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Adaptive Kernel Kalman Filter for Magnetic
Anomaly Detection-based Metallic Target Tracking

Mengwei Sun, Richard Hodgskin-Brown, Mike E. Davies, Ian K. Proudler, James R. Hopgood

Abstract—This paper proposes the use of the adaptive kernel
Kalman filter (AKKF) to track metallic targets using magnetic
anomaly detection (MAD). The proposed AKKF-based approach
enables accurate tracking of moving metallic targets using mag-
netometer sensors, even in the presence of dynamic and unknown
magnetic moments. The experimental results demonstrate that
the proposed method exhibits favourable tracking and estimation
performance with reduced computational complexity compared
with the bootstrap particle filter (PF). For example, in magnetic
moment strength estimation, the relative root mean square
error (RRMSE) of the proposed algorithm using 50 particles
can approach 2.5% with a computation time of 0.18 seconds,
whereas the RRMSE of the PF using 2000 particles is 4.5% with
a computation time of 1.4 seconds. This study highlights the
potential of AKKF in MAD for metallic target tracking using
magnetometer sensors.

Index Terms—Adaptive kernel Kalman filter, magnetic
anomaly detection, metallic target tracking

I. Introduction

Detecting and tracking targets are critical in automated
surveillance and security systems that aim to keep up with
evolving safety and security risks. In recent years, magnetic
anomaly detection (MAD) has been widely studied for various
applications in military and civilian contexts [1], such as
airborne maritime surveillance [2], shipwrecks [3], access
control [4], and tracking of moving metallic vehicles [5],
[6]. The magnetic field is an intrinsic characteristic of many
objects. The ability to detect and track magnetic fields provides
a non-invasive and contactless method for monitoring and
analysing these objects. Tracking techniques based on MAD
typically utilise magnetic sensors, such as magnetometers [5],
[6], to detect and measure the magnetic field generated by
the objects. The position and orientation of the target can
then be estimated based on the measured magnetic field [2],
[5], [6]. Unlike other tracking technologies, such as optical
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or ultrasonic methods, magnetic tracking is emerging as an
occlusion-free tracking scheme for estimating the position and
orientation of the target [7].

The tracking problem can be formulated under the Bayesian
framework by understanding the relationship between the mag-
netic moment of the target and its kinematic parameters. In [5],
[6], magnetometer sensor models for tracking metallic point
targets and extended targets are proposed and validated. The
suitability of magnetometer sensors for tracking is analysed
regarding local observability and the Cramér–Rao lower bound
(CRLB). The extended Kalman filter (EKF) and the weighted
least squares algorithm, by minimising the cost function, are
used for estimating the kinematic parameters and magnetic
moment, respectively. However, the time-varying magnetic
dipole moment, which arises due to the moving vehicle’s
heading, is ignored and set to be constant. In [2], the authors
investigate the use of various nonlinear filters for kinematic
and magnetic dipole tracking applications and compare their
performances. The nonlinear filters that are compared include
the EKF, unscented Kalman filter (UKF), generic particle filter
(GPF), auxiliary particle filter (APF), a combination of EKF
and GPF and a combination of UKF and GPF. Sithiravel et
al. [2] also include the derivation of the posterior CRLB to
quantify the possible best estimation accuracy for MAD.

The proposed sensor model in [2], [5], [6] results in a
sequential Bayesian estimation problem that is both highly
nonlinear and high-dimensional. Choosing a Bayesian filter in-
volves balancing between accuracy and computation complex-
ity. While the EKF is computationally efficient, its accuracy
may suffer when the system’s nonlinearity is high. In contrast,
the UKF and particle filter (PF) can provide better accuracy
for highly nonlinear problems. However, the computational
cost of the UKF can increase for high-dimensional systems,
while the PF can suffer from the curse of dimensionality.
Recently, the adaptive kernel Kalman filter (AKKF) has been
proposed [8]–[11], which demonstrates significant improve-
ment in estimation performance compared to other nonlinear
Kalman filters (KFs) while reducing computation complexity
and avoiding resampling, as is often required with most PFs
in tracking systems. This paper investigates the potential of
using the AKKF within MAD-based vehicle tracking with the
following contributions:
• Exploring a new application for the AKKF. While previous

work focused on utilising the AKKF for object tracking
problems, this paper uses the AKKF for joint tracking and
magnetic parameters estimation, which are high-dimensional
and high nonlinear problems.



