more

transparent performance evaluation of the linking algorithm,

although external validation using data from other regions in the

UK is still required.

We demonstrated our database augmentation strategy dealt

with common input variations like abbreviations, range-like

addresses, and alternative forms. The database augmentation

process is compatible with the manual curation of non-standard

addresses, which normally requires “local knowledge.” These

addresses may not be possible to be matched otherwise since a

non-standard address may share no similarity to records in the

UPRN DB textually or semantically (e.g., Name of a local hotel).

The current implementation of FLAP uses blocking by exact

filtering of postcode or post town/thoroughfare pair. The

blocking strategy is time-efficient but does not work if neither a

correct postcode nor a correct post town/thoroughfare

combination is present in the address input. Although such cases

are empirically rare, this limitation could be addressed in the

future by using blocking techniques that are independent of

parsing such as locality sensitive hashing (LSH). Records for

pair-wise can be narrowed down by approximate nearest

neighbour searching (ANNS) (14).

To apply FLAP on new data, manual labelling of data is still

needed to ensure optimised performance. However, the data

labelling can be accelerated using the existing model. In our

experience, a trained annotator could generate an effective

labelled dataset for a new task within one day.

The semantics of words were not yet considered in matching.

Theoretically, the semantics embedding of words will improve

linking when two words with similar meanings but differences in

string similarity metrics are often used interchangeably. This

issue is more important in linking of care home addresses, where

addresses often include related words like “home” and “house.”

FLAP is set up in a way that semantic similarity matching can be

integrated and tested. For example, semantic similarity can be

calculated from pre-trained word embedding models [e.g., GloVe

(15) or Word2Vec (16)] and used in token-based alignment in

combination with string similarly metrics. This aspect will be

tested in future work (Table 5).

The order of UPRN fields being aligned to an input address is set

empirically at the moment. UPRN fields that are empirically more

structured in input address (like postcodes) were aligned in

priority. However, the alignment of fields is not always optimised,

since conflicts of alignments between fields are not resolved

optimally (e.g., names of post towns could be aligned to street

names). For this reason, alignment optimisation considering all

possible alignments of UPRN fields to an input address might

improve the performance of alignment. A possible implementation

of such is linear assignment algorithm (17), in which we can

consider each UPRN field to be a worker and the score (which will

have to be a distance-like score to fit in the cost minimisation

framework) of each possible alignment to be the cost.

The runtime requirement of FLAP is significantly higher than

ASSIGN (9) due to more computation steps involved, although

hardware specification was not reported for ASSIGN. FLAP can

process approximately 600,000 address records per day on a
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mid-end CPU and can be further accelerated by adding more

computing resources. The runtime can be further improved by

employing deterministic rules for addresses that are easy to match.

Finally, FLAP does not currently support one-to-many linking

of an input address to UPRN records. This issue applies to input

addresses that are too broad so that the input address covers

multiple records in the UPRN database. Since different

frameworks and performance assessment metrics are needed for

one-to-many record linkage, this problem is out of the scope of

this paper and will be addressed in future work.

In conclusion, we have developed a framework, FLAP, for

linking free-text UK addresses to UPRN DB with good real-

world performance and usability.
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