• The simulations evaluate the tracking and estimation perfor-
mance of the AKKF and demonstrate improved computation
efficiency in vehicle tracking and magnetic parameters esti-
mation. For example, compared with the PF, the relative
root mean square error (RRMSE) of the magnetic moment
strength estimation achieved by the AKKF can be improved
from 7% to 2% when using 100 particles.

The paper is structured as follows: Section II describes the
system model, Section III presents the AKKF-based algorithm,
Section IV provides the simulation results, and Section V
draws the conclusions.

II. System model

The system for MAD-based vehicle tracking is shown in
Fig. 1, where two magnetometer sensors are positioned close
to a straight road with vector coordinates denoted as s1 and
s2, respectively. The vehicle is moving to pass the stationary
magnetometer sensors. The vehicle is approximated as a point
magnetic dipole. The dynamic state-space model (DSSM)
comprises a motion model that describes the target’s position
and velocity over time and a measurement model that relates
the target’s magnetic field to the measurements obtained by
the sensors. The target evolves as

xn = Fxn−1 + un =



1 ∆T 0 0 0
0 1 0 0 0
0 0 1 ∆T 0
0 0 0 1 0
0 0 0 0 1


xn−1 + un. (1)

Here, ∆T is the sampling interval and is set as ∆T = 1, un

is the process noise vector, the time index n is defined as
n = 1, . . . ,N, where N represents the number of time steps.
The hidden states are xn = [ξn, ξ̇n, ηn, η̇n, ζn]T, where (ξn, ηn, ζn)
represents the target dipole position in X-axis, Y-axis and Z-
axis, and (ξ̇n, η̇n) represent the corresponding velocity in X-
axis and Y-axis. We only consider the vehicle’s motion in the
X-Y 2D plane and ignore the velocity in the Z-axis, as the
vehicle is constrained to move on a flat surface and cannot
move up or down.

The measurement at the k-th magnetometer sensor is based
on a nonlinear model that can be described as follows [6]

yn,k = hk(xn,mn) + en,k

= B0 +
µ0

4π
3
(
rn,k ·mn

)
rn,k− ∥ rn,k ∥

2 mn

∥ rn,k ∥
5 + en,k.

(2)

Here, the constant B0 is the Earth’s magnetic field, rn,k =[
ξn, ηn, ζn

]T
− sk is the target position relative to the k-th

sensor at time n, and · denotes the dot product. The magnetic
dipole moment of the target is mn, and the additive white
Gaussian noise (AWGN) associated with the measurement is
en,k ∼ N (0,Rk). The magnetic field of the metallic objects, as
shown in Fig. 1, is induced partly due to the ferromagnetic
content (hard iron) and partly due to the deflection of the

Fig. 1: System setup: Two magnetometer sensors, the vehicle is moving to pass them.

Earth’s magnetic field (soft iron). Hence, the magnetic moment
of the metallic objects is modelled as [6]:

mn = mhard
n +msoft

n = Θ(θn)m0 +
D
µ0

B0, (3)

The rotation matrix Θ(θn) is used to model the effect of the
heading on the magnetic field refers to the magnetic north,
and it can be expressed as [6]:

Θ(θn) =


cos θn − sin θn 0
sin θn cos θn 0

0 0 1

 . (4)

The magnetic dipole moment of the target, denoted by m0, is
assumed to be independent of the external magnetic field. The
scalar constant D accounts for the magnetic field induced by
the target’s ferromagnetic content and deflection of the Earth’s
magnetic field. The permeability of the vacuum, represented
by µ0, is a fundamental physical constant that describes the
magnetic properties of free space.

III. AKKF-based tracking and estimation algorithms

The purpose of metallic target tracking is to precisely
track the target’s movement and simultaneously estimate its
magnetic moment. This is accomplished through the utilisa-
tion of a posterior probability density function (pdf), which
explains the joint distribution of the target’s hidden states
Xn =

[
xT

n ,mT
n ,m0,D

]T
, considering the observations y1:n,1:2 at

two sensors which are located at s1:2. The joint posterior pdf
is decomposed in Equation (5). In this section, we will discuss
how to use the PF and the AKKF to sequentially approximate
the joint posterior pdf.

A. PF-based algorithm

The PF approximates the joint posterior pdf by using a
weighted set of particles. Each particle represents a possi-
ble value of the joint state variables Xn at each time step
n = 1, 2, ...,N. The joint posterior distribution in (5) can be
estimated as follows:

p(Xn | y1:n,1:2)

≈
1
M

M∑
i=1

w{i}n δ(xn − x{i}n ,mn −m{i}n ,m0 −m{i}0,n,D − D{i}n ).
(6)



p(Xn | y1:n,1:2) = p(xn,mn,m0,D | y1:n,1:2) = p
(
yn,1:2 | xn,mn,m0,D

)
×

%
p (xn|xn−1) p (mn|xn,mn−1,m0,D) p (m0,D) p

(
xn−1,mn−1,m0,D | y1:n−1,1:2

)
dxn−1dmn−1dm0dD

p
(
yn,1:2 | y1:n−1,1:2

) (5)

Here, w{i}n represents the weight of the i-th particle at time
step n, δ denotes the Dirac delta function, and M is the
number of particles. At each time step n, the weight w{i}n is
updated based on the likelihood of the observation y1:n,1:2
given the particle’s state variables {x{i}n ,m{i}n ,m{i}0 ,D

{i}}, i.e.,
w{i}n = w{i}n−1 p

(
y1:n,1:2 | x{i}n ,m{i}n ,m{i}0 ,D

{i}
)
. The state variables of

each particle are updated using the transition probabilities as
(7), where θ{i}n = arctan2(η̇{i}n , ξ̇

{i}
n ), and u{i}n represents a process

noise sample drawn from the process noise distribution.

x{i}n = Fx{i}n−1 + u{i}n (7a)

m{i}n = Θ(θ{i}n )m{i}0,n +
D{i}n

µ0
B0 (7b)

m{i}0,n = m{i}0,n−1 (7c)

D{i}n = D{i}n−1. (7d)

After updating the particles and their weights, the particles
are resampled to obtain a new set of particles for the next
time step. The resampling process involves randomly selecting
particles from the current set with probability proportional to
their weights, with replacement.

However, the computational cost of the PF grows exponen-
tially with the number of state variables, making it impractical
for high-dimensional problems. In high-dimensional problems,
it is difficult to obtain a sufficient number of particles to
represent the posterior pdf accurately, leading to particle de-
generacy, where only a small subset of particles have non-zero
weights, and the rest are effectively ignored. This can result in
poor estimation accuracy and instability in the estimates. To
address this issue, we investigate the use of the AKKF to solve
high-dimensional problems with low computational costs and
favourable accuracy.

B. AKKF-based algorithm

The proposed AKKF [8] enables us to obtain the empirical
kernel mean embedding (KME) of the posterior pdf of the
hidden state in (5). This is accomplished using a set of feature
mappings of generated particles and their corresponding kernel
weights. The particles are updated and propagated in the data
space based on the parametric DSSMs, and the corresponding
kernel weights are predicted and updated linearly. Common
kernel functions used for KMEs include linear, quadratic,
quartic, and Gaussian kernels. The quartic kernel can be used
when the data is highly nonlinear and complex. Considering
the system setup and the DSSM in equations (1) and (2), the
nonlinearity of the measurement model is highly nonlinear.
Therefore, we apply the quartic kernel to approximate the
predictive and posterior pdfs in this paper. The quartic kernel

Algorithm 1 AKKF-based metallic target tracking algorithm

Require: DSSM: motion model and measurement model.
1: Initialisation: Set the initial particles in the data space

x̃{i=1:M}
0 ∼ Pinit, w0 = 1/M [1, . . . , 1]T.

2: for n = 1 : N do
3: Prediction:

• In the data space, propagate proposal particles
following (7),

⇒ In the kernel feature space with basis Φn:
w−n = Γnw+n−1, S −n = ΓnS +n−1Γ

T
n + Vn.

4: Update:
• In the data space: y{i}n = h(X{i}n , e{i}n ),
⇒ In the kernel feature space with basis Φn:

w+n = w−n+Qn

(
G:,yn −Gyyw−n

)
, S +n = S −n−QnGyyS −n .

5: Proposal particles draw:
• In the data space:

X̃{i=1:M}
n ∼ N (E (Xn) ,Cov (Xn)),

⇒ Get the kernel feature space with basis Ψn.
6: end for

function k(X,Y) and its corresponding feature mapping ϕX(X)
are defined as:

k(X,Y) = (XTY + c)4 (8a)

ϕX(X) =
[
a1, . . . , a j, . . . , ad

]T
, (8b)

where c ≥ 0 is a free parameter that trades off the influence of
higher-order versus lower-order terms in the polynomial, and
the element in the quartic kernel feature mapping is

a j =

√
4!√

ϱ1! . . . ϱK!ϱK+1!
xϱ1

1 . . . x
ϱK
k

√
cϱK+1 , ϱ1 + · · · + ϱK+1 = 4.

Here, ϱ1, . . . , ϱK+1 are non-negative integers representing the
powers of the corresponding input dimensions. The dimension
of ϕX(X) is d = (K + 4)!/(4!K!), where K is the dimension of
the hidden state X = [x1, . . . , xk, . . . , xK]T.

The proposed AKKF-based algorithm is realised sequen-
tially by embedding the pdf p(Xn | y1:n,1:2) into an reproducing
kernel Hilbert space (RKHS) as an empirical KME,

p(Xn | y1:n,1:2)→ µ̂+Xn
= Φnw+n , (9)

where Φn represents the kernel feature mappings of par-
ticles and w+n is the updated kernel weight. The AKKF-
based algorithm consists of three main steps, which we will
further explain in the following subsections. The algorithm is
summarised in Algorithm I. See [8] for details of the AKKF.

1) Draw Proposal Particles at Time n − 1 : The posterior
distribution pdf at time n − 1, i.e., p(Xn−1 | y1:n−1,1:2) is



empirically as approximated by an element µ̂+Xn−1
in the RKHS

based on the AKKF, resulting in p(Xn−1 | y1:n−1,1:2)→ µ̂+Xn−1
=

Φn−1w+n−1. Here, Φn−1 =
[
ϕx(X{1}n−1), . . . , ϕx(X{M}n−1)

]
represents

the kernel feature mappings of the particles X{1:M}
n−1 using the

quartic kernel function, and w+n−1 is the weight vector with
a positive definite weight covariance matrix denoted as S +n−1.
Then, E(Xn−1) and Cov (Xn−1) from µ̂+Xn−1

are extracted and
passed to the data space following [8]. Next, proposal particles
are generated according to the importance of distribution as
X̃{i=1:M}

n−1 ∼ N (E (Xn−1) ,Cov (Xn−1)), and mapped to the RKHS
as Ψn−1 =

[
ϕx(X̃{1}n−1), . . . , ϕx(X̃{M}n−1)

]
.

2) Prediction from Time n − 1 to Time n: The empirical
KME of the predictive probability at time n is approximated
using a linear conditional operator in the RKHS:

p(Xn|y1:n−1,1:2) 7→ µ̂−Xn
= ĈXn |X̃n−1

µ̂+Xn−1

= Φn (Kx̃x̃ + λK̃ I)−1Kx̃x︸                ︷︷                ︸
Γn

w+n−1 = Φnw−n . (10)

Here, Φn =
[
ϕx(X{1}n ), . . . , ϕx(X{M}n )

]
represent the feature

mappings of the state particles at time n, which are obtained
by propagating X̃{i=1:M}

n−1 through the process function following
(7). The Gram matrices Kx̃x̃ = Ψ

T
n−1Ψn−1 and Kx̃=xΨ

T
n−1Φn−1.

And Γn−1 represents the change of sample representation from
Φn−1 to Ψn−1. The regularisation parameter, λK̃ , ensures that
the inverse is well-defined, and I is the identity operator
matrix. Following the derivation in [8], the kernel weight
covariance matrix, S −n , is calculated as S −n = ΓnS +n−1Γ

T
n + Vn,

where Vn is the finite matrix representation of the transition
residual matrix [8].

3) Update at Time n: The observation particles are up-
dated based on the observation models in (2). The kernel
mappings of observation particles in the kernel feature space
are Υn =

[
ϕy(y{1}n,1:2), . . . , ϕy(y{M}n,1:2)

]
. Based on the derivations in

[8], the KME vector, the weight vector, and the kernel weight
covariance matrix are updated as shown in Equations (11a) to
(11c), respectively.

µ̂+xn
= µ̂−xn

+ Qn

[
ϕy(yn) − Ĉyn |xn µ̂

−
xn

]
= Φnw+n , (11a)

w+n = w−n + Qn

(
G:,yn −Gyyw−n

)
(11b)

S +n = S −n − QnGyyS −n . (11c)

Here, Qn is the kernel Kalman gain, G:,yn = Υ
T
nϕy(yn), and the

Gram matrix of the observation at time n is Gyy = Υ
T
nΥn [8].

IV. Simulation Results

The simulation parameters are set as follows: the initial
state of the vehicle is set to x1 = [−7.56, 3.75, 6.75, 0.4]T,
and the hard iron dipole moment of the vehicle is m0 =

[−203, 124, 267]TAm2 [6]. The soft iron scalar is D = 1m3

[6]. The sensors’ axes are s1 = [0, 0, 0.3]T and s2 = [0, 9, 0.7]T,
and the measurement noise covariance matrices are [6]

R1 = 10−15


0.1303 −0.0073 −0.0114
−0.0073 0.1112 0.0117
−0.0114 0.0117 0.1558



(a)

(b)

Fig. 2: Measured magnetic field strength in X/Y/Z axes at two sensors. (a) Sensor 1;
(b) Sensor 2.

R2 = 10−15


0.1500 0.0205 0.0215
0.0205 0.1937 0.0310
0.0215 0.0310 0.1483

 .
Here, the unit of measurement is Telsa. The magnetic field
strength measured in X-axis, Y-axis, and Z-axis at two sensors
is shown in Fig. 2. The initial prior distribution of the
hidden states for particles is drawn following the settings
as ξ{i=1:M}

0 ∼ U(−7.6,−7.4), η{i=1:M}
0 ∼ U(6, 8), ξ̇{i=1:M}

0 ∼

N(ξ̇0, 10−2), η{i=1:M}
0 ∼ N(η0, 10−2), z{i=1:M}

0 ∼ N(z0, 10−1),
D{i=1:M}

0 ∼ N(D0, 10−2) , m{i=1:M}
0 ∼ N(m0, 103I).

Fig. 3 displays a representative trajectory and the tracking
performance obtained by the AKKF and the PF. Fig. 4 and
Fig. 5 display the estimation performance of the hard iron
dipole moment m0 and the soft iron scalar D, obtained from
these two filters. The AKKF uses MAKKF = 100 particles,
while MPF = 2000 particles are used for the PF. From Fig. 3
to Fig. 5, we can see that the AKKF with a smaller number of
particles achieved favourable tracking and estimation perfor-
mance compared to the PF with a large number of particles.
We then compare the average root mean square error (RMSE)
of the AKKF and the PF using the same number of particles,
along with its standard deviation for tracking performance.
RMSE is defined in (12). We obtain 100 Monte Carlo (MC)
realisations with an increasing number of particles, specifically
M = [50, 100, 200], while the bootstrap PF with 2000 particles
is considered as the benchmark performance, as shown in 6(a).

RMSE =

√∑N
n=1(ξn − ξ̂n)2 + (ηn − η̂n)2

N
. (12)

We also compared the RRMSE and its standard deviation



Fig. 3: Ground truth trajectory versus tracking performance achieved by the AKKF and
the PF.

Fig. 4: True hard iron dipole moment m0 versus estimated values.

for the estimation performance of m0 and D, as well as
the computation time, as shown in Figures 6(b) to 6(d),
respectively.

Based on the simulation results, we draw the following
conclusions: the proposed AKKF demonstrates significantly
improved performance with the same number of particles
compared to the PF, especially for trajectory tracking and
magnetic moment strength estimation. For example, with 200
particles, the tracking accuracy can be improved by 0.13m,
and magnetic moment strength estimation accuracy can be
improved by 5%. Moreover, compared with the benchmark
performance achieved by the PF with 2000 particles, the
AKKF shows satisfactory tracking and estimation performance
with significantly reduced computational complexity when
dealing with high nonlinear and high-dimensional problems.
This improved performance and reduced computational com-
plexity are due to the ability of the AKKF to efficiently
represent high-dimensional data using kernels, which can
capture more information about the data in the rich feature
space of the kernel. The feature mappings can then be used
to perform computations more efficiently. In contrast, the PF
works with the data directly and may struggle to handle high-
dimensional data.

V. Conclusions
This paper explores a new application for the AKKF by

utilising it for joint tracking and magnetic parameters es-
timation in high-dimensional and high nonlinear problems.
The simulations presented demonstrate improved computa-
tional efficiency in vehicle tracking and magnetic parameter
estimation.

Fig. 5: True soft iron scalar D versus estimated values.

(a) (b)

(c) (d)

Fig. 6: Average and standard derivation of tracking RMSE. RMSE and computation
performance (a) Tracking; (b) Hard iron dipole moment estimation; (c) Soft iron scalar
estimation; (d) Computation time.
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